Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/libknet/handle.c b/libknet/handle.c
index 68641d6e..d4bd86c2 100644
--- a/libknet/handle.c
+++ b/libknet/handle.c
@@ -1,808 +1,787 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>
#include <math.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "internals.h"
#include "crypto.h"
#include "links.h"
#include "compress.h"
#include "compat.h"
#include "common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_pmtud.h"
#include "threads_dsthandler.h"
#include "threads_rx.h"
#include "threads_tx.h"
#include "transports.h"
#include "transport_common.h"
#include "logging.h"
static pthread_mutex_t handle_config_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_rwlock_t shlib_rwlock;
static uint8_t shlib_wrlock_init = 0;
static uint32_t knet_ref = 0;
static int _init_shlib_tracker(knet_handle_t knet_h)
{
int savederrno = 0;
if (!shlib_wrlock_init) {
savederrno = pthread_rwlock_init(&shlib_rwlock, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize shared lib rwlock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
shlib_wrlock_init = 1;
}
return 0;
}
static void _fini_shlib_tracker(void)
{
if (knet_ref == 0) {
pthread_rwlock_destroy(&shlib_rwlock);
shlib_wrlock_init = 0;
}
return;
}
static int _init_locks(knet_handle_t knet_h)
{
int savederrno = 0;
savederrno = pthread_rwlock_init(&knet_h->global_rwlock, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize list rwlock: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->handle_stats_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize handle stats mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->threads_status_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize threads status mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->pmtud_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pmtud mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->kmtu_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize kernel_mtu mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_cond_init(&knet_h->pmtud_cond, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pmtud conditional mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->hb_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize hb_thread mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->tx_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize tx_thread mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->backoff_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pong timeout backoff mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->tx_seq_num_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize tx_seq_num_mutex mutex: %s",
strerror(savederrno));
goto exit_fail;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _destroy_locks(knet_handle_t knet_h)
{
pthread_rwlock_destroy(&knet_h->global_rwlock);
pthread_mutex_destroy(&knet_h->pmtud_mutex);
pthread_mutex_destroy(&knet_h->kmtu_mutex);
pthread_cond_destroy(&knet_h->pmtud_cond);
pthread_mutex_destroy(&knet_h->hb_mutex);
pthread_mutex_destroy(&knet_h->tx_mutex);
pthread_mutex_destroy(&knet_h->backoff_mutex);
pthread_mutex_destroy(&knet_h->tx_seq_num_mutex);
pthread_mutex_destroy(&knet_h->threads_status_mutex);
pthread_mutex_destroy(&knet_h->handle_stats_mutex);
}
static int _init_socks(knet_handle_t knet_h)
{
int savederrno = 0;
- if (_init_socketpair(knet_h, knet_h->hostsockfd)) {
- savederrno = errno;
- log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize internal hostsockpair: %s",
- strerror(savederrno));
- goto exit_fail;
- }
-
if (_init_socketpair(knet_h, knet_h->dstsockfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize internal dstsockpair: %s",
strerror(savederrno));
goto exit_fail;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _close_socks(knet_handle_t knet_h)
{
_close_socketpair(knet_h, knet_h->dstsockfd);
- _close_socketpair(knet_h, knet_h->hostsockfd);
}
static int _init_buffers(knet_handle_t knet_h)
{
int savederrno = 0;
int i;
size_t bufsize;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
bufsize = ceil((float)KNET_MAX_PACKET_SIZE / (i + 1)) + KNET_HEADER_ALL_SIZE;
knet_h->send_to_links_buf[i] = malloc(bufsize);
if (!knet_h->send_to_links_buf[i]) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory datafd to link buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->send_to_links_buf[i], 0, bufsize);
}
for (i = 0; i < PCKT_RX_BUFS; i++) {
knet_h->recv_from_links_buf[i] = malloc(KNET_DATABUFSIZE);
if (!knet_h->recv_from_links_buf[i]) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for link to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf[i], 0, KNET_DATABUFSIZE);
}
knet_h->recv_from_sock_buf = malloc(KNET_DATABUFSIZE);
if (!knet_h->recv_from_sock_buf) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for app to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_sock_buf, 0, KNET_DATABUFSIZE);
knet_h->pingbuf = malloc(KNET_HEADER_PING_SIZE);
if (!knet_h->pingbuf) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for hearbeat buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pingbuf, 0, KNET_HEADER_PING_SIZE);
knet_h->pmtudbuf = malloc(KNET_PMTUD_SIZE_V6 + KNET_HEADER_ALL_SIZE);
if (!knet_h->pmtudbuf) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for pmtud buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pmtudbuf, 0, KNET_PMTUD_SIZE_V6 + KNET_HEADER_ALL_SIZE);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
bufsize = ceil((float)KNET_MAX_PACKET_SIZE / (i + 1)) + KNET_HEADER_ALL_SIZE + KNET_DATABUFSIZE_CRYPT_PAD;
knet_h->send_to_links_buf_crypt[i] = malloc(bufsize);
if (!knet_h->send_to_links_buf_crypt[i]) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for crypto datafd to link buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->send_to_links_buf_crypt[i], 0, bufsize);
}
knet_h->recv_from_links_buf_decrypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->recv_from_links_buf_decrypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto link to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf_decrypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->recv_from_links_buf_crypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->recv_from_links_buf_crypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto link to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf_crypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->pingbuf_crypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->pingbuf_crypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto hearbeat buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pingbuf_crypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->pmtudbuf_crypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->pmtudbuf_crypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for crypto pmtud buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pmtudbuf_crypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->recv_from_links_buf_decompress = malloc(KNET_DATABUFSIZE_COMPRESS);
if (!knet_h->recv_from_links_buf_decompress) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for decompress buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf_decompress, 0, KNET_DATABUFSIZE_COMPRESS);
knet_h->send_to_links_buf_compress = malloc(KNET_DATABUFSIZE_COMPRESS);
if (!knet_h->send_to_links_buf_compress) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for compress buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->send_to_links_buf_compress, 0, KNET_DATABUFSIZE_COMPRESS);
memset(knet_h->knet_transport_fd_tracker, 0, sizeof(knet_h->knet_transport_fd_tracker));
for (i = 0; i < KNET_MAX_FDS; i++) {
knet_h->knet_transport_fd_tracker[i].transport = KNET_MAX_TRANSPORTS;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _destroy_buffers(knet_handle_t knet_h)
{
int i;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
free(knet_h->send_to_links_buf[i]);
free(knet_h->send_to_links_buf_crypt[i]);
}
for (i = 0; i < PCKT_RX_BUFS; i++) {
free(knet_h->recv_from_links_buf[i]);
}
free(knet_h->recv_from_links_buf_decompress);
free(knet_h->send_to_links_buf_compress);
free(knet_h->recv_from_sock_buf);
free(knet_h->recv_from_links_buf_decrypt);
free(knet_h->recv_from_links_buf_crypt);
free(knet_h->pingbuf);
free(knet_h->pingbuf_crypt);
free(knet_h->pmtudbuf);
free(knet_h->pmtudbuf_crypt);
}
static int _init_epolls(knet_handle_t knet_h)
{
struct epoll_event ev;
int savederrno = 0;
/*
* even if the kernel does dynamic allocation with epoll_ctl
* we need to reserve one extra for host to host communication
*/
knet_h->send_to_links_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (knet_h->send_to_links_epollfd < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll datafd to link fd: %s",
strerror(savederrno));
goto exit_fail;
}
knet_h->recv_from_links_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS);
if (knet_h->recv_from_links_epollfd < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll link to datafd fd: %s",
strerror(savederrno));
goto exit_fail;
}
knet_h->dst_link_handler_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS);
if (knet_h->dst_link_handler_epollfd < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll dst cache fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(knet_h->send_to_links_epollfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on datafd to link epoll fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(knet_h->recv_from_links_epollfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on link to datafd epoll fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(knet_h->dst_link_handler_epollfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on dst cache epoll fd: %s",
strerror(savederrno));
goto exit_fail;
}
- memset(&ev, 0, sizeof(struct epoll_event));
- ev.events = EPOLLIN;
- ev.data.fd = knet_h->hostsockfd[0];
-
- if (epoll_ctl(knet_h->send_to_links_epollfd,
- EPOLL_CTL_ADD, knet_h->hostsockfd[0], &ev)) {
- savederrno = errno;
- log_err(knet_h, KNET_SUB_HANDLE, "Unable to add hostsockfd[0] to epoll pool: %s",
- strerror(savederrno));
- goto exit_fail;
- }
-
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = knet_h->dstsockfd[0];
if (epoll_ctl(knet_h->dst_link_handler_epollfd,
EPOLL_CTL_ADD, knet_h->dstsockfd[0], &ev)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to add dstsockfd[0] to epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _close_epolls(knet_handle_t knet_h)
{
struct epoll_event ev;
int i;
memset(&ev, 0, sizeof(struct epoll_event));
for (i = 0; i < KNET_DATAFD_MAX; i++) {
if (knet_h->sockfd[i].in_use) {
epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->sockfd[i].sockfd[knet_h->sockfd[i].is_created], &ev);
if (knet_h->sockfd[i].sockfd[knet_h->sockfd[i].is_created]) {
_close_socketpair(knet_h, knet_h->sockfd[i].sockfd);
}
}
}
- epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->hostsockfd[0], &ev);
epoll_ctl(knet_h->dst_link_handler_epollfd, EPOLL_CTL_DEL, knet_h->dstsockfd[0], &ev);
close(knet_h->send_to_links_epollfd);
close(knet_h->recv_from_links_epollfd);
close(knet_h->dst_link_handler_epollfd);
}
static int _start_threads(knet_handle_t knet_h)
{
int savederrno = 0;
pthread_attr_t attr;
set_thread_status(knet_h, KNET_THREAD_PMTUD, KNET_THREAD_REGISTERED);
savederrno = pthread_attr_init(&attr);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to init pthread attributes: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_attr_setstacksize(&attr, KNET_THREAD_STACK_SIZE);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set stack size attribute: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_create(&knet_h->pmtud_link_handler_thread, &attr,
_handle_pmtud_link_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start pmtud link thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_DST_LINK, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->dst_link_handler_thread, &attr,
_handle_dst_link_handler_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start dst cache thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->send_to_links_thread, &attr,
_handle_send_to_links_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start datafd to link thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->recv_from_links_thread, &attr,
_handle_recv_from_links_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start link to datafd thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_HB, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->heartbt_thread, &attr,
_handle_heartbt_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start heartbeat thread: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_attr_destroy(&attr);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to destroy pthread attributes: %s",
strerror(savederrno));
/*
* Do not return error code. Error is not critical.
