Page MenuHomeClusterLabs Projects

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/libknet/handle.c b/libknet/handle.c
index e86f0ab5..aae5bb8a 100644
--- a/libknet/handle.c
+++ b/libknet/handle.c
@@ -1,1754 +1,1772 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>
#include <sys/uio.h>
#include <math.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "internals.h"
#include "crypto.h"
#include "links.h"
#include "compress.h"
#include "compat.h"
#include "common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_pmtud.h"
#include "threads_dsthandler.h"
#include "threads_rx.h"
#include "threads_tx.h"
#include "transports.h"
#include "transport_common.h"
#include "logging.h"
static pthread_mutex_t handle_config_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_rwlock_t shlib_rwlock;
static uint8_t shlib_wrlock_init = 0;
static uint32_t knet_ref = 0;
static int _init_shlib_tracker(knet_handle_t knet_h)
{
int savederrno = 0;
if (!shlib_wrlock_init) {
savederrno = pthread_rwlock_init(&shlib_rwlock, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize shared lib rwlock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
shlib_wrlock_init = 1;
}
return 0;
}
static void _fini_shlib_tracker(void)
{
if (knet_ref == 0) {
pthread_rwlock_destroy(&shlib_rwlock);
shlib_wrlock_init = 0;
}
return;
}
static int _init_locks(knet_handle_t knet_h)
{
int savederrno = 0;
savederrno = pthread_rwlock_init(&knet_h->global_rwlock, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize list rwlock: %s",
strerror(savederrno));
goto exit_fail;
}
+ savederrno = pthread_mutex_init(&knet_h->handle_stats_mutex, NULL);
+ if (savederrno) {
+ log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize handle stats mutex: %s",
+ strerror(savederrno));
+ goto exit_fail;
+ }
+
savederrno = pthread_mutex_init(&knet_h->threads_status_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize threads status mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->pmtud_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pmtud mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->kmtu_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize kernel_mtu mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_cond_init(&knet_h->pmtud_cond, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pmtud conditional mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->hb_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize hb_thread mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->tx_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize tx_thread mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->backoff_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pong timeout backoff mutex: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_mutex_init(&knet_h->tx_seq_num_mutex, NULL);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize tx_seq_num_mutex mutex: %s",
strerror(savederrno));
goto exit_fail;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _destroy_locks(knet_handle_t knet_h)
{
pthread_rwlock_destroy(&knet_h->global_rwlock);
pthread_mutex_destroy(&knet_h->pmtud_mutex);
pthread_mutex_destroy(&knet_h->kmtu_mutex);
pthread_cond_destroy(&knet_h->pmtud_cond);
pthread_mutex_destroy(&knet_h->hb_mutex);
pthread_mutex_destroy(&knet_h->tx_mutex);
pthread_mutex_destroy(&knet_h->backoff_mutex);
pthread_mutex_destroy(&knet_h->tx_seq_num_mutex);
pthread_mutex_destroy(&knet_h->threads_status_mutex);
+ pthread_mutex_destroy(&knet_h->handle_stats_mutex);
}
static int _init_socks(knet_handle_t knet_h)
{
int savederrno = 0;
if (_init_socketpair(knet_h, knet_h->hostsockfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize internal hostsockpair: %s",
strerror(savederrno));
goto exit_fail;
}
if (_init_socketpair(knet_h, knet_h->dstsockfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize internal dstsockpair: %s",
strerror(savederrno));
goto exit_fail;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _close_socks(knet_handle_t knet_h)
{
_close_socketpair(knet_h, knet_h->dstsockfd);
_close_socketpair(knet_h, knet_h->hostsockfd);
}
static int _init_buffers(knet_handle_t knet_h)
{
int savederrno = 0;
int i;
size_t bufsize;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
bufsize = ceil((float)KNET_MAX_PACKET_SIZE / (i + 1)) + KNET_HEADER_ALL_SIZE;
knet_h->send_to_links_buf[i] = malloc(bufsize);
if (!knet_h->send_to_links_buf[i]) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory datafd to link buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->send_to_links_buf[i], 0, bufsize);
}
for (i = 0; i < PCKT_RX_BUFS; i++) {
knet_h->recv_from_links_buf[i] = malloc(KNET_DATABUFSIZE);
if (!knet_h->recv_from_links_buf[i]) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for link to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf[i], 0, KNET_DATABUFSIZE);
}
knet_h->recv_from_sock_buf = malloc(KNET_DATABUFSIZE);
if (!knet_h->recv_from_sock_buf) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for app to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_sock_buf, 0, KNET_DATABUFSIZE);
knet_h->pingbuf = malloc(KNET_HEADER_PING_SIZE);
if (!knet_h->pingbuf) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for hearbeat buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pingbuf, 0, KNET_HEADER_PING_SIZE);
knet_h->pmtudbuf = malloc(KNET_PMTUD_SIZE_V6 + KNET_HEADER_ALL_SIZE);
if (!knet_h->pmtudbuf) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for pmtud buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pmtudbuf, 0, KNET_PMTUD_SIZE_V6 + KNET_HEADER_ALL_SIZE);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
bufsize = ceil((float)KNET_MAX_PACKET_SIZE / (i + 1)) + KNET_HEADER_ALL_SIZE + KNET_DATABUFSIZE_CRYPT_PAD;
knet_h->send_to_links_buf_crypt[i] = malloc(bufsize);
if (!knet_h->send_to_links_buf_crypt[i]) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for crypto datafd to link buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->send_to_links_buf_crypt[i], 0, bufsize);
}
knet_h->recv_from_links_buf_decrypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->recv_from_links_buf_decrypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto link to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf_decrypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->recv_from_links_buf_crypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->recv_from_links_buf_crypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto link to datafd buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf_crypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->pingbuf_crypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->pingbuf_crypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto hearbeat buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pingbuf_crypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->pmtudbuf_crypt = malloc(KNET_DATABUFSIZE_CRYPT);
if (!knet_h->pmtudbuf_crypt) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for crypto pmtud buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->pmtudbuf_crypt, 0, KNET_DATABUFSIZE_CRYPT);
knet_h->recv_from_links_buf_decompress = malloc(KNET_DATABUFSIZE_COMPRESS);
if (!knet_h->recv_from_links_buf_decompress) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for decompress buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->recv_from_links_buf_decompress, 0, KNET_DATABUFSIZE_COMPRESS);
knet_h->send_to_links_buf_compress = malloc(KNET_DATABUFSIZE_COMPRESS);
if (!knet_h->send_to_links_buf_compress) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for compress buffer: %s",
strerror(savederrno));
goto exit_fail;
}
memset(knet_h->send_to_links_buf_compress, 0, KNET_DATABUFSIZE_COMPRESS);
memset(knet_h->knet_transport_fd_tracker, 0, sizeof(knet_h->knet_transport_fd_tracker));
for (i = 0; i < KNET_MAX_FDS; i++) {
knet_h->knet_transport_fd_tracker[i].transport = KNET_MAX_TRANSPORTS;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _destroy_buffers(knet_handle_t knet_h)
{
int i;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
free(knet_h->send_to_links_buf[i]);
free(knet_h->send_to_links_buf_crypt[i]);
}
for (i = 0; i < PCKT_RX_BUFS; i++) {
free(knet_h->recv_from_links_buf[i]);
}
free(knet_h->recv_from_links_buf_decompress);
free(knet_h->send_to_links_buf_compress);
free(knet_h->recv_from_sock_buf);
free(knet_h->recv_from_links_buf_decrypt);
free(knet_h->recv_from_links_buf_crypt);
free(knet_h->pingbuf);
free(knet_h->pingbuf_crypt);
free(knet_h->pmtudbuf);
free(knet_h->pmtudbuf_crypt);
}
static int _init_epolls(knet_handle_t knet_h)
{
struct epoll_event ev;
int savederrno = 0;
/*
* even if the kernel does dynamic allocation with epoll_ctl
* we need to reserve one extra for host to host communication
*/
knet_h->send_to_links_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (knet_h->send_to_links_epollfd < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll datafd to link fd: %s",
strerror(savederrno));
goto exit_fail;
}
knet_h->recv_from_links_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS);
if (knet_h->recv_from_links_epollfd < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll link to datafd fd: %s",
strerror(savederrno));
goto exit_fail;
}
knet_h->dst_link_handler_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS);
if (knet_h->dst_link_handler_epollfd < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll dst cache fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(knet_h->send_to_links_epollfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on datafd to link epoll fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(knet_h->recv_from_links_epollfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on link to datafd epoll fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(knet_h->dst_link_handler_epollfd)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on dst cache epoll fd: %s",
strerror(savederrno));
goto exit_fail;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = knet_h->hostsockfd[0];
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_ADD, knet_h->hostsockfd[0], &ev)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to add hostsockfd[0] to epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = knet_h->dstsockfd[0];
if (epoll_ctl(knet_h->dst_link_handler_epollfd,
EPOLL_CTL_ADD, knet_h->dstsockfd[0], &ev)) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to add dstsockfd[0] to epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _close_epolls(knet_handle_t knet_h)
{
struct epoll_event ev;
int i;
memset(&ev, 0, sizeof(struct epoll_event));
for (i = 0; i < KNET_DATAFD_MAX; i++) {
if (knet_h->sockfd[i].in_use) {
epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->sockfd[i].sockfd[knet_h->sockfd[i].is_created], &ev);
if (knet_h->sockfd[i].sockfd[knet_h->sockfd[i].is_created]) {
_close_socketpair(knet_h, knet_h->sockfd[i].sockfd);
}
}
}
epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->hostsockfd[0], &ev);
epoll_ctl(knet_h->dst_link_handler_epollfd, EPOLL_CTL_DEL, knet_h->dstsockfd[0], &ev);
close(knet_h->send_to_links_epollfd);
close(knet_h->recv_from_links_epollfd);
close(knet_h->dst_link_handler_epollfd);
}
static int _start_threads(knet_handle_t knet_h)
{
int savederrno = 0;
pthread_attr_t attr;
set_thread_status(knet_h, KNET_THREAD_PMTUD, KNET_THREAD_REGISTERED);
savederrno = pthread_attr_init(&attr);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to init pthread attributes: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_attr_setstacksize(&attr, KNET_THREAD_STACK_SIZE);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set stack size attribute: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_create(&knet_h->pmtud_link_handler_thread, &attr,
_handle_pmtud_link_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start pmtud link thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_DST_LINK, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->dst_link_handler_thread, &attr,
_handle_dst_link_handler_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start dst cache thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->send_to_links_thread, &attr,
_handle_send_to_links_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start datafd to link thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->recv_from_links_thread, &attr,
_handle_recv_from_links_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start link to datafd thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_HB, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&knet_h->heartbt_thread, &attr,
_handle_heartbt_thread, (void *) knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to start heartbeat thread: %s",
strerror(savederrno));
goto exit_fail;
}
savederrno = pthread_attr_destroy(&attr);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to destroy pthread attributes: %s",
strerror(savederrno));
/*
* Do not return error code. Error is not critical.
*/
}
return 0;
exit_fail:
errno = savederrno;
return -1;
}
static void _stop_threads(knet_handle_t knet_h)
{
void *retval;
wait_all_threads_status(knet_h, KNET_THREAD_STOPPED);
if (knet_h->heartbt_thread) {
pthread_cancel(knet_h->heartbt_thread);
pthread_join(knet_h->heartbt_thread, &retval);
}
if (knet_h->send_to_links_thread) {
pthread_cancel(knet_h->send_to_links_thread);
pthread_join(knet_h->send_to_links_thread, &retval);
}
if (knet_h->recv_from_links_thread) {
pthread_cancel(knet_h->recv_from_links_thread);
pthread_join(knet_h->recv_from_links_thread, &retval);
}
if (knet_h->dst_link_handler_thread) {
pthread_cancel(knet_h->dst_link_handler_thread);
pthread_join(knet_h->dst_link_handler_thread, &retval);
}
if (knet_h->pmtud_link_handler_thread) {
pthread_cancel(knet_h->pmtud_link_handler_thread);
pthread_join(knet_h->pmtud_link_handler_thread, &retval);
}
}
knet_handle_t knet_handle_new_ex(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level,
uint64_t flags)
{
knet_handle_t knet_h;
int savederrno = 0;
struct rlimit cur;
if (getrlimit(RLIMIT_NOFILE, &cur) < 0) {
return NULL;
}
if ((log_fd < 0) || ((unsigned int)log_fd >= cur.rlim_max)) {
errno = EINVAL;
return NULL;
}
/*
* validate incoming request
*/
if ((log_fd) && (default_log_level > KNET_LOG_DEBUG)) {
errno = EINVAL;
return NULL;
}
if (flags > KNET_HANDLE_FLAG_PRIVILEGED * 2 - 1) {
errno = EINVAL;
return NULL;
}
/*
* allocate handle
*/
knet_h = malloc(sizeof(struct knet_handle));
if (!knet_h) {
errno = ENOMEM;
return NULL;
}
memset(knet_h, 0, sizeof(struct knet_handle));
/*
* setting up some handle data so that we can use logging
* also when initializing the library global locks
* and trackers
*/
knet_h->flags = flags;
/*
* copy config in place
*/
knet_h->host_id = host_id;
knet_h->logfd = log_fd;
if (knet_h->logfd > 0) {
memset(&knet_h->log_levels, default_log_level, KNET_MAX_SUBSYSTEMS);
}
/*
* set pmtud default timers
*/
knet_h->pmtud_interval = KNET_PMTUD_DEFAULT_INTERVAL;
/*
* set transports reconnect default timers
*/
knet_h->reconnect_int = KNET_TRANSPORT_DEFAULT_RECONNECT_INTERVAL;
/*
* Set 'min' stats to the maximum value so the
* first value we get is always less
*/
knet_h->stats.tx_compress_time_min = UINT64_MAX;
knet_h->stats.rx_compress_time_min = UINT64_MAX;
knet_h->stats.tx_crypt_time_min = UINT64_MAX;
knet_h->stats.rx_crypt_time_min = UINT64_MAX;
/*
* init global shlib tracker
*/
savederrno = pthread_mutex_lock(&handle_config_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get handle mutex lock: %s",
strerror(savederrno));
free(knet_h);
knet_h = NULL;
errno = savederrno;
return NULL;
}
knet_ref++;
if (_init_shlib_tracker(knet_h) < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to init handle tracker: %s",
strerror(savederrno));
errno = savederrno;
pthread_mutex_unlock(&handle_config_mutex);
goto exit_fail;
}
pthread_mutex_unlock(&handle_config_mutex);
/*
* init main locking structures
*/
if (_init_locks(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* init sockets
*/
if (_init_socks(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* allocate packet buffers
*/
if (_init_buffers(knet_h)) {
savederrno = errno;
goto exit_fail;
}
if (compress_init(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* create epoll fds
*/
if (_init_epolls(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* start transports
*/
if (start_all_transports(knet_h)) {
savederrno = errno;
goto exit_fail;
}
/*
* start internal threads
*/
if (_start_threads(knet_h)) {
savederrno = errno;
goto exit_fail;
}
wait_all_threads_status(knet_h, KNET_THREAD_STARTED);
errno = 0;
return knet_h;
exit_fail:
knet_handle_free(knet_h);
errno = savederrno;
return NULL;
}
knet_handle_t knet_handle_new(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level)
{
return knet_handle_new_ex(host_id, log_fd, default_log_level, KNET_HANDLE_FLAG_PRIVILEGED);
}
int knet_handle_free(knet_handle_t knet_h)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (knet_h->host_head != NULL) {
savederrno = EBUSY;
log_err(knet_h, KNET_SUB_HANDLE,
"Unable to free handle: host(s) or listener(s) are still active: %s",
strerror(savederrno));
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return -1;
}
knet_h->fini_in_progress = 1;
pthread_rwlock_unlock(&knet_h->global_rwlock);
_stop_threads(knet_h);
stop_all_transports(knet_h);
_close_epolls(knet_h);
_destroy_buffers(knet_h);
_close_socks(knet_h);
crypto_fini(knet_h);
compress_fini(knet_h, 1);
_destroy_locks(knet_h);
free(knet_h);
knet_h = NULL;
(void)pthread_mutex_lock(&handle_config_mutex);
knet_ref--;
_fini_shlib_tracker();
pthread_mutex_unlock(&handle_config_mutex);
errno = 0;
return 0;
}
int knet_handle_enable_sock_notify(knet_handle_t knet_h,
void *sock_notify_fn_private_data,
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno))
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!sock_notify_fn) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->sock_notify_fn_private_data = sock_notify_fn_private_data;
knet_h->sock_notify_fn = sock_notify_fn;
log_debug(knet_h, KNET_SUB_HANDLE, "sock_notify_fn enabled");
pthread_rwlock_unlock(&knet_h->global_rwlock);
return 0;
}
int knet_handle_add_datafd(knet_handle_t knet_h, int *datafd, int8_t *channel)
{
int err = 0, savederrno = 0;
int i;
struct epoll_event ev;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (datafd == NULL) {
errno = EINVAL;
return -1;
}
if (channel == NULL) {
errno = EINVAL;
return -1;
}
if (*channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sock_notify_fn) {
log_err(knet_h, KNET_SUB_HANDLE, "Adding datafd requires sock notify callback enabled!");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
if (*datafd > 0) {
for (i = 0; i < KNET_DATAFD_MAX; i++) {
if ((knet_h->sockfd[i].in_use) && (knet_h->sockfd[i].sockfd[0] == *datafd)) {
log_err(knet_h, KNET_SUB_HANDLE, "requested datafd: %d already exist in index: %d", *datafd, i);
savederrno = EEXIST;
err = -1;
goto out_unlock;
}
}
}
/*
* auto allocate a channel
*/
if (*channel < 0) {
for (i = 0; i < KNET_DATAFD_MAX; i++) {
if (!knet_h->sockfd[i].in_use) {
*channel = i;
break;
}
}
if (*channel < 0) {
savederrno = EBUSY;
err = -1;
goto out_unlock;
}
} else {
if (knet_h->sockfd[*channel].in_use) {
savederrno = EBUSY;
err = -1;
goto out_unlock;
}
}
knet_h->sockfd[*channel].is_created = 0;
knet_h->sockfd[*channel].is_socket = 0;
knet_h->sockfd[*channel].has_error = 0;
if (*datafd > 0) {
int sockopt;
socklen_t sockoptlen = sizeof(sockopt);
if (_fdset_cloexec(*datafd)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on datafd: %s",
strerror(savederrno));
goto out_unlock;
}
if (_fdset_nonblock(*datafd)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to set NONBLOCK on datafd: %s",
strerror(savederrno));
goto out_unlock;
}
knet_h->sockfd[*channel].sockfd[0] = *datafd;
knet_h->sockfd[*channel].sockfd[1] = 0;
if (!getsockopt(knet_h->sockfd[*channel].sockfd[0], SOL_SOCKET, SO_TYPE, &sockopt, &sockoptlen)) {
knet_h->sockfd[*channel].is_socket = 1;
}
} else {
if (_init_socketpair(knet_h, knet_h->sockfd[*channel].sockfd)) {
savederrno = errno;
err = -1;
goto out_unlock;
}
knet_h->sockfd[*channel].is_created = 1;
knet_h->sockfd[*channel].is_socket = 1;
*datafd = knet_h->sockfd[*channel].sockfd[0];
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = knet_h->sockfd[*channel].sockfd[knet_h->sockfd[*channel].is_created];
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_ADD, knet_h->sockfd[*channel].sockfd[knet_h->sockfd[*channel].is_created], &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to add datafd %d to linkfd epoll pool: %s",
knet_h->sockfd[*channel].sockfd[knet_h->sockfd[*channel].is_created], strerror(savederrno));
if (knet_h->sockfd[*channel].is_created) {
_close_socketpair(knet_h, knet_h->sockfd[*channel].sockfd);
}
goto out_unlock;
}
knet_h->sockfd[*channel].in_use = 1;
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_handle_remove_datafd(knet_handle_t knet_h, int datafd)
{
int err = 0, savederrno = 0;
int8_t channel = -1;
int i;
struct epoll_event ev;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (datafd <= 0) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
for (i = 0; i < KNET_DATAFD_MAX; i++) {
if ((knet_h->sockfd[i].in_use) &&
(knet_h->sockfd[i].sockfd[0] == datafd)) {
channel = i;
break;
}
}
if (channel < 0) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
if (!knet_h->sockfd[channel].has_error) {
memset(&ev, 0, sizeof(struct epoll_event));
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to del datafd %d from linkfd epoll pool: %s",
knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
goto out_unlock;
}
}
if (knet_h->sockfd[channel].is_created) {
_close_socketpair(knet_h, knet_h->sockfd[channel].sockfd);
}
memset(&knet_h->sockfd[channel], 0, sizeof(struct knet_sock));
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_handle_get_datafd(knet_handle_t knet_h, const int8_t channel, int *datafd)
{
int err = 0, savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if ((channel < 0) || (channel >= KNET_DATAFD_MAX)) {
errno = EINVAL;
return -1;
}
if (datafd == NULL) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
*datafd = knet_h->sockfd[channel].sockfd[0];
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_handle_get_channel(knet_handle_t knet_h, const int datafd, int8_t *channel)
{
int err = 0, savederrno = 0;
int i;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (datafd <= 0) {
errno = EINVAL;
return -1;
}
if (channel == NULL) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
*channel = -1;
for (i = 0; i < KNET_DATAFD_MAX; i++) {
if ((knet_h->sockfd[i].in_use) &&
(knet_h->sockfd[i].sockfd[0] == datafd)) {
*channel = i;
break;
}
}
if (*channel < 0) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_handle_enable_filter(knet_handle_t knet_h,
void *dst_host_filter_fn_private_data,
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_node_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries))
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->dst_host_filter_fn_private_data = dst_host_filter_fn_private_data;
knet_h->dst_host_filter_fn = dst_host_filter_fn;
if (knet_h->dst_host_filter_fn) {
log_debug(knet_h, KNET_SUB_HANDLE, "dst_host_filter_fn enabled");
} else {
log_debug(knet_h, KNET_SUB_HANDLE, "dst_host_filter_fn disabled");
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_setfwd(knet_handle_t knet_h, unsigned int enabled)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (enabled > 1) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (enabled) {
knet_h->enabled = enabled;
log_debug(knet_h, KNET_SUB_HANDLE, "Data forwarding is enabled");
} else {
/*
* notify TX and RX threads to flush the queues
*/
if (set_thread_flush_queue(knet_h, KNET_THREAD_TX, KNET_THREAD_QUEUE_FLUSH) < 0) {
log_debug(knet_h, KNET_SUB_HANDLE, "Unable to request queue flushing for TX thread");
}
if (set_thread_flush_queue(knet_h, KNET_THREAD_RX, KNET_THREAD_QUEUE_FLUSH) < 0) {
log_debug(knet_h, KNET_SUB_HANDLE, "Unable to request queue flushing for RX thread");
}
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
/*
* when disabling data forward, we need to give time to TX and RX
* to flush the queues.
*
* the TX thread is the main leader here. When there is no more
* data in the TX queue, we will also close traffic for RX.
*/
if (!enabled) {
/*
* this usleep might be unnecessary, but wait_all_threads_flush_queue
* adds extra locking delay.
*
* allow all threads to run free without extra locking interference
* and then we switch to a more active wait in case the scheduler
* has decided to delay one thread or another
*/
usleep(KNET_THREADS_TIMERES * 2);
wait_all_threads_flush_queue(knet_h);
/*
* all threads have done flushing the queue, we can stop data forwarding
*/
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->enabled = enabled;
log_debug(knet_h, KNET_SUB_HANDLE, "Data forwarding is disabled");
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
errno = 0;
return 0;
}
int knet_handle_enable_access_lists(knet_handle_t knet_h, unsigned int enabled)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (enabled > 1) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->use_access_lists = enabled;
if (enabled) {
log_debug(knet_h, KNET_SUB_HANDLE, "Links access lists are enabled");
} else {
log_debug(knet_h, KNET_SUB_HANDLE, "Links access lists are disabled");
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_pmtud_getfreq(knet_handle_t knet_h, unsigned int *interval)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!interval) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
*interval = knet_h->pmtud_interval;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_pmtud_setfreq(knet_handle_t knet_h, unsigned int interval)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if ((!interval) || (interval > 86400)) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->pmtud_interval = interval;
log_debug(knet_h, KNET_SUB_HANDLE, "PMTUd interval set to: %u seconds", interval);
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_enable_pmtud_notify(knet_handle_t knet_h,
void *pmtud_notify_fn_private_data,
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu))
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->pmtud_notify_fn_private_data = pmtud_notify_fn_private_data;
knet_h->pmtud_notify_fn = pmtud_notify_fn;
if (knet_h->pmtud_notify_fn) {
log_debug(knet_h, KNET_SUB_HANDLE, "pmtud_notify_fn enabled");
} else {
log_debug(knet_h, KNET_SUB_HANDLE, "pmtud_notify_fn disabled");
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_pmtud_set(knet_handle_t knet_h,
unsigned int iface_mtu)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (iface_mtu > KNET_PMTUD_SIZE_V4) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_PMTUD, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
log_info(knet_h, KNET_SUB_PMTUD, "MTU manually set to: %u", iface_mtu);
knet_h->manual_mtu = iface_mtu;
force_pmtud_run(knet_h, KNET_SUB_PMTUD, 0);
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_pmtud_get(knet_handle_t knet_h,
unsigned int *data_mtu)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!data_mtu) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
*data_mtu = knet_h->data_mtu;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_crypto(knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg)
{
int savederrno = 0;
int err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!knet_handle_crypto_cfg) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if ((!strncmp("none", knet_handle_crypto_cfg->crypto_model, 4)) ||
((!strncmp("none", knet_handle_crypto_cfg->crypto_cipher_type, 4)) &&
(!strncmp("none", knet_handle_crypto_cfg->crypto_hash_type, 4)))) {
crypto_fini(knet_h);
log_debug(knet_h, KNET_SUB_CRYPTO, "crypto is not enabled");
err = 0;
goto exit_unlock;
}
if (knet_handle_crypto_cfg->private_key_len < KNET_MIN_KEY_LEN) {
log_debug(knet_h, KNET_SUB_CRYPTO, "private key len too short (min %d): %u",
KNET_MIN_KEY_LEN, knet_handle_crypto_cfg->private_key_len);
savederrno = EINVAL;
err = -1;
goto exit_unlock;
}
if (knet_handle_crypto_cfg->private_key_len > KNET_MAX_KEY_LEN) {
log_debug(knet_h, KNET_SUB_CRYPTO, "private key len too long (max %d): %u",
KNET_MAX_KEY_LEN, knet_handle_crypto_cfg->private_key_len);
savederrno = EINVAL;
err = -1;
goto exit_unlock;
}
err = crypto_init(knet_h, knet_handle_crypto_cfg);
if (err) {
err = -2;
savederrno = errno;
}
exit_unlock:
if (!err) {
force_pmtud_run(knet_h, KNET_SUB_CRYPTO, 1);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_handle_compress(knet_handle_t knet_h, struct knet_handle_compress_cfg *knet_handle_compress_cfg)
{
int savederrno = 0;
int err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!knet_handle_compress_cfg) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
compress_fini(knet_h, 0);
err = compress_cfg(knet_h, knet_handle_compress_cfg);
savederrno = errno;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
ssize_t knet_recv(knet_handle_t knet_h, char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0;
ssize_t err = 0;
struct iovec iov_in;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)buff;
iov_in.iov_len = buff_len;
err = readv(knet_h->sockfd[channel].sockfd[0], &iov_in, 1);
savederrno = errno;
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
ssize_t knet_send(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0;
ssize_t err = 0;
struct iovec iov_out[1];
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
memset(iov_out, 0, sizeof(iov_out));
iov_out[0].iov_base = (void *)buff;
iov_out[0].iov_len = buff_len;
err = writev(knet_h->sockfd[channel].sockfd[0], iov_out, 1);
savederrno = errno;
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_handle_get_stats(knet_handle_t knet_h, struct knet_handle_stats *stats, size_t struct_size)
{
- int savederrno = 0;
+ int err = 0, savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!stats) {
errno = EINVAL;
return -1;
}
- savederrno = get_global_wrlock(knet_h);
+ savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
- log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
+ log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
+ savederrno = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (savederrno) {
+ log_err(knet_h, KNET_SUB_HANDLE, "Unable to get mutex lock: %s",
+ strerror(savederrno));
+ err = -1;
+ goto out_unlock;
+ }
+
if (struct_size > sizeof(struct knet_handle_stats)) {
struct_size = sizeof(struct knet_handle_stats);
}
memmove(stats, &knet_h->stats, struct_size);
/*
* TX crypt stats only count the data packets sent, so add in the ping/pong/pmtud figures
* RX is OK as it counts them before they are sorted.
*/
stats->tx_crypt_packets += knet_h->stats_extra.tx_crypt_ping_packets +
knet_h->stats_extra.tx_crypt_pong_packets +
knet_h->stats_extra.tx_crypt_pmtu_packets +
knet_h->stats_extra.tx_crypt_pmtu_reply_packets;
/* Tell the caller our full size in case they have an old version */
stats->size = sizeof(struct knet_handle_stats);
+out_unlock:
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
pthread_rwlock_unlock(&knet_h->global_rwlock);
- return 0;
+ return err;
}
int knet_handle_clear_stats(knet_handle_t knet_h, int clear_option)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (clear_option != KNET_CLEARSTATS_HANDLE_ONLY &&
clear_option != KNET_CLEARSTATS_HANDLE_AND_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
memset(&knet_h->stats, 0, sizeof(struct knet_handle_stats));
memset(&knet_h->stats_extra, 0, sizeof(struct knet_handle_stats_extra));
if (clear_option == KNET_CLEARSTATS_HANDLE_AND_LINK) {
_link_clear_stats(knet_h);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
return 0;
}
diff --git a/libknet/internals.h b/libknet/internals.h
index 63926204..94e208b6 100644
--- a/libknet/internals.h
+++ b/libknet/internals.h
@@ -1,578 +1,580 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __KNET_INTERNALS_H__
#define __KNET_INTERNALS_H__
/*
* NOTE: you shouldn't need to include this header normally
*/
#include <pthread.h>
#include "libknet.h"
#include "onwire.h"
#include "compat.h"
#include "threads_common.h"
#define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE
#define KNET_DATABUFSIZE_CRYPT_PAD 1024
#define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD
#define KNET_DATABUFSIZE_COMPRESS_PAD 1024
#define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD
#define KNET_RING_RCVBUFF 8388608
#define PCKT_FRAG_MAX UINT8_MAX
#define PCKT_RX_BUFS 512
#define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX + 1
#define KNET_INTERNAL_DATA_CHANNEL KNET_DATAFD_MAX
/*
* Size of threads stack. Value is choosen by experimenting, how much is needed
* to sucesfully finish test suite, and at the time of writing patch it was
* ~300KiB. To have some room for future enhancement it is increased
* by factor of 3 and rounded.
*/
#define KNET_THREAD_STACK_SIZE (1024 * 1024)
typedef void *knet_transport_link_t; /* per link transport handle */
typedef void *knet_transport_t; /* per knet_h transport handle */
struct knet_transport_ops; /* Forward because of circular dependancy */
struct knet_mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */
};
struct knet_link {
/* required */
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
/* configurable */
unsigned int dynamic; /* see KNET_LINK_DYN_ define above */
uint8_t priority; /* higher priority == preferred for A/P */
unsigned long long ping_interval; /* interval */
unsigned long long pong_timeout; /* timeout */
unsigned long long pong_timeout_adj; /* timeout adjusted for latency */
uint8_t pong_timeout_backoff; /* see link.h for definition */
unsigned int latency_max_samples; /* precision */
unsigned int latency_cur_samples;
uint8_t pong_count; /* how many ping/pong to send/receive before link is up */
uint64_t flags;
/* status */
struct knet_link_status status;
/* internals */
+ pthread_mutex_t link_stats_mutex; /* used to update link stats */
uint8_t link_id;
uint8_t transport; /* #defined constant from API */
knet_transport_link_t transport_link; /* link_info_t from transport */
int outsock;
unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/
unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */
uint8_t received_pong;
struct timespec ping_last;
/* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */
uint32_t proto_overhead; /* IP + UDP/SCTP overhead. NOT to be confused
with stats.proto_overhead that includes also knet headers
and crypto headers */
struct timespec pmtud_last;
uint32_t last_ping_size;
uint32_t last_good_mtu;
uint32_t last_bad_mtu;
uint32_t last_sent_mtu;
uint32_t last_recv_mtu;
uint32_t pmtud_crypto_timeout_multiplier;/* used by PMTUd to adjust timeouts on high loads */
uint8_t has_valid_mtu;
};
#define KNET_CBUFFER_SIZE 4096
struct knet_host_defrag_buf {
char buf[KNET_DATABUFSIZE];
uint8_t in_use; /* 0 buffer is free, 1 is in use */
seq_num_t pckt_seq; /* identify the pckt we are receiving */
uint8_t frag_recv; /* how many frags did we receive */
uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */
uint8_t last_first; /* special case if we receive the last fragment first */
ssize_t frag_size; /* normal frag size (not the last one) */
ssize_t last_frag_size; /* the last fragment might not be aligned with MTU size */
struct timespec last_update; /* keep time of the last pckt */
};
struct knet_host {
/* required */
knet_node_id_t host_id;
/* configurable */
uint8_t link_handler_policy;
char name[KNET_MAX_HOST_LEN];
/* status */
struct knet_host_status status;
/* internals */
char circular_buffer[KNET_CBUFFER_SIZE];
seq_num_t rx_seq_num;
seq_num_t untimed_rx_seq_num;
seq_num_t timed_rx_seq_num;
uint8_t got_data;
/* defrag/reassembly buffers */
struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK];
char circular_buffer_defrag[KNET_CBUFFER_SIZE];
/* link stuff */
struct knet_link link[KNET_MAX_LINK];
uint8_t active_link_entries;
uint8_t active_links[KNET_MAX_LINK];
struct knet_host *next;
};
struct knet_sock {
int sockfd[2]; /* sockfd[0] will always be application facing
* and sockfd[1] internal if sockpair has been created by knet */
int is_socket; /* check if it's a socket for recvmmsg usage */
int is_created; /* knet created this socket and has to clean up on exit/del */
int in_use; /* set to 1 if it's use, 0 if free */
int has_error; /* set to 1 if there were errors reading from the sock
* and socket has been removed from epoll */
};
struct knet_fd_trackers {
uint8_t transport; /* transport type (UDP/SCTP...) */
uint8_t data_type; /* internal use for transport to define what data are associated
* with this fd */
void *data; /* pointer to the data */
void *access_list_match_entry_head; /* pointer to access list match_entry list head */
};
#define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4
#define KNET_MAX_COMPRESS_METHODS UINT8_MAX
struct knet_handle_stats_extra {
uint64_t tx_crypt_pmtu_packets;
uint64_t tx_crypt_pmtu_reply_packets;
uint64_t tx_crypt_ping_packets;
uint64_t tx_crypt_pong_packets;
};
struct knet_handle {
knet_node_id_t host_id;
unsigned int enabled:1;
struct knet_sock sockfd[KNET_DATAFD_MAX + 1];
int logfd;
uint8_t log_levels[KNET_MAX_SUBSYSTEMS];
int hostsockfd[2];
int dstsockfd[2];
int send_to_links_epollfd;
int recv_from_links_epollfd;
int dst_link_handler_epollfd;
uint8_t use_access_lists; /* set to 0 for disable, 1 for enable */
unsigned int pmtud_interval;
unsigned int manual_mtu;
unsigned int data_mtu; /* contains the max data size that we can send onwire
* without frags */
struct knet_host *host_head;
struct knet_host *host_index[KNET_MAX_HOST];
knet_transport_t transports[KNET_MAX_TRANSPORTS+1];
struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */
struct knet_handle_stats stats;
struct knet_handle_stats_extra stats_extra;
+ pthread_mutex_t handle_stats_mutex; /* used to protect handle stats */
uint32_t reconnect_int;
knet_node_id_t host_ids[KNET_MAX_HOST];
size_t host_ids_entries;
struct knet_header *recv_from_sock_buf;
struct knet_header *send_to_links_buf[PCKT_FRAG_MAX];
struct knet_header *recv_from_links_buf[PCKT_RX_BUFS];
struct knet_header *pingbuf;
struct knet_header *pmtudbuf;
uint8_t threads_status[KNET_THREAD_MAX];
uint8_t threads_flush_queue[KNET_THREAD_MAX];
pthread_mutex_t threads_status_mutex;
pthread_t send_to_links_thread;
pthread_t recv_from_links_thread;
pthread_t heartbt_thread;
pthread_t dst_link_handler_thread;
pthread_t pmtud_link_handler_thread;
pthread_rwlock_t global_rwlock; /* global config lock */
pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */
pthread_cond_t pmtud_cond; /* conditional for above */
pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */
pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */
pthread_mutex_t backoff_mutex; /* used to protect dst_link->pong_timeout_adj */
pthread_mutex_t kmtu_mutex; /* used to protect kernel_mtu */
uint32_t kernel_mtu; /* contains the MTU detected by the kernel on a given link */
int pmtud_waiting;
int pmtud_running;
int pmtud_forcerun;
int pmtud_abort;
struct crypto_instance *crypto_instance;
size_t sec_block_size;
size_t sec_hash_size;
size_t sec_salt_size;
unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX];
unsigned char *recv_from_links_buf_crypt;
unsigned char *recv_from_links_buf_decrypt;
unsigned char *pingbuf_crypt;
unsigned char *pmtudbuf_crypt;
int compress_model;
int compress_level;
size_t compress_threshold;
void *compress_int_data[KNET_MAX_COMPRESS_METHODS]; /* for compress method private data */
unsigned char *recv_from_links_buf_decompress;
unsigned char *send_to_links_buf_compress;
seq_num_t tx_seq_num;
pthread_mutex_t tx_seq_num_mutex;
uint8_t has_loop_link;
uint8_t loop_link;
void *dst_host_filter_fn_private_data;
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_node_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries);
void *pmtud_notify_fn_private_data;
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu);
void *host_status_change_notify_fn_private_data;
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external);
void *sock_notify_fn_private_data;
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno);
int fini_in_progress;
uint64_t flags;
};
extern pthread_rwlock_t shlib_rwlock; /* global shared lib load lock */
/*
* NOTE: every single operation must be implementend
* for every protocol.
