Page Menu
Home
ClusterLabs Projects
Search
Configure Global Search
Log In
Files
F3155371
crypto.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Flag For Later
Award Token
Size
45 KB
Referenced Files
None
Subscribers
None
crypto.c
View Options
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.com
*/
#include <config.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/poll.h>
#if defined(COROSYNC_BSD)
#include <sys/endian.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include "crypto.h"
#define CONST64(n) n ## ULL
typedef uint32_t ulong32;
typedef uint64_t ulong64;
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define ENDIAN_LITTLE
#elif __BYTE_ORDER == __BIG_ENDIAN
#define ENDIAN_BIG
#elif _BYTE_ORDER == _LITTLE_ENDIAN
#define ENDIAN_LITTLE
#elif _BYTE_ORDER == _BIG_ENDIAN
#define ENDIAN_BIG
#else
#error "cannot detect byte order"
#endif
#if defined(COROSYNC_LINUX)
#if __WORDSIZE == 64
#define ENDIAN_64BITWORD
#endif
#if __WORDSIZE == 32
#define ENDIAN_32BITWORD
#endif
#else
/* XXX need to find a better default
*/
#define ENDIAN_32BITWORD
#endif
/* ---- HELPER MACROS ---- */
#ifdef ENDIAN_NEUTRAL
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#endif /* ENDIAN_NEUTRAL */
#ifdef ENDIAN_LITTLE
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
memcpy(&(x), y, 4);
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#else /* 64-bit words then */
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64L(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64L(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_LITTLE */
#ifdef ENDIAN_BIG
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
memcpy(&(x), y, 4);
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
(((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
#else /* 64-bit words then */
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64H(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64H(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_BIG */
#define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \
((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) )
#if defined(__GNUC__) && defined(__i386__) && !defined(INTEL_CC)
static inline unsigned long ROL(unsigned long word, int i)
{
__asm__("roll %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
static inline unsigned long ROR(unsigned long word, int i)
{
__asm__("rorl %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#else
/* rotates the hard way */
#define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#endif
#define ROL64(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
#undef MAX
#undef MIN
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
/* extract a byte portably */
#define byte(x, n) (((x) >> (8 * (n))) & 255)
#define CONST64(n) n ## ULL
/* a simple macro for making hash "process" functions */
#define HASH_PROCESS(func_name, compress_name, state_var, block_size) \
int func_name (hash_state * md, const unsigned char *buf, unsigned long len) \
{ \
unsigned long n; \
if (md-> state_var .curlen > sizeof(md-> state_var .buf)) { \
return CRYPT_INVALID_ARG; \
} \
while (len > 0) { \
if (md-> state_var .curlen == 0 && len >= block_size) { \
compress_name (md, (unsigned char *)buf); \
md-> state_var .length += block_size * 8; \
buf += block_size; \
len -= block_size; \
} else { \
n = MIN(len, (block_size - md-> state_var .curlen)); \
memcpy(md-> state_var .buf + md-> state_var.curlen, buf, (size_t)n); \
md-> state_var .curlen += n; \
buf += n; \
len -= n; \
if (md-> state_var .curlen == block_size) { \
compress_name (md, md-> state_var .buf); \
md-> state_var .length += 8*block_size; \
md-> state_var .curlen = 0; \
} \
} \
} \
return CRYPT_OK; \
}
#define MAXBLOCKSIZE 128
/*
* The mycrypt_macros.h file
*/
/* ---- HELPER MACROS ---- */
#ifdef ENDIAN_NEUTRAL
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#endif /* ENDIAN_NEUTRAL */
#ifdef ENDIAN_LITTLE
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
memcpy(&(x), y, 4);
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#else /* 64-bit words then */
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64L(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64L(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_LITTLE */
#ifdef ENDIAN_BIG
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
memcpy(&(x), y, 4);
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
(((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
#else /* 64-bit words then */
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64H(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64H(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_BIG */
#define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \
((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) )