*/
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _stop_threads(knet_handle_t knet_h)
{
void *retval;
wait_all_threads_status(knet_h, KNET_THREAD_STOPPED);
if (knet_h->heartbt_thread) {
pthread_cancel(knet_h->heartbt_thread);
pthread_join(knet_h->heartbt_thread, &retval);
}
if (knet_h->send_to_links_thread) {
pthread_cancel(knet_h->send_to_links_thread);
pthread_join(knet_h->send_to_links_thread, &retval);
}
if (knet_h->recv_from_links_thread) {
pthread_cancel(knet_h->recv_from_links_thread);
pthread_join(knet_h->recv_from_links_thread, &retval);
}
if (knet_h->dst_link_handler_thread) {
pthread_cancel(knet_h->dst_link_handler_thread);
pthread_join(knet_h->dst_link_handler_thread, &retval);
}
if (knet_h->pmtud_link_handler_thread) {
pthread_cancel(knet_h->pmtud_link_handler_thread);
pthread_join(knet_h->pmtud_link_handler_thread, &retval);
}
}
knet_handle_t knet_handle_new_ex(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level,
uint64_t flags)
{
knet_handle_t knet_h;
int savederrno = 0;
struct rlimit cur;
if (getrlimit(RLIMIT_NOFILE, &cur) < 0) {
return NULL;
}
if ((log_fd < 0) || ((unsigned int)log_fd >= cur.rlim_max)) {
errno = EINVAL;
return NULL;
}
/*
* validate incoming request
*/
if ((log_fd) && (default_log_level > KNET_LOG_DEBUG)) {
errno = EINVAL;
return NULL;
}
if (flags > KNET_HANDLE_FLAG_PRIVILEGED * 2 - 1) {
errno = EINVAL;
return NULL;
}
/*
* allocate handle
*/
knet_h = malloc(sizeof(struct knet_handle));
if (!knet_h) {
errno = ENOMEM;
return NULL;
}
memset(knet_h, 0, sizeof(struct knet_handle));
/*
* setting up some handle data so that we can use logging
* also when initializing the library global locks
* and trackers
*/
knet_h->flags = flags;
/*
* copy config in place
*/
knet_h->host_id = host_id;
knet_h->logfd = log_fd;
if (knet_h->logfd > 0) {
memset(&knet_h->log_levels, default_log_level, KNET_MAX_SUBSYSTEMS);
}
/*
* set pmtud default timers
*/
knet_h->pmtud_interval = KNET_PMTUD_DEFAULT_INTERVAL;
/*
* set transports reconnect default timers
*/
knet_h->reconnect_int = KNET_TRANSPORT_DEFAULT_RECONNECT_INTERVAL;
/*
* Set 'min' stats to the maximum value so the
* first value we get is always less
*/
knet_h->stats.tx_compress_time_min = UINT64_MAX;
knet_h->stats.rx_compress_time_min = UINT64_MAX;
knet_h->stats.tx_crypt_time_min = UINT64_MAX;
knet_h->stats.rx_crypt_time_min = UINT64_MAX;
/*
* init global shlib tracker
*/
savederrno = pthread_mutex_lock(&handle_config_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get handle mutex lock: %s",
strerror(savederrno));
free(knet_h);
knet_h = NULL;
errno = savederrno;
return NULL;
}
knet_ref++;
if (_init_shlib_tracker(knet_h) < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to init handle tracker: %s",
strerror(savederrno));
errno = savederrno;
pthread_mutex_unlock(&handle_config_mutex);
goto exit_fail;
}
pthread_mutex_unlock(&handle_config_mutex);
/*
* init main locking structures
*/
if (_init_locks(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* init sockets
*/
if (_init_socks(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* allocate packet buffers
*/
if (_init_buffers(knet_h)) {
savederrno = errno;
goto exit_fail;
}
if (compress_init(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* create epoll fds
*/
if (_init_epolls(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* start transports
*/
if (start_all_transports(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* start internal threads
*/
if (_start_threads(knet_h)) {
savederrno = errno;
goto exit_fail;
}
wait_all_threads_status(knet_h, KNET_THREAD_STARTED);
errno = 0;
return knet_h;
exit_fail:
knet_handle_free(knet_h);
errno = savederrno;
return NULL;
}
knet_handle_t knet_handle_new(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level)
{
return knet_handle_new_ex(host_id, log_fd, default_log_level, KNET_HANDLE_FLAG_PRIVILEGED);
}
int knet_handle_free(knet_handle_t knet_h)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (knet_h->host_head != NULL) {
savederrno = EBUSY;
log_err(knet_h, KNET_SUB_HANDLE,
"Unable to free handle: host(s) or listener(s) are still active: %s",
strerror(savederrno));
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return -1;
}
knet_h->fini_in_progress = 1;
pthread_rwlock_unlock(&knet_h->global_rwlock);
_stop_threads(knet_h);
stop_all_transports(knet_h);
_close_epolls(knet_h);
_destroy_buffers(knet_h);
_close_socks(knet_h);
crypto_fini(knet_h, KNET_MAX_CRYPTO_INSTANCES + 1); /* values above MAX_CRYPTO will release all crypto resources */
compress_fini(knet_h, 1);
_destroy_locks(knet_h);
free(knet_h);
knet_h = NULL;
(void)pthread_mutex_lock(&handle_config_mutex);
knet_ref--;
_fini_shlib_tracker();
pthread_mutex_unlock(&handle_config_mutex);
errno = 0;
return 0;
}
diff --git a/libknet/host.c b/libknet/host.c
index cf351798..e9e86eb8 100644
--- a/libknet/host.c
+++ b/libknet/host.c
@@ -1,742 +1,721 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include "host.h"
#include "internals.h"
#include "logging.h"
#include "threads_common.h"
static void _host_list_update(knet_handle_t knet_h)
{
struct knet_host *host;
knet_h->host_ids_entries = 0;
for (host = knet_h->host_head; host != NULL; host = host->next) {
knet_h->host_ids[knet_h->host_ids_entries] = host->host_id;
knet_h->host_ids_entries++;
}
}
int knet_host_add(knet_handle_t knet_h, knet_node_id_t host_id)
{
int savederrno = 0, err = 0;
struct knet_host *host = NULL;
uint8_t link_idx;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (knet_h->host_index[host_id]) {
err = -1;
savederrno = EEXIST;
log_err(knet_h, KNET_SUB_HOST, "Unable to add host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
host = malloc(sizeof(struct knet_host));
if (!host) {
err = -1;
savederrno = errno;
log_err(knet_h, KNET_SUB_HOST, "Unable to allocate memory for host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
memset(host, 0, sizeof(struct knet_host));
/*
* set host_id
*/
host->host_id = host_id;
/*
* set default host->name to host_id for logging
*/
snprintf(host->name, KNET_MAX_HOST_LEN, "%u", host_id);
/*
* initialize links internal data
*/
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
host->link[link_idx].link_id = link_idx;
host->link[link_idx].status.stats.latency_min = UINT32_MAX;
}
/*
* add new host to the index
*/
knet_h->host_index[host_id] = host;
/*
* add new host to host list
*/
if (knet_h->host_head) {
host->next = knet_h->host_head;
}
knet_h->host_head = host;
_host_list_update(knet_h);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
if (err < 0) {
free(host);
}
errno = err ? savederrno : 0;
return err;
}
int knet_host_remove(knet_handle_t knet_h, knet_node_id_t host_id)
{
int savederrno = 0, err = 0;
struct knet_host *host, *removed;
uint8_t link_idx;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Unable to remove host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
/*
* if links are configured we cannot release the host
*/
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if (host->link[link_idx].configured) {
err = -1;
savederrno = EBUSY;
log_err(knet_h, KNET_SUB_HOST, "Unable to remove host %u, links are still configured: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
}
removed = NULL;
/*
* removing host from list
*/
if (knet_h->host_head->host_id == host_id) {
removed = knet_h->host_head;
knet_h->host_head = removed->next;
} else {
for (host = knet_h->host_head; host->next != NULL; host = host->next) {
if (host->next->host_id == host_id) {
removed = host->next;
host->next = removed->next;
break;
}
}
}
knet_h->host_index[host_id] = NULL;
free(removed);
_host_list_update(knet_h);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_set_name(knet_handle_t knet_h, knet_node_id_t host_id, const char *name)
{
int savederrno = 0, err = 0;
struct knet_host *host;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->host_index[host_id]) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Unable to find host %u to set name: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
if (!name) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Unable to set name for host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
if (strlen(name) >= KNET_MAX_HOST_LEN) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Requested name for host %u is too long: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
for (host = knet_h->host_head; host != NULL; host = host->next) {
if (!strncmp(host->name, name, KNET_MAX_HOST_LEN)) {
err = -1;
savederrno = EEXIST;
log_err(knet_h, KNET_SUB_HOST, "Duplicated name found on host_id %u",
host->host_id);
goto exit_unlock;
}
}
snprintf(knet_h->host_index[host_id]->name, KNET_MAX_HOST_LEN, "%s", name);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_get_name_by_host_id(knet_handle_t knet_h, knet_node_id_t host_id,
char *name)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!name) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->host_index[host_id]) {
savederrno = EINVAL;
err = -1;
log_debug(knet_h, KNET_SUB_HOST, "Host %u not found", host_id);
goto exit_unlock;
}
snprintf(name, KNET_MAX_HOST_LEN, "%s", knet_h->host_index[host_id]->name);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_get_id_by_host_name(knet_handle_t knet_h, const char *name,
knet_node_id_t *host_id)
{
int savederrno = 0, err = 0, found = 0;
struct knet_host *host;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!name) {
errno = EINVAL;
return -1;
}
if (!host_id) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
for (host = knet_h->host_head; host != NULL; host = host->next) {
if (!strncmp(name, host->name, KNET_MAX_HOST_LEN)) {
found = 1;
*host_id = host->host_id;
break;
}
}
if (!found) {
savederrno = ENOENT;
err = -1;
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_get_host_list(knet_handle_t knet_h,
knet_node_id_t *host_ids, size_t *host_ids_entries)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if ((!host_ids) || (!host_ids_entries)) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
memmove(host_ids, knet_h->host_ids, sizeof(knet_h->host_ids));
*host_ids_entries = knet_h->host_ids_entries;
pthread_rwlock_unlock(&knet_h->global_rwlock);
return 0;
}
int knet_host_set_policy(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t policy)
{
int savederrno = 0, err = 0;
uint8_t old_policy;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (policy > KNET_LINK_POLICY_RR) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->host_index[host_id]) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Unable to set name for host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
old_policy = knet_h->host_index[host_id]->link_handler_policy;
knet_h->host_index[host_id]->link_handler_policy = policy;
if (_host_dstcache_update_async(knet_h, knet_h->host_index[host_id])) {
savederrno = errno;
err = -1;
knet_h->host_index[host_id]->link_handler_policy = old_policy;
log_debug(knet_h, KNET_SUB_HOST, "Unable to update switch cache for host %u: %s",
host_id, strerror(savederrno));
}
log_debug(knet_h, KNET_SUB_HOST, "Host %u has new switching policy: %u", host_id, policy);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_get_policy(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t *policy)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!policy) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->host_index[host_id]) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Unable to get name for host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
*policy = knet_h->host_index[host_id]->link_handler_policy;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_get_status(knet_handle_t knet_h, knet_node_id_t host_id,
struct knet_host_status *status)
{
int savederrno = 0, err = 0;
struct knet_host *host;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!status) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_HOST, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
memmove(status, &host->status, sizeof(struct knet_host_status));
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_host_enable_status_change_notify(knet_handle_t knet_h,
void *host_status_change_notify_fn_private_data,
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external))
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HOST, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->host_status_change_notify_fn_private_data = host_status_change_notify_fn_private_data;
knet_h->host_status_change_notify_fn = host_status_change_notify_fn;
if (knet_h->host_status_change_notify_fn) {
log_debug(knet_h, KNET_SUB_HOST, "host_status_change_notify_fn enabled");
} else {
log_debug(knet_h, KNET_SUB_HOST, "host_status_change_notify_fn disabled");
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
-int _send_host_info(knet_handle_t knet_h, const void *data, const size_t datalen)
-{
- ssize_t ret = 0;
-
- if (knet_h->fini_in_progress) {
- return 0;
- }
-
- ret = sendto(knet_h->hostsockfd[1], data, datalen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
- if (ret < 0) {
- log_debug(knet_h, KNET_SUB_HOST, "Unable to write data to hostpipe. Error: %s", strerror(errno));
- return -1;
- }
- if ((size_t)ret != datalen) {
- log_debug(knet_h, KNET_SUB_HOST, "Unable to write all data to hostpipe. Expected: %zu, Written: %zd.", datalen, ret);
- return -1;
- }
-
- return 0;
-}
-
static void _clear_cbuffers(struct knet_host *host, seq_num_t rx_seq_num)
{
int i;
memset(host->circular_buffer, 0, KNET_CBUFFER_SIZE);
host->rx_seq_num = rx_seq_num;
memset(host->circular_buffer_defrag, 0, KNET_CBUFFER_SIZE);
for (i = 0; i < KNET_MAX_LINK; i++) {
memset(&host->defrag_buf[i], 0, sizeof(struct knet_host_defrag_buf));
}
}
static void _reclaim_old_defrag_bufs(struct knet_host *host, seq_num_t seq_num)
{
seq_num_t head, tail; /* seq_num boundaries */
int i;
head = seq_num + 1;
tail = seq_num - (KNET_MAX_LINK + 1);
/*
* expire old defrag buffers
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (host->defrag_buf[i].in_use) {
/*
* head has done a rollover to 0+
*/
if (tail > head) {
if ((host->defrag_buf[i].pckt_seq >= head) && (host->defrag_buf[i].pckt_seq <= tail)) {
host->defrag_buf[i].in_use = 0;
}
} else {
if ((host->defrag_buf[i].pckt_seq >= head) || (host->defrag_buf[i].pckt_seq <= tail)){
