Page Menu
Home
ClusterLabs Projects
Search
Configure Global Search
Log In
Files
F3154765
INSTALL
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Flag For Later
Award Token
Size
8 KB
Referenced Files
None
Subscribers
None
INSTALL
View Options
----------------------------------------------
The Corosync Cluster Engine Installation Guide
----------------------------------------------
Please read LICENSE for a description of the licensing of this software.
---------------------
* Building from git *
---------------------
When building and installing from git, autoconf 2.61, automake 1.11,
libtool 2.2.6 and pkgconfig 0.23 (or later versions) are required.
Prior versions may result in build failures.
Step 1: check out a read only copy of the repository
git clone git://github.com/corosync/corosync.git
Find the version you want to build. Usually this will be the "master" version.
If you want to build a specific released version, use git checkout VERSION.
Step 2: Generate the makefiles
balance:~/corosync% ./autogen.sh
Step 3: Run the configure script
balance:~/corosync% ./configure
Step 4: Install the binaries
balance:~/corosync% su
balance:~/corosync# make install
-------------------------
* Building from tarball *
-------------------------
The tarball is distributed with pregenerated makefiles. There is no need
to run the autogen.sh script in this case.
Step 1: Run the configure script
balance:~/corosync% ./configure
Step 2: Install the binaries
balance:~/corosync% su
balance:~/corosync# make install
-------------------------------
* A notice about dependencies *
-------------------------------
We have strived very hard to avoid dependencies as much as possible, but there
are two required libraries: LibQB and NSS.
Optional dependencies are support for Infiniband RDMA, DBUS, SNMP and libstatgrab.
The nss packages required to build corosync can usually be found by
installing the "nss-devel" and "nspr-devel" packages (names may vary, please use
distribution's package manager). Also don't forget to install pkgconfig.
-----------------------------------------
* Building with Infiniband RDMA support *
-----------------------------------------
Infiniband RDMA build support is disabled by default. To enable rdma during
building:
balance:~/corosync% ./configure --enable-rdma
Infiniband rdma support requires the libibverbs and librdmacm packages (and
their -devel counterparts). Corosync requires the use of pkgconfig in these
packages. The Corosync maintainers have sent patches for this feature upstream
to the Infiniband maintainers.
If your version of these packages don't have pkgconfig support, you will see an
error during configure such as:
checking for ibverbs... configure: error: Package requirements (ibverbs) were not met:
No package 'ibverbs' found
Consider adjusting the PKG_CONFIG_PATH environment variable if you
installed software in a non-standard prefix.
Alternatively, you may set the environment variables ibverbs_CFLAGS
and ibverbs_LIBS to avoid the need to call pkg-config.
See the pkg-config man page for more details.
** Follow the directions:
balance:~/corosync/trunk% export ibverbs_CFLAGS=-I/usr/include/infiniband
balance:~/corosync/trunk% export ibverbs_LIBS=-libverbs
balance:~/corosync/trunk% export rdmacm_CFLAGS=-I/usr/include/rdma
balance:~/corosync/trunk% export rdmacm_LIBS=-lrdmacm
balance:~/corosync/trunk% ./configure --enable-rdma
Hopefully pkgconfig support is added in your distribution's version of
libibverbs and librdmacm soon if you run into this problem.
-----------------------------------------
* Building with SNMP/DBUS support *
-----------------------------------------
You can get SNMP traps on the following corosync events:
1) node joine/leave
2) application connect/dissconnect from corosync
3) quorum gain/lost
There are 2 modes of achieving this DBUS + foghorn and snmp-agentx.
Setting up to get dbus events.
------------------------------
foghorn (http://git.fedorahosted.org/git/foghorn.git) converts
dbus signals into snmp traps. So install foghorn.
$ ./configure --enable-dbus
$ make && sudo make install
$ /etc/init.d/corosync start
$ echo "OPTIONS=\"-d\"" > /etc/sysconfig/corosync-notifyd
$ /etc/init.d/corosync-notifyd start
Start foghorn
to see the dbus signals getting sent try:
$ dbus-monitor --system
Setting up snmp-agentx.
-----------------------
If you don't want to use dbus then you can use snmp-agentx.