*/
/*
* for now knet supports only IP protocols (udp/sctp)
* in future there might be others like ARP
* or TIPC.
* keep this around as transport information
* to use for access lists and other operations
*/
#define TRANSPORT_PROTO_LOOPBACK 0
#define TRANSPORT_PROTO_IP_PROTO 1
/*
* some transports like SCTP can filter incoming
* connections before knet has to process
* any packets.
* GENERIC_ACL -> packet has to be read and filterted
* PROTO_ACL -> transport provides filtering at lower levels
* and packet does not need to be processed
*/
typedef enum {
USE_NO_ACL,
USE_GENERIC_ACL,
USE_PROTO_ACL
} transport_acl;
/*
* make it easier to map values in transports.c
*/
#define TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED 0
#define TRANSPORT_PROTO_IS_CONNECTION_ORIENTED 1
typedef struct knet_transport_ops {
/*
* transport generic information
*/
const char *transport_name;
const uint8_t transport_id;
const uint8_t built_in;
uint8_t transport_protocol;
transport_acl transport_acl_type;
/*
* connection oriented protocols like SCTP
* don´t need dst_addr in sendto calls and
* on some OSes are considered EINVAL.
*/
uint8_t transport_is_connection_oriented;
uint32_t transport_mtu_overhead;
/*
* transport init must allocate the new transport
* and perform all internal initializations
* (threads, lists, etc).
*/
int (*transport_init)(knet_handle_t knet_h);
/*
* transport free must releases _all_ resources
* allocated by tranport_init
*/
int (*transport_free)(knet_handle_t knet_h);
/*
* link operations should take care of all the
* sockets and epoll management for a given link/transport set
* transport_link_disable should return err = -1 and errno = EBUSY
* if listener is still in use, and any other errno in case
* the link cannot be disabled.
*
* set_config/clear_config are invoked in global write lock context
*/
int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link);
int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link);
/*
* transport callback for incoming dynamic connections
* this is called in global read lock context
*/
int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link);
/*
* return the fd to use for access lists
*/
int (*transport_link_get_acl_fd)(knet_handle_t knet_h, struct knet_link *link);
/*
* per transport error handling of recvmmsg
* (see _handle_recv_from_links comments for details)
*/
/*
* transport_rx_sock_error is invoked when recvmmsg returns <= 0
*
* transport_rx_sock_error is invoked with both global_rdlock
*/
int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* transport_tx_sock_error is invoked with global_rwlock and
* it's invoked when sendto or sendmmsg returns =< 0
*
* it should return:
* -1 on internal error
* 0 ignore error and continue
* 1 retry
* any sleep or wait action should happen inside the transport code
*/
int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* this function is called on _every_ received packet
* to verify if the packet is data or internal protocol error handling
*
* it should return:
* -1 on error
* 0 packet is not data and we should continue the packet process loop
* 1 packet is not data and we should STOP the packet process loop
* 2 packet is data and should be parsed as such
*
* transport_rx_is_data is invoked with both global_rwlock
* and fd_tracker read lock (from RX thread)
*/
int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
} knet_transport_ops_t;
socklen_t sockaddr_len(const struct sockaddr_storage *ss);
struct pretty_names {
const char *name;
uint8_t val;
};
/**
* This is a kernel style list implementation.
*
* @author Steven Dake <sdake@redhat.com>
*/
struct knet_list_head {
struct knet_list_head *next;
struct knet_list_head *prev;
};
/**
* @def KNET_LIST_DECLARE()
* Declare and initialize a list head.
*/
#define KNET_LIST_DECLARE(name) \
struct knet_list_head name = { &(name), &(name) }
#define KNET_INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/**
* Initialize the list entry.
*
* Points next and prev pointers to head.
* @param head pointer to the list head
*/
static inline void knet_list_init(struct knet_list_head *head)
{
head->next = head;
head->prev = head;
}
/**
* Add this element to the list.
*
* @param element the new element to insert.
* @param head pointer to the list head
*/
static inline void knet_list_add(struct knet_list_head *element,
struct knet_list_head *head)
{
head->next->prev = element;
element->next = head->next;
element->prev = head;
head->next = element;
}
/**
* Add to the list (but at the end of the list).
*
* @param element pointer to the element to add
* @param head pointer to the list head
* @see knet_list_add()
*/
static inline void knet_list_add_tail(struct knet_list_head *element,
struct knet_list_head *head)
{
head->prev->next = element;
element->next = head;
element->prev = head->prev;
head->prev = element;
}
/**
* Delete an entry from the list.
*
* @param _remove the list item to remove
*/
static inline void knet_list_del(struct knet_list_head *_remove)
{
_remove->next->prev = _remove->prev;
_remove->prev->next = _remove->next;
}
/**
* Replace old entry by new one
* @param old: the element to be replaced
* @param new: the new element to insert
*/
static inline void knet_list_replace(struct knet_list_head *old,
struct knet_list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
/**
* Tests whether list is the last entry in list head
* @param list: the entry to test
* @param head: the head of the list
* @return boolean true/false
*/
static inline int knet_list_is_last(const struct knet_list_head *list,
const struct knet_list_head *head)
{
return list->next == head;
}
/**
* A quick test to see if the list is empty (pointing to it's self).
* @param head pointer to the list head
* @return boolean true/false
*/
static inline int32_t knet_list_empty(const struct knet_list_head *head)
{
return head->next == head;
}
/**
* Get the struct for this entry
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_entry(ptr,type,member)\
((type *)((char *)(ptr)-(char*)(&((type *)0)->member)))
/**
* Get the first element from a list
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_first_entry(ptr, type, member) \
knet_list_entry((ptr)->next, type, member)
/**
* Iterate over a list
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* Iterate over a list backwards
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each_reverse(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* Iterate over a list safe against removal of list entry
* @param pos: the &struct list_head to use as a loop counter.
* @param n: another &struct list_head to use as temporary storage
* @param head: the head for your list.
*/
#define knet_list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* Iterate over list of given type
* @param pos: the type * to use as a loop counter.
* @param head: the head for your list.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_for_each_entry(pos, head, member) \
for (pos = knet_list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = knet_list_entry(pos->member.next, typeof(*pos), member))
#endif
diff --git a/libknet/libknet.h b/libknet/libknet.h
index d2e00a28..52cc321c 100644
--- a/libknet/libknet.h
+++ b/libknet/libknet.h
@@ -1,2208 +1,2208 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __LIBKNET_H__
#define __LIBKNET_H__
#include <stdint.h>
#include <time.h>
#include <netinet/in.h>
#include <unistd.h>
#include <limits.h>
/**
* @file libknet.h
* @brief kronosnet API include file
* @copyright Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Kronosnet is an advanced VPN system for High Availability applications.
*/
#define KNET_API_VER 1
/*
* libknet limits
*/
/*
* Maximum number of hosts
*/
typedef uint16_t knet_node_id_t;
#define KNET_MAX_HOST 65536
/*
* Maximum number of links between 2 hosts
*/
#define KNET_MAX_LINK 8
/*
* Maximum packet size that should be written to datafd
* see knet_handle_new for details
*/
#define KNET_MAX_PACKET_SIZE 65536
/*
* Buffers used for pretty logging
* host is used to store both ip addresses and hostnames
*/
#define KNET_MAX_HOST_LEN 256
#define KNET_MAX_PORT_LEN 6
/*
* Some notifications can be generated either on TX or RX
*/
#define KNET_NOTIFY_TX 0
#define KNET_NOTIFY_RX 1
/*
* Link flags
*/
/*
* Where possible, set traffic priority to high.
* On Linux this sets the TOS to INTERACTIVE (6),
* see tc-prio(8) for more infomation
*/
#define KNET_LINK_FLAG_TRAFFICHIPRIO (1ULL << 0)
/*
* Handle flags
*/
/*
* Use privileged operations during socket setup.
*/
#define KNET_HANDLE_FLAG_PRIVILEGED (1ULL << 0)
typedef struct knet_handle *knet_handle_t;
/*
* Handle structs/API calls
*/
/**
* knet_handle_new_ex
*
* @brief create a new instance of a knet handle
*
* host_id - Each host in a knet is identified with a unique
* ID. when creating a new handle local host_id
* must be specified (0 to UINT16_MAX are all valid).
* It is the user's responsibility to check that the value
* is unique, or bad things might happen.
*
* log_fd - Write file descriptor. If set to a value > 0, it will be used
* to write log packets from libknet to the application.
* Setting to 0 will disable logging from libknet.
* It is possible to enable logging at any given time (see logging API).
* Make sure to either read from this filedescriptor properly and/or
* mark it O_NONBLOCK, otherwise if the fd becomes full, libknet could
* block.
* It is strongly encouraged to use pipes (ex: pipe(2) or pipe2(2)) for
* logging fds due to the atomic nature of writes between fds.
* See also libknet test suite for reference and guidance.
*
* default_log_level -
* If logfd is specified, it will initialize all subsystems to log
* at default_log_level value. (see logging API)
*
* flags - bitwise OR of some of the following flags:
* KNET_HANDLE_FLAG_PRIVILEGED: use privileged operations setting up the
* communication sockets. If disabled, failure to acquire large
* enough socket buffers is ignored but logged. Inadequate buffers
* lead to poor performance.
*
* @return
* on success, a new knet_handle_t is returned.
* on failure, NULL is returned and errno is set.
* knet-specific errno values:
* ENAMETOOLONG - socket buffers couldn't be set big enough and KNET_HANDLE_FLAG_PRIVILEGED was specified
* ERANGE - buffer size readback returned unexpected type
*/
knet_handle_t knet_handle_new_ex(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level,
uint64_t flags);
/**
* knet_handle_new
*
* @brief knet_handle_new_ex with flags = KNET_HANDLE_FLAG_PRIVILEGED.
*/
knet_handle_t knet_handle_new(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level);
/**
* knet_handle_free
*
* @brief Destroy a knet handle, free all resources
*
* knet_h - pointer to knet_handle_t
*
* @return
* knet_handle_free returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_free(knet_handle_t knet_h);
/**
* knet_handle_enable_sock_notify
*
* @brief Register a callback to receive socket events
*
* knet_h - pointer to knet_handle_t
*
* sock_notify_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* sock_notify_fn
* A callback function that is invoked every time
* a socket in the datafd pool will report an error (-1)
* or an end of read (0) (see socket.7).
* This function MUST NEVER block or add substantial delays.
* The callback is invoked in an internal unlocked area
* to allow calls to knet_handle_add_datafd/knet_handle_remove_datafd
* to swap/replace the bad fd.
* if both err and errno are 0, it means that the socket
* has received a 0 byte packet (EOF?).
* The callback function must either remove the fd from knet
* (by calling knet_handle_remove_fd()) or dup a new fd in its place.
* Failure to do this can cause problems.
*
* @return
* knet_handle_enable_sock_notify returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_enable_sock_notify(knet_handle_t knet_h,
void *sock_notify_fn_private_data,
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)); /* sorry! can't call it errno ;) */
#define KNET_DATAFD_MAX 32
/**
* knet_handle_add_datafd
*
* @brief Install a file descriptor for communication
*
* IMPORTANT: In order to add datafd to knet, knet_handle_enable_sock_notify
* _MUST_ be set and be able to handle both errors (-1) and
* 0 bytes read / write from the provided datafd.
* On read error (< 0) from datafd, the socket is automatically
* removed from polling to avoid spinning on dead sockets.
* It is safe to call knet_handle_remove_datafd even on sockets
* that have been removed.
*
* knet_h - pointer to knet_handle_t
*
* *datafd - read/write file descriptor.
* knet will read data here to send to the other hosts
* and will write data received from the network.
* Each data packet can be of max size KNET_MAX_PACKET_SIZE!
* Applications using knet_send/knet_recv will receive a
* proper error if the packet size is not within boundaries.
* Applications using their own functions to write to the
* datafd should NOT write more than KNET_MAX_PACKET_SIZE.
*
* Please refer to handle.c on how to set up a socketpair.
*
* datafd can be 0, and knet_handle_add_datafd will create a properly
* populated socket pair the same way as ping_test, or a value
* higher than 0. A negative number will return an error.
* On exit knet_handle_free will take care to cleanup the
* socketpair only if they have been created by knet_handle_add_datafd.
*
* It is possible to pass either sockets or normal fds.
* User provided datafd will be marked as non-blocking and close-on-exec.
*
* *channel - This value is analogous to the tag in VLAN tagging.
* A negative value will auto-allocate a channel.
* Setting a value between 0 and 31 will try to allocate that
* specific channel (unless already in use).
*
* It is possible to add up to 32 datafds but be aware that each
* one of them must have a receiving end on the other host.
*
* Example:
* hostA channel 0 will be delivered to datafd on hostB channel 0
* hostA channel 1 to hostB channel 1.
*
* Each channel must have a unique file descriptor.
*
* If your application could have 2 channels on one host and one
* channel on another host, then you can use dst_host_filter
* to manipulate channel values on TX and RX.
*
* @return
* knet_handle_add_datafd returns
* @retval 0 on success,
* *datafd will be populated with a socket if the original value was 0
* or if a specific fd was set, the value is untouched.
* *channel will be populated with a channel number if the original value
* was negative or the value is untouched if a specific channel
* was requested.
*
* @retval -1 on error and errno is set.
* *datafd and *channel are untouched or empty.
*/
int knet_handle_add_datafd(knet_handle_t knet_h, int *datafd, int8_t *channel);
/**
* knet_handle_remove_datafd
*
* @brief Remove a file descriptor from knet
*
* knet_h - pointer to knet_handle_t
*
* datafd - file descriptor to remove.
* NOTE that if the socket/fd was created by knet_handle_add_datafd,
* the socket will be closed by libknet.
*
* @return
* knet_handle_remove_datafd returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_remove_datafd(knet_handle_t knet_h, int datafd);
/**
* knet_handle_get_channel
*
* @brief Get the channel associated with a file descriptor
*
* knet_h - pointer to knet_handle_t
*
* datafd - get the channel associated to this datafd
*
* *channel - will contain the result
*
* @return
* knet_handle_get_channel returns
* @retval 0 on success
* and *channel will contain the result
* @retval -1 on error and errno is set.
* and *channel content is meaningless
*/
int knet_handle_get_channel(knet_handle_t knet_h, const int datafd, int8_t *channel);
/**
* knet_handle_get_datafd
*
* @brief Get the file descriptor associated with a channel
*
* knet_h - pointer to knet_handle_t
*
* channel - get the datafd associated to this channel
*
* *datafd - will contain the result
*
* @return
* knet_handle_get_datafd returns
* @retval 0 on success
* and *datafd will contain the results
* @retval -1 on error and errno is set.
* and *datafd content is meaningless
*/
int knet_handle_get_datafd(knet_handle_t knet_h, const int8_t channel, int *datafd);
/**
* knet_recv
*
* @brief Receive data from knet nodes
*
* knet_h - pointer to knet_handle_t
*
* buff - pointer to buffer to store the received data
*
* buff_len - buffer length
*
* channel - channel number
*
* @return
* knet_recv is a commodity function to wrap iovec operations
* around a socket. It returns a call to readv(2).
*/
ssize_t knet_recv(knet_handle_t knet_h,
char *buff,
const size_t buff_len,
const int8_t channel);
/**
* knet_send
*
* @brief Send data to knet nodes
*
* knet_h - pointer to knet_handle_t
*
* buff - pointer to the buffer of data to send
*
* buff_len - length of data to send
*
* channel - channel number
*
* @return
* knet_send is a commodity function to wrap iovec operations
* around a socket. It returns a call to writev(2).
*/
ssize_t knet_send(knet_handle_t knet_h,
const char *buff,
const size_t buff_len,
const int8_t channel);
/**
* knet_send_sync
*
* @brief Synchronously send data to knet nodes
*
* knet_h - pointer to knet_handle_t
*
* buff - pointer to the buffer of data to send
*
* buff_len - length of data to send
*
* channel - data channel to use (see knet_handle_add_datafd(3))
*
* All knet RX/TX operations are async for performance reasons.
* There are applications that might need a sync version of data
* transmission and receive errors in case of failure to deliver
* to another host.
* knet_send_sync bypasses the whole TX async layer and delivers
* data directly to the link layer, and returns errors accordingly.
* knet_send_sync sends only one packet to one host at a time.
* It does NOT support multiple destinations or multicast packets.
* Decision is still based on dst_host_filter_fn.
*
* @return
* knet_send_sync returns 0 on success and -1 on error.
* In addition to normal sendmmsg errors, knet_send_sync can fail
* due to:
*
* @retval ECANCELED - data forward is disabled
* @retval EFAULT - dst_host_filter fatal error
* @retval EINVAL - dst_host_filter did not provide dst_host_ids_entries on unicast pckts
* @retval E2BIG - dst_host_filter did return more than one dst_host_ids_entries on unicast pckts
* @retval ENOMSG - received unknown message type
* @retval EHOSTDOWN - unicast pckt cannot be delivered because dest host is not connected yet
* @retval ECHILD - crypto failed
* @retval EAGAIN - sendmmsg was unable to send all messages and there was no progress during retry
*/
int knet_send_sync(knet_handle_t knet_h,
const char *buff,
const size_t buff_len,
const int8_t channel);
/**
* knet_handle_enable_filter
*
* @brief install a filter to route packets
*
* knet_h - pointer to knet_handle_t
*
* dst_host_filter_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* dst_host_filter_fn -
* is a callback function that is invoked every time
* a packet hits datafd (see knet_handle_new(3)).
* the function allows users to tell libknet where the
* packet has to be delivered.
*
* const unsigned char *outdata - is a pointer to the
* current packet
* ssize_t outdata_len - length of the above data
* uint8_t tx_rx - filter is called on tx or rx
* (KNET_NOTIFY_TX, KNET_NOTIFY_RX)
* knet_node_id_t this_host_id - host_id processing the packet
* knet_node_id_t src_host_id - host_id that generated the
* packet
* knet_node_id_t *dst_host_ids - array of KNET_MAX_HOST knet_node_id_t
* where to store the destinations
* size_t *dst_host_ids_entries - number of hosts to send the message
*
* dst_host_filter_fn should return
* -1 on error, packet is discarded.
* 0 packet is unicast and should be sent to dst_host_ids and there are
* dst_host_ids_entries in the buffer.
* 1 packet is broadcast/multicast and is sent all hosts.
* contents of dst_host_ids and dst_host_ids_entries are ignored.
* (see also kronosnetd/etherfilter.* for an example that filters based
* on ether protocol)
*
* @return
* knet_handle_enable_filter returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_enable_filter(knet_handle_t knet_h,
void *dst_host_filter_fn_private_data,
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_host_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries));
/**
* knet_handle_setfwd
*
* @brief Start packet forwarding
*
* knet_h - pointer to knet_handle_t
*
* enable - set to 1 to allow data forwarding, 0 to disable data forwarding.
*
* @return
* knet_handle_setfwd returns
* 0 on success
* -1 on error and errno is set.
*
* By default data forwarding is off and no traffic will pass through knet until
* it is set on.
*/
int knet_handle_setfwd(knet_handle_t knet_h, unsigned int enabled);
/**
* knet_handle_enable_access_lists
*
* @brief Enable or disable usage of access lists (default: off)
*
* knet_h - pointer to knet_handle_t
*
* enable - set to 1 to use access lists, 0 to disable access_lists.
*
* @return
* knet_handle_enable_access_lists returns
* 0 on success
* -1 on error and errno is set.
*
* access lists are bound to links. There are 2 types of links:
* 1) point to point, where both source and destinations are well known
* at configuration time.
* 2) open links, where only the source is known at configuration time.
*
* knet will automatically generate access lists for point to point links.
*
* For open links, knet provides 4 API calls to manipulate access lists:
* knet_link_add_acl(3), knet_link_rm_acl(3), knet_link_insert_acl(3)
* and knet_link_clear_acl(3).
* Those API calls will work exclusively on open links as they
* are of no use on point to point links.
*
* knet will not enforce any access list unless specifically enabled by
* knet_handle_enable_access_lists(3).
*
* From a security / programming perspective we recommend:
* - create the knet handle
* - enable access lists
* - configure hosts and links
* - configure access lists for open links
*/
int knet_handle_enable_access_lists(knet_handle_t knet_h, unsigned int enabled);
#define KNET_PMTUD_DEFAULT_INTERVAL 60
/**
* knet_handle_pmtud_setfreq
*
* @brief Set the interval between PMTUd scans
*
* knet_h - pointer to knet_handle_t
*
* interval - define the interval in seconds between PMTUd scans
* range from 1 to 86400 (24h)
*
* @return
* knet_handle_pmtud_setfreq returns
* 0 on success
* -1 on error and errno is set.
*
* default interval is 60.
*/
int knet_handle_pmtud_setfreq(knet_handle_t knet_h, unsigned int interval);
/**
* knet_handle_pmtud_getfreq
*
* @brief Get the interval between PMTUd scans
*
* knet_h - pointer to knet_handle_t
*
* interval - pointer where to store the current interval value
*
* @return
* knet_handle_pmtud_setfreq returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_pmtud_getfreq(knet_handle_t knet_h, unsigned int *interval);
/**
* knet_handle_enable_pmtud_notify
*
* @brief install a callback to receive PMTUd changes
*
* knet_h - pointer to knet_handle_t
*
* pmtud_notify_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* pmtud_notify_fn
* is a callback function that is invoked every time
* a path MTU size change is detected.
* The function allows libknet to notify the user
* of data MTU, that's the max value that can be send
* onwire without fragmentation. The data MTU will always
* be lower than real link MTU because it accounts for
* protocol overhead, knet packet header and (if configured)
* crypto overhead,
* This function MUST NEVER block or add substantial delays.
*
* @return
* knet_handle_enable_pmtud_notify returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_enable_pmtud_notify(knet_handle_t knet_h,
void *pmtud_notify_fn_private_data,
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu));
/**
* knet_handle_pmtud_set
*
* @brief Set the current interface MTU
*
* knet_h - pointer to knet_handle_t
*
* iface_mtu - current interface MTU, value 0 to 65535. 0 will
* re-enable automatic MTU discovery.
* In a setup with multiple interfaces, please specify
* the lowest MTU between the selected intefaces.
* knet will automatically adjust this value for
* all headers overhead and set the correct data_mtu.
* data_mtu can be retrivied with knet_handle_pmtud_get(3)
* or applications will receive a pmtud_nofity event
* if enabled via knet_handle_enable_pmtud_notify(3).
*
* @return
* knet_handle_pmtud_set returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_pmtud_set(knet_handle_t knet_h,
unsigned int iface_mtu);
/**
* knet_handle_pmtud_get
*
* @brief Get the current data MTU
*
* knet_h - pointer to knet_handle_t
*
* data_mtu - pointer where to store data_mtu
*
* @return
* knet_handle_pmtud_get returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_pmtud_get(knet_handle_t knet_h,
unsigned int *data_mtu);
#define KNET_MIN_KEY_LEN 128
#define KNET_MAX_KEY_LEN 4096
struct knet_handle_crypto_cfg {
char crypto_model[16];
char crypto_cipher_type[16];
char crypto_hash_type[16];
unsigned char private_key[KNET_MAX_KEY_LEN];
unsigned int private_key_len;
};
/**
* knet_handle_crypto
*
* @brief set up packet cryptographic signing & encryption
*
* knet_h - pointer to knet_handle_t
*
* knet_handle_crypto_cfg -
* pointer to a knet_handle_crypto_cfg structure
*
* crypto_model should contain the model name.
* Currently only "openssl" and "nss" are supported.
* Setting to "none" will disable crypto.
*
* crypto_cipher_type
* should contain the cipher algo name.
* It can be set to "none" to disable
* encryption.
* Currently supported by "nss" model:
* "aes128", "aes192" and "aes256".
* "openssl" model supports more modes and it strictly
* depends on the openssl build. See: EVP_get_cipherbyname
* openssl API call for details.
*
* crypto_hash_type
* should contain the hashing algo name.
* It can be set to "none" to disable
* hashing.
* Currently supported by "nss" model:
* "md5", "sha1", "sha256", "sha384" and "sha512".
* "openssl" model supports more modes and it strictly
* depends on the openssl build. See: EVP_get_digestbyname
* openssl API call for details.
*
* private_key will contain the private shared key.
* It has to be at least KNET_MIN_KEY_LEN long.
*
* private_key_len
* length of the provided private_key.
*
* Implementation notes/current limitations:
* - enabling crypto, will increase latency as packets have
* to processed.
* - enabling crypto might reduce the overall throughtput
* due to crypto data overhead.
* - re-keying is not implemented yet.
* - private/public key encryption/hashing is not currently
* planned.
* - crypto key must be the same for all hosts in the same
* knet instance.
* - it is safe to call knet_handle_crypto multiple times at runtime.
* The last config will be used.
* IMPORTANT: a call to knet_handle_crypto can fail due to:
* 1) failure to obtain locking
* 2) errors to initializing the crypto level.
* This can happen even in subsequent calls to knet_handle_crypto.
* A failure in crypto init will restore the previous crypto configuration.
*
* @return
* knet_handle_crypto returns:
* @retval 0 on success
* @retval -1 on error and errno is set.
* @retval -2 on crypto subsystem initialization error. No errno is provided at the moment (yet).
*/
int knet_handle_crypto(knet_handle_t knet_h,
struct knet_handle_crypto_cfg *knet_handle_crypto_cfg);
#define KNET_COMPRESS_THRESHOLD 100
struct knet_handle_compress_cfg {
char compress_model[16];
uint32_t compress_threshold;
int compress_level;
};
/**
* knet_handle_compress
*
* @brief Set up packet compression
*
* knet_h - pointer to knet_handle_t
*
* knet_handle_compress_cfg -
* pointer to a knet_handle_compress_cfg structure
*
* compress_model contains the model name.
* See "compress_level" for the list of accepted values.
* Setting the value to "none" disables compression.
*
* compress_threshold
* tells the transmission thread to NOT compress
* any packets that are smaller than the value
* indicated. Default 100 bytes.
* Set to 0 to reset to the default.
* Set to 1 to compress everything.
* Max accepted value is KNET_MAX_PACKET_SIZE.
*
* compress_level is the "level" parameter for most models:
* zlib: 0 (no compression), 1 (minimal) .. 9 (max compression).
* lz4: 1 (max compression)... 9 (fastest compression).
* lz4hc: 1 (min compression) ... LZ4HC_MAX_CLEVEL (16) or LZ4HC_CLEVEL_MAX (12)
* depending on the version of lz4hc libknet was built with.
* lzma: 0 (minimal) .. 9 (max compression)
* bzip2: 1 (minimal) .. 9 (max compression)
* For lzo2 it selects the algorithm to use:
* 1 : lzo1x_1_compress (default)
* 11 : lzo1x_1_11_compress
* 12 : lzo1x_1_12_compress
* 15 : lzo1x_1_15_compress
* 999: lzo1x_999_compress
* Other values select the default algorithm.
* Please refer to the documentation of the respective
* compression library for guidance about setting this
* value.
*
* Implementation notes:
* - it is possible to enable/disable compression at any time.
* - nodes can be using a different compression algorithm at any time.
* - knet does NOT implement the compression algorithm directly. it relies
* on external libraries for this functionality. Please read
* the libraries man pages to figure out which algorithm/compression
* level is best for the data you are planning to transmit.
*
* @return
* knet_handle_compress returns
* 0 on success
* -1 on error and errno is set. EINVAL means that either the model or the
* level are not supported.
*/
int knet_handle_compress(knet_handle_t knet_h,
struct knet_handle_compress_cfg *knet_handle_compress_cfg);
struct knet_handle_stats {
size_t size;
uint64_t tx_uncompressed_packets;
uint64_t tx_compressed_packets;
uint64_t tx_compressed_original_bytes;
uint64_t tx_compressed_size_bytes;
uint64_t tx_compress_time_ave;
uint64_t tx_compress_time_min;
uint64_t tx_compress_time_max;
uint64_t rx_compressed_packets;
uint64_t rx_compressed_original_bytes;
uint64_t rx_compressed_size_bytes;
uint64_t rx_compress_time_ave;
uint64_t rx_compress_time_min;
uint64_t rx_compress_time_max;
/* Overhead times, measured in usecs */
uint64_t tx_crypt_packets;
uint64_t tx_crypt_byte_overhead;
uint64_t tx_crypt_time_ave;
uint64_t tx_crypt_time_min;
uint64_t tx_crypt_time_max;
uint64_t rx_crypt_packets;
uint64_t rx_crypt_time_ave;
uint64_t rx_crypt_time_min;
uint64_t rx_crypt_time_max;
};
/**
* knet_handle_get_stats
*
* @brief Get statistics for compression & crypto
*
* knet_h - pointer to knet_handle_t
*
* knet_handle_stats
* pointer to a knet_handle_stats structure
*
* struct_size
* size of knet_handle_stats structure to allow
* for backwards compatibility. libknet will only
* copy this much data into the stats structure
* so that older callers will not get overflowed if
* new fields are added.
*
* @return
* 0 on success
* -1 on error and errno is set.
*
*/
int knet_handle_get_stats(knet_handle_t knet_h, struct knet_handle_stats *stats, size_t struct_size);
/*
* Tell knet_handle_clear_stats whether to clear just the handle stats
* or all of them.
*/
#define KNET_CLEARSTATS_HANDLE_ONLY 1
#define KNET_CLEARSTATS_HANDLE_AND_LINK 2
/**
* knet_handle_clear_stats
*
* @brief Clear knet stats, link and/or handle
*
* knet_h - pointer to knet_handle_t
*
* clear_option - Which stats to clear, must be one of
*
* KNET_CLEARSTATS_HANDLE_ONLY or
* KNET_CLEARSTATS_HANDLE_AND_LINK
*
* @return
* 0 on success
* -1 on error and errno is set.
*
*/
int knet_handle_clear_stats(knet_handle_t knet_h, int clear_option);
struct knet_crypto_info {
const char *name; /* openssl,nss,etc.. */
uint8_t properties; /* currently unused */
char pad[256]; /* currently unused */
};
/**
* knet_get_crypto_list
*
* @brief Get a list of supported crypto libraries
*
* crypto_list - array of struct knet_crypto_info *
* If NULL then only the number of structs is returned in crypto_list_entries
* to allow the caller to allocate sufficient space.
* libknet does not allow more than 256 crypto methods at the moment.
* it is safe to allocate 256 structs to avoid calling
* knet_get_crypto_list twice.
*
* crypto_list_entries - returns the number of structs in crypto_list
*
* @return
* knet_get_crypto_list returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_get_crypto_list(struct knet_crypto_info *crypto_list,
size_t *crypto_list_entries);
struct knet_compress_info {
const char *name; /* bzip2, lz4, etc.. */
uint8_t properties; /* currently unused */
char pad[256]; /* currently unused */
};
/**
* knet_get_compress_list
*
* @brief Get a list of support compression types
*
* compress_list - array of struct knet_compress_info *
* If NULL then only the number of structs is returned in compress_list_entries
* to allow the caller to allocate sufficient space.
* libknet does not allow more than 256 compress methods at the moment.
* it is safe to allocate 256 structs to avoid calling
* knet_get_compress_list twice.
*
* compress_list_entries - returns the number of structs in compress_list
*
* @return
* knet_get_compress_list returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_get_compress_list(struct knet_compress_info *compress_list,
size_t *compress_list_entries);
/*
* host structs/API calls
*/
/**
* knet_host_add
*
* @brief Add a new host ID to knet
*
* knet_h - pointer to knet_handle_t
*
* host_id - each host in a knet is identified with a unique ID
* (see also knet_handle_new(3))
*
* @return
* knet_host_add returns:
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_add(knet_handle_t knet_h, knet_node_id_t host_id);
/**
* knet_host_remove
*
* @brief Remove a host ID from knet
*
* knet_h - pointer to knet_handle_t
*
* host_id - each host in a knet is identified with a unique ID
* (see also knet_handle_new(3))
*
* @return
* knet_host_remove returns:
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_remove(knet_handle_t knet_h, knet_node_id_t host_id);
/**
* knet_host_set_name
*
* @brief Set the name of a knet host
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* name - this name will be used for pretty logging and eventually
* search for hosts (see also knet_handle_host_get_name(2) and knet_handle_host_get_id(3)).
* Only up to KNET_MAX_HOST_LEN - 1 bytes will be accepted and
* name has to be unique for each host.