#define ROL64(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
#undef MAX
#undef MIN
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
/* extract a byte portably */
#define byte(x, n) (((x) >> (8 * (n))) & 255)
/* $Id: s128multab.h 213 2003-12-16 04:27:12Z ggr $ */
/* @(#)TuringMultab.h 1.3 (QUALCOMM) 02/09/03 */
/* Multiplication table for Turing using 0xD02B4367 */
static const ulong32 Multab[256] = {
0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9,
0x97AC41D1, 0x478702B6, 0x7AFAC71F, 0xAAD18478,
0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746,
0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697,
0xC62A4993, 0x16010AF4, 0x2B7CCF5D, 0xFB578C3A,
0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB,
0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5,
0x32938AAD, 0xE2B8C9CA, 0xDFC50C63, 0x0FEE4F04,
0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2,
0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613,
0xA2411084, 0x726A53E3, 0x4F17964A, 0x9F3CD52D,
0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC,
0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51,
0x90D29A29, 0x40F9D94E, 0x7D841CE7, 0xADAF5F80,
0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE,
0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F,
0xCFA869D6, 0x1F832AB1, 0x22FEEF18, 0xF2D5AC7F,
0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE,
0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90,
0x3B11AAE8, 0xEB3AE98F, 0xD6472C26, 0x066C6F41,
0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC,
0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D,
0x6A97A2AA, 0xBABCE1CD, 0x87C12464, 0x57EA6703,
0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2,
0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14,
0x9950BA6C, 0x497BF90B, 0x74063CA2, 0xA42D7FC5,
0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB,
0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A,
0xC8D6B22E, 0x18FDF149, 0x258034E0, 0xF5AB7787,
0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656,
0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568,
0x3C6F7110, 0xEC443277, 0xD139F7DE, 0x0112B4B9,
0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748,
0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699,
0xB008500E, 0x60231369, 0x5D5ED6C0, 0x8D7595A7,
0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476,
0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB,
0x829BDAA3, 0x52B099C4, 0x6FCD5C6D, 0xBFE61F0A,
0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34,
0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5,
0x1249408A, 0xC26203ED, 0xFF1FC644, 0x2F348523,
0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2,
0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC,
0xE6F083B4, 0x36DBC0D3, 0x0BA6057A, 0xDB8D461D,
0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0,
0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61,
0xB7768BF6, 0x675DC891, 0x5A200D38, 0x8A0B4E5F,
0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E,
0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E,
0x8B19FAE6, 0x5B32B981, 0x664F7C28, 0xB6643F4F,
0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71,
0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0,
0xDA9FF2A4, 0x0AB4B1C3, 0x37C9746A, 0xE7E2370D,
0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC,
0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2,
0x2E26319A, 0xFE0D72FD, 0xC370B754, 0x135BF433,
0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5,
0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24,
0xBEF4ABB3, 0x6EDFE8D4, 0x53A22D7D, 0x83896E1A,
0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB,
0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566,
0x8C67211E, 0x5C4C6279, 0x6131A7D0, 0xB11AE4B7,
0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789,
0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658,
};
/* $Id: s128sbox.h 213 2003-12-16 04:27:12Z ggr $ */
/* Sbox for SOBER-128 */
/*
* This is really the combination of two SBoxes; the least significant
* 24 bits comes from:
* 8->32 Sbox generated by Millan et. al. at Queensland University of
* Technology. See: E. Dawson, W. Millan, L. Burnett, G. Carter,
* "On the Design of 8*32 S-boxes". Unpublished report, by the
* Information Systems Research Centre,
* Queensland University of Technology, 1999.
*
* The most significant 8 bits are the Skipjack "F table", which can be
* found at http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack.pdf .
* In this optimised table, though, the intent is to XOR the word from
* the table selected by the high byte with the input word. Thus, the
* high byte is actually the Skipjack F-table entry XORED with its
* table index.
