
Colocation Explained
Heartbeat 2.1.2-4 Onwards

abeekhof@suse.de

mailto:abeekhof@suse.de
mailto:abeekhof@suse.de

• Collocate(B, A)

• <rsc_colocation from=B to=A/>

• Decide where to put A, then put B there too

• Include B’s preferences when deciding where to
put A

• If A cannot run anywhere, B can’t run either

• If B cannot run anywhere, A will be unaffected

Terminology
AB

Adding Scores

• number > INFINITY = INFINITY

• number < -INFINITY = - INFINITY

• number + INFINITY = INFINITY

• number - INFINITY = - INFINITY

• INFINITY - INFINITY = - INFINITY

• INFINITY ::= 1,000,000

Simple Example
Setup

• resource(A, priority=5)

• resource(B, priority=50)

• location(A, node1, 100)

• location(A, node2, 10)

• location(B, node2, 1000)

• collocate(B, A)

Simple Example
What Happens

• Start at highest priority resource (B)

• Defer and process A instead (collocation
rule)

• Incorporate B’s preferences

• A.node1.score += B.node1.score (100)

• A.node2.score += B.node2.score (1010)

• Choose a node (node2)

Simple Example
Actually I Lied

• Incorporate B’s preferences

• A.node[x].score += factor * B.node[x].score

• What is factor?

• factor ::= constraint.score / INFINITY

• For most people it will be 1 or -1

• So really its: colocate(B, A, score)

Choosing a Node for B
Simple Example

• Process collocation constraint

• Matching node: node.score = INFINITY

• Everything else: node.score = -INFINITY

• Scores do not include A’s preferences

• Final scores for B

• node1 = -INFINITY

• node2 = INFINITY

Choosing a Node for B
Suggested Colocation

• When the collocation score != INFINITY

• Matching node: node.score += collocation.score

• Everything else: unchanged

• Scores do not include A’s preferences

• Final scores for B (collocation.score = 500)

• node1 = 0

• node2 = 1500

Chained Example
Setup

• resource(A, p=5)

• resource(B, p=500)

• resource(C, p=50)

• location(A, node1, 100)

• location(A, node2, 10)

• location(B, node2, 1000)

• location(C, node1,10000)

• collocate(B, A)

• collocate(C, B)

ABC

Chained Example
What Happens

• Start at highest priority resource (B)

• Defer and process A instead (collocation
rule)

• Incorporate B’s preferences

• A.node[x].score += B.node[x].score

• So far nothing is different

ABC

Chained Example
What Happens (Continued)

• Incorporate C’s preferences too!

• A.node[x].score += C.node[x].score

• Final scores (when choosing a node for A)

• node1 = 10100

• node2 = 1010

ABC

Chained Example
Final Scores: B and C

• Resource B

• node1 = INFINITY

• node2 = -INFINITY

• Resource C

• node1 = INFINITY

• node2 = -INFINITY

ABC

Multiple Dependencies

AC

D

B
• Include scores from B, C

and D when choosing a
node for A

• Order is defined by
priority of dependent
resources (or name if
priority is equal)

• In this example:

• B.priority > C.priority

• C.priority > D.priority

Dependancy Tree
Order in Which Preferences are Applied (A-H)

ACEF

D

G H

B

More Complex
C is a Group

AC1EF

D

G H

B

C3 C2

Getting Smart
When not Everything can Run

• If applying a resource’s preference, means
that all nodes would be unavailable...

• Undo the current resource’s preference

• Skip any resources that need to be
collocated with the current resource

• Process the next peer

Un-runnable: B

ACEF

D

G H

B

Un-runnable: B

ACEF

D

G H

BX

Un-runnable: E

ACEF

D

G H

B

Un-runnable: E

ACEF

D

G H

B

X

Un-runnable: E

ACEF

D

G H

B

XX

Un-runnable: C

ACEF

D

G H

B

Un-runnable: C

ACEF

D

G H

B

X

Un-runnable: C

ACEF

D

G H

B

XX

Un-runnable: C

ACEF

D

G H

B

XX X

Un-runnable: C

ACEF

D

G H

B

XX X
X

Un-runnable: C

ACEF

D

G H

B

XX X
X

X

Un-runnable
Worked Example

AC

D

BRsc Node Score
A node1 50

A node2 5

B node1 1

B node2 10

C node1 -INFINITY

C node2 -INFINITY

D node1 100

Un-runnable
Worked Example (continued)

AC

D

B

• Consider B

• A.node1.score = 50 + 1

• A.node2.score = 5 + 10

Un-runnable
Worked Example (continued)

AC

D

B
• Consider C

• A.node1.score = 51 -INFINITY

• A.node2.score = 15 -INFINITY

• Rollback Scores

• A.node1.score = 51

• A.node2.score = 15

Un-runnable
Worked Example (continued)

AC

D

B
• Consider C

• A.node1.score = 51 -INFINITY

• A.node2.score = 15 -INFINITY

• Rollback Scores

• A.node1.score = 51

• A.node2.score = 15

X

Un-runnable
Worked Example (continued)

AC

D

B• Consider D

• A.node1.score = 51 + 100

• A.node2.score = 15 + 1000

• Final Scores

• A.node1.score = 151

• A.node2.score = 1015

• Choose node2

Un-runnable
Worked Example (continued)

AC

D

B• Consider D

• A.node1.score = 51 + 100

• A.node2.score = 15 + 1000

• Final Scores

• A.node1.score = 151

• A.node2.score = 1015

• Choose node2

X

Colocation by Role
Master/Slave - Summary

• A resource that needs to run on the
master can force the master to move
(rather than not be allowed to run
anywhere)

• A resource that can’t run anywhere and
must run with the master does not
prevent the promotion of a master

Colocation by Role
Who Gets Promoted

• Allocation occurs as-per previous slides

• Decision of which instances to promote
is based on

• Preference as set by RA with
crm_master

• Location preferences of
resources that wish to be
colocated with the master
instance(s)

Colocation by Role
Master/Slave Example

Child Location M/S Score

ms:0 node1 1,000

ms:1 node2 100

ms:2 node3 10

ms:3 node4 -INFINITY

Colocation by Role
Changes

• Under the old system, we would

• sort the children by their m/s score

• allocate masters in that order (ms:0,
ms:1, ms:2)

• Now we include the colocation scores
too

Colocation by Role
Master/Slave Example (continued)

Dependent Location Score

rsc1 node1 20

rsc2 node2 200

rsc3 node2 -INFINITY

rsc3 node3 2,000

rsc4 [everywhere] -INFINITY

Colocation by Role
Master/Slave Example (continued)

Child Location M/S Score Final
Score

ms:0 node1 1,000 1,020

ms:1 node2 100 -INFINITY

ms:2 node3 10 2,010

ms:3 node4 -INFINITY -INFINITY

Colocation by Role
Master/Slave Example (continued)

• “Final” weight affects sorting order only

• Negative final score does not prevent
the instance from being promoted

• Sort and allocate Masters in order
(depending on the number of masters
required):

• ms:2 , ms:0, ms:1

• ms:3 can’t be promoted as it’s m/s score
is less than zero

?
abeekhof@suse.de or linux-ha@lists.linux-ha.org

mailto:abeekhof@suse.de?subject=Colocation%20Explained
mailto:abeekhof@suse.de?subject=Colocation%20Explained
mailto:linux-ha@lists.linux-ha.org?subject=Colocation%20Explained
mailto:linux-ha@lists.linux-ha.org?subject=Colocation%20Explained