*
* @return
* knet_host_set_name returns:
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_set_name(knet_handle_t knet_h, knet_node_id_t host_id,
const char *name);
/**
* knet_host_get_name_by_host_id
*
* @brief Get the name of a host given its ID
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* name - pointer to a preallocated buffer of at least size KNET_MAX_HOST_LEN
* where the current host name will be stored
* (as set by knet_host_set_name or default by knet_host_add)
*
* @return
* knet_host_get_name_by_host_id returns:
* 0 on success
* -1 on error and errno is set (name is left untouched)
*/
int knet_host_get_name_by_host_id(knet_handle_t knet_h, knet_node_id_t host_id,
char *name);
/**
* knet_host_get_id_by_host_name
*
* @brief Get the ID of a host given its name
*
* knet_h - pointer to knet_handle_t
*
* name - name to lookup, max len KNET_MAX_HOST_LEN
*
* host_id - where to store the result
*
* @return
* knet_host_get_id_by_host_name returns:
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_id_by_host_name(knet_handle_t knet_h, const char *name,
knet_node_id_t *host_id);
/**
* knet_host_get_host_list
*
* @brief Get a list of hosts known to knet
*
* knet_h - pointer to knet_handle_t
*
* host_ids - array of at lest KNET_MAX_HOST size
*
* host_ids_entries -
* number of entries writted in host_ids
*
* @return
* knet_host_get_host_list returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_host_list(knet_handle_t knet_h,
knet_node_id_t *host_ids, size_t *host_ids_entries);
/*
* define switching policies
*/
#define KNET_LINK_POLICY_PASSIVE 0
#define KNET_LINK_POLICY_ACTIVE 1
#define KNET_LINK_POLICY_RR 2
/**
* knet_host_set_policy
*
* @brief Set the switching policy for a host's links
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* policy - there are currently 3 kind of simple switching policies
* based on link configuration.
* KNET_LINK_POLICY_PASSIVE - the active link with the highest
- * priority will be used.
+ * priority (highest number) will be used.
* if one or more active links share
* the same priority, the one with
* lowest link_id will be used.
*
* KNET_LINK_POLICY_ACTIVE - all active links will be used
* simultaneously to send traffic.
* link priority is ignored.
*
* KNET_LINK_POLICY_RR - round-robin policy, every packet
* will be send on a different active
* link.
*
* @return
* knet_host_set_policy returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_set_policy(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t policy);
/**
* knet_host_get_policy
*
* @brief Get the switching policy for a host's links
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* policy - will contain the current configured switching policy.
* Default is passive when creating a new host.
*
* @return
* knet_host_get_policy returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_policy(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t *policy);
/**
* knet_host_enable_status_change_notify
*
* @brief Install a callback to get host status change events
*
* knet_h - pointer to knet_handle_t
*
* host_status_change_notify_fn_private_data -
* void pointer to data that can be used to identify
* the callback
*
* host_status_change_notify_fn -
* is a callback function that is invoked every time
* there is a change in the host status.
* host status is identified by:
* - reachable, this host can send/receive data to/from host_id
* - remote, 0 if the host_id is connected locally or 1 if
* the there is one or more knet host(s) in between.
* NOTE: re-switching is NOT currently implemented,
* but this is ready for future and can avoid
* an API/ABI breakage later on.
* - external, 0 if the host_id is configured locally or 1 if
* it has been added from remote nodes config.
* NOTE: dynamic topology is NOT currently implemented,
* but this is ready for future and can avoid
* an API/ABI breakage later on.
* This function MUST NEVER block or add substantial delays.
*
* @return
* knet_host_status_change_notify returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_enable_status_change_notify(knet_handle_t knet_h,
void *host_status_change_notify_fn_private_data,
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external));
/*
* define host status structure for quick lookup
* struct is in flux as more stats will be added soon
*
* reachable host_id can be seen either directly connected
* or via another host_id
*
* remote 0 = node is connected locally, 1 is visible via
* via another host_id
*
* external 0 = node is configured/known locally,
* 1 host_id has been received via another host_id
*/
struct knet_host_status {
uint8_t reachable;
uint8_t remote;
uint8_t external;
/* add host statistics */
};
/**
* knet_host_get_status
*
* @brief Get the status of a host
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* status - pointer to knet_host_status struct
*
* @return
* knet_handle_pmtud_get returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_status(knet_handle_t knet_h, knet_node_id_t host_id,
struct knet_host_status *status);
/*
* link structs/API calls
*
* every host allocated/managed by knet_host_* has
* KNET_MAX_LINK structures to define the network
* paths that connect 2 hosts.
*
* Each link is identified by a link_id that has a
* values between 0 and KNET_MAX_LINK - 1.
*
* KNOWN LIMITATIONS:
*
* - let's assume the scenario where two hosts are connected
* with any number of links. link_id must match on both sides.
* If host_id 0 link_id 0 is configured to connect IP1 to IP2 and
* host_id 0 link_id 1 is configured to connect IP3 to IP4,
* host_id 1 link_id 0 _must_ connect IP2 to IP1 and likewise
* host_id 1 link_id 1 _must_ connect IP4 to IP3.
* We might be able to lift this restriction in future, by using
* other data to determine src/dst link_id, but for now, deal with it.
*/
/*
* commodity functions to convert strings to sockaddr and viceversa
*/
/**
* knet_strtoaddr
*
* @brief Convert a hostname string to an address
*
* host - IPaddr/hostname to convert
* be aware only the first IP address will be returned
* in case a hostname resolves to multiple IP
*
* port - port to connect to
*
* ss - sockaddr_storage where to store the converted data
*
* sslen - len of the sockaddr_storage
*
* @return
* knet_strtoaddr returns same error codes as getaddrinfo
*
*/
int knet_strtoaddr(const char *host, const char *port,
struct sockaddr_storage *ss, socklen_t sslen);
/**
* knet_addrtostr
*
* @brief Convert an address to a host name
*
* ss - sockaddr_storage to convert
*
* sslen - len of the sockaddr_storage
*
* host - IPaddr/hostname where to store data
* (recommended size: KNET_MAX_HOST_LEN)
*
* port - port buffer where to store data
* (recommended size: KNET_MAX_PORT_LEN)
*
* @return
* knet_strtoaddr returns same error codes as getnameinfo
*/
int knet_addrtostr(const struct sockaddr_storage *ss, socklen_t sslen,
char *addr_buf, size_t addr_buf_size,
char *port_buf, size_t port_buf_size);
#define KNET_TRANSPORT_LOOPBACK 0
#define KNET_TRANSPORT_UDP 1
#define KNET_TRANSPORT_SCTP 2
#define KNET_MAX_TRANSPORTS UINT8_MAX
/*
* The Loopback transport is only valid for connections to localhost, the host
* with the same node_id specified in knet_handle_new(). Only one link of this
* type is allowed. Data sent down a LOOPBACK link will be copied directly from
* the knet send datafd to the knet receive datafd so the application must be set
* up to take data from that socket at least as often as it is sent or deadlocks
* could occur. If used, a LOOPBACK link must be the only link configured to the
* local host.
*/
struct knet_transport_info {
const char *name; /* UDP/SCTP/etc... */
uint8_t id; /* value that can be used for link_set_config */
uint8_t properties; /* currently unused */
char pad[256]; /* currently unused */
};
/**
* knet_get_transport_list
*
* @brief Get a list of the transports support by this build of knet
*
* transport_list - an array of struct transport_info that must be
* at least of size struct transport_info * KNET_MAX_TRANSPORTS
*
* transport_list_entries - pointer to a size_t where to store how many transports
* are available in this build of libknet.
*
* @return
* knet_get_transport_list returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_get_transport_list(struct knet_transport_info *transport_list,
size_t *transport_list_entries);
/**
* knet_get_transport_name_by_id
*
* @brief Get a transport name from its ID number
*
* transport - one of the KNET_TRANSPORT_xxx constants
*
* @return
* knet_get_transport_name_by_id returns:
*
* @retval pointer to the name on success or
* @retval NULL on error and errno is set.
*/
const char *knet_get_transport_name_by_id(uint8_t transport);
/**
* knet_get_transport_id_by_name
*
* @brief Get a transport ID from its name
*
* name - transport name (UDP/SCTP/etc)
*
* @return
* knet_get_transport_name_by_id returns:
*
* @retval KNET_MAX_TRANSPORTS on error and errno is set accordingly
* @retval KNET_TRANSPORT_xxx on success.
*/
uint8_t knet_get_transport_id_by_name(const char *name);
#define KNET_TRANSPORT_DEFAULT_RECONNECT_INTERVAL 1000
/**
* knet_handle_set_transport_reconnect_interval
*
* @brief Set the interval between transport attempts to reconnect a failed link
*
* knet_h - pointer to knet_handle_t
*
* msecs - milliseconds
*
* @return
* knet_handle_set_transport_reconnect_interval returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_set_transport_reconnect_interval(knet_handle_t knet_h, uint32_t msecs);
/**
* knet_handle_get_transport_reconnect_interval
*
* @brief Get the interval between transport attempts to reconnect a failed link
*
* knet_h - pointer to knet_handle_t
*
* msecs - milliseconds
*
* @return
* knet_handle_get_transport_reconnect_interval returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_get_transport_reconnect_interval(knet_handle_t knet_h, uint32_t *msecs);
/**
* knet_link_set_config
*
* @brief Configure the link to a host
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* transport - one of the KNET_TRANSPORT_xxx constants
*
* src_addr - sockaddr_storage that can be either IPv4 or IPv6
*
* dst_addr - sockaddr_storage that can be either IPv4 or IPv6
* this can be null if we don't know the incoming
* IP address/port and the link will remain quiet
* till the node on the other end will initiate a
* connection
*
* flags - KNET_LINK_FLAG_*
*
* @return
* knet_link_set_config returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t transport,
struct sockaddr_storage *src_addr,
struct sockaddr_storage *dst_addr,
uint64_t flags);
/**
* knet_link_get_config
*
* @brief Get the link configutation information
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* transport - see knet_link_set_config(3)
*
* src_addr - sockaddr_storage that can be either IPv4 or IPv6
*
* dst_addr - sockaddr_storage that can be either IPv4 or IPv6
*
* dynamic - 0 if dst_addr is static or 1 if dst_addr is dynamic.
* In case of 1, dst_addr can be NULL and it will be left
* untouched.
*
* flags - KNET_LINK_FLAG_*
*
* @return
* knet_link_get_config returns
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_get_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *transport,
struct sockaddr_storage *src_addr,
struct sockaddr_storage *dst_addr,
uint8_t *dynamic,
uint64_t *flags);
/**
* knet_link_clear_config
*
* @brief Clear link information and disconnect the link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* @return
* knet_link_clear_config returns
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_clear_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id);
/*
* Access lists management for open links
* see also knet_handle_enable_access_lists(3)
*/
/**
* check_type_t
* @brief address type enum for knet access lists
*
* CHECK_TYPE_ADDRESS is the equivalent of a single entry / IP address.
* for example: 10.1.9.3
* and the entry is stored in ss1. ss2 can be NULL.
*
* CHECK_TYPE_MASK is used to configure network/netmask.
* for example: 192.168.0.0/24
* the network is stored in ss1 and the netmask in ss2.
*
* CHECK_TYPE_RANGE defines a value / range of ip addresses.
* for example: 172.16.0.1-172.16.0.10
* the start is stored in ss1 and the end in ss2.
*
* Please be aware that the above examples refer only to IP based protocols.
* Other protocols might use ss1 and ss2 in slightly different ways.
* At the moment knet only supports IP based protocol, though that might change
* in the future.
*/
typedef enum {
CHECK_TYPE_ADDRESS,
CHECK_TYPE_MASK,
CHECK_TYPE_RANGE
} check_type_t;
/**
* check_acceptreject_t
*
* @brief enum for accept/reject in knet access lists
*
* accept or reject incoming packets defined in the access list entry
*/
typedef enum {
CHECK_ACCEPT,
CHECK_REJECT
} check_acceptreject_t;
/**
* knet_link_add_acl
*
* @brief Add access list entry to an open link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* ss1 / ss2 / type / acceptreject - see typedef definitions for details
*
* IMPORTANT: the order in which access lists are added is critical and it
* is left to the user to add them in the right order. knet
* will not attempt to logically sort them.
*
* For example:
* 1 - accept from 10.0.0.0/8
* 2 - reject from 10.0.0.1/32
*
* is not the same as:
*
* 1 - reject from 10.0.0.1/32
* 2 - accept from 10.0.0.0/8
*
* In the first example, rule number 2 will never match because
* packets from 10.0.0.1 will be accepted by rule number 1.
*
* @return
* knet_link_add_acl returns
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_add_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct sockaddr_storage *ss1,
struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject);
/**
* knet_link_insert_acl
*
* @brief Insert access list entry to an open link at given index
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* index - insert at position "index" where 0 is the first entry and -1
* appends to the current list.
*
* ss1 / ss2 / type / acceptreject - see typedef definitions for details
*
* @return
* knet_link_insert_acl returns
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_insert_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
int index,
struct sockaddr_storage *ss1,
struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject);
/**
* knet_link_rm_acl
*
* @brief Remove access list entry from an open link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* ss1 / ss2 / type / acceptreject - see typedef definitions for details
*
* IMPORTANT: the data passed to this API call must match exactly that passed
* to knet_link_add_acl(3).
*
* @return
* knet_link_rm_acl returns
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_rm_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct sockaddr_storage *ss1,
struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject);
/**
* knet_link_clear_acl
*
* @brief Remove all access list entries from an open link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* @return
* knet_link_clear_acl returns
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_clear_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id);
/**
* knet_link_set_enable
*
* @brief Enable traffic on a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* enabled - 0 disable the link, 1 enable the link
*
* @return
* knet_link_set_enable returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_enable(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
unsigned int enabled);
/**
* knet_link_get_enable
*
* @brief Find out whether a link is enabled or not
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* enabled - 0 disable the link, 1 enable the link
*
* @return
* knet_link_get_enable returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_enable(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
unsigned int *enabled);
#define KNET_LINK_DEFAULT_PING_INTERVAL 1000 /* 1 second */
#define KNET_LINK_DEFAULT_PING_TIMEOUT 2000 /* 2 seconds */
#define KNET_LINK_DEFAULT_PING_PRECISION 2048 /* samples */
/**
* knet_link_set_ping_timers
*
* @brief Set the ping timers for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* interval - specify the ping interval in milliseconds.
*
* timeout - if no pong is received within this time,
* the link is declared dead, in milliseconds.
* NOTE: in future it will be possible to set timeout to 0
* for an autocalculated timeout based on interval, pong_count
* and latency. The API already accept 0 as value and it will
* return ENOSYS / -1. Once the automatic calculation feature
* will be implemented, this call will only return EINVAL
* for incorrect values.
*
* precision - how many values of latency are used to calculate
* the average link latency (see also knet_link_get_status(3))
*
* @return
* knet_link_set_ping_timers returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_ping_timers(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
time_t interval, time_t timeout, unsigned int precision);
/**
* knet_link_get_ping_timers
*
* @brief Get the ping timers for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* interval - ping interval
*
* timeout - if no pong is received within this time,
* the link is declared dead
*
* precision - how many values of latency are used to calculate
* the average link latency (see also knet_link_get_status(3))
*
* @return
* knet_link_get_ping_timers returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_ping_timers(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
time_t *interval, time_t *timeout, unsigned int *precision);
#define KNET_LINK_DEFAULT_PONG_COUNT 5
/**
* knet_link_set_pong_count
*
* @brief Set the pong count for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* pong_count - how many valid ping/pongs before a link is marked UP.
* default: 5, value should be > 0
*
* @return
* knet_link_set_pong_count returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_pong_count(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t pong_count);
/**
* knet_link_get_pong_count
*
* @brief Get the pong count for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* pong_count - how many valid ping/pongs before a link is marked UP.
* default: 5, value should be > 0
*
* @return
* knet_link_get_pong_count returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_pong_count(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *pong_count);
/**
* knet_link_set_priority
*
* @brief Set the priority for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* priority - specify the switching priority for this link
* see also knet_host_set_policy
*
* @return
* knet_link_set_priority returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_priority(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t priority);
/**
* knet_link_get_priority
*
* @brief Get the priority for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* priority - gather the switching priority for this link
* see also knet_host_set_policy
*
* @return
* knet_link_get_priority returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_priority(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *priority);
/**
* knet_link_get_link_list
*
* @brief Get a list of links connecting a host
*
* knet_h - pointer to knet_handle_t
*
* link_ids - array of at lest KNET_MAX_LINK size
* with the list of configured links for a certain host.
*
* link_ids_entries -
* number of entries contained in link_ids
*
* @return
* knet_link_get_link_list returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_link_list(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t *link_ids, size_t *link_ids_entries);
/*
* define link status structure for quick lookup
*
* src/dst_{ipaddr,port} strings are filled by
* getnameinfo(3) when configuring the link.
* if the link is dynamic (see knet_link_set_config(3))
* dst_ipaddr/port will contain ipaddr/port of the currently
* connected peer or "Unknown" if it was not possible
* to determine the ipaddr/port at runtime.
*
* enabled see also knet_link_set/get_enable.
*
* connected the link is connected to a peer and ping/pong traffic
* is flowing.
*
* dynconnected the link has dynamic ip on the other end, and
* we can see the other host is sending pings to us.
*
* latency average latency of this link
* see also knet_link_set/get_timeout.
*
* pong_last if the link is down, this value tells us how long
* ago this link was active. A value of 0 means that the link
* has never been active.
*
* knet_link_stats structure that contains details statistics for the link
*/
#define MAX_LINK_EVENTS 16
struct knet_link_stats {
/* onwire values */
uint64_t tx_data_packets;
uint64_t rx_data_packets;
uint64_t tx_data_bytes;
uint64_t rx_data_bytes;
uint64_t rx_ping_packets;
uint64_t tx_ping_packets;
uint64_t rx_ping_bytes;
uint64_t tx_ping_bytes;
uint64_t rx_pong_packets;
uint64_t tx_pong_packets;
uint64_t rx_pong_bytes;
uint64_t tx_pong_bytes;
uint64_t rx_pmtu_packets;
uint64_t tx_pmtu_packets;
uint64_t rx_pmtu_bytes;
uint64_t tx_pmtu_bytes;
/* Only filled in when requested */
uint64_t tx_total_packets;
uint64_t rx_total_packets;
uint64_t tx_total_bytes;
uint64_t rx_total_bytes;
uint64_t tx_total_errors;
uint64_t tx_total_retries;
uint32_t tx_pmtu_errors;
uint32_t tx_pmtu_retries;
uint32_t tx_ping_errors;
uint32_t tx_ping_retries;
uint32_t tx_pong_errors;
uint32_t tx_pong_retries;
uint32_t tx_data_errors;
uint32_t tx_data_retries;
/* measured in usecs */
uint32_t latency_min;
uint32_t latency_max;
uint32_t latency_ave;
uint32_t latency_samples;
/* how many times the link has been going up/down */
uint32_t down_count;
uint32_t up_count;
/*
* circular buffer of time_t structs collecting the history
* of up/down events on this link.
* the index indicates current/last event.
* it is safe to walk back the history by decreasing the index
*/
time_t last_up_times[MAX_LINK_EVENTS];
time_t last_down_times[MAX_LINK_EVENTS];
int8_t last_up_time_index;
int8_t last_down_time_index;
/* Always add new stats at the end */
};
struct knet_link_status {
size_t size; /* For ABI checking */
char src_ipaddr[KNET_MAX_HOST_LEN];
char src_port[KNET_MAX_PORT_LEN];
char dst_ipaddr[KNET_MAX_HOST_LEN];
char dst_port[KNET_MAX_PORT_LEN];
uint8_t enabled; /* link is configured and admin enabled for traffic */
uint8_t connected; /* link is connected for data (local view) */
uint8_t dynconnected; /* link has been activated by remote dynip */
unsigned long long latency; /* average latency computed by fix/exp */
struct timespec pong_last;
unsigned int mtu; /* current detected MTU on this link */
unsigned int proto_overhead; /* contains the size of the IP protocol, knet headers and
* crypto headers (if configured). This value is filled in
* ONLY after the first PMTUd run on that given link,
* and can change if link configuration or crypto configuration
* changes at runtime.
* WARNING: in general mtu + proto_overhead might or might
* not match the output of ifconfig mtu due to crypto
* requirements to pad packets to some specific boundaries. */
/* Link statistics */
struct knet_link_stats stats;
};
/**
* knet_link_get_status
*
* @brief Get the status (and statistics) for a link
*
* knet_h - pointer to knet_handle_t
*
* host_id - see knet_host_add(3)
*
* link_id - see knet_link_set_config(3)
*
* status - pointer to knet_link_status struct
*
* struct_size - max size of knet_link_status - allows library to
* add fields without ABI change. Returned structure
* will be truncated to this length and .size member
* indicates the full size.
*
* @return
* knet_link_get_status returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_status(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct knet_link_status *status, size_t struct_size);
/*
* logging structs/API calls
*/
/*
* libknet is composed of several subsystems. In order
* to easily distinguish log messages coming from different
* places, each subsystem has its own ID.
*
* 0-19 config/management
* 20-39 internal threads
* 40-59 transports
* 60-69 crypto implementations
*/
#define KNET_SUB_COMMON 0 /* common.c */
#define KNET_SUB_HANDLE 1 /* handle.c alloc/dealloc config changes */
#define KNET_SUB_HOST 2 /* host add/del/modify */
#define KNET_SUB_LISTENER 3 /* listeners add/del/modify... */
#define KNET_SUB_LINK 4 /* link add/del/modify */
#define KNET_SUB_TRANSPORT 5 /* Transport common */
#define KNET_SUB_CRYPTO 6 /* crypto.c config generic layer */
#define KNET_SUB_COMPRESS 7 /* compress.c config generic layer */
#define KNET_SUB_FILTER 19 /* allocated for users to log from dst_filter */
#define KNET_SUB_DSTCACHE 20 /* switching thread (destination cache handling) */
#define KNET_SUB_HEARTBEAT 21 /* heartbeat thread */
#define KNET_SUB_PMTUD 22 /* Path MTU Discovery thread */
#define KNET_SUB_TX 23 /* send to link thread */
#define KNET_SUB_RX 24 /* recv from link thread */
#define KNET_SUB_TRANSP_BASE 40 /* Base log level for transports */
#define KNET_SUB_TRANSP_LOOPBACK (KNET_SUB_TRANSP_BASE + KNET_TRANSPORT_LOOPBACK)
#define KNET_SUB_TRANSP_UDP (KNET_SUB_TRANSP_BASE + KNET_TRANSPORT_UDP)
#define KNET_SUB_TRANSP_SCTP (KNET_SUB_TRANSP_BASE + KNET_TRANSPORT_SCTP)
#define KNET_SUB_NSSCRYPTO 60 /* nsscrypto.c */
#define KNET_SUB_OPENSSLCRYPTO 61 /* opensslcrypto.c */
#define KNET_SUB_ZLIBCOMP 70 /* compress_zlib.c */
#define KNET_SUB_LZ4COMP 71 /* compress_lz4.c */
#define KNET_SUB_LZ4HCCOMP 72 /* compress_lz4.c */
#define KNET_SUB_LZO2COMP 73 /* compress_lzo.c */
#define KNET_SUB_LZMACOMP 74 /* compress_lzma.c */
#define KNET_SUB_BZIP2COMP 75 /* compress_bzip2.c */
#define KNET_SUB_ZSTDCOMP 76 /* compress_zstd.c */
#define KNET_SUB_UNKNOWN UINT8_MAX - 1
#define KNET_MAX_SUBSYSTEMS UINT8_MAX
/*
* Convert between subsystem IDs and names
*/
/**
* knet_log_get_subsystem_name
*
* @brief Get a logging system name from its numeric ID
*
* @return
* returns internal name of the subsystem or "common"
*/
const char *knet_log_get_subsystem_name(uint8_t subsystem);
/**
* knet_log_get_subsystem_id
*
* @brief Get a logging system ID from its name
*
* @return
* returns internal ID of the subsystem or KNET_SUB_COMMON
*/
uint8_t knet_log_get_subsystem_id(const char *name);
/*
* 4 log levels are enough for everybody
*/
#define KNET_LOG_ERR 0 /* unrecoverable errors/conditions */
#define KNET_LOG_WARN 1 /* recoverable errors/conditions */
#define KNET_LOG_INFO 2 /* info, link up/down, config changes.. */
#define KNET_LOG_DEBUG 3
/*
* Convert between log level values and names
*/
/**
* knet_log_get_loglevel_name
*
* @brief Get a logging level name from its numeric ID
*
* @return
* returns internal name of the log level or "ERROR" for unknown values
*/
const char *knet_log_get_loglevel_name(uint8_t level);
/**
* knet_log_get_loglevel_id
*
* @brief Get a logging level ID from its name
*
* @return
* returns internal log level ID or KNET_LOG_ERR for invalid names
*/
uint8_t knet_log_get_loglevel_id(const char *name);
/*
* every log message is composed by a text message
* and message level/subsystem IDs.
* In order to make debugging easier it is possible to send those packets
* straight to stdout/stderr (see knet_bench.c stdout option).
*/
#define KNET_MAX_LOG_MSG_SIZE 254
#if KNET_MAX_LOG_MSG_SIZE > PIPE_BUF
#error KNET_MAX_LOG_MSG_SIZE cannot be bigger than PIPE_BUF for guaranteed system atomic writes
#endif
struct knet_log_msg {
char msg[KNET_MAX_LOG_MSG_SIZE];
uint8_t subsystem; /* KNET_SUB_* */
uint8_t msglevel; /* KNET_LOG_* */
};
/**
* knet_log_set_loglevel
*
* @brief Set the logging level for a subsystem
*
* knet_h - same as above
*
* subsystem - same as above
*
* level - same as above
*
* knet_log_set_loglevel allows fine control of log levels by subsystem.
* See also knet_handle_new for defaults.
*
* @return
* knet_log_set_loglevel returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_log_set_loglevel(knet_handle_t knet_h, uint8_t subsystem,
uint8_t level);
/**
* knet_log_get_loglevel
*
* @brief Get the logging level for a subsystem
*
* knet_h - same as above
*
* subsystem - same as above
*
* level - same as above
*
* @return
* knet_log_get_loglevel returns
* 0 on success
* -1 on error and errno is set.
*/
int knet_log_get_loglevel(knet_handle_t knet_h, uint8_t subsystem,
uint8_t *level);
#endif
diff --git a/libknet/links.c b/libknet/links.c
index 2a0597d4..d08065bd 100644
--- a/libknet/links.c
+++ b/libknet/links.c
@@ -1,1516 +1,1551 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <netdb.h>
#include <string.h>
#include <pthread.h>
#include "internals.h"
#include "logging.h"
#include "links.h"
#include "transports.h"
#include "host.h"
#include "threads_common.h"
#include "links_acl.h"
int _link_updown(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
- unsigned int enabled, unsigned int connected)
+ unsigned int enabled, unsigned int connected, unsigned int lock_stats)
{
- struct knet_link *link = &knet_h->host_index[host_id]->link[link_id];
+ struct knet_host *host = knet_h->host_index[host_id];
+ struct knet_link *link = &host->link[link_id];
+ int savederrno = 0;
if ((link->status.enabled == enabled) &&
(link->status.connected == connected))
return 0;
link->status.enabled = enabled;
link->status.connected = connected;
_host_dstcache_update_async(knet_h, knet_h->host_index[host_id]);
if ((link->status.dynconnected) &&
(!link->status.connected))
link->status.dynconnected = 0;
+ if (lock_stats) {
+ savederrno = pthread_mutex_lock(&link->link_stats_mutex);
+ if (savederrno) {
+ log_err(knet_h, KNET_SUB_LINK, "Unable to get stats mutex lock for host %u link %u: %s",
+ host_id, link_id, strerror(savederrno));
+ errno = savederrno;
+ return -1;
+ }
+ }
+
if (connected) {
time(&link->status.stats.last_up_times[link->status.stats.last_up_time_index]);
link->status.stats.up_count++;
if (++link->status.stats.last_up_time_index >= MAX_LINK_EVENTS) {
link->status.stats.last_up_time_index = 0;
}
} else {
time(&link->status.stats.last_down_times[link->status.stats.last_down_time_index]);
link->status.stats.down_count++;
if (++link->status.stats.last_down_time_index >= MAX_LINK_EVENTS) {
link->status.stats.last_down_time_index = 0;
}
}
+
+ if (lock_stats) {
+ pthread_mutex_unlock(&link->link_stats_mutex);
+ }
return 0;
}
void _link_clear_stats(knet_handle_t knet_h)
{
struct knet_host *host;
struct knet_link *link;
uint32_t host_id;
uint8_t link_id;
for (host_id = 0; host_id < KNET_MAX_HOST; host_id++) {
host = knet_h->host_index[host_id];
if (!host) {
continue;
}
for (link_id = 0; link_id < KNET_MAX_LINK; link_id++) {
link = &host->link[link_id];
memset(&link->status.stats, 0, sizeof(struct knet_link_stats));
}
}
}
int knet_link_set_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t transport,
struct sockaddr_storage *src_addr,
struct sockaddr_storage *dst_addr,
uint64_t flags)
{
int savederrno = 0, err = 0, i;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!src_addr) {
errno = EINVAL;
return -1;
}
if (dst_addr && (src_addr->ss_family != dst_addr->ss_family)) {
log_err(knet_h, KNET_SUB_LINK, "Source address family does not match destination address family");
errno = EINVAL;
return -1;
}
if (transport >= KNET_MAX_TRANSPORTS) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (transport == KNET_TRANSPORT_LOOPBACK && knet_h->host_id != host_id) {
log_err(knet_h, KNET_SUB_LINK, "Cannot create loopback link to remote node");
err = -1;
savederrno = EINVAL;
goto exit_unlock;
}
if (knet_h->host_id == host_id && knet_h->has_loop_link) {
log_err(knet_h, KNET_SUB_LINK, "Cannot create more than 1 link when loopback is active");
err = -1;
savederrno = EINVAL;
goto exit_unlock;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
if (transport == KNET_TRANSPORT_LOOPBACK && knet_h->host_id == host_id) {
for (i=0; i<KNET_MAX_LINK; i++) {
if (host->link[i].configured) {
log_err(knet_h, KNET_SUB_LINK, "Cannot add loopback link when other links are already configured.");
err = -1;
savederrno = EINVAL;
goto exit_unlock;
}
}
}
link = &host->link[link_id];
if (link->configured != 0) {
err =-1;
savederrno = EBUSY;
log_err(knet_h, KNET_SUB_LINK, "Host %u link %u is currently configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->status.enabled != 0) {
err =-1;
savederrno = EBUSY;
log_err(knet_h, KNET_SUB_LINK, "Host %u link %u is currently in use: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
memmove(&link->src_addr, src_addr, sizeof(struct sockaddr_storage));
err = knet_addrtostr(src_addr, sizeof(struct sockaddr_storage),
link->status.src_ipaddr, KNET_MAX_HOST_LEN,
link->status.src_port, KNET_MAX_PORT_LEN);
if (err) {
if (err == EAI_SYSTEM) {
savederrno = errno;
log_warn(knet_h, KNET_SUB_LINK,
"Unable to resolve host: %u link: %u source addr/port: %s",
host_id, link_id, strerror(savederrno));
} else {
savederrno = EINVAL;
log_warn(knet_h, KNET_SUB_LINK,
"Unable to resolve host: %u link: %u source addr/port: %s",
host_id, link_id, gai_strerror(err));
}
err = -1;
goto exit_unlock;
}
if (!dst_addr) {
link->dynamic = KNET_LINK_DYNIP;
} else {
link->dynamic = KNET_LINK_STATIC;
memmove(&link->dst_addr, dst_addr, sizeof(struct sockaddr_storage));
err = knet_addrtostr(dst_addr, sizeof(struct sockaddr_storage),
link->status.dst_ipaddr, KNET_MAX_HOST_LEN,
link->status.dst_port, KNET_MAX_PORT_LEN);
if (err) {
if (err == EAI_SYSTEM) {
savederrno = errno;
log_warn(knet_h, KNET_SUB_LINK,
"Unable to resolve host: %u link: %u destination addr/port: %s",
host_id, link_id, strerror(savederrno));
} else {
savederrno = EINVAL;
log_warn(knet_h, KNET_SUB_LINK,
"Unable to resolve host: %u link: %u destination addr/port: %s",
host_id, link_id, gai_strerror(err));
}
err = -1;
goto exit_unlock;
}
}
link->pmtud_crypto_timeout_multiplier = KNET_LINK_PMTUD_CRYPTO_TIMEOUT_MULTIPLIER_MIN;
link->pong_count = KNET_LINK_DEFAULT_PONG_COUNT;
link->has_valid_mtu = 0;
link->ping_interval = KNET_LINK_DEFAULT_PING_INTERVAL * 1000; /* microseconds */
link->pong_timeout = KNET_LINK_DEFAULT_PING_TIMEOUT * 1000; /* microseconds */
link->pong_timeout_backoff = KNET_LINK_PONG_TIMEOUT_BACKOFF;
link->pong_timeout_adj = link->pong_timeout * link->pong_timeout_backoff; /* microseconds */
link->latency_max_samples = KNET_LINK_DEFAULT_PING_PRECISION;
link->latency_cur_samples = 0;
link->flags = flags;
+ savederrno = pthread_mutex_init(&link->link_stats_mutex, NULL);
+ if (savederrno) {
+ log_err(knet_h, KNET_SUB_LINK, "Unable to initialize link stats mutex: %s", strerror(savederrno));
+ err = -1;
+ goto exit_unlock;
+ }
+
if (transport_link_set_config(knet_h, link, transport) < 0) {
savederrno = errno;
err = -1;
goto exit_unlock;
}
/*
* we can only configure default access lists if we know both endpoints
* and the protocol uses GENERIC_ACL, otherwise the protocol has
* to setup their own access lists above in transport_link_set_config.
*/
if ((transport_get_acl_type(knet_h, transport) == USE_GENERIC_ACL) &&
(link->dynamic == KNET_LINK_STATIC)) {
log_debug(knet_h, KNET_SUB_LINK, "Configuring default access lists for host: %u link: %u socket: %d",
host_id, link_id, link->outsock);
if ((check_add(knet_h, link->outsock, transport, -1,
&link->dst_addr, &link->dst_addr,
CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != EEXIST)) {
log_warn(knet_h, KNET_SUB_LINK, "Failed to configure default access lists for host: %u link: %u", host_id, link_id);
savederrno = errno;
err = -1;
goto exit_unlock;
}
}
link->configured = 1;
log_debug(knet_h, KNET_SUB_LINK, "host: %u link: %u is configured",
host_id, link_id);
if (transport == KNET_TRANSPORT_LOOPBACK) {
knet_h->has_loop_link = 1;
knet_h->loop_link = link_id;
host->status.reachable = 1;
link->status.mtu = KNET_PMTUD_SIZE_V6;
} else {
/*
* calculate the minimum MTU that is safe to use,
* based on RFCs and that each network device should
* be able to support without any troubles
*/
if (link->dynamic == KNET_LINK_STATIC) {
/*
* with static link we can be more precise than using
* the generic calc_min_mtu()
*/
switch (link->dst_addr.ss_family) {
case AF_INET6:
link->status.mtu = calc_max_data_outlen(knet_h, KNET_PMTUD_MIN_MTU_V6 - (KNET_PMTUD_OVERHEAD_V6 + link->proto_overhead));
break;
case AF_INET:
link->status.mtu = calc_max_data_outlen(knet_h, KNET_PMTUD_MIN_MTU_V4 - (KNET_PMTUD_OVERHEAD_V4 + link->proto_overhead));
break;
}
} else {
/*
* for dynamic links we start with the minimum MTU
* possible and PMTUd will kick in immediately
* after connection status is 1
*/
link->status.mtu = calc_min_mtu(knet_h);
}
link->has_valid_mtu = 1;
}
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *transport,
struct sockaddr_storage *src_addr,
struct sockaddr_storage *dst_addr,
uint8_t *dynamic,
uint64_t *flags)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!src_addr) {
errno = EINVAL;
return -1;
}
if (!dynamic) {
errno = EINVAL;
return -1;
}
if (!transport) {
errno = EINVAL;
return -1;
}
if (!flags) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if ((link->dynamic == KNET_LINK_STATIC) && (!dst_addr)) {
savederrno = EINVAL;
err = -1;
goto exit_unlock;
}
memmove(src_addr, &link->src_addr, sizeof(struct sockaddr_storage));
*transport = link->transport;
*flags = link->flags;
if (link->dynamic == KNET_LINK_STATIC) {
*dynamic = 0;
memmove(dst_addr, &link->dst_addr, sizeof(struct sockaddr_storage));
} else {
*dynamic = 1;
}
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_clear_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
int sock;
uint8_t transport;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (link->configured != 1) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->status.enabled != 0) {
err = -1;
savederrno = EBUSY;
log_err(knet_h, KNET_SUB_LINK, "Host %u link %u is currently in use: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
/*
* remove well known access lists here.