*/
static const ulong32 Sbox[256] = {
0xa3aa1887, 0xd65e435c, 0x0b65c042, 0x800e6ef4,
0xfc57ee20, 0x4d84fed3, 0xf066c502, 0xf354e8ae,
0xbb2ee9d9, 0x281f38d4, 0x1f829b5d, 0x735cdf3c,
0x95864249, 0xbc2e3963, 0xa1f4429f, 0xf6432c35,
0xf7f40325, 0x3cc0dd70, 0x5f973ded, 0x9902dc5e,
0xda175b42, 0x590012bf, 0xdc94d78c, 0x39aab26b,
0x4ac11b9a, 0x8c168146, 0xc3ea8ec5, 0x058ac28f,
0x52ed5c0f, 0x25b4101c, 0x5a2db082, 0x370929e1,
0x2a1843de, 0xfe8299fc, 0x202fbc4b, 0x833915dd,
0x33a803fa, 0xd446b2de, 0x46233342, 0x4fcee7c3,
0x3ad607ef, 0x9e97ebab, 0x507f859b, 0xe81f2e2f,
0xc55b71da, 0xd7e2269a, 0x1339c3d1, 0x7ca56b36,
0xa6c9def2, 0xb5c9fc5f, 0x5927b3a3, 0x89a56ddf,
0xc625b510, 0x560f85a7, 0xace82e71, 0x2ecb8816,
0x44951e2a, 0x97f5f6af, 0xdfcbc2b3, 0xce4ff55d,
0xcb6b6214, 0x2b0b83e3, 0x549ea6f5, 0x9de041af,
0x792f1f17, 0xf73b99ee, 0x39a65ec0, 0x4c7016c6,
0x857709a4, 0xd6326e01, 0xc7b280d9, 0x5cfb1418,
0xa6aff227, 0xfd548203, 0x506b9d96, 0xa117a8c0,
0x9cd5bf6e, 0xdcee7888, 0x61fcfe64, 0xf7a193cd,
0x050d0184, 0xe8ae4930, 0x88014f36, 0xd6a87088,
0x6bad6c2a, 0x1422c678, 0xe9204de7, 0xb7c2e759,
0x0200248e, 0x013b446b, 0xda0d9fc2, 0x0414a895,
0x3a6cc3a1, 0x56fef170, 0x86c19155, 0xcf7b8a66,
0x551b5e69, 0xb4a8623e, 0xa2bdfa35, 0xc4f068cc,
0x573a6acd, 0x6355e936, 0x03602db9, 0x0edf13c1,
0x2d0bb16d, 0x6980b83c, 0xfeb23763, 0x3dd8a911,
0x01b6bc13, 0xf55579d7, 0xf55c2fa8, 0x19f4196e,
0xe7db5476, 0x8d64a866, 0xc06e16ad, 0xb17fc515,
0xc46feb3c, 0x8bc8a306, 0xad6799d9, 0x571a9133,
0x992466dd, 0x92eb5dcd, 0xac118f50, 0x9fafb226,
0xa1b9cef3, 0x3ab36189, 0x347a19b1, 0x62c73084,
0xc27ded5c, 0x6c8bc58f, 0x1cdde421, 0xed1e47fb,
0xcdcc715e, 0xb9c0ff99, 0x4b122f0f, 0xc4d25184,
0xaf7a5e6c, 0x5bbf18bc, 0x8dd7c6e0, 0x5fb7e420,
0x521f523f, 0x4ad9b8a2, 0xe9da1a6b, 0x97888c02,
0x19d1e354, 0x5aba7d79, 0xa2cc7753, 0x8c2d9655,
0x19829da1, 0x531590a7, 0x19c1c149, 0x3d537f1c,
0x50779b69, 0xed71f2b7, 0x463c58fa, 0x52dc4418,
0xc18c8c76, 0xc120d9f0, 0xafa80d4d, 0x3b74c473,
0xd09410e9, 0x290e4211, 0xc3c8082b, 0x8f6b334a,
0x3bf68ed2, 0xa843cc1b, 0x8d3c0ff3, 0x20e564a0,
0xf8f55a4f, 0x2b40f8e7, 0xfea7f15f, 0xcf00fe21,
0x8a6d37d6, 0xd0d506f1, 0xade00973, 0xefbbde36,
0x84670fa8, 0xfa31ab9e, 0xaedab618, 0xc01f52f5,
0x6558eb4f, 0x71b9e343, 0x4b8d77dd, 0x8cb93da6,