host->defrag_buf[i].in_use = 0;
}
}
}
}
}
/*
* check if a given packet seq num is in the circular buffers
* defrag_buf = 0 -> use normal cbuf 1 -> use the defrag buffer lookup
*/
int _seq_num_lookup(struct knet_host *host, seq_num_t seq_num, int defrag_buf, int clear_buf)
{
size_t head, tail; /* circular buffer indexes */
seq_num_t seq_dist;
char *dst_cbuf = host->circular_buffer;
char *dst_cbuf_defrag = host->circular_buffer_defrag;
seq_num_t *dst_seq_num = &host->rx_seq_num;
if (clear_buf) {
_clear_cbuffers(host, seq_num);
}
_reclaim_old_defrag_bufs(host, seq_num);
if (seq_num < *dst_seq_num) {
seq_dist = (SEQ_MAX - seq_num) + *dst_seq_num;
} else {
seq_dist = *dst_seq_num - seq_num;
}
head = seq_num % KNET_CBUFFER_SIZE;
if (seq_dist < KNET_CBUFFER_SIZE) { /* seq num is in ring buffer */
if (!defrag_buf) {
return (dst_cbuf[head] == 0) ? 1 : 0;
} else {
return (dst_cbuf_defrag[head] == 0) ? 1 : 0;
}
} else if (seq_dist <= SEQ_MAX - KNET_CBUFFER_SIZE) {
memset(dst_cbuf, 0, KNET_CBUFFER_SIZE);
memset(dst_cbuf_defrag, 0, KNET_CBUFFER_SIZE);
*dst_seq_num = seq_num;
}
/* cleaning up circular buffer */
tail = (*dst_seq_num + 1) % KNET_CBUFFER_SIZE;
if (tail > head) {
memset(dst_cbuf + tail, 0, KNET_CBUFFER_SIZE - tail);
memset(dst_cbuf, 0, head + 1);
memset(dst_cbuf_defrag + tail, 0, KNET_CBUFFER_SIZE - tail);
memset(dst_cbuf_defrag, 0, head + 1);
} else {
memset(dst_cbuf + tail, 0, head - tail + 1);
memset(dst_cbuf_defrag + tail, 0, head - tail + 1);
}
*dst_seq_num = seq_num;
return 1;
}
void _seq_num_set(struct knet_host *host, seq_num_t seq_num, int defrag_buf)
{
if (!defrag_buf) {
host->circular_buffer[seq_num % KNET_CBUFFER_SIZE] = 1;
} else {
host->circular_buffer_defrag[seq_num % KNET_CBUFFER_SIZE] = 1;
}
return;
}
int _host_dstcache_update_async(knet_handle_t knet_h, struct knet_host *host)
{
int savederrno = 0;
knet_node_id_t host_id = host->host_id;
if (sendto(knet_h->dstsockfd[1], &host_id, sizeof(host_id), MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0) != sizeof(host_id)) {
savederrno = errno;
log_debug(knet_h, KNET_SUB_HOST, "Unable to write to dstpipefd[1]: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
return 0;
}
int _host_dstcache_update_sync(knet_handle_t knet_h, struct knet_host *host)
{
int link_idx;
int best_priority = -1;
int reachable = 0;
if (knet_h->host_id == host->host_id && knet_h->has_loop_link) {
host->active_link_entries = 1;
return 0;
}
host->active_link_entries = 0;
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if (host->link[link_idx].status.enabled != 1) /* link is not enabled */
continue;
if (host->link[link_idx].status.connected != 1) /* link is not enabled */
continue;
if (host->link[link_idx].has_valid_mtu != 1) /* link does not have valid MTU */
continue;
if (host->link_handler_policy == KNET_LINK_POLICY_PASSIVE) {
/* for passive we look for the only active link with higher priority */
if (host->link[link_idx].priority > best_priority) {
host->active_links[0] = link_idx;
best_priority = host->link[link_idx].priority;
}
host->active_link_entries = 1;
} else {
/* for RR and ACTIVE we need to copy all available links */
host->active_links[host->active_link_entries] = link_idx;
host->active_link_entries++;
}
}
if (host->link_handler_policy == KNET_LINK_POLICY_PASSIVE) {
log_info(knet_h, KNET_SUB_HOST, "host: %u (passive) best link: %u (pri: %u)",
host->host_id, host->link[host->active_links[0]].link_id,
host->link[host->active_links[0]].priority);
} else {
log_info(knet_h, KNET_SUB_HOST, "host: %u has %u active links",
host->host_id, host->active_link_entries);
}
/* no active links, we can clean the circular buffers and indexes */
if (!host->active_link_entries) {
log_warn(knet_h, KNET_SUB_HOST, "host: %u has no active links", host->host_id);
_clear_cbuffers(host, 0);
} else {
reachable = 1;
}
if (host->status.reachable != reachable) {
host->status.reachable = reachable;
if (knet_h->host_status_change_notify_fn) {
knet_h->host_status_change_notify_fn(
knet_h->host_status_change_notify_fn_private_data,
host->host_id,
host->status.reachable,
host->status.remote,
host->status.external);
}
}
return 0;
}
diff --git a/libknet/host.h b/libknet/host.h
index bd2e8a70..3312c8ba 100644
--- a/libknet/host.h
+++ b/libknet/host.h
@@ -1,22 +1,21 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __KNET_HOST_H__
#define __KNET_HOST_H__
#include "internals.h"
int _seq_num_lookup(struct knet_host *host, seq_num_t seq_num, int defrag_buf, int clear_buf);
void _seq_num_set(struct knet_host *host, seq_num_t seq_num, int defrag_buf);
-int _send_host_info(knet_handle_t knet_h, const void *data, const size_t datalen);
int _host_dstcache_update_async(knet_handle_t knet_h, struct knet_host *host);
int _host_dstcache_update_sync(knet_handle_t knet_h, struct knet_host *host);
#endif
diff --git a/libknet/internals.h b/libknet/internals.h
index cda58a6d..22f654bb 100644
--- a/libknet/internals.h
+++ b/libknet/internals.h
@@ -1,422 +1,419 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __KNET_INTERNALS_H__
#define __KNET_INTERNALS_H__
/*
* NOTE: you shouldn't need to include this header normally
*/
#include <pthread.h>
#include <stddef.h>
#include <qb/qblist.h>
#include "libknet.h"
#include "onwire.h"
#include "compat.h"
#include "threads_common.h"
#define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE
#define KNET_DATABUFSIZE_CRYPT_PAD 1024
#define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD
#define KNET_DATABUFSIZE_COMPRESS_PAD 1024
#define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD
#define KNET_RING_RCVBUFF 8388608
#define PCKT_FRAG_MAX UINT8_MAX
#define PCKT_RX_BUFS 512
#define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX + 1
-#define KNET_INTERNAL_DATA_CHANNEL KNET_DATAFD_MAX
-
/*
* Size of threads stack. Value is choosen by experimenting, how much is needed
* to sucesfully finish test suite, and at the time of writing patch it was
* ~300KiB. To have some room for future enhancement it is increased
* by factor of 3 and rounded.
*/
#define KNET_THREAD_STACK_SIZE (1024 * 1024)
typedef void *knet_transport_link_t; /* per link transport handle */
typedef void *knet_transport_t; /* per knet_h transport handle */
struct knet_transport_ops; /* Forward because of circular dependancy */
struct knet_mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */
};
struct knet_link {
/* required */
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
/* configurable */
unsigned int dynamic; /* see KNET_LINK_DYN_ define above */
uint8_t priority; /* higher priority == preferred for A/P */
unsigned long long ping_interval; /* interval */
unsigned long long pong_timeout; /* timeout */
unsigned long long pong_timeout_adj; /* timeout adjusted for latency */
uint8_t pong_timeout_backoff; /* see link.h for definition */
unsigned int latency_max_samples; /* precision */
unsigned int latency_cur_samples;
uint8_t pong_count; /* how many ping/pong to send/receive before link is up */
uint64_t flags;
/* status */
struct knet_link_status status;
/* internals */
pthread_mutex_t link_stats_mutex; /* used to update link stats */
uint8_t link_id;
uint8_t transport; /* #defined constant from API */
knet_transport_link_t transport_link; /* link_info_t from transport */
int outsock;
unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/
unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */
uint8_t received_pong;
struct timespec ping_last;
/* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */
uint32_t proto_overhead; /* IP + UDP/SCTP overhead. NOT to be confused
with stats.proto_overhead that includes also knet headers
and crypto headers */
struct timespec pmtud_last;
uint32_t last_ping_size;
uint32_t last_good_mtu;
uint32_t last_bad_mtu;
uint32_t last_sent_mtu;
uint32_t last_recv_mtu;
uint32_t pmtud_crypto_timeout_multiplier;/* used by PMTUd to adjust timeouts on high loads */
uint8_t has_valid_mtu;
};
#define KNET_CBUFFER_SIZE 4096
struct knet_host_defrag_buf {
char buf[KNET_DATABUFSIZE];
uint8_t in_use; /* 0 buffer is free, 1 is in use */
seq_num_t pckt_seq; /* identify the pckt we are receiving */
uint8_t frag_recv; /* how many frags did we receive */
uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */
uint8_t last_first; /* special case if we receive the last fragment first */
ssize_t frag_size; /* normal frag size (not the last one) */
ssize_t last_frag_size; /* the last fragment might not be aligned with MTU size */
struct timespec last_update; /* keep time of the last pckt */
};
struct knet_host {
/* required */
knet_node_id_t host_id;
/* configurable */
uint8_t link_handler_policy;
char name[KNET_MAX_HOST_LEN];
/* status */
struct knet_host_status status;
/* internals */
char circular_buffer[KNET_CBUFFER_SIZE];
seq_num_t rx_seq_num;
seq_num_t untimed_rx_seq_num;
seq_num_t timed_rx_seq_num;
uint8_t got_data;
/* defrag/reassembly buffers */
struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK];
char circular_buffer_defrag[KNET_CBUFFER_SIZE];
/* link stuff */
struct knet_link link[KNET_MAX_LINK];
uint8_t active_link_entries;
uint8_t active_links[KNET_MAX_LINK];
struct knet_host *next;
};
struct knet_sock {
int sockfd[2]; /* sockfd[0] will always be application facing
* and sockfd[1] internal if sockpair has been created by knet */
int is_socket; /* check if it's a socket for recvmmsg usage */
int is_created; /* knet created this socket and has to clean up on exit/del */
int in_use; /* set to 1 if it's use, 0 if free */
int has_error; /* set to 1 if there were errors reading from the sock
* and socket has been removed from epoll */
};
struct knet_fd_trackers {
uint8_t transport; /* transport type (UDP/SCTP...) */
uint8_t data_type; /* internal use for transport to define what data are associated
* with this fd */
void *data; /* pointer to the data */
void *access_list_match_entry_head; /* pointer to access list match_entry list head */
};
#define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4
#define KNET_MAX_COMPRESS_METHODS UINT8_MAX
#define KNET_MAX_CRYPTO_INSTANCES 2
struct knet_handle_stats_extra {
uint64_t tx_crypt_pmtu_packets;
uint64_t tx_crypt_pmtu_reply_packets;
uint64_t tx_crypt_ping_packets;
uint64_t tx_crypt_pong_packets;
};
struct knet_handle {
knet_node_id_t host_id;
unsigned int enabled:1;
struct knet_sock sockfd[KNET_DATAFD_MAX + 1];
int logfd;
uint8_t log_levels[KNET_MAX_SUBSYSTEMS];
- int hostsockfd[2];
int dstsockfd[2];
int send_to_links_epollfd;
int recv_from_links_epollfd;
int dst_link_handler_epollfd;
uint8_t use_access_lists; /* set to 0 for disable, 1 for enable */
unsigned int pmtud_interval;
unsigned int manual_mtu;
unsigned int data_mtu; /* contains the max data size that we can send onwire
* without frags */
struct knet_host *host_head;
struct knet_host *host_index[KNET_MAX_HOST];
knet_transport_t transports[KNET_MAX_TRANSPORTS+1];
struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */
struct knet_handle_stats stats;
struct knet_handle_stats_extra stats_extra;
pthread_mutex_t handle_stats_mutex; /* used to protect handle stats */
uint32_t reconnect_int;
knet_node_id_t host_ids[KNET_MAX_HOST];
size_t host_ids_entries;
struct knet_header *recv_from_sock_buf;
struct knet_header *send_to_links_buf[PCKT_FRAG_MAX];
struct knet_header *recv_from_links_buf[PCKT_RX_BUFS];
struct knet_header *pingbuf;
struct knet_header *pmtudbuf;
uint8_t threads_status[KNET_THREAD_MAX];
uint8_t threads_flush_queue[KNET_THREAD_MAX];
pthread_mutex_t threads_status_mutex;
pthread_t send_to_links_thread;
pthread_t recv_from_links_thread;
pthread_t heartbt_thread;
pthread_t dst_link_handler_thread;
pthread_t pmtud_link_handler_thread;
pthread_rwlock_t global_rwlock; /* global config lock */
pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */
pthread_cond_t pmtud_cond; /* conditional for above */
pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */
pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */
pthread_mutex_t backoff_mutex; /* used to protect dst_link->pong_timeout_adj */
pthread_mutex_t kmtu_mutex; /* used to protect kernel_mtu */
uint32_t kernel_mtu; /* contains the MTU detected by the kernel on a given link */
int pmtud_waiting;
int pmtud_running;
int pmtud_forcerun;
int pmtud_abort;
struct crypto_instance *crypto_instance[KNET_MAX_CRYPTO_INSTANCES + 1]; /* store an extra pointer to allow 0|1|2 values without too much magic in the code */
uint8_t crypto_in_use_config; /* crypto config to use for TX */
uint8_t crypto_only; /* allow only crypto (1) or also clear (0) traffic */
size_t sec_block_size;
size_t sec_hash_size;
size_t sec_salt_size;
unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX];
unsigned char *recv_from_links_buf_crypt;
unsigned char *recv_from_links_buf_decrypt;
unsigned char *pingbuf_crypt;
unsigned char *pmtudbuf_crypt;
int compress_model;
int compress_level;
size_t compress_threshold;
void *compress_int_data[KNET_MAX_COMPRESS_METHODS]; /* for compress method private data */
unsigned char *recv_from_links_buf_decompress;
unsigned char *send_to_links_buf_compress;
seq_num_t tx_seq_num;
pthread_mutex_t tx_seq_num_mutex;
uint8_t has_loop_link;
uint8_t loop_link;
void *dst_host_filter_fn_private_data;
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_node_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries);
void *pmtud_notify_fn_private_data;
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu);
void *host_status_change_notify_fn_private_data;
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external);
void *sock_notify_fn_private_data;
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno);
int fini_in_progress;
uint64_t flags;
};
extern pthread_rwlock_t shlib_rwlock; /* global shared lib load lock */
/*
* NOTE: every single operation must be implementend
* for every protocol.
*/
/*
* for now knet supports only IP protocols (udp/sctp)
* in future there might be others like ARP
* or TIPC.
* keep this around as transport information
* to use for access lists and other operations
*/
#define TRANSPORT_PROTO_LOOPBACK 0
#define TRANSPORT_PROTO_IP_PROTO 1
/*
* some transports like SCTP can filter incoming
* connections before knet has to process
* any packets.