* After the transport has done clearing the config,
* then we can remove any leftover access lists if the link
* is no longer in use.
*/
if ((transport_get_acl_type(knet_h, link->transport) == USE_GENERIC_ACL) &&
(link->dynamic == KNET_LINK_STATIC)) {
if ((check_rm(knet_h, link->outsock, link->transport,
&link->dst_addr, &link->dst_addr,
CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != ENOENT)) {
err = -1;
savederrno = errno;
log_err(knet_h, KNET_SUB_LINK, "Host %u link %u: unable to remove default access list",
host_id, link_id);
goto exit_unlock;
}
}
/*
* cache it for later as we don't know if the transport
* will clear link info during clear_config.
*/
sock = link->outsock;
transport = link->transport;
if ((transport_link_clear_config(knet_h, link) < 0) &&
(errno != EBUSY)) {
savederrno = errno;
err = -1;
goto exit_unlock;
}
/*
* remove any other access lists when the socket is no
* longer in use by the transport.
*/
if ((transport_get_acl_type(knet_h, link->transport) == USE_GENERIC_ACL) &&
(knet_h->knet_transport_fd_tracker[sock].transport == KNET_MAX_TRANSPORTS)) {
check_rmall(knet_h, sock, transport);
}
+ pthread_mutex_destroy(&link->link_stats_mutex);
+
memset(link, 0, sizeof(struct knet_link));
link->link_id = link_id;
if (knet_h->has_loop_link && host_id == knet_h->host_id && link_id == knet_h->loop_link) {
knet_h->has_loop_link = 0;
if (host->active_link_entries == 0) {
host->status.reachable = 0;
}
}
log_debug(knet_h, KNET_SUB_LINK, "host: %u link: %u config has been wiped",
host_id, link_id);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_set_enable(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
unsigned int enabled)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (enabled > 1) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->status.enabled == enabled) {
err = 0;
goto exit_unlock;
}
- err = _link_updown(knet_h, host_id, link_id, enabled, link->status.connected);
+ err = _link_updown(knet_h, host_id, link_id, enabled, link->status.connected, 0);
savederrno = errno;
if (enabled) {
goto exit_unlock;
}
log_debug(knet_h, KNET_SUB_LINK, "host: %u link: %u is disabled",
host_id, link_id);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_enable(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
unsigned int *enabled)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!enabled) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
*enabled = link->status.enabled;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_set_pong_count(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t pong_count)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (pong_count < 1) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
link->pong_count = pong_count;
log_debug(knet_h, KNET_SUB_LINK,
"host: %u link: %u pong count update: %u",
host_id, link_id, link->pong_count);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_pong_count(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *pong_count)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!pong_count) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
*pong_count = link->pong_count;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_set_ping_timers(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
time_t interval, time_t timeout, unsigned int precision)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!interval) {
errno = EINVAL;
return -1;
}
if (!timeout) {
errno = ENOSYS;
return -1;
}
if (!precision) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
link->ping_interval = interval * 1000; /* microseconds */
link->pong_timeout = timeout * 1000; /* microseconds */
link->latency_max_samples = precision;
log_debug(knet_h, KNET_SUB_LINK,
"host: %u link: %u timeout update - interval: %llu timeout: %llu precision: %u",
host_id, link_id, link->ping_interval, link->pong_timeout, precision);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_ping_timers(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
time_t *interval, time_t *timeout, unsigned int *precision)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!interval) {
errno = EINVAL;
return -1;
}
if (!timeout) {
errno = EINVAL;
return -1;
}
if (!precision) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
*interval = link->ping_interval / 1000; /* microseconds */
*timeout = link->pong_timeout / 1000;
*precision = link->latency_max_samples;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_set_priority(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t priority)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
uint8_t old_priority;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
old_priority = link->priority;
if (link->priority == priority) {
err = 0;
goto exit_unlock;
}
link->priority = priority;
if (_host_dstcache_update_sync(knet_h, host)) {
savederrno = errno;
log_debug(knet_h, KNET_SUB_LINK,
"Unable to update link priority (host: %u link: %u priority: %u): %s",
host_id, link_id, link->priority, strerror(savederrno));
link->priority = old_priority;
err = -1;
goto exit_unlock;
}
log_debug(knet_h, KNET_SUB_LINK,
"host: %u link: %u priority set to: %u",
host_id, link_id, link->priority);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_priority(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *priority)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!priority) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
*priority = link->priority;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_link_list(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t *link_ids, size_t *link_ids_entries)
{
int savederrno = 0, err = 0, i, count = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!link_ids) {
errno = EINVAL;
return -1;
}
if (!link_ids_entries) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
for (i = 0; i < KNET_MAX_LINK; i++) {
link = &host->link[i];
if (!link->configured) {
continue;
}
link_ids[count] = i;
count++;
}
*link_ids_entries = count;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_get_status(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct knet_link_status *status, size_t struct_size)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
if (!status) {
errno = EINVAL;
return -1;
}
- savederrno = get_global_wrlock(knet_h);
+ savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
+ savederrno = pthread_mutex_lock(&link->link_stats_mutex);
+ if (savederrno) {
+ log_err(knet_h, KNET_SUB_LINK, "Unable to get stats mutex lock for host %u link %u: %s",
+ host_id, link_id, strerror(savederrno));
+ err = -1;
+ goto exit_unlock;
+ }
+
memmove(status, &link->status, struct_size);
+ pthread_mutex_unlock(&link->link_stats_mutex);
+
/* Calculate totals - no point in doing this on-the-fly */
status->stats.rx_total_packets =
status->stats.rx_data_packets +
status->stats.rx_ping_packets +
status->stats.rx_pong_packets +
status->stats.rx_pmtu_packets;
status->stats.tx_total_packets =
status->stats.tx_data_packets +
status->stats.tx_ping_packets +
status->stats.tx_pong_packets +
status->stats.tx_pmtu_packets;
status->stats.rx_total_bytes =
status->stats.rx_data_bytes +
status->stats.rx_ping_bytes +
status->stats.rx_pong_bytes +
status->stats.rx_pmtu_bytes;
status->stats.tx_total_bytes =
status->stats.tx_data_bytes +
status->stats.tx_ping_bytes +
status->stats.tx_pong_bytes +
status->stats.tx_pmtu_bytes;
status->stats.tx_total_errors =
status->stats.tx_data_errors +
status->stats.tx_ping_errors +
status->stats.tx_pong_errors +
status->stats.tx_pmtu_errors;
status->stats.tx_total_retries =
status->stats.tx_data_retries +
status->stats.tx_ping_retries +
status->stats.tx_pong_retries +
status->stats.tx_pmtu_retries;
/* Tell the caller our full size in case they have an old version */
status->size = sizeof(struct knet_link_status);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
int knet_link_add_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct sockaddr_storage *ss1,
struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!ss1) {
errno = EINVAL;
return -1;
}
if ((type != CHECK_TYPE_ADDRESS) &&
(type != CHECK_TYPE_MASK) &&
(type != CHECK_TYPE_RANGE)) {
errno = EINVAL;
return -1;
}
if ((acceptreject != CHECK_ACCEPT) &&
(acceptreject != CHECK_REJECT)) {
errno = EINVAL;
return -1;
}
if ((type != CHECK_TYPE_ADDRESS) && (!ss2)) {
errno = EINVAL;
return -1;
}
if ((type == CHECK_TYPE_RANGE) &&
(ss1->ss_family != ss2->ss_family)) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->dynamic != KNET_LINK_DYNIP) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is a point to point connection: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
err = check_add(knet_h, transport_link_get_acl_fd(knet_h, link), link->transport, -1,
ss1, ss2, type, acceptreject);
savederrno = errno;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return err;
}
int knet_link_insert_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
int index,
struct sockaddr_storage *ss1,
struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!ss1) {
errno = EINVAL;
return -1;
}
if ((type != CHECK_TYPE_ADDRESS) &&
(type != CHECK_TYPE_MASK) &&
(type != CHECK_TYPE_RANGE)) {
errno = EINVAL;
return -1;
}
if ((acceptreject != CHECK_ACCEPT) &&
(acceptreject != CHECK_REJECT)) {
errno = EINVAL;
return -1;
}
if ((type != CHECK_TYPE_ADDRESS) && (!ss2)) {
errno = EINVAL;
return -1;
}
if ((type == CHECK_TYPE_RANGE) &&
(ss1->ss_family != ss2->ss_family)) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->dynamic != KNET_LINK_DYNIP) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is a point to point connection: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
err = check_add(knet_h, transport_link_get_acl_fd(knet_h, link), link->transport, index,
ss1, ss2, type, acceptreject);
savederrno = errno;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return err;
}
int knet_link_rm_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct sockaddr_storage *ss1,
struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!ss1) {
errno = EINVAL;
return -1;
}
if ((type != CHECK_TYPE_ADDRESS) &&
(type != CHECK_TYPE_MASK) &&
(type != CHECK_TYPE_RANGE)) {
errno = EINVAL;
return -1;
}
if ((acceptreject != CHECK_ACCEPT) &&
(acceptreject != CHECK_REJECT)) {
errno = EINVAL;
return -1;
}
if ((type != CHECK_TYPE_ADDRESS) && (!ss2)) {
errno = EINVAL;
return -1;
}
if ((type == CHECK_TYPE_RANGE) &&
(ss1->ss_family != ss2->ss_family)) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->dynamic != KNET_LINK_DYNIP) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is a point to point connection: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
err = check_rm(knet_h, transport_link_get_acl_fd(knet_h, link), link->transport,
ss1, ss2, type, acceptreject);
savederrno = errno;
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return err;
}
int knet_link_clear_acl(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id)
{
int savederrno = 0, err = 0;
struct knet_host *host;
struct knet_link *link;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (link_id >= KNET_MAX_LINK) {
errno = EINVAL;
return -1;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_LINK, "Unable to get write lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
host = knet_h->host_index[host_id];
if (!host) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "Unable to find host %u: %s",
host_id, strerror(savederrno));
goto exit_unlock;
}
link = &host->link[link_id];
if (!link->configured) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is not configured: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
if (link->dynamic != KNET_LINK_DYNIP) {
err = -1;
savederrno = EINVAL;
log_err(knet_h, KNET_SUB_LINK, "host %u link %u is a point to point connection: %s",
host_id, link_id, strerror(savederrno));
goto exit_unlock;
}
check_rmall(knet_h, transport_link_get_acl_fd(knet_h, link), link->transport);
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return err;
}
diff --git a/libknet/links.h b/libknet/links.h
index 66890a84..1ba2b70a 100644
--- a/libknet/links.h
+++ b/libknet/links.h
@@ -1,48 +1,48 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __KNET_LINK_H__
#define __KNET_LINK_H__
#include "internals.h"
#define KNET_LINK_STATIC 0 /* link has static ip on both ends */
#define KNET_LINK_DYNIP 1 /* link has dynamic destination ip */
/*
* number of iterations to reduce pong_timeout_adj
* from configured(pong_timeout * KNET_LINK_PONG_TIMEOUT_BACKOFF
* to pong_timeout
*/
#define KNET_LINK_PONG_TIMEOUT_BACKOFF 10
/*
* when adjusting link pong_timeout for latency,
* multiply the max recorded latency by this number.
* Yes it's a bit of magic, fairy dust and unicorn farts
* mixed together.
*/
#define KNET_LINK_PONG_TIMEOUT_LAT_MUL 2
/*
* under heavy load with crypto enabled, it takes much
* longer time to receive a response from the other node.
*
* 128 is somewhat arbitrary number but we want to set a limit
* and report failures after that.
*/
#define KNET_LINK_PMTUD_CRYPTO_TIMEOUT_MULTIPLIER_MIN 2
#define KNET_LINK_PMTUD_CRYPTO_TIMEOUT_MULTIPLIER_MAX 128
int _link_updown(knet_handle_t knet_h, knet_node_id_t node_id, uint8_t link_id,
- unsigned int enabled, unsigned int connected);
+ unsigned int enabled, unsigned int connected, unsigned int lock_stats);
void _link_clear_stats(knet_handle_t knet_h);
#endif
diff --git a/libknet/tests/api_knet_handle_clear_stats.c b/libknet/tests/api_knet_handle_clear_stats.c
index 346f72e0..e87b3c39 100644
--- a/libknet/tests/api_knet_handle_clear_stats.c
+++ b/libknet/tests/api_knet_handle_clear_stats.c
@@ -1,288 +1,283 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct knet_link_status link_status;
char send_buff[KNET_MAX_PACKET_SIZE];
char recv_buff[KNET_MAX_PACKET_SIZE];
ssize_t send_len = 0;
int recv_len = 0;
int savederrno;
struct sockaddr_storage lo;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
memset(send_buff, 0, sizeof(send_buff));
printf("Test knet_handle_clear_stats incorrect knet_h\n");
if (!knet_handle_clear_stats(NULL, 0) || (errno != EINVAL)) {
printf("knet_handle_clear_stats accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_send with valid data\n");
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff)) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (wait_for_packet(knet_h, 10, datafd, logfds[0], stdout)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* A sanity check on the stats */
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (link_status.stats.tx_data_packets != 2 ||
link_status.stats.rx_data_packets != 2 ||
link_status.stats.tx_data_bytes < KNET_MAX_PACKET_SIZE ||
link_status.stats.rx_data_bytes < KNET_MAX_PACKET_SIZE ||
link_status.stats.tx_data_bytes > KNET_MAX_PACKET_SIZE*2 ||
link_status.stats.rx_data_bytes > KNET_MAX_PACKET_SIZE*2) {
printf("stats look wrong: tx_packets: %" PRIu64 " (%" PRIu64 " bytes), rx_packets: %" PRIu64 " (%" PRIu64 " bytes)\n",
link_status.stats.tx_data_packets,
link_status.stats.tx_data_bytes,
link_status.stats.rx_data_packets,
link_status.stats.rx_data_bytes);
}
printf("Test knet_clear_stats (link)\n");
if (knet_handle_clear_stats(knet_h, KNET_CLEARSTATS_HANDLE_AND_LINK) < 0) {
printf("knet_link_clear_stats failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* Check they've been cleared */
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (link_status.stats.tx_data_packets != 0 ||
link_status.stats.rx_data_packets != 0 ||
link_status.stats.tx_data_bytes != 0 ||
link_status.stats.rx_data_bytes != 0 ||
link_status.stats.tx_data_bytes != 0 ||
link_status.stats.rx_data_bytes != 0) {
printf("stats not cleared: tx_packets: %" PRIu64 " (%" PRIu64 " bytes), rx_packets: %" PRIu64 " (%" PRIu64 " bytes)\n",
link_status.stats.tx_data_packets,
link_status.stats.tx_data_bytes,
link_status.stats.rx_data_packets,
link_status.stats.rx_data_bytes);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_handle_pmtud_set.c b/libknet/tests/api_knet_handle_pmtud_set.c
index 2631e44c..c0db7af2 100644
--- a/libknet/tests/api_knet_handle_pmtud_set.c
+++ b/libknet/tests/api_knet_handle_pmtud_set.c
@@ -1,226 +1,221 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
unsigned int iface_mtu = 0, data_mtu;
int datafd = 0;
int8_t channel = 0;
struct sockaddr_storage lo;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
printf("Test knet_handle_pmtud_set incorrect knet_h\n");
if ((!knet_handle_pmtud_set(NULL, iface_mtu)) || (errno != EINVAL)) {
printf("knet_handle_pmtud_set accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
flush_logs(logfds[0], stdout);
iface_mtu = KNET_PMTUD_SIZE_V4 + 1;
printf("Test knet_handle_pmtud_set with wrong iface_mtu\n");
if ((!knet_handle_pmtud_set(knet_h, iface_mtu)) || (errno != EINVAL)) {
printf("knet_handle_pmtud_set accepted invalid data_mtu or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_pong_count(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_pong_count failed: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 4, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_pmtud_get(knet_h, &data_mtu) < 0) {
printf("knet_handle_pmtud_get failed error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/*
* 28 = IP (20) + UDP (8)
*/
iface_mtu = data_mtu + 28 + KNET_HEADER_ALL_SIZE - 64;
printf("Test knet_handle_pmtud_set with iface_mtu %u\n", iface_mtu);
if (knet_handle_pmtud_set(knet_h, iface_mtu) < 0) {
printf("knet_handle_pmtud_set failed error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/*
* wait for PMTUd to pick up the change
*/
test_sleep(knet_h, 1);
flush_logs(logfds[0], stdout);
if (knet_h->data_mtu != data_mtu - 64) {
printf("knet_handle_pmtud_set failed to set the value\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("Test knet_handle_pmtud_set with iface_mtu 0\n");
if (knet_handle_pmtud_set(knet_h, 0) < 0) {
printf("knet_handle_pmtud_set failed error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/*
* wait for PMTUd to pick up the change
*/
test_sleep(knet_h, 1);
flush_logs(logfds[0], stdout);
if (knet_h->data_mtu != data_mtu) {
printf("knet_handle_pmtud_set failed to redetect MTU: detected mtu: %u data_mtu: %u \n", knet_h->data_mtu, data_mtu);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_host_remove.c b/libknet/tests/api_knet_host_remove.c
index 8fe989a2..13be5661 100644
--- a/libknet/tests/api_knet_host_remove.c
+++ b/libknet/tests/api_knet_host_remove.c
@@ -1,158 +1,149 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
knet_node_id_t host_ids[KNET_MAX_HOST];
size_t host_ids_entries;
- struct sockaddr_storage ss;
+ struct sockaddr_storage lo;
printf("Test knet_host_add incorrect knet_h\n");
if ((!knet_host_remove(NULL, 1)) || (errno != EINVAL)) {
printf("knet_host_remove accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
flush_logs(logfds[0], stdout);
printf("Test knet_host_remove with unconfigured host_id\n");
if ((!knet_host_remove(knet_h, 1)) || (errno != EINVAL)) {
printf("knet_host_remove accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_host_remove with configured host_id and links\n");
- if (make_local_sockaddr(&ss, 0) < 0) {
- printf("Unable to convert str to sockaddr: %s\n", strerror(errno));
- knet_host_remove(knet_h, 1);
- knet_handle_free(knet_h);
- flush_logs(logfds[0], stdout);
- close_logpipes(logfds);
- exit(FAIL);
- }
-
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &ss, NULL, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("Unable to enable link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_host_remove(knet_h, 1)) || (errno != EBUSY)) {
printf("knet_host_remove accepted invalid request to remove host with link enabled or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 0) < 0) {
printf("Unable to disable link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Unable to clear link config: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_host_remove with configured host_id (no links)\n");
if (knet_host_remove(knet_h, 1) < 0) {
printf("knet_host_remove didn't remove host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_get_host_list(knet_h, host_ids, &host_ids_entries) < 0) {
printf("Unable to get host list: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (host_ids_entries) {
printf("Too many hosts?\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_add_acl.c b/libknet/tests/api_knet_link_add_acl.c
index 87ff624f..54b8208b 100644
--- a/libknet/tests/api_knet_link_add_acl.c
+++ b/libknet/tests/api_knet_link_add_acl.c
@@ -1,246 +1,246 @@
/*
* Copyright (C) 2019-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
struct knet_host *host;
struct knet_link *link;
struct sockaddr_storage lo, lo6;
if (make_local_sockaddr(&lo, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
if (make_local_sockaddr6(&lo6, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
printf("Test knet_link_add_acl incorrect knet_h\n");
if ((!knet_link_add_acl(NULL, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_add_acl with unconfigured host\n");
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted unconfigured host or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with unconfigured link\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with invalid link\n");
if ((!knet_link_add_acl(knet_h, 1, KNET_MAX_LINK, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted invalid link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with invalid ss1\n");
if ((!knet_link_add_acl(knet_h, 1, 0, NULL, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted invalid ss1 or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with invalid ss2\n");
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, NULL, CHECK_TYPE_RANGE, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted invalid ss2 or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with non matching families\n");
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, &lo6, CHECK_TYPE_RANGE, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted non matching families or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with wrong check_type\n");
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_RANGE + CHECK_TYPE_MASK + CHECK_TYPE_ADDRESS + 1, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted incorrect check_type or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with wrong acceptreject\n");
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT + CHECK_REJECT + 1)) || (errno != EINVAL)) {
printf("knet_link_add_acl accepted incorrect check_type or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_add_acl with point to point link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
- printf("knet_link_add_acl accepted point ot point link or returned incorrect error: %s\n", strerror(errno));
+ printf("knet_link_add_acl accepted point to point link or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
printf("Test knet_link_add_acl with dynamic link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
host = knet_h->host_index[1];
link = &host->link[0];
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list not empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) {
printf("knet_link_add_acl did not accept dynamic link error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (!knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_clear_acl.c b/libknet/tests/api_knet_link_clear_acl.c
index 64dfd7b8..ce11071c 100644
--- a/libknet/tests/api_knet_link_clear_acl.c
+++ b/libknet/tests/api_knet_link_clear_acl.c
@@ -1,196 +1,191 @@
/*
* Copyright (C) 2019-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
struct knet_host *host;
struct knet_link *link;
struct sockaddr_storage lo;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
printf("Test knet_link_clear_acl incorrect knet_h\n");
if ((!knet_link_clear_acl(NULL, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_acl accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_clear_acl with unconfigured host\n");
if ((!knet_link_clear_acl(knet_h, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_acl accepted unconfigured host or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_acl with unconfigured link\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_clear_acl(knet_h, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_acl accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_acl with invalid link\n");
if ((!knet_link_clear_acl(knet_h, 1, KNET_MAX_LINK)) || (errno != EINVAL)) {
printf("knet_link_clear_acl accepted invalid link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_acl with point to point link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_clear_acl(knet_h, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_acl accepted point ot point link or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
printf("Test knet_link_clear_acl with dynamic link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
host = knet_h->host_index[1];
link = &host->link[0];
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list NOT empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) {
printf("knet_link_clear_acl did not accept dynamic link error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (!knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_clear_acl(knet_h, 1, 0) < 0) {
printf("knet_link_clear_acl failed to clear. error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list NOT empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_clear_config.c b/libknet/tests/api_knet_link_clear_config.c
index 4523f1f7..0e98f2af 100644
--- a/libknet/tests/api_knet_link_clear_config.c
+++ b/libknet/tests/api_knet_link_clear_config.c
@@ -1,165 +1,155 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
printf("Test knet_link_clear_config incorrect knet_h\n");
if ((!knet_link_clear_config(NULL, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_config accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_clear_config with unconfigured host_id\n");
if ((!knet_link_clear_config(knet_h, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_config accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_config with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_clear_config(knet_h, 1, KNET_MAX_LINK)) || (errno != EINVAL)) {
printf("knet_link_clear_config accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_config with unconfigured linkid\n");
if ((!knet_link_clear_config(knet_h, 1, 0)) || (errno != EINVAL)) {
printf("knet_link_clear_config accepted unconfigured linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_config with enabled linkid\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("Unable to enable link: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_clear_config(knet_h, 1, 0) || (errno != EBUSY))) {
printf("knet_link_clear_config accepted invalid enabled link or returned incorrect error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_clear_config with correct data\n");
if (knet_link_set_enable(knet_h, 1, 0, 0) < 0) {
printf("Unable to disable link: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Unable to clear link config: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_config.c b/libknet/tests/api_knet_link_get_config.c
index 2b1ad5ea..6dc91244 100644
--- a/libknet/tests/api_knet_link_get_config.c
+++ b/libknet/tests/api_knet_link_get_config.c
@@ -1,325 +1,315 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst, get_src, get_dst;
+ struct sockaddr_storage lo, get_src, get_dst;
uint8_t dynamic = 0, transport = 0;
uint64_t flags;
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
printf("Test knet_link_get_config incorrect knet_h\n");
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(NULL, 1, 0, &transport, &get_src, &get_dst, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_config with unconfigured host_id\n");
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(knet_h, 1, 0, &transport, &get_src, &get_dst, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(knet_h, 1, KNET_MAX_LINK, &transport, &get_src, &get_dst, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with incorrect src_addr\n");
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(knet_h, 1, 0, &transport, NULL, &get_dst, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted invalid src_addr or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with incorrect dynamic\n");
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(knet_h, 1, 0, &transport, &get_src, &get_dst, NULL, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted invalid dynamic or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with unconfigured link\n");
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(knet_h, 1, 0, &transport, &get_src, &get_dst, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with incorrect dst_addr\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if ((!knet_link_get_config(knet_h, 1, 0, &transport, &get_src, NULL, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted invalid dst_addr or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (dynamic) {
printf("knet_link_get_config returned invalid dynamic status\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with correct parameters for static link\n");
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if (knet_link_get_config(knet_h, 1, 0, &transport, &get_src, &get_dst, &dynamic, &flags) < 0) {
printf("knet_link_get_config failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (transport != KNET_TRANSPORT_UDP) {
printf("knet_link_get_config returned incorrect transport: %d\n", transport);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((dynamic) ||
- (memcmp(&src, &get_src, sizeof(struct sockaddr_storage))) ||
- (memcmp(&dst, &get_dst, sizeof(struct sockaddr_storage)))) {
+ (memcmp(&lo, &get_src, sizeof(struct sockaddr_storage))) ||
+ (memcmp(&lo, &get_dst, sizeof(struct sockaddr_storage)))) {
printf("knet_link_get_config returned invalid data\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_config with correct parameters for dynamic link\n");
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Unable to deconfigure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, NULL, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
memset(&get_src, 0, sizeof(struct sockaddr_storage));
memset(&get_dst, 0, sizeof(struct sockaddr_storage));
if (knet_link_get_config(knet_h, 1, 0, &transport, &get_src, &get_dst, &dynamic, &flags) < 0) {
printf("knet_link_get_config failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!dynamic) ||
- (memcmp(&src, &get_src, sizeof(struct sockaddr_storage)))) {
+ (memcmp(&lo, &get_src, sizeof(struct sockaddr_storage)))) {
printf("knet_link_get_config returned invalid data\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("Test knet_link_get_config NULL transport ptr\n");
if ((!knet_link_get_config(knet_h, 1, 0, NULL, &get_src, &get_dst, &dynamic, &flags)) || (errno != EINVAL)) {
printf("knet_link_get_config accepted NULL &transport or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
printf("Test knet_link_get_config with flags\n");
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Unable to deconfigure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, NULL, KNET_LINK_FLAG_TRAFFICHIPRIO) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, KNET_LINK_FLAG_TRAFFICHIPRIO, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_config(knet_h, 1, 0, &transport, &get_src, &get_dst, &dynamic, &flags) < 0) {
printf("knet_link_get_config failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (flags != KNET_LINK_FLAG_TRAFFICHIPRIO) {
printf("knet_link_get_config returned no flags\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_enable.c b/libknet/tests/api_knet_link_get_enable.c
index b437cf8c..2098c9d0 100644
--- a/libknet/tests/api_knet_link_get_enable.c
+++ b/libknet/tests/api_knet_link_get_enable.c
@@ -1,192 +1,182 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
unsigned int enabled;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
printf("Test knet_link_get_enable incorrect knet_h\n");
if ((!knet_link_get_enable(NULL, 1, 0, &enabled)) || (errno != EINVAL)) {
printf("knet_link_get_enable accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_enable with unconfigured host_id\n");
if ((!knet_link_get_enable(knet_h, 1, 0, &enabled)) || (errno != EINVAL)) {
printf("knet_link_get_enable accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_enable with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_get_enable(knet_h, 1, KNET_MAX_LINK, &enabled)) || (errno != EINVAL)) {
printf("knet_link_get_enable accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_enable with unconfigured link\n");
if ((!knet_link_get_enable(knet_h, 1, 0, &enabled)) || (errno != EINVAL)) {
printf("knet_link_get_enable accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_enable without enabled\n");
if ((!knet_link_get_enable(knet_h, 1, 0, NULL)) || (errno != EINVAL)) {
printf("knet_link_get_enable accepted NULL enabled or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_enable with disabled link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_enable(knet_h, 1, 0, &enabled) < 0) {
printf("knet_link_get_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (enabled) {
printf("knet_link_get_enable returned incorrect value");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_enable with enabled link\n");
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_get_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_enable(knet_h, 1, 0, &enabled) < 0) {
printf("knet_link_get_enable failed: %s\n", strerror(errno));
knet_link_get_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (!enabled) {
printf("knet_link_get_enable returned incorrect value");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_link_list.c b/libknet/tests/api_knet_link_get_link_list.c
index 386ae525..d59f4f7a 100644
--- a/libknet/tests/api_knet_link_get_link_list.c
+++ b/libknet/tests/api_knet_link_get_link_list.c
@@ -1,169 +1,159 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
uint8_t link_ids[KNET_MAX_LINK];
size_t link_ids_entries = 0;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
memset(&link_ids, 1, sizeof(link_ids));
printf("Test knet_link_get_link_list incorrect knet_h\n");
if ((!knet_link_get_link_list(NULL, 1, link_ids, &link_ids_entries)) || (errno != EINVAL)) {
printf("knet_link_get_link_list accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_link_list with unconfigured host_id\n");
if ((!knet_link_get_link_list(knet_h, 1, link_ids, &link_ids_entries)) || (errno != EINVAL)) {
printf("knet_link_get_link_list accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_link_list with incorrect link_id\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_get_link_list(knet_h, 1, NULL, &link_ids_entries)) || (errno != EINVAL)) {
printf("knet_link_get_link_list accepted invalid link_ids or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_link_list with incorrect link_ids_entries\n");
if ((!knet_link_get_link_list(knet_h, 1, link_ids, NULL)) || (errno != EINVAL)) {
printf("knet_link_get_link_list accepted invalid link_ids_entries or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_link_list with no links\n");
if (knet_link_get_link_list(knet_h, 1, link_ids, &link_ids_entries) < 0) {
printf("knet_link_get_link_list failed: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (link_ids_entries != 0) {
printf("knet_link_get_link_list returned incorrect number of links");
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_link_list with 1 link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_link_list(knet_h, 1, link_ids, &link_ids_entries) < 0) {
printf("knet_link_get_link_list failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((link_ids_entries != 1) || (link_ids[0] != 0)) {
printf("knet_link_get_link_list returned incorrect values");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_ping_timers.c b/libknet/tests/api_knet_link_get_ping_timers.c
index e684b2e2..889b4536 100644
--- a/libknet/tests/api_knet_link_get_ping_timers.c
+++ b/libknet/tests/api_knet_link_get_ping_timers.c
@@ -1,187 +1,177 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
time_t interval = 0, timeout = 0;
unsigned int precision = 0;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
printf("Test knet_link_get_ping_timers incorrect knet_h\n");
if ((!knet_link_get_ping_timers(NULL, 1, 0, &interval, &timeout, &precision)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_ping_timers with unconfigured host_id\n");
if ((!knet_link_get_ping_timers(knet_h, 1, 0, &interval, &timeout, &precision)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_ping_timers with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_get_ping_timers(knet_h, 1, KNET_MAX_LINK, &interval, &timeout, &precision)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_ping_timers with incorrect interval\n");
if ((!knet_link_get_ping_timers(knet_h, 1, 0, NULL, &timeout, &precision)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted invalid interval or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_ping_timers with incorrect timeout\n");
if ((!knet_link_get_ping_timers(knet_h, 1, 0, &interval, NULL, &precision)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted invalid timeout or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_ping_timers with incorrect interval\n");
if ((!knet_link_get_ping_timers(knet_h, 1, 0, &interval, &timeout, NULL)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted invalid interval or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_ping_timers with unconfigured link\n");
if ((!knet_link_get_ping_timers(knet_h, 1, 0, &interval, &timeout, &precision)) || (errno != EINVAL)) {
printf("knet_link_get_ping_timers accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_ping_timers with correct values\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_ping_timers(knet_h, 1, 0, &interval, &timeout, &precision) < 0) {
printf("knet_link_get_ping_timers failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("DEFAULT: int: %ld timeout: %ld prec: %u\n", (long int)interval, (long int)timeout, precision);
if ((interval != KNET_LINK_DEFAULT_PING_INTERVAL) ||
(timeout != KNET_LINK_DEFAULT_PING_TIMEOUT) ||
(precision != KNET_LINK_DEFAULT_PING_PRECISION)) {
printf("knet_link_get_ping_timers failed to set values\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_pong_count.c b/libknet/tests/api_knet_link_get_pong_count.c
index 77e587b6..2fa41572 100644
--- a/libknet/tests/api_knet_link_get_pong_count.c
+++ b/libknet/tests/api_knet_link_get_pong_count.c
@@ -1,164 +1,154 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
uint8_t pong_count = 0;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
printf("Test knet_link_get_pong_count incorrect knet_h\n");
if ((!knet_link_get_pong_count(NULL, 1, 0, &pong_count)) || (errno != EINVAL)) {
printf("knet_link_get_pong_count accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_pong_count with unconfigured host_id\n");
if ((!knet_link_get_pong_count(knet_h, 1, 0, &pong_count)) || (errno != EINVAL)) {
printf("knet_link_get_pong_count accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_pong_count with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_get_pong_count(knet_h, 1, KNET_MAX_LINK, &pong_count)) || (errno != EINVAL)) {
printf("knet_link_get_pong_count accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_pong_count with incorrect pong count\n");
if ((!knet_link_get_pong_count(knet_h, 1, 0, NULL)) || (errno != EINVAL)) {
printf("knet_link_get_pong_count accepted invalid pong count or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_pong_count with unconfigured link\n");
if ((!knet_link_get_pong_count(knet_h, 1, 0, &pong_count)) || (errno != EINVAL)) {
printf("knet_link_get_pong_count accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_pong_count with correct values\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_pong_count(knet_h, 1, 0, 3) < 0) {
printf("knet_link_set_pong_count failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_pong_count(knet_h, 1, 0, &pong_count) < 0) {
printf("knet_link_get_pong_count failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (pong_count != 3) {
printf("knet_link_get_pong_count failed to get correct values\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_priority.c b/libknet/tests/api_knet_link_get_priority.c
index 1ecb04c2..16272964 100644
--- a/libknet/tests/api_knet_link_get_priority.c
+++ b/libknet/tests/api_knet_link_get_priority.c
@@ -1,164 +1,154 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
uint8_t priority = 0;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
printf("Test knet_link_get_priority incorrect knet_h\n");
if ((!knet_link_get_priority(NULL, 1, 0, &priority)) || (errno != EINVAL)) {
printf("knet_link_get_priority accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_priority with unconfigured host_id\n");
if ((!knet_link_get_priority(knet_h, 1, 0, &priority)) || (errno != EINVAL)) {
printf("knet_link_get_priority accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_priority with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_get_priority(knet_h, 1, KNET_MAX_LINK, &priority)) || (errno != EINVAL)) {
printf("knet_link_get_priority accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_priority with unconfigured link\n");
if ((!knet_link_get_priority(knet_h, 1, 0, &priority)) || (errno != EINVAL)) {
printf("knet_link_get_priority accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_priority with incorrect priority\n");
if ((!knet_link_get_priority(knet_h, 1, 0, NULL)) || (errno != EINVAL)) {
printf("knet_link_get_priority accepted incorrect priority or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_priority with correct values\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_priority(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_priority failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_priority(knet_h, 1, 0, &priority) < 0) {
printf("knet_link_get_priority failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (priority != 1) {
printf("knet_link_get_priority failed to get correct values\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_get_status.c b/libknet/tests/api_knet_link_get_status.c
index 1362efeb..5a590383 100644
--- a/libknet/tests/api_knet_link_get_status.c
+++ b/libknet/tests/api_knet_link_get_status.c
@@ -1,148 +1,138 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "link.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
- struct sockaddr_storage src, dst;
struct knet_link_status status;
-
- if (make_local_sockaddr(&src, 0) < 0) {
- printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
+ struct sockaddr_storage lo;
printf("Test knet_link_get_status incorrect knet_h\n");
memset(&status, 0, sizeof(struct knet_link_status));
if ((!knet_link_get_status(NULL, 1, 0, &status, sizeof(struct knet_link_status))) || (errno != EINVAL)) {
printf("knet_link_get_status accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_get_status with unconfigured host_id\n");
if ((!knet_link_get_status(knet_h, 1, 0, &status, sizeof(struct knet_link_status))) || (errno != EINVAL)) {
printf("knet_link_get_status accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_status with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_get_status(knet_h, 1, KNET_MAX_LINK, &status, sizeof(struct knet_link_status))) || (errno != EINVAL)) {
printf("knet_link_get_status accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_status with incorrect status\n");
if ((!knet_link_get_status(knet_h, 1, 0, NULL, 0)) || (errno != EINVAL)) {
printf("knet_link_get_status accepted invalid status or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_status with unconfigured link\n");
if ((!knet_link_get_status(knet_h, 1, 0, &status, sizeof(struct knet_link_status))) || (errno != EINVAL)) {
printf("knet_link_get_status accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_get_status with correct values\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_status(knet_h, 1, 0, &status, sizeof(struct knet_link_status)) < 0) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_insert_acl.c b/libknet/tests/api_knet_link_insert_acl.c
index 08d507ef..8b53019c 100644
--- a/libknet/tests/api_knet_link_insert_acl.c
+++ b/libknet/tests/api_knet_link_insert_acl.c
@@ -1,246 +1,246 @@
/*
* Copyright (C) 2019-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
struct knet_host *host;
struct knet_link *link;
struct sockaddr_storage lo, lo6;
if (make_local_sockaddr(&lo, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
if (make_local_sockaddr6(&lo6, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