0x740fd52d, 0x425412f8, 0xc5a63360, 0x10e53ad0,
0x5a700f1c, 0x8324ed0b, 0xe53dc1ec, 0x1a366795,
0x6d549d15, 0xc5ce46d7, 0xe17abe76, 0x5f48e0a0,
0xd0f07c02, 0x941249b7, 0xe49ed6ba, 0x37a47f78,
0xe1cfffbd, 0xb007ca84, 0xbb65f4da, 0xb59f35da,
0x33d2aa44, 0x417452ac, 0xc0d674a7, 0x2d61a46a,
0xdc63152a, 0x3e12b7aa, 0x6e615927, 0xa14fb118,
0xa151758d, 0xba81687b, 0xe152f0b3, 0x764254ed,
0x34c77271, 0x0a31acab, 0x54f94aec, 0xb9e994cd,
0x574d9e81, 0x5b623730, 0xce8a21e8, 0x37917f0b,
0xe8a9b5d6, 0x9697adf8, 0xf3d30431, 0x5dcac921,
0x76b35d46, 0xaa430a36, 0xc2194022, 0x22bca65e,
0xdaec70ba, 0xdfaea8cc, 0x777bae8b, 0x242924d5,
0x1f098a5a, 0x4b396b81, 0x55de2522, 0x435c1cb8,
0xaeb8fe1d, 0x9db3c697, 0x5b164f83, 0xe0c16376,
0xa319224c, 0xd0203b35, 0x433ac0fe, 0x1466a19a,
0x45f0b24f, 0x51fda998, 0xc0d52d71, 0xfa0896a8,
0xf9e6053f, 0xa4b0d300, 0xd499cbcc, 0xb95e3d40,
};
/* Implementation of SOBER-128 by Tom St Denis.
* Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM.
*/
const struct _prng_descriptor sober128_desc =
{
"sober128", 64,
&sober128_start,
&sober128_add_entropy,
&sober128_ready,
&sober128_read,
};
const struct _prng_descriptor *prng_descriptor[] = {
&sober128_desc
};
/* don't change these... */
#define N 17
#define FOLD N /* how many iterations of folding to do */
#define INITKONST 0x6996c53a /* value of KONST to use during key loading */
#define KEYP 15 /* where to insert key words */
#define FOLDP 4 /* where to insert non-linear feedback */
#define B(x,i) ((unsigned char)(((x) >> (8*i)) & 0xFF))
static ulong32 BYTE2WORD(const unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
return t;
}
#define WORD2BYTE(w, b) STORE32L(b, w)
static void XORWORD(ulong32 w, unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
t ^= w;
STORE32L(t, b);
}
/* give correct offset for the current position of the register,
* where logically R[0] is at position "zero".
*/
#define OFF(zero, i) (((zero)+(i)) % N)
/* step the LFSR */
/* After stepping, "zero" moves right one place */
#define STEP(R,z) \
R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF];
static void cycle(ulong32 *R)
{
ulong32 t;
int i;
STEP(R,0);
t = R[0];
for (i = 1; i < N; ++i) {
R[i-1] = R[i];
}
R[N-1] = t;
}
/* Return a non-linear function of some parts of the register.