* GENERIC_ACL -> packet has to be read and filterted
* PROTO_ACL -> transport provides filtering at lower levels
* and packet does not need to be processed
*/
typedef enum {
USE_NO_ACL,
USE_GENERIC_ACL,
USE_PROTO_ACL
} transport_acl;
/*
* make it easier to map values in transports.c
*/
#define TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED 0
#define TRANSPORT_PROTO_IS_CONNECTION_ORIENTED 1
typedef struct knet_transport_ops {
/*
* transport generic information
*/
const char *transport_name;
const uint8_t transport_id;
const uint8_t built_in;
uint8_t transport_protocol;
transport_acl transport_acl_type;
/*
* connection oriented protocols like SCTP
* don´t need dst_addr in sendto calls and
* on some OSes are considered EINVAL.
*/
uint8_t transport_is_connection_oriented;
uint32_t transport_mtu_overhead;
/*
* transport init must allocate the new transport
* and perform all internal initializations
* (threads, lists, etc).
*/
int (*transport_init)(knet_handle_t knet_h);
/*
* transport free must releases _all_ resources
* allocated by tranport_init
*/
int (*transport_free)(knet_handle_t knet_h);
/*
* link operations should take care of all the
* sockets and epoll management for a given link/transport set
* transport_link_disable should return err = -1 and errno = EBUSY
* if listener is still in use, and any other errno in case
* the link cannot be disabled.
*
* set_config/clear_config are invoked in global write lock context
*/
int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link);
int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link);
/*
* transport callback for incoming dynamic connections
* this is called in global read lock context
*/
int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link);
/*
* return the fd to use for access lists
*/
int (*transport_link_get_acl_fd)(knet_handle_t knet_h, struct knet_link *link);
/*
* per transport error handling of recvmmsg
* (see _handle_recv_from_links comments for details)
*/
/*
* transport_rx_sock_error is invoked when recvmmsg returns <= 0
*
* transport_rx_sock_error is invoked with both global_rdlock
*/
int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* transport_tx_sock_error is invoked with global_rwlock and
* it's invoked when sendto or sendmmsg returns =< 0
*
* it should return:
* -1 on internal error
* 0 ignore error and continue
* 1 retry
* any sleep or wait action should happen inside the transport code
*/
int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* this function is called on _every_ received packet
* to verify if the packet is data or internal protocol error handling
*
* it should return:
* -1 on error
* 0 packet is not data and we should continue the packet process loop
* 1 packet is not data and we should STOP the packet process loop
* 2 packet is data and should be parsed as such
*
* transport_rx_is_data is invoked with both global_rwlock
* and fd_tracker read lock (from RX thread)
*/
int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
/*
* this function is called by links.c when a link down event is recorded
* to notify the transport that packets are not going through, and give
* transport the opportunity to take actions.
*/
int (*transport_link_is_down)(knet_handle_t knet_h, struct knet_link *link);
} knet_transport_ops_t;
struct pretty_names {
const char *name;
uint8_t val;
};
#endif
diff --git a/libknet/onwire.h b/libknet/onwire.h
index e00ad915..1040ea07 100644
--- a/libknet/onwire.h
+++ b/libknet/onwire.h
@@ -1,208 +1,135 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __KNET_ONWIRE_H__
#define __KNET_ONWIRE_H__
/*
* data structures to define network packets.
* Start from knet_header at the bottom
*/
#include <stdint.h>
#include "libknet.h"
-#if 0
-
-/*
- * for future protocol extension (re-switching table calculation)
- */
-
-struct knet_hinfo_link {
- uint8_t khl_link_id;
- uint8_t khl_link_dynamic;
- uint8_t khl_link_priority;
- uint64_t khl_link_latency;
- char khl_link_dst_ipaddr[KNET_MAX_HOST_LEN];
- char khl_link_dst_port[KNET_MAX_PORT_LEN];
-} __attribute__((packed));
-
-struct knet_hinfo_link_table {
- knet_node_id_t khlt_node_id;
- uint8_t khlt_local; /* we have this node connected locally */
- struct knet_hinfo_link khlt_link[KNET_MAX_LINK]; /* info we send about each link in the node */
-} __attribute__((packed));
-
-struct link_table {
- knet_node_id_t khdt_host_entries;
- uint8_t khdt_host_maps[0]; /* array of knet_hinfo_link_table[khdt_host_entries] */
-} __attribute__((packed));
-#endif
-
-#define KNET_HOSTINFO_LINK_STATUS_DOWN 0
-#define KNET_HOSTINFO_LINK_STATUS_UP 1
-
-struct knet_hostinfo_payload_link_status {
- uint8_t khip_link_status_link_id; /* link id */
- uint8_t khip_link_status_status; /* up/down status */
-} __attribute__((packed));
-
-/*
- * union to reference possible individual payloads
- */
-
-union knet_hostinfo_payload {
- struct knet_hostinfo_payload_link_status knet_hostinfo_payload_link_status;
-} __attribute__((packed));
-
-/*
- * due to the nature of knet_hostinfo, we are currently
- * sending those data as part of knet_header_payload_data.khp_data_userdata
- * and avoid a union that increses knet_header_payload_data size
- * unnecessarely.
- * This might change later on depending on how we implement
- * host info exchange
- */
-
-#define KNET_HOSTINFO_TYPE_LINK_UP_DOWN 0 // UNUSED
-#define KNET_HOSTINFO_TYPE_LINK_TABLE 1 // NOT IMPLEMENTED
-
-#define KNET_HOSTINFO_UCAST 0 /* send info to a specific host */
-#define KNET_HOSTINFO_BCAST 1 /* send info to all known / connected hosts */
-
-struct knet_hostinfo {
- uint8_t khi_type; /* type of hostinfo we are sending */
- uint8_t khi_bcast; /* hostinfo destination bcast/ucast */
- knet_node_id_t khi_dst_node_id;/* used only if in ucast mode */
- union knet_hostinfo_payload khi_payload;
-} __attribute__((packed));
-
-#define KNET_HOSTINFO_ALL_SIZE sizeof(struct knet_hostinfo)
-#define KNET_HOSTINFO_SIZE (KNET_HOSTINFO_ALL_SIZE - sizeof(union knet_hostinfo_payload))
-#define KNET_HOSTINFO_LINK_STATUS_SIZE (KNET_HOSTINFO_SIZE + sizeof(struct knet_hostinfo_payload_link_status))
-
-#define khip_link_status_status khi_payload.knet_hostinfo_payload_link_status.khip_link_status_status
-#define khip_link_status_link_id khi_payload.knet_hostinfo_payload_link_status.khip_link_status_link_id
-
/*
* typedef uint64_t seq_num_t;
* #define SEQ_MAX UINT64_MAX
*/
typedef uint16_t seq_num_t;
#define SEQ_MAX UINT16_MAX
struct knet_header_payload_data {
seq_num_t khp_data_seq_num; /* pckt seq number used to deduplicate pkcts */
uint8_t khp_data_compress; /* identify if user data are compressed */
uint8_t khp_data_pad1; /* make sure to have space in the header to grow features */
uint8_t khp_data_bcast; /* data destination bcast/ucast */
uint8_t khp_data_frag_num; /* number of fragments of this pckt. 1 is not fragmented */
uint8_t khp_data_frag_seq; /* as above, indicates the frag sequence number */
int8_t khp_data_channel; /* transport channel data for localsock <-> knet <-> localsock mapping */
uint8_t khp_data_userdata[0]; /* pointer to the real user data */
} __attribute__((packed));
struct knet_header_payload_ping {
uint8_t khp_ping_link; /* source link id */
uint32_t khp_ping_time[4]; /* ping timestamp */
seq_num_t khp_ping_seq_num; /* transport host seq_num */
uint8_t khp_ping_timed; /* timed pinged (1) or forced by seq_num (0) */
} __attribute__((packed));
/* taken from tracepath6 */
#define KNET_PMTUD_SIZE_V4 65535
#define KNET_PMTUD_SIZE_V6 KNET_PMTUD_SIZE_V4
/*
* IPv4/IPv6 header size
*/
#define KNET_PMTUD_OVERHEAD_V4 20
#define KNET_PMTUD_OVERHEAD_V6 40
#define KNET_PMTUD_MIN_MTU_V4 576
#define KNET_PMTUD_MIN_MTU_V6 1280
struct knet_header_payload_pmtud {
uint8_t khp_pmtud_link; /* source link id */
uint16_t khp_pmtud_size; /* size of the current packet */
uint8_t khp_pmtud_data[0]; /* pointer to empty/random data/fill buffer */
} __attribute__((packed));
/*
* union to reference possible individual payloads
*/
union knet_header_payload {
struct knet_header_payload_data khp_data; /* pure data packet struct */
struct knet_header_payload_ping khp_ping; /* heartbeat packet struct */
struct knet_header_payload_pmtud khp_pmtud; /* Path MTU discovery packet struct */
} __attribute__((packed));
/*
* starting point
*/
#define KNET_HEADER_VERSION 0x01 /* we currently support only one version */
#define KNET_HEADER_TYPE_DATA 0x00 /* pure data packet */
-#define KNET_HEADER_TYPE_HOST_INFO 0x01 /* host status information pckt */
#define KNET_HEADER_TYPE_PMSK 0x80 /* packet mask */
#define KNET_HEADER_TYPE_PING 0x81 /* heartbeat */
#define KNET_HEADER_TYPE_PONG 0x82 /* reply to heartbeat */
#define KNET_HEADER_TYPE_PMTUD 0x83 /* Used to determine Path MTU */
#define KNET_HEADER_TYPE_PMTUD_REPLY 0x84 /* reply from remote host */
struct knet_header {
uint8_t kh_version; /* pckt format/version */
uint8_t kh_type; /* from above defines. Tells what kind of pckt it is */
knet_node_id_t kh_node; /* host id of the source host for this pckt */
uint8_t kh_pad1; /* make sure to have space in the header to grow features */
uint8_t kh_pad2;
union knet_header_payload kh_payload; /* union of potential data struct based on kh_type */
} __attribute__((packed));
/*
* commodoty defines to hide structure nesting
* (needs review and cleanup)
*/
#define khp_data_seq_num kh_payload.khp_data.khp_data_seq_num
#define khp_data_frag_num kh_payload.khp_data.khp_data_frag_num
#define khp_data_frag_seq kh_payload.khp_data.khp_data_frag_seq
#define khp_data_userdata kh_payload.khp_data.khp_data_userdata
#define khp_data_bcast kh_payload.khp_data.khp_data_bcast
#define khp_data_channel kh_payload.khp_data.khp_data_channel
#define khp_data_compress kh_payload.khp_data.khp_data_compress
#define khp_ping_link kh_payload.khp_ping.khp_ping_link
#define khp_ping_time kh_payload.khp_ping.khp_ping_time
#define khp_ping_seq_num kh_payload.khp_ping.khp_ping_seq_num
#define khp_ping_timed kh_payload.khp_ping.khp_ping_timed
#define khp_pmtud_link kh_payload.khp_pmtud.khp_pmtud_link
#define khp_pmtud_size kh_payload.khp_pmtud.khp_pmtud_size
#define khp_pmtud_data kh_payload.khp_pmtud.khp_pmtud_data
/*
* extra defines to avoid mingling with sizeof() too much
*/
#define KNET_HEADER_ALL_SIZE sizeof(struct knet_header)
#define KNET_HEADER_SIZE (KNET_HEADER_ALL_SIZE - sizeof(union knet_header_payload))
#define KNET_HEADER_PING_SIZE (KNET_HEADER_SIZE + sizeof(struct knet_header_payload_ping))
#define KNET_HEADER_PMTUD_SIZE (KNET_HEADER_SIZE + sizeof(struct knet_header_payload_pmtud))
#define KNET_HEADER_DATA_SIZE (KNET_HEADER_SIZE + sizeof(struct knet_header_payload_data))
size_t calc_data_outlen(knet_handle_t knet_h, size_t inlen);
size_t calc_max_data_outlen(knet_handle_t knet_h, size_t inlen);
size_t calc_min_mtu(knet_handle_t knet_h);
#endif
diff --git a/libknet/tests/pckt_test.c b/libknet/tests/pckt_test.c
index 9522c187..30798f3c 100644
--- a/libknet/tests/pckt_test.c
+++ b/libknet/tests/pckt_test.c
@@ -1,27 +1,23 @@
/*
* Copyright (C) 2015-2020 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include <stdio.h>
#include "onwire.h"
int main(void)
{
printf("\nKronosnet network header size printout:\n\n");
printf("KNET_HEADER_ALL_SIZE: %zu\n", KNET_HEADER_ALL_SIZE);
printf("KNET_HEADER_SIZE: %zu\n", KNET_HEADER_SIZE);
printf("KNET_HEADER_PING_SIZE: %zu (%zu)\n", KNET_HEADER_PING_SIZE, sizeof(struct knet_header_payload_ping));
printf("KNET_HEADER_PMTUD_SIZE: %zu (%zu)\n", KNET_HEADER_PMTUD_SIZE, sizeof(struct knet_header_payload_pmtud));
printf("KNET_HEADER_DATA_SIZE: %zu (%zu)\n", KNET_HEADER_DATA_SIZE, sizeof(struct knet_header_payload_data));
- printf("\n");
- printf("KNET_HOSTINFO_ALL_SIZE: %zu\n", KNET_HOSTINFO_ALL_SIZE);
- printf("KNET_HOSTINFO_SIZE: %zu\n", KNET_HOSTINFO_SIZE);
- printf("KNET_HOSTINFO_LINK_STATUS_SIZE: %zu (%zu)\n", KNET_HOSTINFO_LINK_STATUS_SIZE, sizeof(struct knet_hostinfo_payload_link_status));
return 0;
}
diff --git a/libknet/threads_rx.c b/libknet/threads_rx.c
index 644c0ad5..ac2f46fc 100644
--- a/libknet/threads_rx.c
+++ b/libknet/threads_rx.c
@@ -1,1074 +1,1048 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/uio.h>
#include <pthread.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "links.h"
#include "links_acl.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_rx.h"
#include "netutils.h"
/*
* RECV
*/
/*
* return 1 if a > b
* return -1 if b > a
* return 0 if they are equal
*/
static inline int timecmp(struct timespec a, struct timespec b)
{
if (a.tv_sec != b.tv_sec) {
if (a.tv_sec > b.tv_sec) {
return 1;
} else {
return -1;
}
} else {
if (a.tv_nsec > b.tv_nsec) {
return 1;
} else if (a.tv_nsec < b.tv_nsec) {
return -1;
} else {
return 0;
}
}
}
/*
* this functions needs to return an index (0 to 7)
* to a knet_host_defrag_buf. (-1 on errors)
*/
static int find_pckt_defrag_buf(knet_handle_t knet_h, struct knet_header *inbuf)
{
struct knet_host *src_host = knet_h->host_index[inbuf->kh_node];
int i, oldest;
/*
* check if there is a buffer already in use handling the same seq_num
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (src_host->defrag_buf[i].in_use) {
if (src_host->defrag_buf[i].pckt_seq == inbuf->khp_data_seq_num) {
return i;
}
}
}
/*
* If there is no buffer that's handling the current seq_num
* either it's new or it's been reclaimed already.