printf("Test knet_link_insert_acl incorrect knet_h\n");
if ((!knet_link_insert_acl(NULL, 1, 0, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_insert_acl with unconfigured host\n");
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted unconfigured host or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with unconfigured link\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with invalid link\n");
if ((!knet_link_insert_acl(knet_h, 1, KNET_MAX_LINK, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted invalid link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with invalid ss1\n");
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, NULL, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted invalid ss1 or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with invalid ss2\n");
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, NULL, CHECK_TYPE_RANGE, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted invalid ss2 or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with non matching families\n");
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo6, CHECK_TYPE_RANGE, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted non matching families or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with wrong check_type\n");
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo, CHECK_TYPE_RANGE + CHECK_TYPE_MASK + CHECK_TYPE_ADDRESS + 1, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted incorrect check_type or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with wrong acceptreject\n");
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT + CHECK_REJECT + 1)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted incorrect check_type or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_insert_acl with point to point link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_insert_acl accepted point ot point link or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
printf("Test knet_link_insert_acl with dynamic link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
host = knet_h->host_index[1];
link = &host->link[0];
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list not empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_insert_acl(knet_h, 1, 0, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) {
printf("knet_link_insert_acl did not accept dynamic link error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (!knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_rm_acl.c b/libknet/tests/api_knet_link_rm_acl.c
index 75af8283..180eaa4a 100644
--- a/libknet/tests/api_knet_link_rm_acl.c
+++ b/libknet/tests/api_knet_link_rm_acl.c
@@ -1,256 +1,256 @@
/*
* Copyright (C) 2019-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
struct knet_host *host;
struct knet_link *link;
struct sockaddr_storage lo, lo6;
if (make_local_sockaddr(&lo, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
if (make_local_sockaddr6(&lo6, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
printf("Test knet_link_rm_acl incorrect knet_h\n");
if ((!knet_link_rm_acl(NULL, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_rm_acl with unconfigured host\n");
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted unconfigured host or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with unconfigured link\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted unconfigured link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with invalid link\n");
if ((!knet_link_rm_acl(knet_h, 1, KNET_MAX_LINK, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted invalid link or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with invalid ss1\n");
if ((!knet_link_rm_acl(knet_h, 1, 0, NULL, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted invalid ss1 or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with invalid ss2\n");
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, NULL, CHECK_TYPE_RANGE, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted invalid ss2 or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with non matching families\n");
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, &lo6, CHECK_TYPE_RANGE, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted non matching families or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with wrong check_type\n");
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_RANGE + CHECK_TYPE_MASK + CHECK_TYPE_ADDRESS + 1, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted incorrect check_type or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with wrong acceptreject\n");
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT + CHECK_REJECT + 1)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted incorrect check_type or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_rm_acl with point to point link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((!knet_link_rm_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT)) || (errno != EINVAL)) {
printf("knet_link_rm_acl accepted point ot point link or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
printf("Test knet_link_rm_acl with dynamic link\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 1, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
host = knet_h->host_index[1];
link = &host->link[0];
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list not empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_add_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) {
printf("Failed to add an access list: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_rm_acl(knet_h, 1, 0, &lo, &lo, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) {
printf("knet_link_rm_acl did not accept dynamic link error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("match list NOT empty!");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_link_set_config.c b/libknet/tests/api_knet_link_set_config.c
index c3085403..fd0ecd93 100644
--- a/libknet/tests/api_knet_link_set_config.c
+++ b/libknet/tests/api_knet_link_set_config.c
@@ -1,315 +1,302 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "links.h"
#include "netutils.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
struct knet_host *host;
struct knet_link *link;
int logfds[2];
- char src_portstr[32];
- char dst_portstr[32];
- struct sockaddr_storage src, dst;
- struct sockaddr_in *src_in = (struct sockaddr_in *)&src;
- struct sockaddr_in *dst_in = (struct sockaddr_in *)&dst;
+ char lo_portstr[32];
+ struct sockaddr_storage lo, lo6;
+ struct sockaddr_in *lo_in = (struct sockaddr_in *)&lo;
struct knet_link_status link_status;
- if (make_local_sockaddr(&src, 0) < 0) {
+ if (make_local_sockaddr(&lo, -1) < 0) {
printf("Unable to convert src to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
- sprintf(src_portstr, "%d", ntohs(src_in->sin_port));
-
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
- sprintf(dst_portstr, "%d", ntohs(dst_in->sin_port));
+ sprintf(lo_portstr, "%d", ntohs(lo_in->sin_port));
printf("Test knet_link_set_config incorrect knet_h\n");
- if ((!knet_link_set_config(NULL, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0)) || (errno != EINVAL)) {
+ if ((!knet_link_set_config(NULL, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0)) || (errno != EINVAL)) {
printf("knet_link_set_config accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_link_set_config with unconfigured host_id\n");
- if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0)) || (errno != EINVAL)) {
+ if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0)) || (errno != EINVAL)) {
printf("knet_link_set_config accepted invalid host_id or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("Test knet_link_set_config with bad transport type\n");
- if ((!knet_link_set_config(knet_h, 1, 0, KNET_MAX_TRANSPORTS, &src, &dst, 0)) || (errno != EINVAL)) {
+ if ((!knet_link_set_config(knet_h, 1, 0, KNET_MAX_TRANSPORTS, &lo, &lo, 0)) || (errno != EINVAL)) {
printf("knet_link_set_config accepted invalid transport or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_set_config with incorrect linkid\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("Unable to add host_id 1: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if ((!knet_link_set_config(knet_h, 1, KNET_MAX_LINK, KNET_TRANSPORT_UDP, &src, &dst, 0)) || (errno != EINVAL)) {
+ if ((!knet_link_set_config(knet_h, 1, KNET_MAX_LINK, KNET_TRANSPORT_UDP, &lo, &lo, 0)) || (errno != EINVAL)) {
printf("knet_link_set_config accepted invalid linkid or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_set_config with incorrect src_addr\n");
- if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, NULL, &dst, 0)) || (errno != EINVAL)) {
+ if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, NULL, &lo, 0)) || (errno != EINVAL)) {
printf("knet_link_set_config accepted invalid src_addr or returned incorrect error: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_set_config with conflicting address families\n");
- if (make_local_sockaddr6(&dst, 1) < 0) {
+ if (make_local_sockaddr6(&lo6, -1) < 0) {
printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) == 0) {
+ if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo6, 0) == 0) {
printf("knet_link_set_config accepted invalid address families: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_set_config with dynamic dst_addr\n");
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, NULL, 0) < 0) {
+ if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
host = knet_h->host_index[1];
link = &host->link[0];
if (knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("found access lists for dynamic dst_addr!\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(struct knet_link_status)) < 0) {
printf("Unable to get link status: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((link_status.enabled != 0) ||
(strcmp(link_status.src_ipaddr, "127.0.0.1")) ||
- (strcmp(link_status.src_port, src_portstr)) ||
+ (strcmp(link_status.src_port, lo_portstr)) ||
(knet_h->host_index[1]->link[0].dynamic != KNET_LINK_DYNIP)) {
printf("knet_link_set_config failed to set configuration. enabled: %d src_addr %s src_port %s dynamic %u\n",
link_status.enabled, link_status.src_ipaddr, link_status.src_port, knet_h->host_index[1]->link[0].dynamic);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_link_set_config with already configured link\n");
- if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, NULL, 0) || (errno != EBUSY))) {
+ if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0) || (errno != EBUSY))) {
printf("knet_link_set_config accepted request while link configured or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("Test knet_link_set_config with link enabled\n");
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("Unable to enable link: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(struct knet_link_status)) < 0) {
printf("Unable to get link status: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, NULL, 0)) || (errno != EBUSY)) {
+ if ((!knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, NULL, 0)) || (errno != EBUSY)) {
printf("knet_link_set_config accepted request while link enabled or returned incorrect error: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 0) < 0) {
printf("Unable to disable link: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Unable to clear link config: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("Test knet_link_set_config with static dst_addr\n");
- if (make_local_sockaddr(&dst, 1) < 0) {
- printf("Unable to convert dst to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &src, &dst, 0) < 0) {
+ if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
host = knet_h->host_index[1];
link = &host->link[0];
if (!knet_h->knet_transport_fd_tracker[link->outsock].access_list_match_entry_head) {
printf("Unable to find default access lists for static dst_addr!\n");
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(struct knet_link_status)) < 0) {
printf("Unable to get link status: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((link_status.enabled != 0) ||
(strcmp(link_status.src_ipaddr, "127.0.0.1")) ||
- (strcmp(link_status.src_port, src_portstr)) ||
+ (strcmp(link_status.src_port, lo_portstr)) ||
(strcmp(link_status.dst_ipaddr, "127.0.0.1")) ||
- (strcmp(link_status.dst_port, dst_portstr)) ||
+ (strcmp(link_status.dst_port, lo_portstr)) ||
(knet_h->host_index[1]->link[0].dynamic != KNET_LINK_STATIC)) {
printf("knet_link_set_config failed to set configuration. enabled: %d src_addr %s src_port %s dst_addr %s dst_port %s dynamic %u\n",
link_status.enabled, link_status.src_ipaddr, link_status.src_port, link_status.dst_ipaddr, link_status.dst_port, knet_h->host_index[1]->link[0].dynamic);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_send.c b/libknet/tests/api_knet_send.c
index 8805bc59..e999d617 100644
--- a/libknet/tests/api_knet_send.c
+++ b/libknet/tests/api_knet_send.c
@@ -1,373 +1,368 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static void test(uint8_t transport)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct knet_link_status link_status;
char send_buff[KNET_MAX_PACKET_SIZE + 1];
char recv_buff[KNET_MAX_PACKET_SIZE];
ssize_t send_len = 0;
int recv_len = 0;
int savederrno;
struct sockaddr_storage lo;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
memset(send_buff, 0, sizeof(send_buff));
printf("Test knet_send incorrect knet_h\n");
if ((!knet_send(NULL, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_send with no send_buff\n");
if ((!knet_send(knet_h, NULL, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid send_buff or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid send_buff len (0)\n");
if ((!knet_send(knet_h, send_buff, 0, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid send_buff len (0) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid send_buff len (> KNET_MAX_PACKET_SIZE)\n");
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE + 1, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid send_buff len (> KNET_MAX_PACKET_SIZE) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid channel (-1)\n");
channel = -1;
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid channel (-1) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid channel (KNET_DATAFD_MAX)\n");
channel = KNET_DATAFD_MAX;
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid channel (KNET_DATAFD_MAX) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with unconfigured channel\n");
channel = 0;
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid unconfigured channel or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with valid data\n");
if (knet_handle_enable_access_lists(knet_h, 1) < 0) {
printf("knet_handle_enable_access_lists failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, transport, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, transport, 0, AF_INET, 0, &lo) < 0 ) {
int exit_status = transport == KNET_TRANSPORT_SCTP && errno == EPROTONOSUPPORT ? SKIP : FAIL;
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(exit_status);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff) - 1) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_packet(knet_h, 10, datafd, logfds[0], stdout)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* A sanity check on the stats */
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (link_status.stats.tx_data_packets != 2 ||
link_status.stats.rx_data_packets != 2 ||
link_status.stats.tx_data_bytes < KNET_MAX_PACKET_SIZE ||
link_status.stats.rx_data_bytes < KNET_MAX_PACKET_SIZE ||
link_status.stats.tx_data_bytes > KNET_MAX_PACKET_SIZE*2 ||
link_status.stats.rx_data_bytes > KNET_MAX_PACKET_SIZE*2) {
printf("stats look wrong: tx_packets: %" PRIu64 " (%" PRIu64 " bytes), rx_packets: %" PRIu64 " (%" PRIu64 " bytes)\n",
link_status.stats.tx_data_packets,
link_status.stats.tx_data_bytes,
link_status.stats.rx_data_packets,
link_status.stats.rx_data_bytes);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
printf("try to send big packet to local datafd (bypass knet_send)\n");
if (write(datafd, &send_buff, sizeof(send_buff)) != KNET_MAX_PACKET_SIZE + 1) {
printf("Error writing to datafd: %s\n", strerror(errno));
}
if (!wait_for_packet(knet_h, 2, datafd, logfds[0], stdout)) {
printf("Received unexpected packet!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
printf("Testing with UDP\n");
test(KNET_TRANSPORT_UDP);
#ifdef HAVE_NETINET_SCTP_H
printf("Testing with SCTP\n");
test(KNET_TRANSPORT_SCTP);
#endif
return PASS;
}
diff --git a/libknet/tests/api_knet_send_compress.c b/libknet/tests/api_knet_send_compress.c
index d302a4b0..64d174d8 100644
--- a/libknet/tests/api_knet_send_compress.c
+++ b/libknet/tests/api_knet_send_compress.c
@@ -1,299 +1,294 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "compress.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static void test(const char *model)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct knet_handle_stats stats;
char send_buff[KNET_MAX_PACKET_SIZE];
char recv_buff[KNET_MAX_PACKET_SIZE];
ssize_t send_len = 0;
int recv_len = 0;
int savederrno;
struct sockaddr_storage lo;
struct knet_handle_compress_cfg knet_handle_compress_cfg;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
memset(send_buff, 0, sizeof(send_buff));
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
flush_logs(logfds[0], stdout);
printf("Test knet_send with %s and valid data\n", model);
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
strncpy(knet_handle_compress_cfg.compress_model, model, sizeof(knet_handle_compress_cfg.compress_model) - 1);
knet_handle_compress_cfg.compress_level = 4;
knet_handle_compress_cfg.compress_threshold = 0;
if (knet_handle_compress(knet_h, &knet_handle_compress_cfg) < 0) {
printf("knet_handle_compress did not accept zlib compress mode with compress level 1 cfg\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff)) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (wait_for_packet(knet_h, 10, datafd, logfds[0], stdout)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* A sanity check on the stats */
if (knet_handle_get_stats(knet_h, &stats, sizeof(stats)) < 0) {
printf("knet_handle_get_stats failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (strcmp(model, "none") == 0) {
if (stats.tx_compressed_packets != 0 ||
stats.rx_compressed_packets != 0) {
printf("stats look wrong: s/b all 0 for model 'none' tx_packets: %" PRIu64 " (%" PRIu64 "/%" PRIu64 " comp/uncomp), rx_packets: %" PRIu64 " (%" PRIu64 "/%" PRIu64 " comp/uncomp)\n",
stats.tx_compressed_packets,
stats.tx_compressed_size_bytes,
stats.tx_compressed_original_bytes,
stats.rx_compressed_packets,
stats.rx_compressed_size_bytes,
stats.rx_compressed_original_bytes);
}
} else {
if (stats.tx_compressed_packets != 1 ||
stats.rx_compressed_packets != 1 ||
stats.tx_compressed_original_bytes < stats.tx_compressed_size_bytes ||
stats.tx_compressed_original_bytes < stats.tx_compressed_size_bytes) {
printf("stats look wrong: tx_packets: %" PRIu64 " (%" PRIu64 "/%" PRIu64 " comp/uncomp), rx_packets: %" PRIu64 " (%" PRIu64 "/%" PRIu64 " comp/uncomp)\n",
stats.tx_compressed_packets,
stats.tx_compressed_size_bytes,
stats.tx_compressed_original_bytes,
stats.rx_compressed_packets,
stats.rx_compressed_size_bytes,
stats.rx_compressed_original_bytes);
}
}
flush_logs(logfds[0], stdout);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
struct knet_compress_info compress_list[16];
size_t compress_list_entries;
size_t i;
memset(compress_list, 0, sizeof(compress_list));
if (knet_get_compress_list(compress_list, &compress_list_entries) < 0) {
printf("knet_get_compress_list failed: %s\n", strerror(errno));
return FAIL;
}
if (compress_list_entries == 0) {
printf("no compression modules detected. Skipping\n");
return SKIP;
}
test("none");
for (i=0; i < compress_list_entries; i++) {
test(compress_list[i].name);
}
return PASS;
}
diff --git a/libknet/tests/api_knet_send_crypto.c b/libknet/tests/api_knet_send_crypto.c
index a894e9fa..4b2982c9 100644
--- a/libknet/tests/api_knet_send_crypto.c
+++ b/libknet/tests/api_knet_send_crypto.c
@@ -1,283 +1,278 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "compress.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static void test(const char *model)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct knet_handle_stats stats;
char send_buff[KNET_MAX_PACKET_SIZE];
char recv_buff[KNET_MAX_PACKET_SIZE];
ssize_t send_len = 0;
int recv_len = 0;
int savederrno;
struct sockaddr_storage lo;
struct knet_handle_crypto_cfg knet_handle_crypto_cfg;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
memset(send_buff, 0, sizeof(send_buff));
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
flush_logs(logfds[0], stdout);
printf("Test knet_send with %s and valid data\n", model);
memset(&knet_handle_crypto_cfg, 0, sizeof(struct knet_handle_crypto_cfg));
strncpy(knet_handle_crypto_cfg.crypto_model, model, sizeof(knet_handle_crypto_cfg.crypto_model) - 1);
strncpy(knet_handle_crypto_cfg.crypto_cipher_type, "aes128", sizeof(knet_handle_crypto_cfg.crypto_cipher_type) - 1);
strncpy(knet_handle_crypto_cfg.crypto_hash_type, "sha256", sizeof(knet_handle_crypto_cfg.crypto_hash_type) - 1);
knet_handle_crypto_cfg.private_key_len = 2000;
if (knet_handle_crypto(knet_h, &knet_handle_crypto_cfg)) {
printf("knet_handle_crypto failed with correct config: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff)) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_packet(knet_h, 10, datafd, logfds[0], stdout)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* A sanity check on the stats */
if (knet_handle_get_stats(knet_h, &stats, sizeof(stats)) < 0) {
printf("knet_handle_get_stats failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (stats.tx_crypt_packets >= 1 ||
stats.rx_crypt_packets < 1) {
printf("stats look wrong: tx_packets: %" PRIu64 ", rx_packets: %" PRIu64 "\n",
stats.tx_crypt_packets,
stats.rx_crypt_packets);
}
flush_logs(logfds[0], stdout);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
struct knet_crypto_info crypto_list[16];
size_t crypto_list_entries;
size_t i;
#ifdef KNET_BSD
if (is_memcheck() || is_helgrind()) {
printf("valgrind-freebsd cannot run this test properly. Skipping\n");
return SKIP;
}
#endif
memset(crypto_list, 0, sizeof(crypto_list));
if (knet_get_crypto_list(crypto_list, &crypto_list_entries) < 0) {
printf("knet_get_crypto_list failed: %s\n", strerror(errno));
return FAIL;
}
if (crypto_list_entries == 0) {
printf("no crypto modules detected. Skipping\n");
return SKIP;
}
for (i=0; i < crypto_list_entries; i++) {
test(crypto_list[i].name);
}
return PASS;
}
diff --git a/libknet/tests/api_knet_send_loopback.c b/libknet/tests/api_knet_send_loopback.c
index 825d672d..18aae92a 100644
--- a/libknet/tests/api_knet_send_loopback.c
+++ b/libknet/tests/api_knet_send_loopback.c
@@ -1,440 +1,436 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static int dhost_filter(void *pvt_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_host_id,
int8_t *dst_channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries)
{
dst_host_ids[0] = 1;
*dst_host_ids_entries = 1;
return 0;
}
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct knet_link_status link_status;
char send_buff[KNET_MAX_PACKET_SIZE];
char recv_buff[KNET_MAX_PACKET_SIZE];
ssize_t send_len = 0;
int recv_len = 0;
int savederrno;
struct sockaddr_storage lo;
- if (make_local_sockaddr(&lo, 1) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
memset(send_buff, 0, sizeof(send_buff));
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
flush_logs(logfds[0], stdout);
printf("Test configuring multiple links with loopback\n");
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_LOOPBACK, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) == 0) {
+ if (_knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_LOOPBACK, 0, AF_INET, 0, &lo) == 0) {
printf("Managed to configure two LOOPBACK links - this is wrong\n");
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test configuring UDP link after loopback\n");
- if (knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_UDP, &lo, &lo, 0) == 0) {
+ if (_knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) == 0) {
printf("Managed to configure UDP and LOOPBACK links together: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test configuring UDP link before loopback\n");
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Failed to clear existing LOOPBACK link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Failed to configure UDP link for testing: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) == 0) {
+ if (_knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_LOOPBACK, 0, AF_INET, 0, &lo) == 0) {
printf("Managed to configure LOOPBACK link after UDP: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with valid data\n");
if (knet_handle_enable_access_lists(knet_h, 1) < 0) {
printf("knet_handle_enable_access_lists failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_clear_config(knet_h, 1, 0) < 0) {
printf("Failed to clear existing UDP link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_LOOPBACK, 0, AF_INET, 0, &lo) < 0) {
printf("Failed configure LOOPBACK link for sending: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff)) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_packet(knet_h, 10, datafd, logfds[0], stdout)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* A sanity check on the stats */
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (link_status.stats.tx_data_packets != 1 ||
link_status.stats.rx_data_packets != 0 ||
link_status.stats.tx_data_bytes != KNET_MAX_PACKET_SIZE) {
printf("stats look wrong: tx_packets: %" PRIu64 " (%" PRIu64 " bytes), rx_packets: %" PRIu64 " (%" PRIu64 " bytes)\n",
link_status.stats.tx_data_packets,
link_status.stats.tx_data_bytes,
link_status.stats.rx_data_packets,
link_status.stats.rx_data_bytes);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with only localhost\n");
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_enable_filter(knet_h, NULL, dhost_filter) < 0) {
printf("knet_handle_enable_filter failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff)) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_packet(knet_h, 10, datafd, logfds[0], stdout)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/api_knet_send_sync.c b/libknet/tests/api_knet_send_sync.c
index 240bdf4a..2b5359a4 100644
--- a/libknet/tests/api_knet_send_sync.c
+++ b/libknet/tests/api_knet_send_sync.c
@@ -1,402 +1,397 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static int dhost_filter_ret = 0;
static int dhost_filter(void *pvt_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_host_id,
int8_t *dst_channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries)
{
dst_host_ids[0] = 0;
/*
* fatal fault
*/
if (dhost_filter_ret < 0) {
return -1;
}
/*
* trigger EINVAL
* no ids found
*/
if (dhost_filter_ret == 0) {
*dst_host_ids_entries = 0;
return 0;
}
/*
* send correct info back
*/
if (dhost_filter_ret == 1) {
dst_host_ids[0] = 1;
*dst_host_ids_entries = 1;
return 0;
}
/*
* trigger E2BIG
* mcast destinations
*/
if (dhost_filter_ret == 2) {
dst_host_ids[0] = 1;
*dst_host_ids_entries = 2;
return 0;
}
/*
* return mcast
*/
if (dhost_filter_ret == 3) {
return 1;
}
return dhost_filter_ret;
}
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
char send_buff[KNET_MAX_PACKET_SIZE];
struct sockaddr_storage lo;
- if (make_local_sockaddr(&lo, 1) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit(FAIL);
- }
-
memset(send_buff, 0, sizeof(send_buff));
printf("Test knet_send_sync incorrect knet_h\n");
if ((!knet_send_sync(NULL, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_send_sync with no send_buff\n");
if ((!knet_send_sync(knet_h, NULL, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid send_buff or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with invalid send_buff len (0)\n");
if ((!knet_send_sync(knet_h, send_buff, 0, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid send_buff len (0) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with invalid send_buff len (> KNET_MAX_PACKET_SIZE)\n");
if ((!knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE + 1, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid send_buff len (> KNET_MAX_PACKET_SIZE) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with invalid channel (-1)\n");
channel = -1;
if ((!knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid channel (-1) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with invalid channel (KNET_DATAFD_MAX)\n");
channel = KNET_DATAFD_MAX;
if ((!knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid channel (KNET_DATAFD_MAX) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with unconfigured channel\n");
channel = 0;
if ((!knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send_sync accepted invalid unconfigured channel or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with data forwarding disabled\n");
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if ((knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) == sizeof(send_buff)) || (errno != ECANCELED)) {
printf("knet_send_sync didn't detect datafwd disabled or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with broken dst_host_filter\n");
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_enable_filter(knet_h, NULL, dhost_filter) < 0) {
printf("knet_handle_enable_filter failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
dhost_filter_ret = -1;
if ((knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) == sizeof(send_buff)) || (errno != EFAULT)) {
printf("knet_send_sync didn't detect fatal error from dst_host_filter or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with dst_host_filter returning no host_ids_entries\n");
dhost_filter_ret = 0;
if ((knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) == sizeof(send_buff)) || (errno != EINVAL)) {
printf("knet_send_sync didn't detect 0 host_ids from dst_host_filter or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with host down\n");
dhost_filter_ret = 1;
if ((knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) == sizeof(send_buff)) || (errno != EHOSTDOWN)) {
printf("knet_send_sync didn't detect hostdown or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with dst_host_filter returning too many host_ids_entries\n");
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
dhost_filter_ret = 2;
if ((knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) == sizeof(send_buff)) || (errno != E2BIG)) {
printf("knet_send_sync didn't detect 2+ host_ids from dst_host_filter or returned incorrect error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with dst_host_filter returning mcast packets\n");
dhost_filter_ret = 3;
if ((knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) == sizeof(send_buff)) || (errno != E2BIG)) {
printf("knet_send_sync didn't detect mcast packet from dst_host_filter or returned incorrect error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send_sync with valid data\n");
dhost_filter_ret = 1;
if (knet_send_sync(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel) < 0) {
printf("knet_send_sync failed: %d %s\n", errno, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
test();
return PASS;
}
diff --git a/libknet/tests/fun_pmtud_crypto.c b/libknet/tests/fun_pmtud_crypto.c
index 9e552fc2..bbd31451 100644
--- a/libknet/tests/fun_pmtud_crypto.c
+++ b/libknet/tests/fun_pmtud_crypto.c
@@ -1,326 +1,321 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/ioctl.h>
#include <net/ethernet.h>
#include <ifaddrs.h>
#include <net/if.h>
#include "libknet.h"
#include "compress.h"
#include "internals.h"
#include "netutils.h"
#include "onwire.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
static int iface_fd = 0;
static int default_mtu = 0;
#ifdef KNET_LINUX
const char *loopback = "lo";
#endif
#ifdef KNET_BSD
const char *loopback = "lo0";
#endif
static int fd_init(void)
{
#ifdef KNET_LINUX
return socket(AF_INET, SOCK_STREAM, 0);
#endif
#ifdef KNET_BSD
return socket(AF_LOCAL, SOCK_DGRAM, 0);
#endif
return -1;
}
static int set_iface_mtu(uint32_t mtu)
{
int err = 0;
struct ifreq ifr;
memset(&ifr, 0, sizeof(struct ifreq));
strncpy(ifr.ifr_name, loopback, IFNAMSIZ - 1);
ifr.ifr_mtu = mtu;
err = ioctl(iface_fd, SIOCSIFMTU, &ifr);
return err;
}
static int get_iface_mtu(void)
{
int err = 0, savederrno = 0;
struct ifreq ifr;
memset(&ifr, 0, sizeof(struct ifreq));
strncpy(ifr.ifr_name, loopback, IFNAMSIZ - 1);
err = ioctl(iface_fd, SIOCGIFMTU, &ifr);
if (err) {
savederrno = errno;
goto out_clean;
}
err = ifr.ifr_mtu;
out_clean:
errno = savederrno;
return err;
}
static int exit_local(int code)
{
set_iface_mtu(default_mtu);
close(iface_fd);
iface_fd = 0;
exit(code);
}
static void test_mtu(const char *model, const char *crypto, const char *hash)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct sockaddr_storage lo;
struct knet_handle_crypto_cfg knet_handle_crypto_cfg;
unsigned int data_mtu, expected_mtu;
size_t calculated_iface_mtu = 0, detected_iface_mtu = 0;
- if (make_local_sockaddr(&lo, 0) < 0) {
- printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
- exit_local(FAIL);
- }
-
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
flush_logs(logfds[0], stdout);
printf("Test knet_send with %s and valid data\n", model);
memset(&knet_handle_crypto_cfg, 0, sizeof(struct knet_handle_crypto_cfg));
strncpy(knet_handle_crypto_cfg.crypto_model, model, sizeof(knet_handle_crypto_cfg.crypto_model) - 1);
strncpy(knet_handle_crypto_cfg.crypto_cipher_type, crypto, sizeof(knet_handle_crypto_cfg.crypto_cipher_type) - 1);
strncpy(knet_handle_crypto_cfg.crypto_hash_type, hash, sizeof(knet_handle_crypto_cfg.crypto_hash_type) - 1);
knet_handle_crypto_cfg.private_key_len = 2000;
if (knet_handle_crypto(knet_h, &knet_handle_crypto_cfg)) {
printf("knet_handle_crypto failed with correct config: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (_knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, 0, AF_INET, 0, &lo) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
if (knet_link_set_pong_count(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_pong_count failed: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
if (wait_for_host(knet_h, 1, 4, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
flush_logs(logfds[0], stdout);
if (knet_handle_pmtud_get(knet_h, &data_mtu) < 0) {
printf("knet_handle_pmtud_get failed error: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
calculated_iface_mtu = calc_data_outlen(knet_h, data_mtu + KNET_HEADER_ALL_SIZE) + 28;
detected_iface_mtu = get_iface_mtu();
/*
* 28 = 20 IP header + 8 UDP header
*/
expected_mtu = calc_max_data_outlen(knet_h, detected_iface_mtu - 28);
if (expected_mtu != data_mtu) {
printf("Wrong MTU detected! interface mtu: %zu knet mtu: %u expected mtu: %u\n", detected_iface_mtu, data_mtu, expected_mtu);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
if ((detected_iface_mtu - calculated_iface_mtu) >= knet_h->sec_block_size) {
printf("Wrong MTU detected! real iface mtu: %zu calculated: %zu\n", detected_iface_mtu, calculated_iface_mtu);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit_local(FAIL);
}
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
static void test(const char *model, const char *crypto, const char *hash)
{
int i = 576;
int max = 65535;
while (i <= max) {
printf("Setting interface MTU to: %i\n", i);
set_iface_mtu(i);
test_mtu(model, crypto, hash);
if (i == max) {
break;
}
i = i + 15;
if (i > max) {
i = max;
}
}
}
int main(int argc, char *argv[])
{
struct knet_crypto_info crypto_list[16];
size_t crypto_list_entries;
#ifdef KNET_BSD
if (is_memcheck() || is_helgrind()) {
printf("valgrind-freebsd cannot run this test properly. Skipping\n");
return SKIP;
}
#endif
if (geteuid() != 0) {
printf("This test requires root privileges\n");
return SKIP;
}
iface_fd = fd_init();
if (iface_fd < 0) {
printf("fd_init failed: %s\n", strerror(errno));
return FAIL;
}
default_mtu = get_iface_mtu();
if (default_mtu < 0) {
printf("get_iface_mtu failed: %s\n", strerror(errno));
return FAIL;
}
memset(crypto_list, 0, sizeof(crypto_list));
if (knet_get_crypto_list(crypto_list, &crypto_list_entries) < 0) {
printf("knet_get_crypto_list failed: %s\n", strerror(errno));
return FAIL;
}
if (crypto_list_entries == 0) {
printf("no crypto modules detected. Skipping\n");
return SKIP;
}
test(crypto_list[0].name, "aes128", "sha1");
test(crypto_list[0].name, "aes128", "sha256");
test(crypto_list[0].name, "aes256", "sha1");
test(crypto_list[0].name, "aes256", "sha256");
exit_local(PASS);
}
diff --git a/libknet/tests/test-common.c b/libknet/tests/test-common.c
index 3461fb7d..481d7fe0 100644
--- a/libknet/tests/test-common.c
+++ b/libknet/tests/test-common.c
@@ -1,537 +1,585 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/select.h>
#include "libknet.h"
#include "test-common.h"
static pthread_mutex_t log_mutex = PTHREAD_MUTEX_INITIALIZER;
static int log_init = 0;
static pthread_mutex_t log_thread_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_t log_thread;
static int log_thread_init = 0;
static int log_fds[2];
struct log_thread_data {
int logfd;
FILE *std;
};
static struct log_thread_data data;
static pthread_mutex_t shutdown_mutex = PTHREAD_MUTEX_INITIALIZER;
static int stop_in_progress = 0;
static int _read_pipe(int fd, char **file, size_t *length)
{
char buf[4096];
int n;
int done = 0;
*file = NULL;
*length = 0;
memset(buf, 0, sizeof(buf));
while (!done) {
n = read(fd, buf, sizeof(buf));
if (n < 0) {
if (errno == EINTR)
continue;
if (*file)
free(*file);
return n;
}
if (n == 0 && (!*length))
return 0;
if (n == 0)
done = 1;
if (*file)
*file = realloc(*file, (*length) + n + done);
else
*file = malloc(n + done);
if (!*file)
return -1;
memmove((*file) + (*length), buf, n);
*length += (done + n);
}
/* Null terminator */
(*file)[(*length) - 1] = 0;
return 0;
}
int execute_shell(const char *command, char **error_string)
{
pid_t pid;
int status, err = 0;
int fd[2];
size_t size = 0;
if ((command == NULL) || (!error_string)) {
errno = EINVAL;
return FAIL;
}
*error_string = NULL;
err = pipe(fd);
if (err)
goto out_clean;
pid = fork();
if (pid < 0) {
err = pid;
goto out_clean;
}
if (pid) { /* parent */
close(fd[1]);
err = _read_pipe(fd[0], error_string, &size);
if (err)
goto out_clean0;
waitpid(pid, &status, 0);
if (!WIFEXITED(status)) {
err = -1;
goto out_clean0;
}
if (WIFEXITED(status) && WEXITSTATUS(status) != 0) {
err = WEXITSTATUS(status);
goto out_clean0;
}
goto out_clean0;
} else { /* child */
close(0);
close(1);
close(2);
close(fd[0]);
dup2(fd[1], 1);
dup2(fd[1], 2);
close(fd[1]);
execlp("/bin/sh", "/bin/sh", "-c", command, NULL);
exit(FAIL);
}
out_clean:
close(fd[1]);
out_clean0:
close(fd[0]);
return err;
}
int is_memcheck(void)
{
char *val;
val = getenv("KNETMEMCHECK");
if (val) {
if (!strncmp(val, "yes", 3)) {
return 1;
}
}
return 0;
}
int is_helgrind(void)
{
char *val;
val = getenv("KNETHELGRIND");
if (val) {
if (!strncmp(val, "yes", 3)) {
return 1;
}
}
return 0;
}
void set_scheduler(int policy)
{
struct sched_param sched_param;
int err;
err = sched_get_priority_max(policy);
if (err < 0) {
printf("Could not get maximum scheduler priority\n");
exit(FAIL);
}
sched_param.sched_priority = err;
err = sched_setscheduler(0, policy, &sched_param);
if (err < 0) {
printf("Could not set priority\n");
exit(FAIL);
}
return;
}
int setup_logpipes(int *logfds)
{
if (pipe2(logfds, O_CLOEXEC | O_NONBLOCK) < 0) {
printf("Unable to setup logging pipe\n");
exit(FAIL);
}
return PASS;
}
void close_logpipes(int *logfds)
{
close(logfds[0]);
logfds[0] = 0;
close(logfds[1]);
logfds[1] = 0;
}
void flush_logs(int logfd, FILE *std)
{
struct knet_log_msg msg;
int len;
while (1) {
len = read(logfd, &msg, sizeof(msg));
if (len != sizeof(msg)) {
/*
* clear errno to avoid incorrect propagation
*/
errno = 0;
return;
}
msg.msg[sizeof(msg.msg) - 1] = 0;
fprintf(std, "[knet]: [%s] %s: %.*s\n",
knet_log_get_loglevel_name(msg.msglevel),
knet_log_get_subsystem_name(msg.subsystem),
KNET_MAX_LOG_MSG_SIZE, msg.msg);
}
}
static void *_logthread(void *args)
{
while (1) {
int num;
struct timeval tv = { 60, 0 };
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(data.logfd, &rfds);
num = select(FD_SETSIZE, &rfds, NULL, NULL, &tv);
if (num < 0) {
fprintf(data.std, "Unable select over logfd!\nHALTING LOGTHREAD!\n");
return NULL;
}
if (num == 0) {
fprintf(data.std, "[knet]: No logs in the last 60 seconds\n");
continue;
}
if (FD_ISSET(data.logfd, &rfds)) {
flush_logs(data.logfd, data.std);
}
}
}
int start_logthread(int logfd, FILE *std)
{
int savederrno = 0;
savederrno = pthread_mutex_lock(&log_thread_mutex);
if (savederrno) {
printf("Unable to get log_thread mutex lock\n");
return -1;
}
if (!log_thread_init) {
data.logfd = logfd;
data.std = std;
savederrno = pthread_create(&log_thread, 0, _logthread, NULL);
if (savederrno) {
printf("Unable to start logging thread: %s\n", strerror(savederrno));
pthread_mutex_unlock(&log_thread_mutex);
return -1;
}
log_thread_init = 1;
}
pthread_mutex_unlock(&log_thread_mutex);
return 0;
}
int stop_logthread(void)
{
int savederrno = 0;
void *retval;
savederrno = pthread_mutex_lock(&log_thread_mutex);
if (savederrno) {
printf("Unable to get log_thread mutex lock\n");
return -1;
}
if (log_thread_init) {
pthread_cancel(log_thread);
pthread_join(log_thread, &retval);
log_thread_init = 0;
}
pthread_mutex_unlock(&log_thread_mutex);
return 0;
}
static void stop_logging(void)
{
stop_logthread();
flush_logs(log_fds[0], stdout);
close_logpipes(log_fds);
}
int start_logging(FILE *std)
{
int savederrno = 0;
savederrno = pthread_mutex_lock(&log_mutex);
if (savederrno) {
printf("Unable to get log_mutex lock\n");
return -1;
}
if (!log_init) {
setup_logpipes(log_fds);
if (atexit(&stop_logging) != 0) {
printf("Unable to register atexit handler to stop logging: %s\n",
strerror(errno));
exit(FAIL);
}
if (start_logthread(log_fds[0], std) < 0) {
exit(FAIL);
}
log_init = 1;
}
pthread_mutex_unlock(&log_mutex);
return log_fds[1];
}
knet_handle_t knet_handle_start(int logfds[2], uint8_t log_level)
{
knet_handle_t knet_h = knet_handle_new_ex(1, logfds[1], log_level, 0);
if (knet_h) {
return knet_h;
} else {
printf("knet_handle_new failed: %s\n", strerror(errno));
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
}
int knet_handle_stop(knet_handle_t knet_h)
{
int savederrno;
size_t i, j;
knet_node_id_t host_ids[KNET_MAX_HOST];
uint8_t link_ids[KNET_MAX_LINK];
size_t host_ids_entries = 0, link_ids_entries = 0;
struct knet_link_status status;
savederrno = pthread_mutex_lock(&shutdown_mutex);
if (savederrno) {
printf("Unable to get shutdown mutex lock\n");
return -1;
}
if (stop_in_progress) {
pthread_mutex_unlock(&shutdown_mutex);
errno = EINVAL;
return -1;
}
stop_in_progress = 1;
pthread_mutex_unlock(&shutdown_mutex);
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (knet_handle_setfwd(knet_h, 0) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
return -1;
}
if (knet_host_get_host_list(knet_h, host_ids, &host_ids_entries) < 0) {
printf("knet_host_get_host_list failed: %s\n", strerror(errno));
return -1;
}
for (i = 0; i < host_ids_entries; i++) {
if (knet_link_get_link_list(knet_h, host_ids[i], link_ids, &link_ids_entries)) {
printf("knet_link_get_link_list failed: %s\n", strerror(errno));
return -1;
}
for (j = 0; j < link_ids_entries; j++) {
if (knet_link_get_status(knet_h, host_ids[i], link_ids[j], &status, sizeof(struct knet_link_status))) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
return -1;
}
if (status.enabled) {
if (knet_link_set_enable(knet_h, host_ids[i], j, 0)) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
return -1;
}
}
knet_link_clear_config(knet_h, host_ids[i], j);
}
if (knet_host_remove(knet_h, host_ids[i]) < 0) {
printf("knet_host_remove failed: %s\n", strerror(errno));
return -1;
}
}
if (knet_handle_free(knet_h)) {
printf("knet_handle_free failed: %s\n", strerror(errno));
return -1;
}
return 0;
}
-static int _make_local_sockaddr(struct sockaddr_storage *lo, uint16_t offset, int family)
+static int _make_local_sockaddr(struct sockaddr_storage *lo, int offset, int family)
{
- uint32_t port;
+ in_port_t port;
char portstr[32];
- /* Use the pid if we can. but makes sure its in a sensible range */
- port = (uint32_t)getpid() + offset;
- if (port < 1024) {
- port += 1024;
- }
- if (port > 65536) {
- port = port & 0xFFFF;
+ if (offset < 0) {
+ /*
+ * api_knet_link_set_config needs to access the API directly, but
+ * it does not send any traffic, so it´s safe to ask the kernel
+ * for a random port.