*/
#define NLFUNC(c,z) \
{ \
t = c->R[OFF(z,0)] + c->R[OFF(z,16)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = ROR(t, 8); \
t = ((t + c->R[OFF(z,1)]) ^ c->konst) + c->R[OFF(z,6)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = t + c->R[OFF(z,13)]; \
}
static ulong32 nltap(struct sober128_prng *c)
{
ulong32 t;
NLFUNC(c, 0);
return t;
}
/* initialise to known state
*/
int sober128_start(prng_state *prng)
{
int i;
struct sober128_prng *c;
c = &(prng->sober128);
/* Register initialised to Fibonacci numbers */
c->R[0] = 1;
c->R[1] = 1;
for (i = 2; i < N; ++i) {
c->R[i] = c->R[i-1] + c->R[i-2];
}
c->konst = INITKONST;
/* next add_entropy will be the key */
c->flag = 1;
c->set = 0;
return CRYPT_OK;
}
/* Save the current register state
*/
static void s128_savestate(struct sober128_prng *c)
{
int i;
for (i = 0; i < N; ++i) {
c->initR[i] = c->R[i];
}
}
/* initialise to previously saved register state
*/
static void s128_reloadstate(struct sober128_prng *c)
{
int i;
for (i = 0; i < N; ++i) {
c->R[i] = c->initR[i];
}
}
/* Initialise "konst"
*/
static void s128_genkonst(struct sober128_prng *c)
{
ulong32 newkonst;
do {
cycle(c->R);
newkonst = nltap(c);
} while ((newkonst & 0xFF000000) == 0);
c->konst = newkonst;
}
/* Load key material into the register
*/
#define ADDKEY(k) \
c->R[KEYP] += (k);
#define XORNL(nl) \
c->R[FOLDP] ^= (nl);
/* nonlinear diffusion of register for key */
#define DROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); c->R[OFF((z+1),FOLDP)] ^= t;
static void s128_diffuse(struct sober128_prng *c)
{
ulong32 t;
/* relies on FOLD == N == 17! */
DROUND(0);
DROUND(1);
DROUND(2);
DROUND(3);
DROUND(4);
DROUND(5);
DROUND(6);
DROUND(7);
DROUND(8);
DROUND(9);
DROUND(10);
DROUND(11);
DROUND(12);
DROUND(13);
DROUND(14);
DROUND(15);
DROUND(16);
}
int sober128_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng)
{
struct sober128_prng *c;
ulong32 i, k;
c = &(prng->sober128);
if (c->flag == 1) {
/* this is the first call to the add_entropy so this input is the key */
/* len must be multiple of 4 bytes */
assert ((len & 3) == 0);
for (i = 0; i < len; i += 4) {
k = BYTE2WORD(&buf[i]);
ADDKEY(k);
cycle(c->R);
XORNL(nltap(c));
}
/* also fold in the length of the key */
ADDKEY(len);
/* now diffuse */
s128_diffuse(c);
s128_genkonst(c);
s128_savestate(c);
c->nbuf = 0;
c->flag = 0;
c->set = 1;
} else {
/* ok we are adding an IV then... */
s128_reloadstate(c);
/* len must be multiple of 4 bytes */
assert ((len & 3) == 0);
for (i = 0; i < len; i += 4) {
k = BYTE2WORD(&buf[i]);
ADDKEY(k);
cycle(c->R);
XORNL(nltap(c));
}
/* also fold in the length of the key */
ADDKEY(len);
/* now diffuse */
s128_diffuse(c);
c->nbuf = 0;
}
return CRYPT_OK;
}
int sober128_ready(prng_state *prng)
{
return prng->sober128.set == 1 ? CRYPT_OK : CRYPT_ERROR;
}
/* XOR pseudo-random bytes into buffer
*/
#define SROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); XORWORD(t, buf+(z*4));
unsigned long sober128_read(unsigned char *buf, unsigned long nbytes, prng_state *prng)
{
struct sober128_prng *c;
ulong32 t, tlen;