* check if it's been reclaimed/seen before using the defrag circular
* buffer. If the pckt has been seen before, the buffer expired (ETIME)
* and there is no point to try to defrag it again.
*/
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 1, 0)) {
errno = ETIME;
return -1;
}
/*
* register the pckt as seen
*/
_seq_num_set(src_host, inbuf->khp_data_seq_num, 1);
/*
* see if there is a free buffer
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (!src_host->defrag_buf[i].in_use) {
return i;
}
}
/*
* at this point, there are no free buffers, the pckt is new
* and we need to reclaim a buffer, and we will take the one
* with the oldest timestamp. It's as good as any.
*/
oldest = 0;
for (i = 0; i < KNET_MAX_LINK; i++) {
if (timecmp(src_host->defrag_buf[i].last_update, src_host->defrag_buf[oldest].last_update) < 0) {
oldest = i;
}
}
src_host->defrag_buf[oldest].in_use = 0;
return oldest;
}
static int pckt_defrag(knet_handle_t knet_h, struct knet_header *inbuf, ssize_t *len)
{
struct knet_host_defrag_buf *defrag_buf;
int defrag_buf_idx;
defrag_buf_idx = find_pckt_defrag_buf(knet_h, inbuf);
if (defrag_buf_idx < 0) {
return 1;
}
defrag_buf = &knet_h->host_index[inbuf->kh_node]->defrag_buf[defrag_buf_idx];
/*
* if the buf is not is use, then make sure it's clean
*/
if (!defrag_buf->in_use) {
memset(defrag_buf, 0, sizeof(struct knet_host_defrag_buf));
defrag_buf->in_use = 1;
defrag_buf->pckt_seq = inbuf->khp_data_seq_num;
}
/*
* update timestamp on the buffer
*/
clock_gettime(CLOCK_MONOTONIC, &defrag_buf->last_update);
/*
* check if we already received this fragment
*/
if (defrag_buf->frag_map[inbuf->khp_data_frag_seq]) {
/*
* if we have received this fragment and we didn't clear the buffer
* it means that we don't have all fragments yet
*/
return 1;
}
/*
* we need to handle the last packet with gloves due to its different size
*/
if (inbuf->khp_data_frag_seq == inbuf->khp_data_frag_num) {
defrag_buf->last_frag_size = *len;
/*
* in the event when the last packet arrives first,
* we still don't know the offset vs the other fragments (based on MTU),
* so we store the fragment at the end of the buffer where it's safe
* and take a copy of the len so that we can restore its offset later.
* remember we can't use the local MTU for this calculation because pMTU
* can be asymettric between the same hosts.
*/
if (!defrag_buf->frag_size) {
defrag_buf->last_first = 1;
memmove(defrag_buf->buf + (KNET_MAX_PACKET_SIZE - *len),
inbuf->khp_data_userdata,
*len);
}
} else {
defrag_buf->frag_size = *len;
}
if (defrag_buf->frag_size) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_seq - 1) * defrag_buf->frag_size),
inbuf->khp_data_userdata, *len);
}
defrag_buf->frag_recv++;
defrag_buf->frag_map[inbuf->khp_data_frag_seq] = 1;
/*
* check if we received all the fragments
*/
if (defrag_buf->frag_recv == inbuf->khp_data_frag_num) {
/*
* special case the last pckt
*/
if (defrag_buf->last_first) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size),
defrag_buf->buf + (KNET_MAX_PACKET_SIZE - defrag_buf->last_frag_size),
defrag_buf->last_frag_size);
}
/*
* recalculate packet lenght
*/
*len = ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size) + defrag_buf->last_frag_size;
/*
* copy the pckt back in the user data
*/
memmove(inbuf->khp_data_userdata, defrag_buf->buf, *len);
/*
* free this buffer
*/
defrag_buf->in_use = 0;
return 0;
}
return 1;
}
static void _parse_recv_from_links(knet_handle_t knet_h, int sockfd, const struct knet_mmsghdr *msg)
{
int err = 0, savederrno = 0, stats_err = 0;
ssize_t outlen;
struct knet_host *src_host;
struct knet_link *src_link;
unsigned long long latency_last;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
uint64_t decrypt_time = 0;
struct timespec recvtime;
struct knet_header *inbuf = msg->msg_hdr.msg_iov->iov_base;
unsigned char *outbuf = (unsigned char *)msg->msg_hdr.msg_iov->iov_base;
ssize_t len = msg->msg_len;
- struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[1];
int8_t channel;
seq_num_t recv_seq_num;
int wipe_bufs = 0;
int try_decrypt = 0, decrypted = 0, i, found_link = 0;
for (i = 1; i <= KNET_MAX_CRYPTO_INSTANCES; i++) {
if (knet_h->crypto_instance[i]) {
try_decrypt = 1;
break;
}
}
if ((!try_decrypt) && (knet_h->crypto_only == KNET_CRYPTO_RX_DISALLOW_CLEAR_TRAFFIC)) {
log_debug(knet_h, KNET_SUB_RX, "RX thread configured to accept only crypto packets, but no crypto configs are configured!");
return;
}
if (try_decrypt) {
struct timespec start_time;
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_authenticate_and_decrypt(knet_h,
(unsigned char *)inbuf,
len,
knet_h->recv_from_links_buf_decrypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to decrypt/auth packet");
if (knet_h->crypto_only == KNET_CRYPTO_RX_DISALLOW_CLEAR_TRAFFIC) {
return;
}
log_debug(knet_h, KNET_SUB_RX, "Attempting to process packet as clear data");
} else {
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &decrypt_time);
len = outlen;
inbuf = (struct knet_header *)knet_h->recv_from_links_buf_decrypt;
decrypted = 1;
}
}
if (len < (ssize_t)(KNET_HEADER_SIZE + 1)) {
log_debug(knet_h, KNET_SUB_RX, "Packet is too short: %ld", (long)len);
return;
}
if (inbuf->kh_version != KNET_HEADER_VERSION) {
log_debug(knet_h, KNET_SUB_RX, "Packet version does not match");
return;
}
inbuf->kh_node = ntohs(inbuf->kh_node);
src_host = knet_h->host_index[inbuf->kh_node];
if (src_host == NULL) { /* host not found */
log_debug(knet_h, KNET_SUB_RX, "Unable to find source host for this packet");
return;
}
if ((inbuf->kh_type & KNET_HEADER_TYPE_PMSK) != 0) {
/* be aware this works only for PING / PONG and PMTUd packets! */
src_link = src_host->link +
(inbuf->khp_ping_link % KNET_MAX_LINK);
if (src_link->dynamic == KNET_LINK_DYNIP) {
if (cmpaddr(&src_link->dst_addr, msg->msg_hdr.msg_name) != 0) {
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u appears to have changed ip address",
src_host->host_id, src_link->link_id);
memmove(&src_link->dst_addr, msg->msg_hdr.msg_name, sizeof(struct sockaddr_storage));
if (knet_addrtostr(&src_link->dst_addr, sockaddr_len(&src_link->dst_addr),
src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN,
src_link->status.dst_port, KNET_MAX_PORT_LEN) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to resolve ???");
snprintf(src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN - 1, "Unknown!!!");
snprintf(src_link->status.dst_port, KNET_MAX_PORT_LEN - 1, "??");
} else {
log_info(knet_h, KNET_SUB_RX,
"host: %u link: %u new connection established from: %s %s",
src_host->host_id, src_link->link_id,
src_link->status.dst_ipaddr, src_link->status.dst_port);
}
}
/*
* transport has already accepted the connection here
* otherwise we would not be receiving packets
*/
transport_link_dyn_connect(knet_h, sockfd, src_link);
}
} else { /* data packet */
for (i = 0; i < KNET_MAX_LINK; i++) {
src_link = &src_host->link[i];
if (cmpaddr(&src_link->dst_addr, msg->msg_hdr.msg_name) == 0) {
found_link = 1;
break;
}
}
if (!found_link) {
log_debug(knet_h, KNET_SUB_RX, "Unable to determine source link for data packet. Discarding packet.");
return;
}
}
stats_err = pthread_mutex_lock(&src_link->link_stats_mutex);
if (stats_err) {
log_err(knet_h, KNET_SUB_RX, "Unable to get stats mutex lock for host %u link %u: %s",
src_host->host_id, src_link->link_id, strerror(savederrno));
return;
}
switch (inbuf->kh_type) {
- case KNET_HEADER_TYPE_HOST_INFO:
case KNET_HEADER_TYPE_DATA:
/* data stats at the top for consistency with TX */
src_link->status.stats.rx_data_packets++;
src_link->status.stats.rx_data_bytes += len;
if (decrypted) {
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
return;
}
/* Only update the crypto overhead for data packets. Mainly to be
consistent with TX */
if (decrypt_time < knet_h->stats.rx_crypt_time_min) {
knet_h->stats.rx_crypt_time_min = decrypt_time;
}
if (decrypt_time > knet_h->stats.rx_crypt_time_max) {
knet_h->stats.rx_crypt_time_max = decrypt_time;
}
knet_h->stats.rx_crypt_time_ave =
(knet_h->stats.rx_crypt_time_ave * knet_h->stats.rx_crypt_packets +
decrypt_time) / (knet_h->stats.rx_crypt_packets+1);
knet_h->stats.rx_crypt_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
if (!src_host->status.reachable) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Source host %u not reachable yet. Discarding packet.", src_host->host_id);
return;
}
inbuf->khp_data_seq_num = ntohs(inbuf->khp_data_seq_num);
channel = inbuf->khp_data_channel;
src_host->got_data = 1;
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
if (src_host->link_handler_policy != KNET_LINK_POLICY_ACTIVE) {
log_debug(knet_h, KNET_SUB_RX, "Packet has already been delivered");
}
return;
}
if (inbuf->khp_data_frag_num > 1) {
/*
* len as received from the socket also includes extra stuff
* that the defrag code doesn't care about. So strip it
* here and readd only for repadding once we are done
* defragging
*/
len = len - KNET_HEADER_DATA_SIZE;
if (pckt_defrag(knet_h, inbuf, &len)) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
len = len + KNET_HEADER_DATA_SIZE;
}
if (inbuf->khp_data_compress) {
ssize_t decmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = decompress(knet_h, inbuf->khp_data_compress,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
knet_h->recv_from_links_buf_decompress,
&decmp_outlen);
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
return;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &compress_time);
if (!err) {
/* Collect stats */
if (compress_time < knet_h->stats.rx_compress_time_min) {
knet_h->stats.rx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.rx_compress_time_max) {
knet_h->stats.rx_compress_time_max = compress_time;
}
knet_h->stats.rx_compress_time_ave =
(knet_h->stats.rx_compress_time_ave * knet_h->stats.rx_compressed_packets +
compress_time) / (knet_h->stats.rx_compressed_packets+1);
knet_h->stats.rx_compressed_packets++;
knet_h->stats.rx_compressed_original_bytes += decmp_outlen;
knet_h->stats.rx_compressed_size_bytes += len - KNET_HEADER_SIZE;
memmove(inbuf->khp_data_userdata, knet_h->recv_from_links_buf_decompress, decmp_outlen);
len = decmp_outlen + KNET_HEADER_DATA_SIZE;
} else {
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_warn(knet_h, KNET_SUB_COMPRESS, "Unable to decompress packet (%d): %s",
err, strerror(errno));
return;
}
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
- if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
+ if (knet_h->enabled != 1) /* data forward is disabled */
+ break;
- if (knet_h->enabled != 1) /* data forward is disabled */
- break;
+ if (knet_h->dst_host_filter_fn) {
+ size_t host_idx;
+ int found = 0;
+
+ bcast = knet_h->dst_host_filter_fn(
+ knet_h->dst_host_filter_fn_private_data,
+ (const unsigned char *)inbuf->khp_data_userdata,
+ len - KNET_HEADER_DATA_SIZE,
+ KNET_NOTIFY_RX,
+ knet_h->host_id,
+ inbuf->kh_node,
+ &channel,
+ dst_host_ids,
+ &dst_host_ids_entries);
+ if (bcast < 0) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ log_debug(knet_h, KNET_SUB_RX, "Error from dst_host_filter_fn: %d", bcast);
+ return;
+ }
- if (knet_h->dst_host_filter_fn) {
- size_t host_idx;
- int found = 0;
-
- bcast = knet_h->dst_host_filter_fn(
- knet_h->dst_host_filter_fn_private_data,
- (const unsigned char *)inbuf->khp_data_userdata,
- len - KNET_HEADER_DATA_SIZE,
- KNET_NOTIFY_RX,
- knet_h->host_id,
- inbuf->kh_node,
- &channel,
- dst_host_ids,
- &dst_host_ids_entries);
- if (bcast < 0) {
- pthread_mutex_unlock(&src_link->link_stats_mutex);
- log_debug(knet_h, KNET_SUB_RX, "Error from dst_host_filter_fn: %d", bcast);
- return;
- }