+ */
+ port = 0;
+ } else {
+ /* Use the pid if we can. but makes sure its in a sensible range */
+ port = (getpid() + offset) % (65536-1024) + 1024;
}
sprintf(portstr, "%u", port);
memset(lo, 0, sizeof(struct sockaddr_storage));
printf("Using port %u\n", port);
if (family == AF_INET6) {
return knet_strtoaddr("::1", portstr, lo, sizeof(struct sockaddr_storage));
}
return knet_strtoaddr("127.0.0.1", portstr, lo, sizeof(struct sockaddr_storage));
}
-int make_local_sockaddr(struct sockaddr_storage *lo, uint16_t offset)
+int make_local_sockaddr(struct sockaddr_storage *lo, int offset)
{
return _make_local_sockaddr(lo, offset, AF_INET);
}
-int make_local_sockaddr6(struct sockaddr_storage *lo, uint16_t offset)
+int make_local_sockaddr6(struct sockaddr_storage *lo, int offset)
{
return _make_local_sockaddr(lo, offset, AF_INET6);
}
+int _knet_link_set_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
+ uint8_t transport, uint64_t flags, int family, int dynamic,
+ struct sockaddr_storage *lo)
+{
+ int err = 0, savederrno = 0;
+ uint32_t port;
+ char portstr[32];
+
+ for (port = 1025; port < 65536; port++) {
+ sprintf(portstr, "%u", port);
+ memset(lo, 0, sizeof(struct sockaddr_storage));
+ if (family == AF_INET6) {
+ err = knet_strtoaddr("::1", portstr, lo, sizeof(struct sockaddr_storage));
+ } else {
+ err = knet_strtoaddr("127.0.0.1", portstr, lo, sizeof(struct sockaddr_storage));
+ }
+ if (err < 0) {
+ printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
+ goto out;
+ }
+ errno = 0;
+ if (dynamic) {
+ err = knet_link_set_config(knet_h, host_id, link_id, transport, lo, NULL, flags);
+ } else {
+ err = knet_link_set_config(knet_h, host_id, link_id, transport, lo, lo, flags);
+ }
+ savederrno = errno;
+ if ((err < 0) && (savederrno != EADDRINUSE)) {
+ printf("Unable to configure link: %s\n", strerror(savederrno));
+ goto out;
+ }
+ if (!err) {
+ printf("Using port %u\n", port);
+ goto out;
+ }
+ }
+
+ if (err) {
+ printf("No more ports available\n");
+ }
+out:
+ errno = savederrno;
+ return err;
+}
+
void test_sleep(knet_handle_t knet_h, int seconds)
{
if (is_memcheck() || is_helgrind()) {
printf("Test suite is running under valgrind, adjusting sleep timers\n");
seconds = seconds * 16;
}
sleep(seconds);
}
int wait_for_host(knet_handle_t knet_h, uint16_t host_id, int seconds, int logfd, FILE *std)
{
int i = 0;
if (is_memcheck() || is_helgrind()) {
printf("Test suite is running under valgrind, adjusting wait_for_host timeout\n");
seconds = seconds * 16;
}
while (i < seconds) {
flush_logs(logfd, std);
if (knet_h->host_index[host_id]->status.reachable == 1) {
printf("Waiting for host to settle\n");
test_sleep(knet_h, 1);
return 0;
}
printf("waiting host %u to be reachable for %d more seconds\n", host_id, seconds - i);
sleep(1);
i++;
}
return -1;
}
int wait_for_packet(knet_handle_t knet_h, int seconds, int datafd, int logfd, FILE *std)
{
fd_set rfds;
struct timeval tv;
int err = 0, i = 0;
if (is_memcheck() || is_helgrind()) {
printf("Test suite is running under valgrind, adjusting wait_for_packet timeout\n");
seconds = seconds * 16;
}
try_again:
FD_ZERO(&rfds);
FD_SET(datafd, &rfds);
tv.tv_sec = 1;
tv.tv_usec = 0;
err = select(datafd+1, &rfds, NULL, NULL, &tv);
/*
* on slow arches the first call to select can return 0.
* pick an arbitrary 10 times loop (multiplied by waiting seconds)
* before failing.
*/
if ((!err) && (i < seconds)) {
flush_logs(logfd, std);
i++;
goto try_again;
}
if ((err > 0) && (FD_ISSET(datafd, &rfds))) {
return 0;
}
return -1;
}
diff --git a/libknet/tests/test-common.h b/libknet/tests/test-common.h
index 96672e8e..0c40400f 100644
--- a/libknet/tests/test-common.h
+++ b/libknet/tests/test-common.h
@@ -1,76 +1,84 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+
*/
#ifndef __KNET_TEST_COMMON_H__
#define __KNET_TEST_COMMON_H__
#include "internals.h"
#include <sched.h>
/*
* error codes from automake test-driver
*/
#define PASS 0
#define SKIP 77
#define ERROR 99
#define FAIL -1
/* For *BSD compatibility */
#ifndef s6_addr16
#define s6_addr8 __u6_addr.__u6_addr8
#define s6_addr16 __u6_addr.__u6_addr16
#define s6_addr32 __u6_addr.__u6_addr32
#endif
/*
* common facilities
*/
int execute_shell(const char *command, char **error_string);
int is_memcheck(void);
int is_helgrind(void);
void set_scheduler(int policy);
knet_handle_t knet_handle_start(int logfds[2], uint8_t log_level);
/*
* consider moving this one as official API
*/
int knet_handle_stop(knet_handle_t knet_h);
+/*
+ * knet_link_set_config wrapper required to find a free port
+ */
+
+int _knet_link_set_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
+ uint8_t transport, uint64_t flags, int family, int dynamic,
+ struct sockaddr_storage *lo);
+
/*
* high level logging function.
* automatically setup logpipes and start/stop logging thread.
*
* start_logging exit(FAIL) on error or fd to pass to knet_handle_new
* and it will install an atexit handle to close logging properly
*
* WARNING: DO NOT use start_logging for api_ or int_ testing.
* while start_logging would work just fine, the output
* of the logs is more complex to read because of the way
* the thread would interleave the output of printf from api_/int_ testing
* with knet logs. Functionally speaking you get the exact same logs,
* but a lot harder to read due to the thread latency in printing logs.
*/
int start_logging(FILE *std);
int setup_logpipes(int *logfds);
void close_logpipes(int *logfds);
void flush_logs(int logfd, FILE *std);
int start_logthread(int logfd, FILE *std);
int stop_logthread(void);
-int make_local_sockaddr(struct sockaddr_storage *lo, uint16_t offset);
-int make_local_sockaddr6(struct sockaddr_storage *lo, uint16_t offset);
+int make_local_sockaddr(struct sockaddr_storage *lo, int offset);
+int make_local_sockaddr6(struct sockaddr_storage *lo, int offset);
int wait_for_host(knet_handle_t knet_h, uint16_t host_id, int seconds, int logfd, FILE *std);
int wait_for_packet(knet_handle_t knet_h, int seconds, int datafd, int logfd, FILE *std);
void test_sleep(knet_handle_t knet_h, int seconds);
#endif
diff --git a/libknet/threads_heartbeat.c b/libknet/threads_heartbeat.c
index 1ed6207c..3b6ca161 100644
--- a/libknet/threads_heartbeat.c
+++ b/libknet/threads_heartbeat.c
@@ -1,225 +1,238 @@
/*
* Copyright (C) 2015-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
#include <time.h>
#include "crypto.h"
#include "links.h"
#include "logging.h"
#include "transports.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
static void _link_down(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link)
{
memset(&dst_link->pmtud_last, 0, sizeof(struct timespec));
dst_link->received_pong = 0;
dst_link->status.pong_last.tv_nsec = 0;
dst_link->pong_timeout_backoff = KNET_LINK_PONG_TIMEOUT_BACKOFF;
if (dst_link->status.connected == 1) {
log_info(knet_h, KNET_SUB_LINK, "host: %u link: %u is down",
dst_host->host_id, dst_link->link_id);
- _link_updown(knet_h, dst_host->host_id, dst_link->link_id, dst_link->status.enabled, 0);
+ _link_updown(knet_h, dst_host->host_id, dst_link->link_id, dst_link->status.enabled, 0, 1);
}
}
static void _handle_check_each(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link, int timed)
{
- int err = 0, savederrno = 0;
+ int err = 0, savederrno = 0, stats_err = 0;
int len;
ssize_t outlen = KNET_HEADER_PING_SIZE;
struct timespec clock_now, pong_last;
unsigned long long diff_ping;
unsigned char *outbuf = (unsigned char *)knet_h->pingbuf;
if (dst_link->transport_connected == 0) {
_link_down(knet_h, dst_host, dst_link);
return;
}
/* caching last pong to avoid race conditions */
pong_last = dst_link->status.pong_last;
if (clock_gettime(CLOCK_MONOTONIC, &clock_now) != 0) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get monotonic clock");
return;
}
timespec_diff(dst_link->ping_last, clock_now, &diff_ping);
if ((diff_ping >= (dst_link->ping_interval * 1000llu)) || (!timed)) {
memmove(&knet_h->pingbuf->khp_ping_time[0], &clock_now, sizeof(struct timespec));
knet_h->pingbuf->khp_ping_link = dst_link->link_id;
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get seq mutex lock");
return;
}
knet_h->pingbuf->khp_ping_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
knet_h->pingbuf->khp_ping_timed = timed;
if (knet_h->crypto_instance) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)knet_h->pingbuf,
outlen,
knet_h->pingbuf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to crypto ping packet");
return;
}
outbuf = knet_h->pingbuf_crypt;
+ if (pthread_mutex_lock(&knet_h->handle_stats_mutex) < 0) {
+ log_err(knet_h, KNET_SUB_HEARTBEAT, "Unable to get mutex lock");
+ return;
+ }
knet_h->stats_extra.tx_crypt_ping_packets++;
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
+ }
+
+ stats_err = pthread_mutex_lock(&dst_link->link_stats_mutex);
+ if (stats_err) {
+ log_err(knet_h, KNET_SUB_HEARTBEAT, "Unable to get stats mutex lock for host %u link %u: %s",
+ dst_host->host_id, dst_link->link_id, strerror(stats_err));
+ return;
}
retry:
if (transport_get_connection_oriented(knet_h, dst_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(dst_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &dst_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(dst_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
dst_link->ping_last = clock_now;
dst_link->status.stats.tx_ping_packets++;
dst_link->status.stats.tx_ping_bytes += outlen;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, dst_link->transport, dst_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_HEARTBEAT,
"Unable to send ping (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
dst_link->outsock, savederrno, strerror(savederrno),
dst_link->status.src_ipaddr, dst_link->status.src_port,
dst_link->status.dst_ipaddr, dst_link->status.dst_port);
dst_link->status.stats.tx_ping_errors++;
break;
case 0:
break;
case 1:
dst_link->status.stats.tx_ping_retries++;
goto retry;
break;
}
} else {
dst_link->last_ping_size = outlen;
}
+ pthread_mutex_unlock(&dst_link->link_stats_mutex);
}
timespec_diff(pong_last, clock_now, &diff_ping);
if ((pong_last.tv_nsec) &&
(diff_ping >= (dst_link->pong_timeout_adj * 1000llu))) {
_link_down(knet_h, dst_host, dst_link);
}
}
void _send_pings(knet_handle_t knet_h, int timed)
{
struct knet_host *dst_host;
int link_idx;
if (pthread_mutex_lock(&knet_h->hb_mutex)) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get hb mutex lock");
return;
}
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if ((dst_host->link[link_idx].status.enabled != 1) ||
(dst_host->link[link_idx].transport == KNET_TRANSPORT_LOOPBACK ) ||
((dst_host->link[link_idx].dynamic == KNET_LINK_DYNIP) &&
(dst_host->link[link_idx].status.dynconnected != 1)))
continue;
_handle_check_each(knet_h, dst_host, &dst_host->link[link_idx], timed);
}
}
pthread_mutex_unlock(&knet_h->hb_mutex);
}
static void _adjust_pong_timeouts(knet_handle_t knet_h)
{
struct knet_host *dst_host;
struct knet_link *dst_link;
int link_idx;
if (pthread_mutex_lock(&knet_h->backoff_mutex)) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get backoff_mutex");
return;
}
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if ((dst_host->link[link_idx].status.enabled != 1) ||
(dst_host->link[link_idx].transport == KNET_TRANSPORT_LOOPBACK ) ||
((dst_host->link[link_idx].dynamic == KNET_LINK_DYNIP) &&
(dst_host->link[link_idx].status.dynconnected != 1)))
continue;
dst_link = &dst_host->link[link_idx];
if (dst_link->pong_timeout_backoff > 1) {
dst_link->pong_timeout_backoff--;
}
dst_link->pong_timeout_adj = (dst_link->pong_timeout * dst_link->pong_timeout_backoff) + (dst_link->status.latency * KNET_LINK_PONG_TIMEOUT_LAT_MUL);
}
}
pthread_mutex_unlock(&knet_h->backoff_mutex);
}
void *_handle_heartbt_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
int i = 1;
set_thread_status(knet_h, KNET_THREAD_HB, KNET_THREAD_STARTED);
/* preparing ping buffer */
knet_h->pingbuf->kh_version = KNET_HEADER_VERSION;
knet_h->pingbuf->kh_type = KNET_HEADER_TYPE_PING;
knet_h->pingbuf->kh_node = htons(knet_h->host_id);
while (!shutdown_in_progress(knet_h)) {
usleep(KNET_THREADS_TIMERES);
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get read lock");
continue;
}
/*
* _adjust_pong_timeouts should execute approx once a second.
*/
if ((i % (1000000 / KNET_THREADS_TIMERES)) == 0) {
_adjust_pong_timeouts(knet_h);
i = 1;
} else {
i++;
}
_send_pings(knet_h, 1);
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_HB, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/threads_pmtud.c b/libknet/threads_pmtud.c
index dee87bb9..2c4a2630 100644
--- a/libknet/threads_pmtud.c
+++ b/libknet/threads_pmtud.c
@@ -1,623 +1,642 @@
/*
* Copyright (C) 2015-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include "crypto.h"
#include "links.h"
#include "host.h"
#include "logging.h"
#include "transports.h"
#include "threads_common.h"
#include "threads_pmtud.h"
static int _calculate_manual_mtu(knet_handle_t knet_h, struct knet_link *dst_link)
{
size_t ipproto_overhead_len; /* onwire packet overhead (protocol based) */
switch (dst_link->dst_addr.ss_family) {
case AF_INET6:
ipproto_overhead_len = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead;
break;
case AF_INET:
ipproto_overhead_len = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead;
break;
default:
log_debug(knet_h, KNET_SUB_PMTUD, "unknown protocol");
return 0;
break;
}
dst_link->status.mtu = calc_max_data_outlen(knet_h, knet_h->manual_mtu - ipproto_overhead_len);
return 1;
}
static int _handle_check_link_pmtud(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link)
{
int err, ret, savederrno, mutex_retry_limit, failsafe, use_kernel_mtu, warn_once;
uint32_t kernel_mtu; /* record kernel_mtu from EMSGSIZE */
size_t onwire_len; /* current packet onwire size */
size_t ipproto_overhead_len; /* onwire packet overhead (protocol based) */
size_t max_mtu_len; /* max mtu for protocol */
size_t data_len; /* how much data we can send in the packet
* generally would be onwire_len - ipproto_overhead_len
* needs to be adjusted for crypto
*/
size_t app_mtu_len; /* real data that we can send onwire */
ssize_t len; /* len of what we were able to sendto onwire */
struct timespec ts, pmtud_crypto_start_ts, pmtud_crypto_stop_ts;
unsigned long long pong_timeout_adj_tmp, timediff;
int pmtud_crypto_reduce = 1;
unsigned char *outbuf = (unsigned char *)knet_h->pmtudbuf;
warn_once = 0;
mutex_retry_limit = 0;
failsafe = 0;
knet_h->pmtudbuf->khp_pmtud_link = dst_link->link_id;
switch (dst_link->dst_addr.ss_family) {
case AF_INET6:
max_mtu_len = KNET_PMTUD_SIZE_V6;
ipproto_overhead_len = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead;
break;
case AF_INET:
max_mtu_len = KNET_PMTUD_SIZE_V4;
ipproto_overhead_len = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead;
break;
default:
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted, unknown protocol");
return -1;
break;
}
dst_link->last_bad_mtu = 0;
dst_link->last_good_mtu = dst_link->last_ping_size + ipproto_overhead_len;
/*
* discovery starts from the top because kernel will
* refuse to send packets > current iface mtu.
* this saves us some time and network bw.
*/
onwire_len = max_mtu_len;
restart:
/*
* prevent a race when interface mtu is changed _exactly_ during
* the discovery process and it's complex to detect. Easier
* to wait the next loop.
* 30 is not an arbitrary value. To bisect from 576 to 128000 doesn't
* take more than 18/19 steps.
*/
if (failsafe == 30) {
log_err(knet_h, KNET_SUB_PMTUD,
"Aborting PMTUD process: Too many attempts. MTU might have changed during discovery.");
return -1;
} else {
failsafe++;
}
/*
* common to all packets
*/
/*
* calculate the application MTU based on current onwire_len minus ipproto_overhead_len
*/
app_mtu_len = calc_max_data_outlen(knet_h, onwire_len - ipproto_overhead_len);
/*
* recalculate onwire len back that might be different based
* on data padding from crypto layer.
*/
onwire_len = calc_data_outlen(knet_h, app_mtu_len + KNET_HEADER_ALL_SIZE) + ipproto_overhead_len;
/*
* calculate the size of what we need to send to sendto(2).
* see also onwire.c for packet format explanation.
*/
data_len = app_mtu_len + knet_h->sec_hash_size + knet_h->sec_salt_size + KNET_HEADER_ALL_SIZE;
if (knet_h->crypto_instance) {
if (data_len < (knet_h->sec_hash_size + knet_h->sec_salt_size) + 1) {
log_debug(knet_h, KNET_SUB_PMTUD, "Aborting PMTUD process: link mtu smaller than crypto header detected (link might have been disconnected)");
return -1;
}
knet_h->pmtudbuf->khp_pmtud_size = onwire_len;
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)knet_h->pmtudbuf,
data_len - (knet_h->sec_hash_size + knet_h->sec_salt_size),
knet_h->pmtudbuf_crypt,
(ssize_t *)&data_len) < 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to crypto pmtud packet");
return -1;
}
outbuf = knet_h->pmtudbuf_crypt;
+ if (pthread_mutex_lock(&knet_h->handle_stats_mutex) < 0) {
+ log_err(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
+ return -1;
+ }
knet_h->stats_extra.tx_crypt_pmtu_packets++;
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
} else {
knet_h->pmtudbuf->khp_pmtud_size = onwire_len;
}
/* link has gone down, aborting pmtud */
if (dst_link->status.connected != 1) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected host (%u) link (%u) has been disconnected", dst_host->host_id, dst_link->link_id);
return -1;
}
if (dst_link->transport_connected != 1) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected host (%u) link (%u) has been disconnected", dst_host->host_id, dst_link->link_id);
return -1;
}
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
return -1;
}
if (knet_h->pmtud_abort) {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
errno = EDEADLK;
return -1;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
+ pthread_mutex_unlock(&knet_h->pmtud_mutex);
log_err(knet_h, KNET_SUB_PMTUD, "Unable to get TX mutex lock: %s", strerror(savederrno));
return -1;
}
+
+ savederrno = pthread_mutex_lock(&dst_link->link_stats_mutex);
+ if (savederrno) {
+ pthread_mutex_unlock(&knet_h->pmtud_mutex);
+ pthread_mutex_unlock(&knet_h->tx_mutex);
+ log_err(knet_h, KNET_SUB_PMTUD, "Unable to get stats mutex lock for host %u link %u: %s",
+ dst_host->host_id, dst_link->link_id, strerror(savederrno));
+ return -1;
+ }
+
retry:
if (transport_get_connection_oriented(knet_h, dst_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(dst_link->outsock, outbuf, data_len, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &dst_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(dst_link->outsock, outbuf, data_len, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
/*
* we cannot hold a lock on kmtu_mutex between resetting
* knet_h->kernel_mtu here and below where it's used.
* use_kernel_mtu tells us if the knet_h->kernel_mtu was
* set to 0 and we can trust its value later.
*/
use_kernel_mtu = 0;
if (pthread_mutex_lock(&knet_h->kmtu_mutex) == 0) {
use_kernel_mtu = 1;
knet_h->kernel_mtu = 0;
pthread_mutex_unlock(&knet_h->kmtu_mutex);
}
kernel_mtu = 0;
err = transport_tx_sock_error(knet_h, dst_link->transport, dst_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet (sendto): %d %s", savederrno, strerror(savederrno));
pthread_mutex_unlock(&knet_h->tx_mutex);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
dst_link->status.stats.tx_pmtu_errors++;
+ pthread_mutex_unlock(&dst_link->link_stats_mutex);
return -1;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
dst_link->status.stats.tx_pmtu_retries++;
goto retry;
break;
}
pthread_mutex_unlock(&knet_h->tx_mutex);
if (len != (ssize_t )data_len) {
+ pthread_mutex_unlock(&dst_link->link_stats_mutex);
if (savederrno == EMSGSIZE) {
/*
* we cannot hold a lock on kmtu_mutex between resetting
* knet_h->kernel_mtu and here.
* use_kernel_mtu tells us if the knet_h->kernel_mtu was
* set to 0 previously and we can trust its value now.
*/
if (use_kernel_mtu) {
use_kernel_mtu = 0;
if (pthread_mutex_lock(&knet_h->kmtu_mutex) == 0) {
kernel_mtu = knet_h->kernel_mtu;
pthread_mutex_unlock(&knet_h->kmtu_mutex);
}
}
if (kernel_mtu > 0) {
dst_link->last_bad_mtu = kernel_mtu + 1;
} else {
dst_link->last_bad_mtu = onwire_len;
}
} else {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet len: %zu err: %s", onwire_len, strerror(savederrno));
}
} else {
dst_link->last_sent_mtu = onwire_len;
dst_link->last_recv_mtu = 0;
dst_link->status.stats.tx_pmtu_packets++;
dst_link->status.stats.tx_pmtu_bytes += data_len;
+ pthread_mutex_unlock(&dst_link->link_stats_mutex);
if (clock_gettime(CLOCK_REALTIME, &ts) < 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get current time: %s", strerror(errno));
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return -1;
}
/*
* non fatal, we can wait the next round to reduce the
* multiplier
*/
if (clock_gettime(CLOCK_MONOTONIC, &pmtud_crypto_start_ts) < 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get current time: %s", strerror(errno));
pmtud_crypto_reduce = 0;
}
/*
* set PMTUd reply timeout to match pong_timeout on a given link
*
* math: internally pong_timeout is expressed in microseconds, while
* the public API exports milliseconds. So careful with the 0's here.
* the loop is necessary because we are grabbing the current time just above
* and add values to it that could overflow into seconds.
*/
if (pthread_mutex_lock(&knet_h->backoff_mutex)) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get backoff_mutex");
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return -1;
}
if (knet_h->crypto_instance) {
/*
* crypto, under pressure, is a royal PITA
*/
pong_timeout_adj_tmp = dst_link->pong_timeout_adj * dst_link->pmtud_crypto_timeout_multiplier;
} else {
pong_timeout_adj_tmp = dst_link->pong_timeout_adj;
}
ts.tv_sec += pong_timeout_adj_tmp / 1000000;
ts.tv_nsec += (((pong_timeout_adj_tmp) % 1000000) * 1000);
while (ts.tv_nsec > 1000000000) {
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000;
}
pthread_mutex_unlock(&knet_h->backoff_mutex);
knet_h->pmtud_waiting = 1;
ret = pthread_cond_timedwait(&knet_h->pmtud_cond, &knet_h->pmtud_mutex, &ts);
knet_h->pmtud_waiting = 0;
if (knet_h->pmtud_abort) {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
errno = EDEADLK;
return -1;
}
/*
* we cannot use shutdown_in_progress in here because
* we already hold the read lock
*/
if (knet_h->fini_in_progress) {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted. shutdown in progress");
return -1;
}
if (ret) {
if (ret == ETIMEDOUT) {
if ((knet_h->crypto_instance) && (dst_link->pmtud_crypto_timeout_multiplier < KNET_LINK_PMTUD_CRYPTO_TIMEOUT_MULTIPLIER_MAX)) {
dst_link->pmtud_crypto_timeout_multiplier = dst_link->pmtud_crypto_timeout_multiplier * 2;
pmtud_crypto_reduce = 0;
log_debug(knet_h, KNET_SUB_PMTUD,
"Increasing PMTUd response timeout multiplier to (%u) for host %u link: %u",
dst_link->pmtud_crypto_timeout_multiplier,
dst_host->host_id,
dst_link->link_id);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
goto restart;
}
if (!warn_once) {
log_warn(knet_h, KNET_SUB_PMTUD,
"possible MTU misconfiguration detected. "
"kernel is reporting MTU: %u bytes for "
"host %u link %u but the other node is "
"not acknowledging packets of this size. ",
dst_link->last_sent_mtu,
dst_host->host_id,
dst_link->link_id);
log_warn(knet_h, KNET_SUB_PMTUD,
"This can be caused by this node interface MTU "
"too big or a network device that does not "
"support or has been misconfigured to manage MTU "
"of this size, or packet loss. knet will continue "
"to run but performances might be affected.");
warn_once = 1;
}
} else {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
if (mutex_retry_limit == 3) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted, unable to get mutex lock");
return -1;
}
mutex_retry_limit++;
goto restart;
}
}
if ((knet_h->crypto_instance) && (pmtud_crypto_reduce == 1) &&
(dst_link->pmtud_crypto_timeout_multiplier > KNET_LINK_PMTUD_CRYPTO_TIMEOUT_MULTIPLIER_MIN)) {
if (!clock_gettime(CLOCK_MONOTONIC, &pmtud_crypto_stop_ts)) {
timespec_diff(pmtud_crypto_start_ts, pmtud_crypto_stop_ts, &timediff);
if (((pong_timeout_adj_tmp * 1000) / 2) > timediff) {
dst_link->pmtud_crypto_timeout_multiplier = dst_link->pmtud_crypto_timeout_multiplier / 2;
log_debug(knet_h, KNET_SUB_PMTUD,
"Decreasing PMTUd response timeout multiplier to (%u) for host %u link: %u",
dst_link->pmtud_crypto_timeout_multiplier,
dst_host->host_id,
dst_link->link_id);
}
} else {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get current time: %s", strerror(errno));
}
}
if ((dst_link->last_recv_mtu != onwire_len) || (ret)) {
dst_link->last_bad_mtu = onwire_len;
} else {
int found_mtu = 0;
if (knet_h->sec_block_size) {
if ((onwire_len + knet_h->sec_block_size >= max_mtu_len) ||
((dst_link->last_bad_mtu) && (dst_link->last_bad_mtu <= (onwire_len + knet_h->sec_block_size)))) {
found_mtu = 1;
}
} else {
if ((onwire_len == max_mtu_len) ||
((dst_link->last_bad_mtu) && (dst_link->last_bad_mtu == (onwire_len + 1))) ||
(dst_link->last_bad_mtu == dst_link->last_good_mtu)) {
found_mtu = 1;
}
}
if (found_mtu) {
/*
* account for IP overhead, knet headers and crypto in PMTU calculation
*/
dst_link->status.mtu = calc_max_data_outlen(knet_h, onwire_len - ipproto_overhead_len);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return 0;
}
dst_link->last_good_mtu = onwire_len;
}
}
if (kernel_mtu) {
onwire_len = kernel_mtu;
} else {
onwire_len = (dst_link->last_good_mtu + dst_link->last_bad_mtu) / 2;
}
pthread_mutex_unlock(&knet_h->pmtud_mutex);
goto restart;
}
static int _handle_check_pmtud(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link, int force_run)
{
uint8_t saved_valid_pmtud;
unsigned int saved_pmtud;
struct timespec clock_now;
unsigned long long diff_pmtud, interval;
if (clock_gettime(CLOCK_MONOTONIC, &clock_now) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get monotonic clock");
return 0;
}
if (!force_run) {
interval = knet_h->pmtud_interval * 1000000000llu; /* nanoseconds */
timespec_diff(dst_link->pmtud_last, clock_now, &diff_pmtud);
if (diff_pmtud < interval) {
return dst_link->has_valid_mtu;
}
}
/*
* status.proto_overhead should include all IP/(UDP|SCTP)/knet headers
*
* please note that it is not the same as link->proto_overhead that
* includes only either UDP or SCTP (at the moment) overhead.