c = &(prng->sober128);
t = 0;
tlen = nbytes;
/* handle any previously buffered bytes */
while (c->nbuf != 0 && nbytes != 0) {
*buf++ ^= c->sbuf & 0xFF;
c->sbuf >>= 8;
c->nbuf -= 8;
--nbytes;
}
#ifndef SMALL_CODE
/* do lots at a time, if there's enough to do */
while (nbytes >= N*4) {
SROUND(0);
SROUND(1);
SROUND(2);
SROUND(3);
SROUND(4);
SROUND(5);
SROUND(6);
SROUND(7);
SROUND(8);
SROUND(9);
SROUND(10);
SROUND(11);
SROUND(12);
SROUND(13);
SROUND(14);
SROUND(15);
SROUND(16);
buf += 4*N;
nbytes -= 4*N;
}
#endif
/* do small or odd size buffers the slow way */
while (4 <= nbytes) {
cycle(c->R);
t = nltap(c);
XORWORD(t, buf);
buf += 4;
nbytes -= 4;
}
/* handle any trailing bytes */
if (nbytes != 0) {
cycle(c->R);
c->sbuf = nltap(c);
c->nbuf = 32;
while (c->nbuf != 0 && nbytes != 0) {
*buf++ ^= c->sbuf & 0xFF;
c->sbuf >>= 8;
c->nbuf -= 8;
--nbytes;
}
}
return tlen;
}
/* SHA1 code by Tom St Denis */
const struct _hash_descriptor sha1_desc =
{
"sha1",
2,
20,
64,
/* DER identifier */
{ 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E,
0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14 },
15,
&sha1_init,
&sha1_process,
&sha1_done,
};
#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)
static void sha1_compress(hash_state *md, const unsigned char *buf)
{
ulong32 a,b,c,d,e,W[80],i;
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32H(W[i], buf + (4*i));
}
/* copy state */
a = md->sha1.state[0];
b = md->sha1.state[1];
c = md->sha1.state[2];
d = md->sha1.state[3];
e = md->sha1.state[4];
/* expand it */
for (i = 16; i < 80; i++) {
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
}
/* compress */
/* round one */
#define FF0(a,b,c,d,e,i) e = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROL(b, 30);
#define FF1(a,b,c,d,e,i) e = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROL(b, 30);
#define FF2(a,b,c,d,e,i) e = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROL(b, 30);
#define FF3(a,b,c,d,e,i) e = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROL(b, 30);
for (i = 0; i < 20; ) {
FF0(a,b,c,d,e,i++);
FF0(e,a,b,c,d,i++);
FF0(d,e,a,b,c,i++);
FF0(c,d,e,a,b,i++);
FF0(b,c,d,e,a,i++);
}
/* round two */
for (; i < 40; ) {
FF1(a,b,c,d,e,i++);
FF1(e,a,b,c,d,i++);
FF1(d,e,a,b,c,i++);
FF1(c,d,e,a,b,i++);
FF1(b,c,d,e,a,i++);
}
/* round three */
for (; i < 60; ) {
FF2(a,b,c,d,e,i++);
FF2(e,a,b,c,d,i++);
FF2(d,e,a,b,c,i++);
FF2(c,d,e,a,b,i++);
FF2(b,c,d,e,a,i++);
}
/* round four */
for (; i < 80; ) {
FF3(a,b,c,d,e,i++);
FF3(e,a,b,c,d,i++);
FF3(d,e,a,b,c,i++);
FF3(c,d,e,a,b,i++);
FF3(b,c,d,e,a,i++);
}
#undef FF0
#undef FF1
#undef FF2
#undef FF3
/* store */
md->sha1.state[0] = md->sha1.state[0] + a;
md->sha1.state[1] = md->sha1.state[1] + b;
md->sha1.state[2] = md->sha1.state[2] + c;
md->sha1.state[3] = md->sha1.state[3] + d;
md->sha1.state[4] = md->sha1.state[4] + e;
}
void sha1_init(hash_state * md)
{
md->sha1.state[0] = 0x67452301UL;
md->sha1.state[1] = 0xefcdab89UL;
md->sha1.state[2] = 0x98badcfeUL;
md->sha1.state[3] = 0x10325476UL;
md->sha1.state[4] = 0xc3d2e1f0UL;
md->sha1.curlen = 0;