+ if ((!bcast) && (!dst_host_ids_entries)) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ log_debug(knet_h, KNET_SUB_RX, "Message is unicast but no dst_host_ids_entries");
+ return;
+ }
- if ((!bcast) && (!dst_host_ids_entries)) {
+ /* check if we are dst for this packet */
+ if (!bcast) {
+ if (dst_host_ids_entries > KNET_MAX_HOST) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
- log_debug(knet_h, KNET_SUB_RX, "Message is unicast but no dst_host_ids_entries");
+ log_debug(knet_h, KNET_SUB_RX, "dst_host_filter_fn returned too many destinations");
return;
}
-
- /* check if we are dst for this packet */
- if (!bcast) {
- if (dst_host_ids_entries > KNET_MAX_HOST) {
- pthread_mutex_unlock(&src_link->link_stats_mutex);
- log_debug(knet_h, KNET_SUB_RX, "dst_host_filter_fn returned too many destinations");
- return;
- }
- for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
- if (dst_host_ids[host_idx] == knet_h->host_id) {
- found = 1;
- break;
- }
- }
- if (!found) {
- pthread_mutex_unlock(&src_link->link_stats_mutex);
- log_debug(knet_h, KNET_SUB_RX, "Packet is not for us");
- return;
+ for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
+ if (dst_host_ids[host_idx] == knet_h->host_id) {
+ found = 1;
+ break;
}
}
+ if (!found) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ log_debug(knet_h, KNET_SUB_RX, "Packet is not for us");
+ return;
+ }
}
}
- if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
- if (!knet_h->sockfd[channel].in_use) {
- pthread_mutex_unlock(&src_link->link_stats_mutex);
- log_debug(knet_h, KNET_SUB_RX,
- "received packet for channel %d but there is no local sock connected",
- channel);
- return;
- }
+ if (!knet_h->sockfd[channel].in_use) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ log_debug(knet_h, KNET_SUB_RX,
+ "received packet for channel %d but there is no local sock connected",
+ channel);
+ return;
+ }
- outlen = 0;
- memset(iov_out, 0, sizeof(iov_out));
+ outlen = 0;
+ memset(iov_out, 0, sizeof(iov_out));
retry:
- iov_out[0].iov_base = (void *) inbuf->khp_data_userdata + outlen;
- iov_out[0].iov_len = len - (outlen + KNET_HEADER_DATA_SIZE);
-
- outlen = writev(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], iov_out, 1);
- if ((outlen > 0) && (outlen < (ssize_t)iov_out[0].iov_len)) {
- log_debug(knet_h, KNET_SUB_RX,
- "Unable to send all data to the application in one go. Expected: %zu Sent: %zd\n",
- iov_out[0].iov_len, outlen);
- goto retry;
- }
+ iov_out[0].iov_base = (void *) inbuf->khp_data_userdata + outlen;
+ iov_out[0].iov_len = len - (outlen + KNET_HEADER_DATA_SIZE);
- if (outlen <= 0) {
- knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
- knet_h->sockfd[channel].sockfd[0],
- channel,
- KNET_NOTIFY_RX,
- outlen,
- errno);
- pthread_mutex_unlock(&src_link->link_stats_mutex);
- return;
- }
- if ((size_t)outlen == iov_out[0].iov_len) {
- _seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
- }
- } else { /* HOSTINFO */
- knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
- if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
- knet_hostinfo->khi_dst_node_id = ntohs(knet_hostinfo->khi_dst_node_id);
- }
- if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
- pthread_mutex_unlock(&src_link->link_stats_mutex);
- return;
- }
+ outlen = writev(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], iov_out, 1);
+ if ((outlen > 0) && (outlen < (ssize_t)iov_out[0].iov_len)) {
+ log_debug(knet_h, KNET_SUB_RX,
+ "Unable to send all data to the application in one go. Expected: %zu Sent: %zd\n",
+ iov_out[0].iov_len, outlen);
+ goto retry;
+ }
+
+ if (outlen <= 0) {
+ knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
+ knet_h->sockfd[channel].sockfd[0],
+ channel,
+ KNET_NOTIFY_RX,
+ outlen,
+ errno);
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ return;
+ }
+ if ((size_t)outlen == iov_out[0].iov_len) {
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
- switch(knet_hostinfo->khi_type) {
- case KNET_HOSTINFO_TYPE_LINK_UP_DOWN:
- break;
- case KNET_HOSTINFO_TYPE_LINK_TABLE:
- break;
- default:
- log_warn(knet_h, KNET_SUB_RX, "Receiving unknown host info message from host %u", src_host->host_id);
- break;
- }
}
break;
case KNET_HEADER_TYPE_PING:
outlen = KNET_HEADER_PING_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PONG;
inbuf->kh_node = htons(knet_h->host_id);
recv_seq_num = ntohs(inbuf->khp_ping_seq_num);
src_link->status.stats.rx_ping_packets++;
src_link->status.stats.rx_ping_bytes += len;
wipe_bufs = 0;
if (!inbuf->khp_ping_timed) {
/*
* we might be receiving this message from all links, but we want
* to process it only the first time
*/
if (recv_seq_num != src_host->untimed_rx_seq_num) {
/*
* cache the untimed seq num
*/
src_host->untimed_rx_seq_num = recv_seq_num;
/*
* if the host has received data in between
* untimed ping, then we don't need to wipe the bufs
*/
if (src_host->got_data) {
src_host->got_data = 0;
wipe_bufs = 0;
} else {
wipe_bufs = 1;
}
}
_seq_num_lookup(src_host, recv_seq_num, 0, wipe_bufs);
} else {
/*
* pings always arrives in bursts over all the link
* catch the first of them to cache the seq num and
* avoid duplicate processing
*/
if (recv_seq_num != src_host->timed_rx_seq_num) {
src_host->timed_rx_seq_num = recv_seq_num;
if (recv_seq_num == 0) {
_seq_num_lookup(src_host, recv_seq_num, 0, 1);
}
}
}
if (knet_h->crypto_in_use_config) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt pong packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
break;
}
knet_h->stats_extra.tx_crypt_pong_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
retry_pong:
if (src_link->transport_connected) {
if (transport_get_connection_oriented(knet_h, src_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport, src_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send pong reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pong_errors++;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pong_retries++;
goto retry_pong;
break;
}
}
src_link->status.stats.tx_pong_packets++;
src_link->status.stats.tx_pong_bytes += outlen;
}
break;
case KNET_HEADER_TYPE_PONG:
src_link->status.stats.rx_pong_packets++;
src_link->status.stats.rx_pong_bytes += len;
clock_gettime(CLOCK_MONOTONIC, &src_link->status.pong_last);
memmove(&recvtime, &inbuf->khp_ping_time[0], sizeof(struct timespec));
timespec_diff(recvtime,
src_link->status.pong_last, &latency_last);
if ((latency_last / 1000llu) > src_link->pong_timeout) {
log_debug(knet_h, KNET_SUB_RX,
"Incoming pong packet from host: %u link: %u has higher latency than pong_timeout. Discarding",
src_host->host_id, src_link->link_id);
} else {
/*
* in words : ('previous mean' * '(count -1)') + 'new value') / 'count'
*/
src_link->latency_cur_samples++;
/*
* limit to max_samples (precision)
*/
if (src_link->latency_cur_samples >= src_link->latency_max_samples) {
src_link->latency_cur_samples = src_link->latency_max_samples;
}
src_link->status.latency =
(((src_link->status.latency * (src_link->latency_cur_samples - 1)) + (latency_last / 1000llu)) / src_link->latency_cur_samples);
if (src_link->status.latency < src_link->pong_timeout_adj) {
if (!src_link->status.connected) {
if (src_link->received_pong >= src_link->pong_count) {
log_info(knet_h, KNET_SUB_RX, "host: %u link: %u is up",
src_host->host_id, src_link->link_id);
_link_updown(knet_h, src_host->host_id, src_link->link_id, src_link->status.enabled, 1, 0);
} else {
src_link->received_pong++;
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u received pong: %u",
src_host->host_id, src_link->link_id, src_link->received_pong);
}
}
}
/* Calculate latency stats */
if (src_link->status.latency > src_link->status.stats.latency_max) {
src_link->status.stats.latency_max = src_link->status.latency;
}
if (src_link->status.latency < src_link->status.stats.latency_min) {
src_link->status.stats.latency_min = src_link->status.latency;
}
/*
* those 2 lines below make all latency average calculations consistent and capped to
* link precision. In future we will kill the one above to keep only this one in
* the stats structure, but for now we leave it around to avoid API/ABI
* breakage as we backport the fixes to stable
*/
src_link->status.stats.latency_ave = src_link->status.latency;
src_link->status.stats.latency_samples = src_link->latency_cur_samples;
}
break;
case KNET_HEADER_TYPE_PMTUD:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
outlen = KNET_HEADER_PMTUD_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PMTUD_REPLY;
inbuf->kh_node = htons(knet_h->host_id);
if (knet_h->crypto_in_use_config) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt PMTUd reply packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
break;
}
knet_h->stats_extra.tx_crypt_pmtu_reply_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
/* Unlock so we don't deadlock with tx_mutex */
pthread_mutex_unlock(&src_link->link_stats_mutex);
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_RX, "Unable to get TX mutex lock: %s", strerror(savederrno));
goto out_pmtud;
}
retry_pmtud:
if (src_link->transport_connected) {
if (transport_get_connection_oriented(knet_h, src_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport, src_link->outsock, len, savederrno);
stats_err = pthread_mutex_lock(&src_link->link_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
break;
}
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send PMTUd reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pmtu_errors++;
break;
case 0: /* ignore error and continue */
src_link->status.stats.tx_pmtu_errors++;
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pmtu_retries++;
pthread_mutex_unlock(&src_link->link_stats_mutex);
goto retry_pmtud;
break;
}
pthread_mutex_unlock(&src_link->link_stats_mutex);
}
}
pthread_mutex_unlock(&knet_h->tx_mutex);
out_pmtud:
return; /* Don't need to unlock link_stats_mutex */
case KNET_HEADER_TYPE_PMTUD_REPLY:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
/* pmtud_mutex can't be acquired while we hold a link_stats_mutex (ordering) */
pthread_mutex_unlock(&src_link->link_stats_mutex);
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get mutex lock");
break;
}
src_link->last_recv_mtu = inbuf->khp_pmtud_size;
pthread_cond_signal(&knet_h->pmtud_cond);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return;
default:
pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
pthread_mutex_unlock(&src_link->link_stats_mutex);
}
static void _handle_recv_from_links(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
int err, savederrno;
int i, msg_recv, transport;
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get global read lock");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
/*
* this is normal if a fd got an event and before we grab the read lock
* and the link is removed by another thread
*/
goto exit_unlock;
}
transport = knet_h->knet_transport_fd_tracker[sockfd].transport;
/*
* reset msg_namelen to buffer size because after recvmmsg
* each msg_namelen will contain sizeof sockaddr_in or sockaddr_in6
*/
for (i = 0; i < PCKT_RX_BUFS; i++) {
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
}
msg_recv = _recvmmsg(sockfd, &msg[0], PCKT_RX_BUFS, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
/*
* WARNING: man page for recvmmsg is wrong. Kernel implementation here:
* recvmmsg can return:
* -1 on error
* 0 if the previous run of recvmmsg recorded an error on the socket
* N number of messages (see exception below).
*
* If there is an error from recvmsg after receiving a frame or more, the recvmmsg
* loop is interrupted, error recorded in the socket (getsockopt(SO_ERROR) and
* it will be visibile in the next run.
*
* Need to be careful how we handle errors at this stage.