*/
switch (dst_link->dst_addr.ss_family) {
case AF_INET6:
dst_link->status.proto_overhead = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead + KNET_HEADER_ALL_SIZE + knet_h->sec_hash_size + knet_h->sec_salt_size;
break;
case AF_INET:
dst_link->status.proto_overhead = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead + KNET_HEADER_ALL_SIZE + knet_h->sec_hash_size + knet_h->sec_salt_size;
break;
}
saved_pmtud = dst_link->status.mtu;
saved_valid_pmtud = dst_link->has_valid_mtu;
log_debug(knet_h, KNET_SUB_PMTUD, "Starting PMTUD for host: %u link: %u", dst_host->host_id, dst_link->link_id);
errno = 0;
if (_handle_check_link_pmtud(knet_h, dst_host, dst_link) < 0) {
if (errno == EDEADLK) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD for host: %u link: %u has been rescheduled", dst_host->host_id, dst_link->link_id);
dst_link->status.mtu = saved_pmtud;
dst_link->has_valid_mtu = saved_valid_pmtud;
errno = EDEADLK;
return dst_link->has_valid_mtu;
}
dst_link->has_valid_mtu = 0;
} else {
if (dst_link->status.mtu < calc_min_mtu(knet_h)) {
log_info(knet_h, KNET_SUB_PMTUD,
"Invalid MTU detected for host: %u link: %u mtu: %u",
dst_host->host_id, dst_link->link_id, dst_link->status.mtu);
dst_link->has_valid_mtu = 0;
} else {
dst_link->has_valid_mtu = 1;
}
if (dst_link->has_valid_mtu) {
if ((saved_pmtud) && (saved_pmtud != dst_link->status.mtu)) {
log_info(knet_h, KNET_SUB_PMTUD, "PMTUD link change for host: %u link: %u from %u to %u",
dst_host->host_id, dst_link->link_id, saved_pmtud, dst_link->status.mtu);
}
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD completed for host: %u link: %u current link mtu: %u",
dst_host->host_id, dst_link->link_id, dst_link->status.mtu);
/*
* set pmtud_last, if we can, after we are done with the PMTUd process
* because it can take a very long time.
*/
dst_link->pmtud_last = clock_now;
if (!clock_gettime(CLOCK_MONOTONIC, &clock_now)) {
dst_link->pmtud_last = clock_now;
}
}
}
if (saved_valid_pmtud != dst_link->has_valid_mtu) {
_host_dstcache_update_async(knet_h, dst_host);
}
return dst_link->has_valid_mtu;
}
void *_handle_pmtud_link_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct knet_host *dst_host;
struct knet_link *dst_link;
int link_idx;
unsigned int have_mtu;
unsigned int lower_mtu;
int link_has_mtu;
int force_run = 0;
set_thread_status(knet_h, KNET_THREAD_PMTUD, KNET_THREAD_STARTED);
knet_h->data_mtu = calc_min_mtu(knet_h);
/* preparing pmtu buffer */
knet_h->pmtudbuf->kh_version = KNET_HEADER_VERSION;
knet_h->pmtudbuf->kh_type = KNET_HEADER_TYPE_PMTUD;
knet_h->pmtudbuf->kh_node = htons(knet_h->host_id);
while (!shutdown_in_progress(knet_h)) {
usleep(KNET_THREADS_TIMERES);
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
continue;
}
knet_h->pmtud_abort = 0;
knet_h->pmtud_running = 1;
force_run = knet_h->pmtud_forcerun;
knet_h->pmtud_forcerun = 0;
pthread_mutex_unlock(&knet_h->pmtud_mutex);
if (force_run) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUd request to rerun has been received");
}
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get read lock");
continue;
}
lower_mtu = KNET_PMTUD_SIZE_V4;
have_mtu = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
dst_link = &dst_host->link[link_idx];
if ((dst_link->status.enabled != 1) ||
(dst_link->status.connected != 1) ||
(dst_host->link[link_idx].transport == KNET_TRANSPORT_LOOPBACK) ||
(!dst_link->last_ping_size) ||
((dst_link->dynamic == KNET_LINK_DYNIP) &&
(dst_link->status.dynconnected != 1)))
continue;
if (!knet_h->manual_mtu) {
link_has_mtu = _handle_check_pmtud(knet_h, dst_host, dst_link, force_run);
if (errno == EDEADLK) {
goto out_unlock;
}
if (link_has_mtu) {
have_mtu = 1;
if (dst_link->status.mtu < lower_mtu) {
lower_mtu = dst_link->status.mtu;
}
}
} else {
link_has_mtu = _calculate_manual_mtu(knet_h, dst_link);
if (link_has_mtu) {
have_mtu = 1;
if (dst_link->status.mtu < lower_mtu) {
lower_mtu = dst_link->status.mtu;
}
}
}
}
}
if (have_mtu) {
if (knet_h->data_mtu != lower_mtu) {
knet_h->data_mtu = lower_mtu;
log_info(knet_h, KNET_SUB_PMTUD, "Global data MTU changed to: %u", knet_h->data_mtu);
if (knet_h->pmtud_notify_fn) {
knet_h->pmtud_notify_fn(knet_h->pmtud_notify_fn_private_data,
knet_h->data_mtu);
}
}
}
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
} else {
knet_h->pmtud_running = 0;
pthread_mutex_unlock(&knet_h->pmtud_mutex);
}
}
set_thread_status(knet_h, KNET_THREAD_PMTUD, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/threads_rx.c b/libknet/threads_rx.c
index 4199b79f..880174c1 100644
--- a/libknet/threads_rx.c
+++ b/libknet/threads_rx.c
@@ -1,926 +1,984 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/uio.h>
#include <pthread.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "links.h"
#include "links_acl.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_rx.h"
#include "netutils.h"
/*
* RECV
*/
/*
* return 1 if a > b
* return -1 if b > a
* return 0 if they are equal
*/
static inline int timecmp(struct timespec a, struct timespec b)
{
if (a.tv_sec != b.tv_sec) {
if (a.tv_sec > b.tv_sec) {
return 1;
} else {
return -1;
}
} else {
if (a.tv_nsec > b.tv_nsec) {
return 1;
} else if (a.tv_nsec < b.tv_nsec) {
return -1;
} else {
return 0;
}
}
}
/*
* this functions needs to return an index (0 to 7)
* to a knet_host_defrag_buf. (-1 on errors)
*/
static int find_pckt_defrag_buf(knet_handle_t knet_h, struct knet_header *inbuf)
{
struct knet_host *src_host = knet_h->host_index[inbuf->kh_node];
int i, oldest;
/*
* check if there is a buffer already in use handling the same seq_num
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (src_host->defrag_buf[i].in_use) {
if (src_host->defrag_buf[i].pckt_seq == inbuf->khp_data_seq_num) {
return i;
}
}
}
/*
* If there is no buffer that's handling the current seq_num
* either it's new or it's been reclaimed already.
* check if it's been reclaimed/seen before using the defrag circular
* buffer. If the pckt has been seen before, the buffer expired (ETIME)
* and there is no point to try to defrag it again.
*/
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 1, 0)) {
errno = ETIME;
return -1;
}
/*
* register the pckt as seen
*/
_seq_num_set(src_host, inbuf->khp_data_seq_num, 1);
/*
* see if there is a free buffer
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (!src_host->defrag_buf[i].in_use) {
return i;
}
}
/*
* at this point, there are no free buffers, the pckt is new
* and we need to reclaim a buffer, and we will take the one
* with the oldest timestamp. It's as good as any.
*/
oldest = 0;
for (i = 0; i < KNET_MAX_LINK; i++) {
if (timecmp(src_host->defrag_buf[i].last_update, src_host->defrag_buf[oldest].last_update) < 0) {
oldest = i;
}
}
src_host->defrag_buf[oldest].in_use = 0;
return oldest;
}
static int pckt_defrag(knet_handle_t knet_h, struct knet_header *inbuf, ssize_t *len)
{
struct knet_host_defrag_buf *defrag_buf;
int defrag_buf_idx;
defrag_buf_idx = find_pckt_defrag_buf(knet_h, inbuf);
if (defrag_buf_idx < 0) {
return 1;
}
defrag_buf = &knet_h->host_index[inbuf->kh_node]->defrag_buf[defrag_buf_idx];
/*
* if the buf is not is use, then make sure it's clean
*/
if (!defrag_buf->in_use) {
memset(defrag_buf, 0, sizeof(struct knet_host_defrag_buf));
defrag_buf->in_use = 1;
defrag_buf->pckt_seq = inbuf->khp_data_seq_num;
}
/*
* update timestamp on the buffer
*/
clock_gettime(CLOCK_MONOTONIC, &defrag_buf->last_update);
/*
* check if we already received this fragment
*/
if (defrag_buf->frag_map[inbuf->khp_data_frag_seq]) {
/*
* if we have received this fragment and we didn't clear the buffer
* it means that we don't have all fragments yet
*/
return 1;
}
/*
* we need to handle the last packet with gloves due to its different size
*/
if (inbuf->khp_data_frag_seq == inbuf->khp_data_frag_num) {
defrag_buf->last_frag_size = *len;
/*
* in the event when the last packet arrives first,
* we still don't know the offset vs the other fragments (based on MTU),
* so we store the fragment at the end of the buffer where it's safe
* and take a copy of the len so that we can restore its offset later.
* remember we can't use the local MTU for this calculation because pMTU
* can be asymettric between the same hosts.
*/
if (!defrag_buf->frag_size) {
defrag_buf->last_first = 1;
memmove(defrag_buf->buf + (KNET_MAX_PACKET_SIZE - *len),
inbuf->khp_data_userdata,
*len);
}
} else {
defrag_buf->frag_size = *len;
}
if (defrag_buf->frag_size) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_seq - 1) * defrag_buf->frag_size),
inbuf->khp_data_userdata, *len);
}
defrag_buf->frag_recv++;
defrag_buf->frag_map[inbuf->khp_data_frag_seq] = 1;
/*
* check if we received all the fragments
*/
if (defrag_buf->frag_recv == inbuf->khp_data_frag_num) {
/*
* special case the last pckt
*/
if (defrag_buf->last_first) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size),
defrag_buf->buf + (KNET_MAX_PACKET_SIZE - defrag_buf->last_frag_size),
defrag_buf->last_frag_size);
}
/*
* recalculate packet lenght
*/
*len = ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size) + defrag_buf->last_frag_size;
/*
* copy the pckt back in the user data
*/
memmove(inbuf->khp_data_userdata, defrag_buf->buf, *len);
/*
* free this buffer
*/
defrag_buf->in_use = 0;
return 0;
}
return 1;
}
static void _parse_recv_from_links(knet_handle_t knet_h, int sockfd, const struct knet_mmsghdr *msg)
{
- int err = 0, savederrno = 0;
+ int err = 0, savederrno = 0, stats_err = 0;
ssize_t outlen;
struct knet_host *src_host;
struct knet_link *src_link;
unsigned long long latency_last;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
- int was_decrypted = 0;
- uint64_t crypt_time = 0;
+ uint64_t decrypt_time = 0;
struct timespec recvtime;
struct knet_header *inbuf = msg->msg_hdr.msg_iov->iov_base;
unsigned char *outbuf = (unsigned char *)msg->msg_hdr.msg_iov->iov_base;
ssize_t len = msg->msg_len;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[1];
int8_t channel;
struct sockaddr_storage pckt_src;
seq_num_t recv_seq_num;
int wipe_bufs = 0;
if (knet_h->crypto_instance) {
struct timespec start_time;
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_authenticate_and_decrypt(knet_h,
(unsigned char *)inbuf,
len,
knet_h->recv_from_links_buf_decrypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to decrypt/auth packet");
return;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
- timespec_diff(start_time, end_time, &crypt_time);
-
- if (crypt_time < knet_h->stats.rx_crypt_time_min) {
- knet_h->stats.rx_crypt_time_min = crypt_time;
- }
- if (crypt_time > knet_h->stats.rx_crypt_time_max) {
- knet_h->stats.rx_crypt_time_max = crypt_time;
- }
+ timespec_diff(start_time, end_time, &decrypt_time);
len = outlen;
inbuf = (struct knet_header *)knet_h->recv_from_links_buf_decrypt;
- was_decrypted++;
}
if (len < (ssize_t)(KNET_HEADER_SIZE + 1)) {
log_debug(knet_h, KNET_SUB_RX, "Packet is too short: %ld", (long)len);
return;
}
if (inbuf->kh_version != KNET_HEADER_VERSION) {
log_debug(knet_h, KNET_SUB_RX, "Packet version does not match");
return;
}
inbuf->kh_node = ntohs(inbuf->kh_node);
src_host = knet_h->host_index[inbuf->kh_node];
if (src_host == NULL) { /* host not found */
log_debug(knet_h, KNET_SUB_RX, "Unable to find source host for this packet");
return;
}
- src_link = NULL;
-
src_link = src_host->link +
(inbuf->khp_ping_link % KNET_MAX_LINK);
if ((inbuf->kh_type & KNET_HEADER_TYPE_PMSK) != 0) {
if (src_link->dynamic == KNET_LINK_DYNIP) {
/*
* cpyaddrport will only copy address and port of the incoming
* packet and strip extra bits such as flow and scopeid
*/
cpyaddrport(&pckt_src, msg->msg_hdr.msg_name);
if (cmpaddr(&src_link->dst_addr, sockaddr_len(&src_link->dst_addr),
&pckt_src, sockaddr_len(&pckt_src)) != 0) {
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u appears to have changed ip address",
src_host->host_id, src_link->link_id);
memmove(&src_link->dst_addr, &pckt_src, sizeof(struct sockaddr_storage));
if (knet_addrtostr(&src_link->dst_addr, sockaddr_len(msg->msg_hdr.msg_name),
src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN,
src_link->status.dst_port, KNET_MAX_PORT_LEN) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to resolve ???");
snprintf(src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN - 1, "Unknown!!!");
snprintf(src_link->status.dst_port, KNET_MAX_PORT_LEN - 1, "??");
} else {
log_info(knet_h, KNET_SUB_RX,
"host: %u link: %u new connection established from: %s %s",
src_host->host_id, src_link->link_id,
src_link->status.dst_ipaddr, src_link->status.dst_port);
}
}
/*
* transport has already accepted the connection here
* otherwise we would not be receiving packets
*/
transport_link_dyn_connect(knet_h, sockfd, src_link);
}
}
+ stats_err = pthread_mutex_lock(&src_link->link_stats_mutex);
+ if (stats_err) {
+ log_err(knet_h, KNET_SUB_RX, "Unable to get stats mutex lock for host %u link %u: %s",
+ src_host->host_id, src_link->link_id, strerror(savederrno));
+ return;
+ }
+
switch (inbuf->kh_type) {
case KNET_HEADER_TYPE_HOST_INFO:
case KNET_HEADER_TYPE_DATA:
if (!src_host->status.reachable) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Source host %u not reachable yet. Discarding packet.", src_host->host_id);
return;
}
inbuf->khp_data_seq_num = ntohs(inbuf->khp_data_seq_num);
channel = inbuf->khp_data_channel;
src_host->got_data = 1;
- if (src_link) {
- src_link->status.stats.rx_data_packets++;
- src_link->status.stats.rx_data_bytes += len;
- }
+ src_link->status.stats.rx_data_packets++;
+ src_link->status.stats.rx_data_bytes += len;
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
if (src_host->link_handler_policy != KNET_LINK_POLICY_ACTIVE) {
log_debug(knet_h, KNET_SUB_RX, "Packet has already been delivered");
}
return;
}
if (inbuf->khp_data_frag_num > 1) {
/*
* len as received from the socket also includes extra stuff
* that the defrag code doesn't care about. So strip it
* here and readd only for repadding once we are done
* defragging
*/
len = len - KNET_HEADER_DATA_SIZE;
if (pckt_defrag(knet_h, inbuf, &len)) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
len = len + KNET_HEADER_DATA_SIZE;
}
if (inbuf->khp_data_compress) {
ssize_t decmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = decompress(knet_h, inbuf->khp_data_compress,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
knet_h->recv_from_links_buf_decompress,
&decmp_outlen);
+
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
+ return;
+ }
+
+ clock_gettime(CLOCK_MONOTONIC, &end_time);
+ timespec_diff(start_time, end_time, &compress_time);
+
if (!err) {
/* Collect stats */
- clock_gettime(CLOCK_MONOTONIC, &end_time);
- timespec_diff(start_time, end_time, &compress_time);
-
if (compress_time < knet_h->stats.rx_compress_time_min) {
knet_h->stats.rx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.rx_compress_time_max) {
knet_h->stats.rx_compress_time_max = compress_time;
}
knet_h->stats.rx_compress_time_ave =
(knet_h->stats.rx_compress_time_ave * knet_h->stats.rx_compressed_packets +
compress_time) / (knet_h->stats.rx_compressed_packets+1);
knet_h->stats.rx_compressed_packets++;
knet_h->stats.rx_compressed_original_bytes += decmp_outlen;
knet_h->stats.rx_compressed_size_bytes += len - KNET_HEADER_SIZE;
memmove(inbuf->khp_data_userdata, knet_h->recv_from_links_buf_decompress, decmp_outlen);
len = decmp_outlen + KNET_HEADER_DATA_SIZE;
} else {
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_warn(knet_h, KNET_SUB_COMPRESS, "Unable to decompress packet (%d): %s",
err, strerror(errno));
return;
}
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
+ if (knet_h->crypto_instance) {
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+ log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
+ return;
+ }
+ /* Only update the crypto overhead for data packets. Mainly to be
+ consistent with TX */
+ if (decrypt_time < knet_h->stats.rx_crypt_time_min) {
+ knet_h->stats.rx_crypt_time_min = decrypt_time;
+ }
+ if (decrypt_time > knet_h->stats.rx_crypt_time_max) {
+ knet_h->stats.rx_crypt_time_max = decrypt_time;
+ }
+ knet_h->stats.rx_crypt_time_ave =
+ (knet_h->stats.rx_crypt_time_ave * knet_h->stats.rx_crypt_packets +
+ decrypt_time) / (knet_h->stats.rx_crypt_packets+1);
+ knet_h->stats.rx_crypt_packets++;
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
+ }
+
if (knet_h->enabled != 1) /* data forward is disabled */
break;
- /* Only update the crypto overhead for data packets. Mainly to be
- consistent with TX */
- knet_h->stats.rx_crypt_time_ave =
- (knet_h->stats.rx_crypt_time_ave * knet_h->stats.rx_crypt_packets +
- crypt_time) / (knet_h->stats.rx_crypt_packets+1);
- knet_h->stats.rx_crypt_packets++;
-
if (knet_h->dst_host_filter_fn) {
size_t host_idx;
int found = 0;
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
KNET_NOTIFY_RX,
knet_h->host_id,
inbuf->kh_node,
&channel,
dst_host_ids,
&dst_host_ids_entries);
if (bcast < 0) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Error from dst_host_filter_fn: %d", bcast);
return;
}
if ((!bcast) && (!dst_host_ids_entries)) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Message is unicast but no dst_host_ids_entries");
return;
}
/* check if we are dst for this packet */
if (!bcast) {
if (dst_host_ids_entries > KNET_MAX_HOST) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "dst_host_filter_fn returned too many destinations");
return;
}
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
if (dst_host_ids[host_idx] == knet_h->host_id) {
found = 1;
break;
}
}
if (!found) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Packet is not for us");
return;
}
}
}
}
if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
if (!knet_h->sockfd[channel].in_use) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX,
"received packet for channel %d but there is no local sock connected",
channel);
return;
}
outlen = 0;
memset(iov_out, 0, sizeof(iov_out));
retry:
iov_out[0].iov_base = (void *) inbuf->khp_data_userdata + outlen;
iov_out[0].iov_len = len - (outlen + KNET_HEADER_DATA_SIZE);
outlen = writev(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], iov_out, 1);
if ((outlen > 0) && (outlen < (ssize_t)iov_out[0].iov_len)) {
log_debug(knet_h, KNET_SUB_RX,
"Unable to send all data to the application in one go. Expected: %zu Sent: %zd\n",
iov_out[0].iov_len, outlen);
goto retry;
}
if (outlen <= 0) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_RX,
outlen,
errno);
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
if ((size_t)outlen == iov_out[0].iov_len) {
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
}
} else { /* HOSTINFO */
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
knet_hostinfo->khi_dst_node_id = ntohs(knet_hostinfo->khi_dst_node_id);
}
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
switch(knet_hostinfo->khi_type) {
case KNET_HOSTINFO_TYPE_LINK_UP_DOWN:
break;
case KNET_HOSTINFO_TYPE_LINK_TABLE:
break;
default:
log_warn(knet_h, KNET_SUB_RX, "Receiving unknown host info message from host %u", src_host->host_id);
break;
}
}
break;
case KNET_HEADER_TYPE_PING:
outlen = KNET_HEADER_PING_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PONG;
inbuf->kh_node = htons(knet_h->host_id);
recv_seq_num = ntohs(inbuf->khp_ping_seq_num);
src_link->status.stats.rx_ping_packets++;
src_link->status.stats.rx_ping_bytes += len;
wipe_bufs = 0;
if (!inbuf->khp_ping_timed) {
/*
* we might be receiving this message from all links, but we want
* to process it only the first time
*/
if (recv_seq_num != src_host->untimed_rx_seq_num) {
/*
* cache the untimed seq num
*/
src_host->untimed_rx_seq_num = recv_seq_num;
/*
* if the host has received data in between
* untimed ping, then we don't need to wipe the bufs
*/
if (src_host->got_data) {
src_host->got_data = 0;
wipe_bufs = 0;
} else {
wipe_bufs = 1;
}
}
_seq_num_lookup(src_host, recv_seq_num, 0, wipe_bufs);
} else {
/*
* pings always arrives in bursts over all the link
* catch the first of them to cache the seq num and
* avoid duplicate processing
*/
if (recv_seq_num != src_host->timed_rx_seq_num) {
src_host->timed_rx_seq_num = recv_seq_num;
if (recv_seq_num == 0) {
_seq_num_lookup(src_host, recv_seq_num, 0, 1);
}
}
}
if (knet_h->crypto_instance) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt pong packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
+ break;
+ }
knet_h->stats_extra.tx_crypt_pong_packets++;
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
retry_pong:
if (src_link->transport_connected) {
if (transport_get_connection_oriented(knet_h, src_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport, src_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send pong reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pong_errors++;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pong_retries++;
goto retry_pong;
break;
}
}
src_link->status.stats.tx_pong_packets++;
src_link->status.stats.tx_pong_bytes += outlen;
}
break;
case KNET_HEADER_TYPE_PONG:
src_link->status.stats.rx_pong_packets++;
src_link->status.stats.rx_pong_bytes += len;
clock_gettime(CLOCK_MONOTONIC, &src_link->status.pong_last);
memmove(&recvtime, &inbuf->khp_ping_time[0], sizeof(struct timespec));
timespec_diff(recvtime,
src_link->status.pong_last, &latency_last);
if ((latency_last / 1000llu) > src_link->pong_timeout) {
log_debug(knet_h, KNET_SUB_RX,
"Incoming pong packet from host: %u link: %u has higher latency than pong_timeout. Discarding",
src_host->host_id, src_link->link_id);
} else {
/*
* in words : ('previous mean' * '(count -1)') + 'new value') / 'count'
*/
src_link->latency_cur_samples++;
/*
* limit to max_samples (precision)
*/
if (src_link->latency_cur_samples >= src_link->latency_max_samples) {
src_link->latency_cur_samples = src_link->latency_max_samples;
}
src_link->status.latency =
(((src_link->status.latency * (src_link->latency_cur_samples - 1)) + (latency_last / 1000llu)) / src_link->latency_cur_samples);
if (src_link->status.latency < src_link->pong_timeout_adj) {
if (!src_link->status.connected) {
if (src_link->received_pong >= src_link->pong_count) {
log_info(knet_h, KNET_SUB_RX, "host: %u link: %u is up",
src_host->host_id, src_link->link_id);
- _link_updown(knet_h, src_host->host_id, src_link->link_id, src_link->status.enabled, 1);
+ _link_updown(knet_h, src_host->host_id, src_link->link_id, src_link->status.enabled, 1, 0);
} else {
src_link->received_pong++;
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u received pong: %u",
src_host->host_id, src_link->link_id, src_link->received_pong);
}
}
}
/* Calculate latency stats */
if (src_link->status.latency > src_link->status.stats.latency_max) {
src_link->status.stats.latency_max = src_link->status.latency;
}
if (src_link->status.latency < src_link->status.stats.latency_min) {
src_link->status.stats.latency_min = src_link->status.latency;
}
/*
* those 2 lines below make all latency average calculations consistent and capped to
* link precision. In future we will kill the one above to keep only this one in
* the stats structure, but for now we leave it around to avoid API/ABI
* breakage as we backport the fixes to stable
*/
src_link->status.stats.latency_ave = src_link->status.latency;
src_link->status.stats.latency_samples = src_link->latency_cur_samples;
}
break;
case KNET_HEADER_TYPE_PMTUD:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
outlen = KNET_HEADER_PMTUD_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PMTUD_REPLY;
inbuf->kh_node = htons(knet_h->host_id);
if (knet_h->crypto_instance) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt PMTUd reply packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
+ break;
+ }
knet_h->stats_extra.tx_crypt_pmtu_reply_packets++;
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
+ /* Unlock so we don't deadlock with tx_mutex */
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_RX, "Unable to get TX mutex lock: %s", strerror(savederrno));
goto out_pmtud;
}
retry_pmtud:
if (src_link->transport_connected) {
if (transport_get_connection_oriented(knet_h, src_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport, src_link->outsock, len, savederrno);
+ stats_err = pthread_mutex_lock(&src_link->link_stats_mutex);
+ if (stats_err < 0) {
+ log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
+ break;
+ }
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send PMTUd reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pmtu_errors++;
break;
case 0: /* ignore error and continue */
src_link->status.stats.tx_pmtu_errors++;
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pmtu_retries++;
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
goto retry_pmtud;
break;
}
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
}
}
pthread_mutex_unlock(&knet_h->tx_mutex);
out_pmtud:
- break;
+ return; /* Don't need to unlock link_stats_mutex */
case KNET_HEADER_TYPE_PMTUD_REPLY:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
+
+ /* pmtud_mutex can't be acquired while we hold a link_stats_mutex (ordering) */
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
+
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get mutex lock");
break;
}
src_link->last_recv_mtu = inbuf->khp_pmtud_size;
pthread_cond_signal(&knet_h->pmtud_cond);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
- break;
+ return;
default:
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
+ pthread_mutex_unlock(&src_link->link_stats_mutex);
}
static void _handle_recv_from_links(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
int err, savederrno;
int i, msg_recv, transport;
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get global read lock");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
/*
* this is normal if a fd got an event and before we grab the read lock
* and the link is removed by another thread
*/
goto exit_unlock;
}
transport = knet_h->knet_transport_fd_tracker[sockfd].transport;
/*
* reset msg_namelen to buffer size because after recvmmsg
* each msg_namelen will contain sizeof sockaddr_in or sockaddr_in6
*/
for (i = 0; i < PCKT_RX_BUFS; i++) {
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
}
msg_recv = _recvmmsg(sockfd, &msg[0], PCKT_RX_BUFS, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
/*
* WARNING: man page for recvmmsg is wrong. Kernel implementation here:
* recvmmsg can return:
* -1 on error
* 0 if the previous run of recvmmsg recorded an error on the socket
* N number of messages (see exception below).
*
* If there is an error from recvmsg after receiving a frame or more, the recvmmsg
* loop is interrupted, error recorded in the socket (getsockopt(SO_ERROR) and
* it will be visibile in the next run.
*
* Need to be careful how we handle errors at this stage.
*
* error messages need to be handled on a per transport/protocol base
* at this point we have different layers of error handling
* - msg_recv < 0 -> error from this run
* msg_recv = 0 -> error from previous run and error on socket needs to be cleared
* - per-transport message data
* example: msg[i].msg_hdr.msg_flags & MSG_NOTIFICATION or msg_len for SCTP == EOF,
* but for UDP it is perfectly legal to receive a 0 bytes message.. go figure
* - NOTE: on SCTP MSG_NOTIFICATION we get msg_recv == PCKT_FRAG_MAX messages and no
* errno set. That means the error api needs to be able to abort the loop below.
*/
if (msg_recv <= 0) {
transport_rx_sock_error(knet_h, transport, sockfd, msg_recv, savederrno);
goto exit_unlock;
}
for (i = 0; i < msg_recv; i++) {
err = transport_rx_is_data(knet_h, transport, sockfd, &msg[i]);
/*
* TODO: make this section silent once we are confident
* all protocols packet handlers are good
*/
switch(err) {
case KNET_TRANSPORT_RX_ERROR: /* on error */
log_debug(knet_h, KNET_SUB_RX, "Transport reported error parsing packet");
goto exit_unlock;
break;
case KNET_TRANSPORT_RX_NOT_DATA_CONTINUE: /* packet is not data and we should continue the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, continue");
break;
case KNET_TRANSPORT_RX_NOT_DATA_STOP: /* packet is not data and we should STOP the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, stop");
goto exit_unlock;
break;
case KNET_TRANSPORT_RX_IS_DATA: /* packet is data and should be parsed as such */
/*
* processing incoming packets vs access lists
*/
if ((knet_h->use_access_lists) &&
(transport_get_acl_type(knet_h, transport) == USE_GENERIC_ACL)) {
if (!check_validate(knet_h, sockfd, transport, msg[i].msg_hdr.msg_name)) {
char src_ipaddr[KNET_MAX_HOST_LEN];
char src_port[KNET_MAX_PORT_LEN];
memset(src_ipaddr, 0, KNET_MAX_HOST_LEN);
memset(src_port, 0, KNET_MAX_PORT_LEN);
if (knet_addrtostr(msg[i].msg_hdr.msg_name, sockaddr_len(msg[i].msg_hdr.msg_name),
src_ipaddr, KNET_MAX_HOST_LEN,
src_port, KNET_MAX_PORT_LEN) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Packet rejected: unable to resolve host/port");
} else {
log_debug(knet_h, KNET_SUB_RX, "Packet rejected from %s/%s", src_ipaddr, src_port);
}
/*
* continue processing the other packets
*/
continue;
}
}
_parse_recv_from_links(knet_h, sockfd, &msg[i]);
break;
case KNET_TRANSPORT_RX_OOB_DATA_CONTINUE:
log_debug(knet_h, KNET_SUB_RX, "Transport is processing sock OOB data, continue");
break;
case KNET_TRANSPORT_RX_OOB_DATA_STOP:
log_debug(knet_h, KNET_SUB_RX, "Transport has completed processing sock OOB data, stop");
goto exit_unlock;
break;
}
}
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
void *_handle_recv_from_links_thread(void *data)
{
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
struct sockaddr_storage address[PCKT_RX_BUFS];
struct knet_mmsghdr msg[PCKT_RX_BUFS];
struct iovec iov_in[PCKT_RX_BUFS];
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STARTED);
memset(&msg, 0, sizeof(msg));
for (i = 0; i < PCKT_RX_BUFS; i++) {
iov_in[i].iov_base = (void *)knet_h->recv_from_links_buf[i];
iov_in[i].iov_len = KNET_DATABUFSIZE;
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_name = &address[i];
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[i].msg_hdr.msg_iov = &iov_in[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->recv_from_links_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* the RX threads only need to notify that there has been at least
* one successful run after queue flush has been requested.