md->sha1.length = 0;
}
HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
int sha1_done(hash_state * md, unsigned char *hash)
{
int i;
/*
* Assert there isn't an invalid argument
*/
assert (md->sha1.curlen < sizeof (md->sha1.buf));
/* increase the length of the message */
md->sha1.length += md->sha1.curlen * 8;
/* append the '1' bit */
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha1.curlen > 56) {
while (md->sha1.curlen < 64) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
sha1_compress(md, md->sha1.buf);
md->sha1.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha1.curlen < 56) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha1.length, md->sha1.buf+56);
sha1_compress(md, md->sha1.buf);
/* copy output */
for (i = 0; i < 5; i++) {
STORE32H(md->sha1.state[i], hash+(4*i));
}
return CRYPT_OK;
}
/* Submited by Dobes Vandermeer (dobes@smartt.com) */
/*
(1) append zeros to the end of K to create a B byte string
(e.g., if K is of length 20 bytes and B=64, then K will be
appended with 44 zero bytes 0x00)
(2) XOR (bitwise exclusive-OR) the B byte string computed in step
(1) with ipad (ipad = the byte 0x36 repeated B times)
(3) append the stream of data 'text' to the B byte string resulting
from step (2)
(4) apply H to the stream generated in step (3)
(5) XOR (bitwise exclusive-OR) the B byte string computed in
step (1) with opad (opad = the byte 0x5C repeated B times.)
(6) append the H result from step (4) to the B byte string
resulting from step (5)
(7) apply H to the stream generated in step (6) and output
the result
*/
int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen)
{
unsigned char buf[128];
unsigned long hashsize;
unsigned long i;
int err;
hmac->hash = hash;
hashsize = hash_descriptor[hash]->hashsize;
/* valid key length? */
assert (keylen > 0);
assert (keylen <= hash_descriptor[hash]->blocksize);
memcpy(hmac->key, key, (size_t)keylen);
if(keylen < hash_descriptor[hash]->blocksize) {
memset((hmac->key) + keylen, 0, (size_t)(hash_descriptor[hash]->blocksize - keylen));
}
// Create the initial vector for step (3)
for(i=0; i < hash_descriptor[hash]->blocksize; i++) {
buf[i] = hmac->key[i] ^ 0x36;
}
// Pre-pend that to the hash data
hash_descriptor[hash]->init(&hmac->md);
err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize);
return err;
}
int hmac_process(hmac_state *hmac, const unsigned char *buf, unsigned long len)
{
return hash_descriptor[hmac->hash]->process(&hmac->md, buf, len);
}
/* Submited by Dobes Vandermeer (dobes@smartt.com) */
/*
(1) append zeros to the end of K to create a B byte string
(e.g., if K is of length 20 bytes and B=64, then K will be
appended with 44 zero bytes 0x00)
(2) XOR (bitwise exclusive-OR) the B byte string computed in step
(1) with ipad (ipad = the byte 0x36 repeated B times)
(3) append the stream of data 'text' to the B byte string resulting
from step (2)
(4) apply H to the stream generated in step (3)
(5) XOR (bitwise exclusive-OR) the B byte string computed in
step (1) with opad (opad = the byte 0x5C repeated B times.)