*
* error messages need to be handled on a per transport/protocol base
* at this point we have different layers of error handling
* - msg_recv < 0 -> error from this run
* msg_recv = 0 -> error from previous run and error on socket needs to be cleared
* - per-transport message data
* example: msg[i].msg_hdr.msg_flags & MSG_NOTIFICATION or msg_len for SCTP == EOF,
* but for UDP it is perfectly legal to receive a 0 bytes message.. go figure
* - NOTE: on SCTP MSG_NOTIFICATION we get msg_recv == PCKT_FRAG_MAX messages and no
* errno set. That means the error api needs to be able to abort the loop below.
*/
if (msg_recv <= 0) {
transport_rx_sock_error(knet_h, transport, sockfd, msg_recv, savederrno);
goto exit_unlock;
}
for (i = 0; i < msg_recv; i++) {
err = transport_rx_is_data(knet_h, transport, sockfd, &msg[i]);
/*
* TODO: make this section silent once we are confident
* all protocols packet handlers are good
*/
switch(err) {
case KNET_TRANSPORT_RX_ERROR: /* on error */
log_debug(knet_h, KNET_SUB_RX, "Transport reported error parsing packet");
goto exit_unlock;
break;
case KNET_TRANSPORT_RX_NOT_DATA_CONTINUE: /* packet is not data and we should continue the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, continue");
break;
case KNET_TRANSPORT_RX_NOT_DATA_STOP: /* packet is not data and we should STOP the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, stop");
goto exit_unlock;
break;
case KNET_TRANSPORT_RX_IS_DATA: /* packet is data and should be parsed as such */
/*
* processing incoming packets vs access lists
*/
if ((knet_h->use_access_lists) &&
(transport_get_acl_type(knet_h, transport) == USE_GENERIC_ACL)) {
if (!check_validate(knet_h, sockfd, transport, msg[i].msg_hdr.msg_name)) {
char src_ipaddr[KNET_MAX_HOST_LEN];
char src_port[KNET_MAX_PORT_LEN];
memset(src_ipaddr, 0, KNET_MAX_HOST_LEN);
memset(src_port, 0, KNET_MAX_PORT_LEN);
if (knet_addrtostr(msg[i].msg_hdr.msg_name, sockaddr_len(msg[i].msg_hdr.msg_name),
src_ipaddr, KNET_MAX_HOST_LEN,
src_port, KNET_MAX_PORT_LEN) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Packet rejected: unable to resolve host/port");
} else {
log_debug(knet_h, KNET_SUB_RX, "Packet rejected from %s/%s", src_ipaddr, src_port);
}
/*
* continue processing the other packets
*/
continue;
}
}
_parse_recv_from_links(knet_h, sockfd, &msg[i]);
break;
case KNET_TRANSPORT_RX_OOB_DATA_CONTINUE:
log_debug(knet_h, KNET_SUB_RX, "Transport is processing sock OOB data, continue");
break;
case KNET_TRANSPORT_RX_OOB_DATA_STOP:
log_debug(knet_h, KNET_SUB_RX, "Transport has completed processing sock OOB data, stop");
goto exit_unlock;
break;
}
}
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
void *_handle_recv_from_links_thread(void *data)
{
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
struct sockaddr_storage address[PCKT_RX_BUFS];
struct knet_mmsghdr msg[PCKT_RX_BUFS];
struct iovec iov_in[PCKT_RX_BUFS];
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STARTED);
memset(&msg, 0, sizeof(msg));
memset(&events, 0, sizeof(events));
for (i = 0; i < PCKT_RX_BUFS; i++) {
iov_in[i].iov_base = (void *)knet_h->recv_from_links_buf[i];
iov_in[i].iov_len = KNET_DATABUFSIZE;
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_name = &address[i];
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[i].msg_hdr.msg_iov = &iov_in[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->recv_from_links_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* the RX threads only need to notify that there has been at least
* one successful run after queue flush has been requested.
* See setfwd in handle.c
*/
if (get_thread_flush_queue(knet_h, KNET_THREAD_RX) == KNET_THREAD_QUEUE_FLUSH) {
set_thread_flush_queue(knet_h, KNET_THREAD_RX, KNET_THREAD_QUEUE_FLUSHED);
}
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
for (i = 0; i < nev; i++) {
_handle_recv_from_links(knet_h, events[i].data.fd, msg);
}
}
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STOPPED);
return NULL;
}
ssize_t knet_recv(knet_handle_t knet_h, char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0;
ssize_t err = 0;
struct iovec iov_in;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)buff;
iov_in.iov_len = buff_len;
err = readv(knet_h->sockfd[channel].sockfd[0], &iov_in, 1);
savederrno = errno;
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
diff --git a/libknet/threads_tx.c b/libknet/threads_tx.c
index 615c4266..2f69991b 100644
--- a/libknet/threads_tx.c
+++ b/libknet/threads_tx.c
@@ -1,902 +1,880 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <math.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_tx.h"
#include "netutils.h"
/*
* SEND
*/
static int _dispatch_to_links(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_mmsghdr *msg, int msgs_to_send)
{
int link_idx, msg_idx, sent_msgs, prev_sent, progress;
int err = 0, savederrno = 0, locked = 0;
unsigned int i;
struct knet_mmsghdr *cur;
struct knet_link *cur_link;
for (link_idx = 0; link_idx < dst_host->active_link_entries; link_idx++) {
prev_sent = 0;
progress = 1;
locked = 0;
cur_link = &dst_host->link[dst_host->active_links[link_idx]];
if (cur_link->transport == KNET_TRANSPORT_LOOPBACK) {
continue;
}
savederrno = pthread_mutex_lock(&cur_link->link_stats_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get stats mutex lock for host %u link %u: %s",
dst_host->host_id, cur_link->link_id, strerror(savederrno));
continue;
}
locked = 1;
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_name = &cur_link->dst_addr;
/* Cast for Linux/BSD compatibility */
for (i=0; i<(unsigned int)msg[msg_idx].msg_hdr.msg_iovlen; i++) {
cur_link->status.stats.tx_data_bytes += msg[msg_idx].msg_hdr.msg_iov[i].iov_len;
}
cur_link->status.stats.tx_data_packets++;
msg_idx++;
}
retry:
cur = &msg[prev_sent];
sent_msgs = _sendmmsg(dst_host->link[dst_host->active_links[link_idx]].outsock,
transport_get_connection_oriented(knet_h, dst_host->link[dst_host->active_links[link_idx]].transport),
&cur[0], msgs_to_send - prev_sent, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
err = transport_tx_sock_error(knet_h, dst_host->link[dst_host->active_links[link_idx]].transport, dst_host->link[dst_host->active_links[link_idx]].outsock, sent_msgs, savederrno);
switch(err) {
case -1: /* unrecoverable error */
cur_link->status.stats.tx_data_errors++;
goto out_unlock;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
cur_link->status.stats.tx_data_retries++;
goto retry;
break;
}
prev_sent = prev_sent + sent_msgs;
if ((sent_msgs >= 0) && (prev_sent < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TX, "Unable to send all (%d/%d) data packets to host %s (%u) link %s:%s (%u)",
sent_msgs, msg_idx,
dst_host->name, dst_host->host_id,
dst_host->link[dst_host->active_links[link_idx]].status.dst_ipaddr,
dst_host->link[dst_host->active_links[link_idx]].status.dst_port,
dst_host->link[dst_host->active_links[link_idx]].link_id);
#endif
goto retry;
}
if (!progress) {
savederrno = EAGAIN;
err = -1;
goto out_unlock;
}
}
if ((dst_host->link_handler_policy == KNET_LINK_POLICY_RR) &&
(dst_host->active_link_entries > 1)) {
uint8_t cur_link_id = dst_host->active_links[0];
memmove(&dst_host->active_links[0], &dst_host->active_links[1], KNET_MAX_LINK - 1);
dst_host->active_links[dst_host->active_link_entries - 1] = cur_link_id;
break;
}
pthread_mutex_unlock(&cur_link->link_stats_mutex);
locked = 0;
}
out_unlock:
if (locked) {
pthread_mutex_unlock(&cur_link->link_stats_mutex);
}
errno = savederrno;
return err;
}
static int _parse_recv_from_sock(knet_handle_t knet_h, size_t inlen, int8_t channel, int is_sync)
{
size_t outlen, frag_len;
struct knet_host *dst_host;
knet_node_id_t dst_host_ids_temp[KNET_MAX_HOST];
size_t dst_host_ids_entries_temp = 0;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
- struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[PCKT_FRAG_MAX][2];
int iovcnt_out = 2;
uint8_t frag_idx;
unsigned int temp_data_mtu;
size_t host_idx;
int send_mcast = 0;
struct knet_header *inbuf;
int savederrno = 0;
int err = 0;
seq_num_t tx_seq_num;
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
int msgs_to_send, msg_idx;
unsigned int i;
int j;
int send_local = 0;
int data_compressed = 0;
size_t uncrypted_frag_size;
int stats_locked = 0, stats_err = 0;
inbuf = knet_h->recv_from_sock_buf;
- if ((knet_h->enabled != 1) &&
- (inbuf->kh_type != KNET_HEADER_TYPE_HOST_INFO)) { /* data forward is disabled */
+ if (knet_h->enabled != 1) {
log_debug(knet_h, KNET_SUB_TX, "Received data packet but forwarding is disabled");
savederrno = ECANCELED;
err = -1;
goto out_unlock;
}
/*
* move this into a separate function to expand on
* extra switching rules
*/
switch(inbuf->kh_type) {
case KNET_HEADER_TYPE_DATA:
if (knet_h->dst_host_filter_fn) {
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
inlen,
KNET_NOTIFY_TX,
knet_h->host_id,
knet_h->host_id,
&channel,
dst_host_ids_temp,
&dst_host_ids_entries_temp);
if (bcast < 0) {
log_debug(knet_h, KNET_SUB_TX, "Error from dst_host_filter_fn: %d", bcast);
savederrno = EFAULT;
err = -1;
goto out_unlock;
}
if ((!bcast) && (!dst_host_ids_entries_temp)) {
log_debug(knet_h, KNET_SUB_TX, "Message is unicast but no dst_host_ids_entries");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
if ((!bcast) &&
(dst_host_ids_entries_temp > KNET_MAX_HOST)) {
log_debug(knet_h, KNET_SUB_TX, "dst_host_filter_fn returned too many destinations");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
}
/* Send to localhost if appropriate and enabled */
if (knet_h->has_loop_link) {
send_local = 0;
if (bcast) {
send_local = 1;
} else {
for (i=0; i< dst_host_ids_entries_temp; i++) {
if (dst_host_ids_temp[i] == knet_h->host_id) {
send_local = 1;
}
}
}
if (send_local) {
const unsigned char *buf = inbuf->khp_data_userdata;
ssize_t buflen = inlen;
struct knet_link *local_link;
local_link = knet_h->host_index[knet_h->host_id]->link;
local_retry:
err = write(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], buf, buflen);
if (err < 0) {
log_err(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local failed. error=%s\n", strerror(errno));
local_link->status.stats.tx_data_errors++;
}
if (err > 0 && err < buflen) {
log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %zu\n", err, inlen);
local_link->status.stats.tx_data_retries++;
buf += err;
buflen -= err;
goto local_retry;
}
if (err == buflen) {
local_link->status.stats.tx_data_packets++;
local_link->status.stats.tx_data_bytes += inlen;
}
}
}
break;
- case KNET_HEADER_TYPE_HOST_INFO:
- knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
- if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
- bcast = 0;
- dst_host_ids_temp[0] = knet_hostinfo->khi_dst_node_id;
- dst_host_ids_entries_temp = 1;
- knet_hostinfo->khi_dst_node_id = htons(knet_hostinfo->khi_dst_node_id);
- }
- break;
default:
log_warn(knet_h, KNET_SUB_TX, "Receiving unknown messages from socket");
savederrno = ENOMSG;
err = -1;
goto out_unlock;
break;
}
if (is_sync) {
if ((bcast) ||
((!bcast) && (dst_host_ids_entries_temp > 1))) {
log_debug(knet_h, KNET_SUB_TX, "knet_send_sync is only supported with unicast packets for one destination");
savederrno = E2BIG;
err = -1;
goto out_unlock;
}
}
/*
* check destinations hosts before spending time
* in fragmenting/encrypting packets to save
* time processing data for unreachable hosts.
* for unicast, also remap the destination data
* to skip unreachable hosts.
*/
if (!bcast) {
dst_host_ids_entries = 0;
for (host_idx = 0; host_idx < dst_host_ids_entries_temp; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids_temp[host_idx]];
if (!dst_host) {
continue;
}
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
dst_host_ids[dst_host_ids_entries] = dst_host_ids_temp[host_idx];
dst_host_ids_entries++;
}
}
if (!dst_host_ids_entries) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
} else {
send_mcast = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
send_mcast = 1;
break;
}
}
if (!send_mcast) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
}
if (!knet_h->data_mtu) {
/*
* using MIN_MTU_V4 for data mtu is not completely accurate but safe enough
*/
log_debug(knet_h, KNET_SUB_TX,
"Received data packet but data MTU is still unknown."
" Packet might not be delivered."