$ ./configure --enable-snmp
$ make && sudo make install
$ /etc/init.d/corosync start
$ vim /etc/snmp/snmptrapd.conf
Add the following:
authCommunity log,execute,net public
$ /etc/init.d/snmptrapd start
$ echo "OPTIONS=\"-s\"" > /etc/sysconfig/corosync-notifyd
$ /etc/init.d/corosync-notifyd start
I start up wireshark to see if there are any snmp traps been sent
as I am too lazy to setup a manager to receive traps.
run a program that talks to corosync e.g.
$ corosync-cmapctl
And you should get traps
------------------------
* Configuring Corosync *
------------------------
The corosync executive will automatically determine cluster membership by
communicating on a specified multicast address and port.
The directory conf contains the file corosync.conf.example
# Please read the corosync.conf.5 manual page
totem {
version: 2
secauth: off
threads: 0
interface {
ringnumber: 0
bindnetaddr: 192.168.1.1
mcastaddr: 226.94.1.1
mcastport: 5405
}
}
logging {
fileline: off
to_stderr: yes
to_file: yes
to_syslog: yes
logfile: /tmp/corosync.log
debug: off
timestamp: on
}
The totem section contains three values. All three values must be set
or the corosync executive wll exit with an error.
bindnetaddr specifies the address which the corosync Executive should bind to.
This address should always end in zero. If the local interface taffic
should routed over is 192.168.5.92, set bindnetaddr to 192.168.5.0.
mcastaddr is a multicast address. The default should work but you may have
a different network configuration. Avoid 224.x.x.x because this is a "config"
multicast address.
mcastport specifies the UDP port number. It is possible to use the same
multicast address on a network with the corosync services configured for
different UDP ports.
The timeout section contains seven values. This section is not normally used,
but rather used to override the program defaults for the purposes of fine
tuning for a given networking/processor combination or for debugging purposes.
Be careful to use the same timeout values on each of the nodes in the cluster
or unpredictable results may occur.
Generate a private key
----------------------
corosync uses cryptographic techniques to ensure authenticity and privacy of
messages. A private key must be generated and shared by all processors for
correct operation.
First generate the key on one of the nodes:
balance# corosync-keygen
Corosync Authentication key generator.
Gathering 1024 bits for key from /dev/random.
Writing corosync key to /etc/corosync/authkey.
After this is complete, a private key will be in the file /etc/corosync/authkey.
This private key must be copied to every processor that will be a member of
the cluster. If the private key isn't the same for every node, those nodes
with nonmatching private keys will not be able to join the same configuration.
Copy the key to some transportable storage or use ssh to transmit the key
from node to node. Then install the key with the command:
balance# install -D --group=0 --owner=0 --mode=0400 /path_to_authkey/authkey /etc/corosync/authkey
If the message invalid digest appears, the keys are not the same on each node.
Run the corosync executive
-------------------------
Get one or more nodes and run the corosync executive on each node. Run the
corosync daemon after following the previous directions. The daemon must be
run as UID 0(root).
please read SECURITY to understand the threat model assumed by corosync
and the techniques corosync use to overcome these threats.
Before running any of the test programs
---------------------------------------
The corosync executive will ensure security by only allowing the UID 0(root) or
GID 0(root) to connect to it. To allow other users to access the corosync
executive, create a directory called /etc/corosync/uidgid.d and place a file in
it named in some way that is identifiable to you. All files in this directory
will be scanned and their contents added to the allowed uid gid database. The
contents of this file should be
uidgid {
uid: username
gid: groupname
}
Please note that these users then have full ability to transmit and receive
messages in the cluster and are not bound by the threat model described in
SECURITY.
Try out the corosync cpg functionality
--------------------------------------
After corosync is running
Run test/testcpg on multiple nodes or on the same node. Messages can be typed
which will then be sent to other testcpg applications in the cluster.
To see a hashed verified output of data on all nodes, test/cpgverify can be
run.
File Metadata
Details
Attached
Mime Type
text/plain
Expires
Wed, Feb 26, 4:15 PM (6 h, 2 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1465541
Default Alt Text
INSTALL (8 KB)
Attached To
Mode
rC Corosync
Attached
Detach File
Event Timeline
Log In to Comment