(6) append the H result from step (4) to the B byte string
resulting from step (5)
(7) apply H to the stream generated in step (6) and output
the result
*/
int hmac_done(hmac_state *hmac, unsigned char *hashOut, unsigned long *outlen)
{
unsigned char buf[128];
unsigned char isha[256];
unsigned long hashsize, i;
int hash, err;
/* test hash */
hash = hmac->hash;
/* get the hash message digest size */
hashsize = hash_descriptor[hash]->hashsize;
// Get the hash of the first HMAC vector plus the data
if ((err = hash_descriptor[hash]->done(&hmac->md, isha)) != CRYPT_OK) {
goto __ERR;
}
// Create the second HMAC vector vector for step (3)
for(i=0; i < hash_descriptor[hash]->blocksize; i++) {
buf[i] = hmac->key[i] ^ 0x5C;
}
// Now calculate the "outer" hash for step (5), (6), and (7)
hash_descriptor[hash]->init(&hmac->md);
if ((err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize)) != CRYPT_OK) {
goto __ERR;
}
if ((err = hash_descriptor[hash]->process(&hmac->md, isha, hashsize)) != CRYPT_OK) {
goto __ERR;
}
if ((err = hash_descriptor[hash]->done(&hmac->md, buf)) != CRYPT_OK) {
goto __ERR;
}
// copy to output
for (i = 0; i < hashsize && i < *outlen; i++) {
hashOut[i] = buf[i];
}
*outlen = i;
err = CRYPT_OK;
__ERR:
return err;
}
const struct _hash_descriptor *hash_descriptor[] =
{
&sha1_desc
};
/* portable way to get secure random bits to feed a PRNG */
/* on *NIX read /dev/random */
static unsigned long rng_nix(unsigned char *buf, unsigned long len,
void (*callback)(void))
{
int fd;
unsigned long rb;
fd = open ("/dev/urandom", O_RDONLY);
rb = (unsigned long)read (fd, buf, len);
close (fd);
return (rb);
}
/* on ANSI C platforms with 100 < CLOCKS_PER_SEC < 10000 */
#if defined(XCLOCKS_PER_SEC)
#define ANSI_RNG
static unsigned long rng_ansic(unsigned char *buf, unsigned long len,
void (*callback)(void))
{
clock_t t1;
int l, acc, bits, a, b;
if (XCLOCKS_PER_SEC < 100 || XCLOCKS_PER_SEC > 10000) {
return 0;
}
l = len;
bits = 8;
acc = a = b = 0;
while (len--) {
if (callback != NULL) callback();
while (bits--) {
do {
t1 = XCLOCK(); while (t1 == XCLOCK()) a ^= 1;
t1 = XCLOCK(); while (t1 == XCLOCK()) b ^= 1;
} while (a == b);
acc = (acc << 1) | a;
}
*buf++ = acc;
acc = 0;
bits = 8;
}
acc = bits = a = b = 0;
return l;
}
#endif
unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,
void (*callback)(void))
{
unsigned long x;
x = rng_nix(buf, len, callback); if (x != 0) { return x; }
#ifdef ANSI_RNG
x = rng_ansic(buf, len, callback); if (x != 0) { return x; }
#endif
return 0;
}
int rng_make_prng(int bits, int wprng, prng_state *prng,
void (*callback)(void))
{
unsigned char buf[256];
int err;
if (bits < 64 || bits > 1024) {
return CRYPT_INVALID_PRNGSIZE;
}
if ((err = prng_descriptor[wprng]->start(prng)) != CRYPT_OK) {
return err;
}
bits = ((bits/8)+((bits&7)!=0?1:0)) * 2;
if (rng_get_bytes(buf, (unsigned long)bits, callback) != (unsigned long)bits) {
return CRYPT_ERROR_READPRNG;
}
if ((err = prng_descriptor[wprng]->add_entropy(buf, (unsigned long)bits, prng)) != CRYPT_OK) {
return err;
}
if ((err = prng_descriptor[wprng]->ready(prng)) != CRYPT_OK) {
return err;
}
return CRYPT_OK;
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Wed, Feb 26, 9:53 PM (10 h, 11 m ago)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1434591
Default Alt Text
crypto.c (45 KB)
Attached To
Mode
rC Corosync
Attached
Detach File
Event Timeline
Log In to Comment