" Assuming minimum IPv4 MTU (%d)",
KNET_PMTUD_MIN_MTU_V4);
temp_data_mtu = KNET_PMTUD_MIN_MTU_V4;
} else {
/*
* take a copy of the mtu to avoid value changing under
* our feet while we are sending a fragmented pckt
*/
temp_data_mtu = knet_h->data_mtu;
}
/*
* compress data
*/
if ((knet_h->compress_model > 0) && (inlen > knet_h->compress_threshold)) {
size_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = compress(knet_h,
(const unsigned char *)inbuf->khp_data_userdata, inlen,
knet_h->send_to_links_buf_compress, (ssize_t *)&cmp_outlen);
savederrno = errno;
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_TX, "Unable to get mutex lock: %s", strerror(stats_err));
err = -1;
savederrno = stats_err;
goto out_unlock;
}
stats_locked = 1;
/* Collect stats */
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &compress_time);
if (compress_time < knet_h->stats.tx_compress_time_min) {
knet_h->stats.tx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.tx_compress_time_max) {
knet_h->stats.tx_compress_time_max = compress_time;
}
knet_h->stats.tx_compress_time_ave =
(unsigned long long)(knet_h->stats.tx_compress_time_ave * knet_h->stats.tx_compressed_packets +
compress_time) / (knet_h->stats.tx_compressed_packets+1);
if (err < 0) {
log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(savederrno));
} else {
knet_h->stats.tx_compressed_packets++;
knet_h->stats.tx_compressed_original_bytes += inlen;
knet_h->stats.tx_compressed_size_bytes += cmp_outlen;
if (cmp_outlen < inlen) {
memmove(inbuf->khp_data_userdata, knet_h->send_to_links_buf_compress, cmp_outlen);
inlen = cmp_outlen;
data_compressed = 1;
}
}
}
if (!stats_locked) {
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_TX, "Unable to get mutex lock: %s", strerror(stats_err));
err = -1;
savederrno = stats_err;
goto out_unlock;
}
}
if (knet_h->compress_model > 0 && !data_compressed) {
knet_h->stats.tx_uncompressed_packets++;
}
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
stats_locked = 0;
/*
* prepare the outgoing buffers
*/
frag_len = inlen;
frag_idx = 0;
inbuf->khp_data_bcast = bcast;
inbuf->khp_data_frag_num = ceil((float)inlen / temp_data_mtu);
inbuf->khp_data_channel = channel;
if (data_compressed) {
inbuf->khp_data_compress = knet_h->compress_model;
} else {
inbuf->khp_data_compress = 0;
}
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get seq mutex lock");
goto out_unlock;
}
knet_h->tx_seq_num++;
/*
* force seq_num 0 to detect a node that has crashed and rejoining
* the knet instance. seq_num 0 will clear the buffers in the RX
* thread
*/
if (knet_h->tx_seq_num == 0) {
knet_h->tx_seq_num++;
}
/*
* cache the value in locked context
*/
tx_seq_num = knet_h->tx_seq_num;
inbuf->khp_data_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
/*
* forcefully broadcast a ping to all nodes every SEQ_MAX / 8
* pckts.
* this solves 2 problems:
* 1) on TX socket overloads we generate extra pings to keep links alive
* 2) in 3+ nodes setup, where all the traffic is flowing between node 1 and 2,
* node 3+ will be able to keep in sync on the TX seq_num even without
* receiving traffic or pings in betweens. This avoids issues with
* rollover of the circular buffer
*/
if (tx_seq_num % (SEQ_MAX / 8) == 0) {
_send_pings(knet_h, 0);
}
if (inbuf->khp_data_frag_num > 1) {
while (frag_idx < inbuf->khp_data_frag_num) {
/*
* set the iov_base
*/
iov_out[frag_idx][0].iov_base = (void *)knet_h->send_to_links_buf[frag_idx];
iov_out[frag_idx][0].iov_len = KNET_HEADER_DATA_SIZE;
iov_out[frag_idx][1].iov_base = inbuf->khp_data_userdata + (temp_data_mtu * frag_idx);
/*
* set the len
*/
if (frag_len > temp_data_mtu) {
iov_out[frag_idx][1].iov_len = temp_data_mtu;
} else {
iov_out[frag_idx][1].iov_len = frag_len;
}
/*
* copy the frag info on all buffers
*/
knet_h->send_to_links_buf[frag_idx]->kh_type = inbuf->kh_type;
knet_h->send_to_links_buf[frag_idx]->khp_data_seq_num = inbuf->khp_data_seq_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_frag_num = inbuf->khp_data_frag_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_bcast = inbuf->khp_data_bcast;
knet_h->send_to_links_buf[frag_idx]->khp_data_channel = inbuf->khp_data_channel;
knet_h->send_to_links_buf[frag_idx]->khp_data_compress = inbuf->khp_data_compress;
frag_len = frag_len - temp_data_mtu;
frag_idx++;
}
iovcnt_out = 2;
} else {
iov_out[frag_idx][0].iov_base = (void *)inbuf;
iov_out[frag_idx][0].iov_len = frag_len + KNET_HEADER_DATA_SIZE;
iovcnt_out = 1;
}
if (knet_h->crypto_in_use_config) {
struct timespec start_time;
struct timespec end_time;
uint64_t crypt_time;
frag_idx = 0;
while (frag_idx < inbuf->khp_data_frag_num) {
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_encrypt_and_signv(
knet_h,
iov_out[frag_idx], iovcnt_out,
knet_h->send_to_links_buf_crypt[frag_idx],
(ssize_t *)&outlen) < 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to encrypt packet");
savederrno = ECHILD;
err = -1;
goto out_unlock;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &crypt_time);
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_TX, "Unable to get mutex lock: %s", strerror(stats_err));
err = -1;
savederrno = stats_err;
goto out_unlock;
}
if (crypt_time < knet_h->stats.tx_crypt_time_min) {
knet_h->stats.tx_crypt_time_min = crypt_time;
}
if (crypt_time > knet_h->stats.tx_crypt_time_max) {
knet_h->stats.tx_crypt_time_max = crypt_time;
}
knet_h->stats.tx_crypt_time_ave =
(knet_h->stats.tx_crypt_time_ave * knet_h->stats.tx_crypt_packets +
crypt_time) / (knet_h->stats.tx_crypt_packets+1);
uncrypted_frag_size = 0;
for (j=0; j < iovcnt_out; j++) {
uncrypted_frag_size += iov_out[frag_idx][j].iov_len;
}
knet_h->stats.tx_crypt_byte_overhead += (outlen - uncrypted_frag_size);
knet_h->stats.tx_crypt_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
iov_out[frag_idx][0].iov_base = knet_h->send_to_links_buf_crypt[frag_idx];
iov_out[frag_idx][0].iov_len = outlen;
frag_idx++;
}
iovcnt_out = 1;
}
memset(&msg, 0, sizeof(msg));
msgs_to_send = inbuf->khp_data_frag_num;
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[msg_idx].msg_hdr.msg_iov = &iov_out[msg_idx][0];
msg[msg_idx].msg_hdr.msg_iovlen = iovcnt_out;
msg_idx++;
}
if (!bcast) {
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids[host_idx]];
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
} else {
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (dst_host->status.reachable) {
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
}
}
out_unlock:
errno = savederrno;
return err;
}
static void _handle_send_to_links(knet_handle_t knet_h, struct msghdr *msg, int sockfd, int8_t channel, int type)
{
ssize_t inlen = 0;
int savederrno = 0, docallback = 0;
if ((channel >= 0) &&
(channel < KNET_DATAFD_MAX) &&
(!knet_h->sockfd[channel].is_socket)) {
inlen = readv(sockfd, msg->msg_iov, 1);
} else {
inlen = recvmsg(sockfd, msg, MSG_DONTWAIT | MSG_NOSIGNAL);
if (msg->msg_flags & MSG_TRUNC) {
log_warn(knet_h, KNET_SUB_TX, "Received truncated message from sock %d. Discarding", sockfd);
return;
}
}
if (inlen == 0) {
savederrno = 0;
docallback = 1;
} else if (inlen < 0) {
struct epoll_event ev;
savederrno = errno;
docallback = 1;
memset(&ev, 0, sizeof(struct epoll_event));
- if (channel != KNET_INTERNAL_DATA_CHANNEL) {
- if (epoll_ctl(knet_h->send_to_links_epollfd,
- EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
- log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s",
- knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
- } else {
- knet_h->sockfd[channel].has_error = 1;
- }
+ if (epoll_ctl(knet_h->send_to_links_epollfd,
+ EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
+ log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s",
+ knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
+ } else {
+ knet_h->sockfd[channel].has_error = 1;
}
- /*
- * TODO: add error handling for KNET_INTERNAL_DATA_CHANNEL
- * once we add support for internal knet communication
- */
} else {
knet_h->recv_from_sock_buf->kh_type = type;
_parse_recv_from_sock(knet_h, inlen, channel, 0);
}
- if ((docallback) && (channel != KNET_INTERNAL_DATA_CHANNEL)) {
+ if (docallback) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_TX,
inlen,
savederrno);
}
}
void *_handle_send_to_links_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
int i, nev, type;
int flush, flush_queue_limit;
int8_t channel;
struct iovec iov_in;
struct msghdr msg;
struct sockaddr_storage address;
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_STARTED);
memset(&events, 0, sizeof(events));
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)knet_h->recv_from_sock_buf->khp_data_userdata;
iov_in.iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = &address;
msg.msg_namelen = sizeof(struct sockaddr_storage);
msg.msg_iov = &iov_in;
msg.msg_iovlen = 1;
knet_h->recv_from_sock_buf->kh_version = KNET_HEADER_VERSION;
knet_h->recv_from_sock_buf->khp_data_frag_seq = 0;
knet_h->recv_from_sock_buf->kh_node = htons(knet_h->host_id);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
knet_h->send_to_links_buf[i]->kh_version = KNET_HEADER_VERSION;
knet_h->send_to_links_buf[i]->khp_data_frag_seq = i + 1;
knet_h->send_to_links_buf[i]->kh_node = htons(knet_h->host_id);
}
flush_queue_limit = 0;
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->send_to_links_epollfd, events, KNET_EPOLL_MAX_EVENTS + 1, KNET_THREADS_TIMERES / 1000);
flush = get_thread_flush_queue(knet_h, KNET_THREAD_TX);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
/*
* ideally we want to communicate that we are done flushing
* the queue when we have an epoll timeout event
*/
if (flush == KNET_THREAD_QUEUE_FLUSH) {
set_thread_flush_queue(knet_h, KNET_THREAD_TX, KNET_THREAD_QUEUE_FLUSHED);
flush_queue_limit = 0;
}
continue;
}
/*
* fall back in case the TX sockets will continue receive traffic
* and we do not hit an epoll timeout.
*
* allow up to a 100 loops to flush queues, then we give up.
* there might be more clean ways to do it by checking the buffer queue
* on each socket, but we have tons of sockets and calculations can go wrong.
* Also, why would you disable data forwarding and still send packets?
*/
if (flush == KNET_THREAD_QUEUE_FLUSH) {
if (flush_queue_limit >= 100) {
log_debug(knet_h, KNET_SUB_TX, "Timeout flushing the TX queue, expect packet loss");
set_thread_flush_queue(knet_h, KNET_THREAD_TX, KNET_THREAD_QUEUE_FLUSHED);
flush_queue_limit = 0;
} else {
flush_queue_limit++;
}
} else {
flush_queue_limit = 0;
}
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get read lock");
continue;
}
for (i = 0; i < nev; i++) {
- if (events[i].data.fd == knet_h->hostsockfd[0]) {
- type = KNET_HEADER_TYPE_HOST_INFO;
- channel = KNET_INTERNAL_DATA_CHANNEL;
- } else {
- type = KNET_HEADER_TYPE_DATA;
- for (channel = 0; channel < KNET_DATAFD_MAX; channel++) {
- if ((knet_h->sockfd[channel].in_use) &&
- (knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) {
- break;
- }
- }
- if (channel >= KNET_DATAFD_MAX) {
- log_debug(knet_h, KNET_SUB_TX, "No available channels");
- continue; /* channel not found */
+ type = KNET_HEADER_TYPE_DATA;
+ for (channel = 0; channel < KNET_DATAFD_MAX; channel++) {
+ if ((knet_h->sockfd[channel].in_use) &&
+ (knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) {
+ break;
}
}
+ if (channel >= KNET_DATAFD_MAX) {
+ log_debug(knet_h, KNET_SUB_TX, "No available channels");
+ continue; /* channel not found */
+ }
if (pthread_mutex_lock(&knet_h->tx_mutex) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get mutex lock");
continue;
}
_handle_send_to_links(knet_h, &msg, events[i].data.fd, channel, type);
pthread_mutex_unlock(&knet_h->tx_mutex);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_STOPPED);
return NULL;
}
int knet_send_sync(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get TX mutex lock: %s",
strerror(savederrno));
err = -1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = KNET_HEADER_TYPE_DATA;
memmove(knet_h->recv_from_sock_buf->khp_data_userdata, buff, buff_len);
err = _parse_recv_from_sock(knet_h, buff_len, channel, 1);
savederrno = errno;
pthread_mutex_unlock(&knet_h->tx_mutex);
out:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
ssize_t knet_send(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0;
ssize_t err = 0;
struct iovec iov_out[1];
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
memset(iov_out, 0, sizeof(iov_out));
iov_out[0].iov_base = (void *)buff;
iov_out[0].iov_len = buff_len;
err = writev(knet_h->sockfd[channel].sockfd[0], iov_out, 1);
savederrno = errno;
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Oct 25, 2:04 AM (1 d, 13 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
2619939
Default Alt Text
(126 KB)

Event Timeline