* See setfwd in handle.c
*/
if (get_thread_flush_queue(knet_h, KNET_THREAD_RX) == KNET_THREAD_QUEUE_FLUSH) {
set_thread_flush_queue(knet_h, KNET_THREAD_RX, KNET_THREAD_QUEUE_FLUSHED);
}
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
for (i = 0; i < nev; i++) {
_handle_recv_from_links(knet_h, events[i].data.fd, msg);
}
}
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/threads_tx.c b/libknet/threads_tx.c
index f1b74a30..d5539a1e 100644
--- a/libknet/threads_tx.c
+++ b/libknet/threads_tx.c
@@ -1,792 +1,837 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <math.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_tx.h"
#include "netutils.h"
/*
* SEND
*/
static int _dispatch_to_links(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_mmsghdr *msg, int msgs_to_send)
{
int link_idx, msg_idx, sent_msgs, prev_sent, progress;
- int err = 0, savederrno = 0;
+ int err = 0, savederrno = 0, locked = 0;
unsigned int i;
struct knet_mmsghdr *cur;
struct knet_link *cur_link;
for (link_idx = 0; link_idx < dst_host->active_link_entries; link_idx++) {
prev_sent = 0;
progress = 1;
+ locked = 0;
cur_link = &dst_host->link[dst_host->active_links[link_idx]];
if (cur_link->transport == KNET_TRANSPORT_LOOPBACK) {
continue;
}
+ savederrno = pthread_mutex_lock(&cur_link->link_stats_mutex);
+ if (savederrno) {
+ log_err(knet_h, KNET_SUB_TX, "Unable to get stats mutex lock for host %u link %u: %s",
+ dst_host->host_id, cur_link->link_id, strerror(savederrno));
+ continue;
+ }
+ locked = 1;
+
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_name = &cur_link->dst_addr;
/* Cast for Linux/BSD compatibility */
for (i=0; i<(unsigned int)msg[msg_idx].msg_hdr.msg_iovlen; i++) {
cur_link->status.stats.tx_data_bytes += msg[msg_idx].msg_hdr.msg_iov[i].iov_len;
}
cur_link->status.stats.tx_data_packets++;
msg_idx++;
}
retry:
cur = &msg[prev_sent];
sent_msgs = _sendmmsg(dst_host->link[dst_host->active_links[link_idx]].outsock,
transport_get_connection_oriented(knet_h, dst_host->link[dst_host->active_links[link_idx]].transport),
&cur[0], msgs_to_send - prev_sent, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
err = transport_tx_sock_error(knet_h, dst_host->link[dst_host->active_links[link_idx]].transport, dst_host->link[dst_host->active_links[link_idx]].outsock, sent_msgs, savederrno);
switch(err) {
case -1: /* unrecoverable error */
cur_link->status.stats.tx_data_errors++;
goto out_unlock;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
cur_link->status.stats.tx_data_retries++;
goto retry;
break;
}
prev_sent = prev_sent + sent_msgs;
if ((sent_msgs >= 0) && (prev_sent < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TX, "Unable to send all (%d/%d) data packets to host %s (%u) link %s:%s (%u)",
sent_msgs, msg_idx,
dst_host->name, dst_host->host_id,
dst_host->link[dst_host->active_links[link_idx]].status.dst_ipaddr,
dst_host->link[dst_host->active_links[link_idx]].status.dst_port,
dst_host->link[dst_host->active_links[link_idx]].link_id);
#endif
goto retry;
}
if (!progress) {
savederrno = EAGAIN;
err = -1;
goto out_unlock;
}
}
if ((dst_host->link_handler_policy == KNET_LINK_POLICY_RR) &&
(dst_host->active_link_entries > 1)) {
uint8_t cur_link_id = dst_host->active_links[0];
memmove(&dst_host->active_links[0], &dst_host->active_links[1], KNET_MAX_LINK - 1);
dst_host->active_links[dst_host->active_link_entries - 1] = cur_link_id;
break;
}
+ pthread_mutex_unlock(&cur_link->link_stats_mutex);
+ locked = 0;
}
out_unlock:
+ if (locked) {
+ pthread_mutex_unlock(&cur_link->link_stats_mutex);
+ }
errno = savederrno;
return err;
}
static int _parse_recv_from_sock(knet_handle_t knet_h, size_t inlen, int8_t channel, int is_sync)
{
size_t outlen, frag_len;
struct knet_host *dst_host;
knet_node_id_t dst_host_ids_temp[KNET_MAX_HOST];
size_t dst_host_ids_entries_temp = 0;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[PCKT_FRAG_MAX][2];
int iovcnt_out = 2;
uint8_t frag_idx;
unsigned int temp_data_mtu;
size_t host_idx;
int send_mcast = 0;
struct knet_header *inbuf;
int savederrno = 0;
int err = 0;
seq_num_t tx_seq_num;
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
int msgs_to_send, msg_idx;
unsigned int i;
int j;
int send_local = 0;
int data_compressed = 0;
size_t uncrypted_frag_size;
+ int stats_locked = 0, stats_err = 0;
inbuf = knet_h->recv_from_sock_buf;
if ((knet_h->enabled != 1) &&
(inbuf->kh_type != KNET_HEADER_TYPE_HOST_INFO)) { /* data forward is disabled */
log_debug(knet_h, KNET_SUB_TX, "Received data packet but forwarding is disabled");
savederrno = ECANCELED;
err = -1;
goto out_unlock;
}
/*
* move this into a separate function to expand on
* extra switching rules
*/
switch(inbuf->kh_type) {
case KNET_HEADER_TYPE_DATA:
if (knet_h->dst_host_filter_fn) {
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
inlen,
KNET_NOTIFY_TX,
knet_h->host_id,
knet_h->host_id,
&channel,
dst_host_ids_temp,
&dst_host_ids_entries_temp);
if (bcast < 0) {
log_debug(knet_h, KNET_SUB_TX, "Error from dst_host_filter_fn: %d", bcast);
savederrno = EFAULT;
err = -1;
goto out_unlock;
}
if ((!bcast) && (!dst_host_ids_entries_temp)) {
log_debug(knet_h, KNET_SUB_TX, "Message is unicast but no dst_host_ids_entries");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
if ((!bcast) &&
(dst_host_ids_entries_temp > KNET_MAX_HOST)) {
log_debug(knet_h, KNET_SUB_TX, "dst_host_filter_fn returned too many destinations");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
}
/* Send to localhost if appropriate and enabled */
if (knet_h->has_loop_link) {
send_local = 0;
if (bcast) {
send_local = 1;
} else {
for (i=0; i< dst_host_ids_entries_temp; i++) {
if (dst_host_ids_temp[i] == knet_h->host_id) {
send_local = 1;
}
}
}
if (send_local) {
const unsigned char *buf = inbuf->khp_data_userdata;
ssize_t buflen = inlen;
struct knet_link *local_link;
local_link = knet_h->host_index[knet_h->host_id]->link;
local_retry:
err = write(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], buf, buflen);
if (err < 0) {
log_err(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local failed. error=%s\n", strerror(errno));
local_link->status.stats.tx_data_errors++;
}
if (err > 0 && err < buflen) {
log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %zu\n", err, inlen);
local_link->status.stats.tx_data_retries++;
buf += err;
buflen -= err;
goto local_retry;
}
if (err == buflen) {
local_link->status.stats.tx_data_packets++;
local_link->status.stats.tx_data_bytes += inlen;
}
}
}
break;
case KNET_HEADER_TYPE_HOST_INFO:
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
bcast = 0;
dst_host_ids_temp[0] = knet_hostinfo->khi_dst_node_id;
dst_host_ids_entries_temp = 1;
knet_hostinfo->khi_dst_node_id = htons(knet_hostinfo->khi_dst_node_id);
}
break;
default:
log_warn(knet_h, KNET_SUB_TX, "Receiving unknown messages from socket");
savederrno = ENOMSG;
err = -1;
goto out_unlock;
break;
}
if (is_sync) {
if ((bcast) ||
((!bcast) && (dst_host_ids_entries_temp > 1))) {
log_debug(knet_h, KNET_SUB_TX, "knet_send_sync is only supported with unicast packets for one destination");
savederrno = E2BIG;
err = -1;
goto out_unlock;
}
}
/*
* check destinations hosts before spending time
* in fragmenting/encrypting packets to save
* time processing data for unreachable hosts.
* for unicast, also remap the destination data
* to skip unreachable hosts.
*/
if (!bcast) {
dst_host_ids_entries = 0;
for (host_idx = 0; host_idx < dst_host_ids_entries_temp; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids_temp[host_idx]];
if (!dst_host) {
continue;
}
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
dst_host_ids[dst_host_ids_entries] = dst_host_ids_temp[host_idx];
dst_host_ids_entries++;
}
}
if (!dst_host_ids_entries) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
} else {
send_mcast = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
send_mcast = 1;
break;
}
}
if (!send_mcast) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
}
if (!knet_h->data_mtu) {
/*
* using MIN_MTU_V4 for data mtu is not completely accurate but safe enough
*/
log_debug(knet_h, KNET_SUB_TX,
"Received data packet but data MTU is still unknown."
" Packet might not be delivered."
" Assuming minimum IPv4 MTU (%d)",
KNET_PMTUD_MIN_MTU_V4);
temp_data_mtu = KNET_PMTUD_MIN_MTU_V4;
} else {
/*
* take a copy of the mtu to avoid value changing under
* our feet while we are sending a fragmented pckt
*/
temp_data_mtu = knet_h->data_mtu;
}
/*
* compress data
*/
if ((knet_h->compress_model > 0) && (inlen > knet_h->compress_threshold)) {
size_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = compress(knet_h,
(const unsigned char *)inbuf->khp_data_userdata, inlen,
knet_h->send_to_links_buf_compress, (ssize_t *)&cmp_outlen);
- if (err < 0) {
- log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(errno));
- } else {
- /* Collect stats */
- clock_gettime(CLOCK_MONOTONIC, &end_time);
- timespec_diff(start_time, end_time, &compress_time);
- if (compress_time < knet_h->stats.tx_compress_time_min) {
- knet_h->stats.tx_compress_time_min = compress_time;
- }
- if (compress_time > knet_h->stats.tx_compress_time_max) {
- knet_h->stats.tx_compress_time_max = compress_time;
- }
- knet_h->stats.tx_compress_time_ave =
- (unsigned long long)(knet_h->stats.tx_compress_time_ave * knet_h->stats.tx_compressed_packets +
- compress_time) / (knet_h->stats.tx_compressed_packets+1);
+ savederrno = errno;
+
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ log_err(knet_h, KNET_SUB_TX, "Unable to get mutex lock: %s", strerror(stats_err));
+ err = -1;
+ savederrno = stats_err;
+ goto out_unlock;
+ }
+ stats_locked = 1;
+ /* Collect stats */
+ clock_gettime(CLOCK_MONOTONIC, &end_time);
+ timespec_diff(start_time, end_time, &compress_time);
+ if (compress_time < knet_h->stats.tx_compress_time_min) {
+ knet_h->stats.tx_compress_time_min = compress_time;
+ }
+ if (compress_time > knet_h->stats.tx_compress_time_max) {
+ knet_h->stats.tx_compress_time_max = compress_time;
+ }
+ knet_h->stats.tx_compress_time_ave =
+ (unsigned long long)(knet_h->stats.tx_compress_time_ave * knet_h->stats.tx_compressed_packets +
+ compress_time) / (knet_h->stats.tx_compressed_packets+1);
+ if (err < 0) {
+ log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(savederrno));
+ } else {
knet_h->stats.tx_compressed_packets++;
knet_h->stats.tx_compressed_original_bytes += inlen;
knet_h->stats.tx_compressed_size_bytes += cmp_outlen;
if (cmp_outlen < inlen) {
memmove(inbuf->khp_data_userdata, knet_h->send_to_links_buf_compress, cmp_outlen);
inlen = cmp_outlen;
data_compressed = 1;
}
}
}
+ if (!stats_locked) {
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ log_err(knet_h, KNET_SUB_TX, "Unable to get mutex lock: %s", strerror(stats_err));
+ err = -1;
+ savederrno = stats_err;
+ goto out_unlock;
+ }
+ }
if (knet_h->compress_model > 0 && !data_compressed) {
knet_h->stats.tx_uncompressed_packets++;
}
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
+ stats_locked = 0;
/*
* prepare the outgoing buffers
*/
frag_len = inlen;
frag_idx = 0;
inbuf->khp_data_bcast = bcast;
inbuf->khp_data_frag_num = ceil((float)inlen / temp_data_mtu);
inbuf->khp_data_channel = channel;
if (data_compressed) {
inbuf->khp_data_compress = knet_h->compress_model;
} else {
inbuf->khp_data_compress = 0;
}
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get seq mutex lock");
goto out_unlock;
}
knet_h->tx_seq_num++;
/*
* force seq_num 0 to detect a node that has crashed and rejoining
* the knet instance. seq_num 0 will clear the buffers in the RX
* thread
*/
if (knet_h->tx_seq_num == 0) {
knet_h->tx_seq_num++;
}
/*
* cache the value in locked context
*/
tx_seq_num = knet_h->tx_seq_num;
inbuf->khp_data_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
/*
* forcefully broadcast a ping to all nodes every SEQ_MAX / 8
* pckts.
* this solves 2 problems:
* 1) on TX socket overloads we generate extra pings to keep links alive
* 2) in 3+ nodes setup, where all the traffic is flowing between node 1 and 2,
* node 3+ will be able to keep in sync on the TX seq_num even without
* receiving traffic or pings in betweens. This avoids issues with
* rollover of the circular buffer
*/
if (tx_seq_num % (SEQ_MAX / 8) == 0) {
_send_pings(knet_h, 0);
}
if (inbuf->khp_data_frag_num > 1) {
while (frag_idx < inbuf->khp_data_frag_num) {
/*
* set the iov_base
*/
iov_out[frag_idx][0].iov_base = (void *)knet_h->send_to_links_buf[frag_idx];
iov_out[frag_idx][0].iov_len = KNET_HEADER_DATA_SIZE;
iov_out[frag_idx][1].iov_base = inbuf->khp_data_userdata + (temp_data_mtu * frag_idx);
/*
* set the len
*/
if (frag_len > temp_data_mtu) {
iov_out[frag_idx][1].iov_len = temp_data_mtu;
} else {
iov_out[frag_idx][1].iov_len = frag_len;
}
/*
* copy the frag info on all buffers
*/
knet_h->send_to_links_buf[frag_idx]->kh_type = inbuf->kh_type;
knet_h->send_to_links_buf[frag_idx]->khp_data_seq_num = inbuf->khp_data_seq_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_frag_num = inbuf->khp_data_frag_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_bcast = inbuf->khp_data_bcast;
knet_h->send_to_links_buf[frag_idx]->khp_data_channel = inbuf->khp_data_channel;
knet_h->send_to_links_buf[frag_idx]->khp_data_compress = inbuf->khp_data_compress;
frag_len = frag_len - temp_data_mtu;
frag_idx++;
}
iovcnt_out = 2;
} else {
iov_out[frag_idx][0].iov_base = (void *)inbuf;
iov_out[frag_idx][0].iov_len = frag_len + KNET_HEADER_DATA_SIZE;
iovcnt_out = 1;
}
if (knet_h->crypto_instance) {
struct timespec start_time;
struct timespec end_time;
uint64_t crypt_time;
frag_idx = 0;
while (frag_idx < inbuf->khp_data_frag_num) {
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_encrypt_and_signv(
knet_h,
iov_out[frag_idx], iovcnt_out,
knet_h->send_to_links_buf_crypt[frag_idx],
(ssize_t *)&outlen) < 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to encrypt packet");
savederrno = ECHILD;
err = -1;
goto out_unlock;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &crypt_time);
- if (crypt_time < knet_h->stats.tx_crypt_time_min) {
+ stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
+ if (stats_err < 0) {
+ log_err(knet_h, KNET_SUB_TX, "Unable to get mutex lock: %s", strerror(stats_err));
+ err = -1;
+ savederrno = stats_err;
+ goto out_unlock;
+ }
+
+ if (crypt_time < knet_h->stats.tx_crypt_time_min) {
knet_h->stats.tx_crypt_time_min = crypt_time;
}
if (crypt_time > knet_h->stats.tx_crypt_time_max) {
knet_h->stats.tx_crypt_time_max = crypt_time;
}
knet_h->stats.tx_crypt_time_ave =
(knet_h->stats.tx_crypt_time_ave * knet_h->stats.tx_crypt_packets +
crypt_time) / (knet_h->stats.tx_crypt_packets+1);
uncrypted_frag_size = 0;
for (j=0; j < iovcnt_out; j++) {
uncrypted_frag_size += iov_out[frag_idx][j].iov_len;
}
knet_h->stats.tx_crypt_byte_overhead += (outlen - uncrypted_frag_size);
knet_h->stats.tx_crypt_packets++;
+ pthread_mutex_unlock(&knet_h->handle_stats_mutex);
iov_out[frag_idx][0].iov_base = knet_h->send_to_links_buf_crypt[frag_idx];
iov_out[frag_idx][0].iov_len = outlen;
frag_idx++;
}
iovcnt_out = 1;
}
memset(&msg, 0, sizeof(msg));
msgs_to_send = inbuf->khp_data_frag_num;
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[msg_idx].msg_hdr.msg_iov = &iov_out[msg_idx][0];
msg[msg_idx].msg_hdr.msg_iovlen = iovcnt_out;
msg_idx++;
}
if (!bcast) {
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids[host_idx]];
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
} else {
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (dst_host->status.reachable) {
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
}
}
out_unlock:
errno = savederrno;
return err;
}
int knet_send_sync(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get TX mutex lock: %s",
strerror(savederrno));
err = -1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = KNET_HEADER_TYPE_DATA;
memmove(knet_h->recv_from_sock_buf->khp_data_userdata, buff, buff_len);
err = _parse_recv_from_sock(knet_h, buff_len, channel, 1);
savederrno = errno;
pthread_mutex_unlock(&knet_h->tx_mutex);
out:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
static void _handle_send_to_links(knet_handle_t knet_h, struct msghdr *msg, int sockfd, int8_t channel, int type)
{
ssize_t inlen = 0;
int savederrno = 0, docallback = 0;
if ((channel >= 0) &&
(channel < KNET_DATAFD_MAX) &&
(!knet_h->sockfd[channel].is_socket)) {
inlen = readv(sockfd, msg->msg_iov, 1);
} else {
inlen = recvmsg(sockfd, msg, MSG_DONTWAIT | MSG_NOSIGNAL);
if (msg->msg_flags & MSG_TRUNC) {
log_warn(knet_h, KNET_SUB_TX, "Received truncated message from sock %d. Discarding", sockfd);
return;
}
}
if (inlen == 0) {
savederrno = 0;
docallback = 1;
} else if (inlen < 0) {
struct epoll_event ev;
savederrno = errno;
docallback = 1;
memset(&ev, 0, sizeof(struct epoll_event));
if (channel != KNET_INTERNAL_DATA_CHANNEL) {
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s",
knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
} else {
knet_h->sockfd[channel].has_error = 1;
}
}
/*
* TODO: add error handling for KNET_INTERNAL_DATA_CHANNEL
* once we add support for internal knet communication
*/
} else {
knet_h->recv_from_sock_buf->kh_type = type;
_parse_recv_from_sock(knet_h, inlen, channel, 0);
}
if ((docallback) && (channel != KNET_INTERNAL_DATA_CHANNEL)) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_TX,
inlen,
savederrno);
}
}
void *_handle_send_to_links_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
int i, nev, type;
int flush, flush_queue_limit;
int8_t channel;
struct iovec iov_in;
struct msghdr msg;
struct sockaddr_storage address;
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_STARTED);
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)knet_h->recv_from_sock_buf->khp_data_userdata;
iov_in.iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = &address;
msg.msg_namelen = sizeof(struct sockaddr_storage);
msg.msg_iov = &iov_in;
msg.msg_iovlen = 1;
knet_h->recv_from_sock_buf->kh_version = KNET_HEADER_VERSION;
knet_h->recv_from_sock_buf->khp_data_frag_seq = 0;
knet_h->recv_from_sock_buf->kh_node = htons(knet_h->host_id);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
knet_h->send_to_links_buf[i]->kh_version = KNET_HEADER_VERSION;
knet_h->send_to_links_buf[i]->khp_data_frag_seq = i + 1;
knet_h->send_to_links_buf[i]->kh_node = htons(knet_h->host_id);
}
flush_queue_limit = 0;
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->send_to_links_epollfd, events, KNET_EPOLL_MAX_EVENTS + 1, KNET_THREADS_TIMERES / 1000);
flush = get_thread_flush_queue(knet_h, KNET_THREAD_TX);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
/*
* ideally we want to communicate that we are done flushing
* the queue when we have an epoll timeout event
*/
if (flush == KNET_THREAD_QUEUE_FLUSH) {
set_thread_flush_queue(knet_h, KNET_THREAD_TX, KNET_THREAD_QUEUE_FLUSHED);
flush_queue_limit = 0;
}
continue;
}
/*
* fall back in case the TX sockets will continue receive traffic
* and we do not hit an epoll timeout.
*
* allow up to a 100 loops to flush queues, then we give up.
* there might be more clean ways to do it by checking the buffer queue
* on each socket, but we have tons of sockets and calculations can go wrong.
* Also, why would you disable data forwarding and still send packets?
*/
if (flush == KNET_THREAD_QUEUE_FLUSH) {
if (flush_queue_limit >= 100) {
log_debug(knet_h, KNET_SUB_TX, "Timeout flushing the TX queue, expect packet loss");
set_thread_flush_queue(knet_h, KNET_THREAD_TX, KNET_THREAD_QUEUE_FLUSHED);
flush_queue_limit = 0;
} else {
flush_queue_limit++;
}
} else {
flush_queue_limit = 0;
}
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get read lock");
continue;
}
for (i = 0; i < nev; i++) {
if (events[i].data.fd == knet_h->hostsockfd[0]) {
type = KNET_HEADER_TYPE_HOST_INFO;
channel = KNET_INTERNAL_DATA_CHANNEL;
} else {
type = KNET_HEADER_TYPE_DATA;
for (channel = 0; channel < KNET_DATAFD_MAX; channel++) {
if ((knet_h->sockfd[channel].in_use) &&
(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) {
break;
}
}
if (channel >= KNET_DATAFD_MAX) {
log_debug(knet_h, KNET_SUB_TX, "No available channels");
continue; /* channel not found */
}
}
if (pthread_mutex_lock(&knet_h->tx_mutex) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get mutex lock");
continue;
}
_handle_send_to_links(knet_h, &msg, events[i].data.fd, channel, type);
pthread_mutex_unlock(&knet_h->tx_mutex);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/transport_common.c b/libknet/transport_common.c
index 32192430..00036974 100644
--- a/libknet/transport_common.c
+++ b/libknet/transport_common.c
@@ -1,455 +1,446 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "libknet.h"
#include "compat.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "common.h"
#include "transport_common.h"
/*
* reuse Jan Friesse's compat layer as wrapper to drop usage of sendmmsg
*
* TODO: kill those wrappers once we work on packet delivery guarantees
*/
int _recvmmsg(int sockfd, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags)
{
int savederrno = 0, err = 0;
unsigned int i;
for (i = 0; i < vlen; i++) {
err = recvmsg(sockfd, &msgvec[i].msg_hdr, flags);
savederrno = errno;
if (err >= 0) {
msgvec[i].msg_len = err;
if (err == 0) {
/* No point in reading anything more until we know this has been dealt with
or we'll just get a vector full of them. Several in fact */
i++;
break;
}
} else {
if ((i > 0) &&
((errno == EAGAIN) || (errno == EWOULDBLOCK))) {
savederrno = 0;
}
break;
}
}
errno = savederrno;
return ((i > 0) ? (int)i : err);
}
int _sendmmsg(int sockfd, int connection_oriented, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags)
{
int savederrno = 0, err = 0;
unsigned int i;
struct msghdr temp_msg;
struct msghdr *use_msghdr;
for (i = 0; i < vlen; i++) {
if (connection_oriented == TRANSPORT_PROTO_IS_CONNECTION_ORIENTED) {
memcpy(&temp_msg, &msgvec[i].msg_hdr, sizeof(struct msghdr));
temp_msg.msg_name = NULL;
temp_msg.msg_namelen = 0;
use_msghdr = &temp_msg;
} else {
use_msghdr = &msgvec[i].msg_hdr;
}
err = sendmsg(sockfd, use_msghdr, flags);
savederrno = errno;
if (err < 0) {
break;
}
}
errno = savederrno;
return ((i > 0) ? (int)i : err);
}
/* Assume neither of these constants can ever be zero */
#ifndef SO_RCVBUFFORCE
#define SO_RCVBUFFORCE 0
#endif
#ifndef SO_SNDBUFFORCE
#define SO_SNDBUFFORCE 0
#endif
static int _configure_sockbuf(knet_handle_t knet_h, int sock, int option, int force, int target)
{
int savederrno = 0;
int new_value;
socklen_t value_len = sizeof new_value;
if (setsockopt(sock, SOL_SOCKET, option, &target, sizeof target) != 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSPORT,
"Error setting socket buffer via option %d to value %d: %s\n",
option, target, strerror(savederrno));
errno = savederrno;
return -1;
}
if (getsockopt(sock, SOL_SOCKET, option, &new_value, &value_len) != 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSPORT,
"Error getting socket buffer via option %d: %s\n",
option, strerror(savederrno));
errno = savederrno;
return -1;
}
if (value_len != sizeof new_value) {
log_err(knet_h, KNET_SUB_TRANSPORT,
"Socket option %d returned unexpected size %u\n",
option, value_len);
errno = ERANGE;
return -1;
}
if (target <= new_value) {
return 0;
}
if (!force || !(knet_h->flags & KNET_HANDLE_FLAG_PRIVILEGED)) {
log_err(knet_h, KNET_SUB_TRANSPORT,
"Failed to set socket buffer via option %d to value %d: capped at %d",
option, target, new_value);
if (!(knet_h->flags & KNET_HANDLE_FLAG_PRIVILEGED)) {
log_err(knet_h, KNET_SUB_TRANSPORT,
"Continuing regardless, as the handle is not privileged."
" Expect poor performance!");
return 0;
} else {
errno = ENAMETOOLONG;
return -1;
}
}
if (setsockopt(sock, SOL_SOCKET, force, &target, sizeof target) < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSPORT,
"Failed to set socket buffer via force option %d: %s",
force, strerror(savederrno));
if (savederrno == EPERM) {
errno = ENAMETOOLONG;
} else {
errno = savederrno;
}
return -1;
}
return 0;
}
int _configure_common_socket(knet_handle_t knet_h, int sock, uint64_t flags, const char *type)
{
int err = 0, savederrno = 0;
int value;
if (_fdset_cloexec(sock)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s CLOEXEC socket opts: %s",
type, strerror(savederrno));
goto exit_error;
}
if (_fdset_nonblock(sock)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s NONBLOCK socket opts: %s",
type, strerror(savederrno));
goto exit_error;
}
if (_configure_sockbuf(knet_h, sock, SO_RCVBUF, SO_RCVBUFFORCE, KNET_RING_RCVBUFF)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s receive buffer: %s",
type, strerror(savederrno));
goto exit_error;
}
if (_configure_sockbuf(knet_h, sock, SO_SNDBUF, SO_SNDBUFFORCE, KNET_RING_RCVBUFF)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s send buffer: %s",
type, strerror(savederrno));
goto exit_error;
}
if (flags & KNET_LINK_FLAG_TRAFFICHIPRIO) {
#ifdef KNET_LINUX
#ifdef SO_PRIORITY
value = 6; /* TC_PRIO_INTERACTIVE */
if (setsockopt(sock, SOL_SOCKET, SO_PRIORITY, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s priority: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "TC_PRIO_INTERACTIVE enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "TC_PRIO_INTERACTIVE not available in this build/platform");
#endif
#endif
#if defined(IP_TOS) && defined(IPTOS_LOWDELAY)
value = IPTOS_LOWDELAY;
if (setsockopt(sock, IPPROTO_IP, IP_TOS, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s priority: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPTOS_LOWDELAY enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPTOS_LOWDELAY not available in this build/platform");
#endif
}
exit_error:
errno = savederrno;
return err;
}
int _configure_transport_socket(knet_handle_t knet_h, int sock, struct sockaddr_storage *address, uint64_t flags, const char *type)
{
int err = 0, savederrno = 0;
int value;
if (_configure_common_socket(knet_h, sock, flags, type) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
#ifdef KNET_LINUX
#ifdef IP_FREEBIND
value = 1;
if (setsockopt(sock, SOL_IP, IP_FREEBIND, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set FREEBIND on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "FREEBIND enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "FREEBIND not available in this build/platform");
#endif
#endif
#ifdef KNET_BSD
#ifdef IP_BINDANY /* BSD */
value = 1;
if (setsockopt(sock, IPPROTO_IP, IP_BINDANY, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set BINDANY on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "BINDANY enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "BINDANY not available in this build/platform");
#endif
#endif
if (address->ss_family == AF_INET6) {
value = 1;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY,
&value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s IPv6 only: %s",
type, strerror(savederrno));
goto exit_error;
}
#ifdef KNET_LINUX
#ifdef IPV6_MTU_DISCOVER
value = IPV6_PMTUDISC_PROBE;
if (setsockopt(sock, SOL_IPV6, IPV6_MTU_DISCOVER, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set PMTUDISC on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_MTU_DISCOVER enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_MTU_DISCOVER not available in this build/platform");
#endif
#endif
#ifdef IPV6_DONTFRAG
value = 1;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_DONTFRAG, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set DONTFRAG on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_DONTFRAG enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_DONTFRAG not available in this build/platform");
#endif
} else {
#ifdef KNET_LINUX
#ifdef IP_MTU_DISCOVER
value = IP_PMTUDISC_PROBE;
if (setsockopt(sock, SOL_IP, IP_MTU_DISCOVER, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set PMTUDISC on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "PMTUDISC enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "PMTUDISC not available in this build/platform");
#endif
#endif
#ifdef KNET_BSD
#ifdef IP_DONTFRAG
value = 1;
if (setsockopt(sock, IPPROTO_IP, IP_DONTFRAG, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set DONTFRAG on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "DONTFRAG enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "DONTFRAG not available in this build/platform");
#endif
#endif
}
- value = 1;
- if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &value, sizeof(value)) < 0) {
- savederrno = errno;
- err = -1;
- log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s reuseaddr: %s",
- type, strerror(savederrno));
- goto exit_error;
- }
-
exit_error:
errno = savederrno;
return err;
}
int _init_socketpair(knet_handle_t knet_h, int *sock)
{
int err = 0, savederrno = 0;
int i;
if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sock) != 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize socketpair: %s",
strerror(savederrno));
goto exit_fail;
}
for (i = 0; i < 2; i++) {
if (_configure_common_socket(knet_h, sock[i], 0, "local socketpair") < 0) {
savederrno = errno;
err = -1;
goto exit_fail;
}
}
exit_fail:
errno = savederrno;
return err;
}
void _close_socketpair(knet_handle_t knet_h, int *sock)
{
int i;
for (i = 0; i < 2; i++) {
if (sock[i]) {
close(sock[i]);
sock[i] = 0;
}
}
}
/*
* must be called with global read lock
*
* return -1 on error
* return 0 if fd is invalid
* return 1 if fd is valid
*/
int _is_valid_fd(knet_handle_t knet_h, int sockfd)
{
int ret = 0;
if (sockfd < 0) {
errno = EINVAL;
return -1;
}
if (sockfd >= KNET_MAX_FDS) {
errno = EINVAL;
return -1;
}
if (knet_h->knet_transport_fd_tracker[sockfd].transport >= KNET_MAX_TRANSPORTS) {
ret = 0;
} else {
ret = 1;
}
return ret;
}
/*
* must be called with global write lock
*/
int _set_fd_tracker(knet_handle_t knet_h, int sockfd, uint8_t transport, uint8_t data_type, void *data)
{
if (sockfd < 0) {
errno = EINVAL;
return -1;
}
if (sockfd >= KNET_MAX_FDS) {
errno = EINVAL;
return -1;
}
knet_h->knet_transport_fd_tracker[sockfd].transport = transport;
knet_h->knet_transport_fd_tracker[sockfd].data_type = data_type;
knet_h->knet_transport_fd_tracker[sockfd].data = data;
return 0;
}
diff --git a/libknet/transport_sctp.c b/libknet/transport_sctp.c
index 41a2caa8..667d80cf 100644
--- a/libknet/transport_sctp.c
+++ b/libknet/transport_sctp.c
@@ -1,1553 +1,1562 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Author: Christine Caulfield <ccaulfie@redhat.com>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdlib.h>
#include <assert.h>
#include "compat.h"
#include "host.h"
#include "links.h"
#include "links_acl.h"
#include "links_acl_ip.h"
#include "logging.h"
#include "common.h"
#include "transport_common.h"
#include "transports.h"
#include "threads_common.h"
#ifdef HAVE_NETINET_SCTP_H
#include <netinet/sctp.h>
#include "transport_sctp.h"
typedef struct sctp_handle_info {
struct knet_list_head listen_links_list;
struct knet_list_head connect_links_list;
int connect_epollfd;
int connectsockfd[2];
int listen_epollfd;
int listensockfd[2];
pthread_t connect_thread;
pthread_t listen_thread;
socklen_t event_subscribe_kernel_size;
char *event_subscribe_buffer;
} sctp_handle_info_t;
/*
* use by fd_tracker data type
*/
#define SCTP_NO_LINK_INFO 0
#define SCTP_LISTENER_LINK_INFO 1
#define SCTP_ACCEPTED_LINK_INFO 2
#define SCTP_CONNECT_LINK_INFO 3
/*
* this value is per listener
*/
#define MAX_ACCEPTED_SOCKS 256
typedef struct sctp_listen_link_info {
struct knet_list_head list;
int listen_sock;
int accepted_socks[MAX_ACCEPTED_SOCKS];
struct sockaddr_storage src_address;
int on_listener_epoll;
int on_rx_epoll;
int sock_shutdown;
} sctp_listen_link_info_t;
typedef struct sctp_accepted_link_info {
char mread_buf[KNET_DATABUFSIZE];
ssize_t mread_len;
sctp_listen_link_info_t *link_info;
} sctp_accepted_link_info_t ;
typedef struct sctp_connect_link_info {
struct knet_list_head list;
sctp_listen_link_info_t *listener;
struct knet_link *link;
struct sockaddr_storage dst_address;
int connect_sock;
int on_rx_epoll;
int close_sock;
int sock_shutdown;
} sctp_connect_link_info_t;
/*
* socket handling functions
*
* those functions do NOT perform locking. locking
* should be handled in the right context from callers
*/
/*
* sockets are removed from rx_epoll from callers
* see also error handling functions
*/
static int _close_connect_socket(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
struct epoll_event ev;
sctp_connect_link_info_t *info = kn_link->transport_link;
if (info->connect_sock != -1) {
if (info->on_rx_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->connect_sock;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, info->connect_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove connected socket from epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_rx_epoll = 0;
}
if (_set_fd_tracker(knet_h, info->connect_sock, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
} else {
close(info->connect_sock);
info->connect_sock = -1;
}
}
exit_error:
errno = savederrno;
return err;
}
static int _enable_sctp_notifications(knet_handle_t knet_h, int sock, const char *type)
{
int err = 0, savederrno = 0;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
if (setsockopt(sock, IPPROTO_SCTP, SCTP_EVENTS,
handle_info->event_subscribe_buffer,
handle_info->event_subscribe_kernel_size) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to enable %s events: %s",
type, strerror(savederrno));
}
errno = savederrno;
return err;
}
static int _configure_sctp_socket(knet_handle_t knet_h, int sock, struct sockaddr_storage *address, uint64_t flags, const char *type)
{
int err = 0, savederrno = 0;
int value;
int level;
#ifdef SOL_SCTP
level = SOL_SCTP;
#else
level = IPPROTO_SCTP;
#endif
if (_configure_transport_socket(knet_h, sock, address, flags, type) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
+ value = 1;
+ if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &value, sizeof(value)) < 0) {
+ savederrno = errno;
+ err = -1;
+ log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set reuseaddr on socket %d: %s",
+ sock, strerror(savederrno));
+ goto exit_error;
+ }
+
value = 1;
if (setsockopt(sock, level, SCTP_NODELAY, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set sctp nodelay: %s",
strerror(savederrno));
goto exit_error;
}
if (_enable_sctp_notifications(knet_h, sock, type) < 0) {
savederrno = errno;
err = -1;
}
exit_error:
errno = savederrno;
return err;
}
static int _reconnect_socket(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
sctp_connect_link_info_t *info = kn_link->transport_link;
if (connect(info->connect_sock, (struct sockaddr *)&kn_link->dst_addr, sockaddr_len(&kn_link->dst_addr)) < 0) {
savederrno = errno;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP socket %d received error: %s", info->connect_sock, strerror(savederrno));
if ((savederrno != EALREADY) && (savederrno != EINPROGRESS) && (savederrno != EISCONN)) {
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to connect SCTP socket %d: %s",
info->connect_sock, strerror(savederrno));
}
}
errno = savederrno;
return err;
}
static int _create_connect_socket(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
struct epoll_event ev;
sctp_connect_link_info_t *info = kn_link->transport_link;
int connect_sock;
connect_sock = socket(kn_link->dst_addr.ss_family, SOCK_STREAM, IPPROTO_SCTP);
if (connect_sock < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create send/recv socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_configure_sctp_socket(knet_h, connect_sock, &kn_link->dst_addr, kn_link->flags, "SCTP connect") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
if (_set_fd_tracker(knet_h, connect_sock, KNET_TRANSPORT_SCTP, SCTP_CONNECT_LINK_INFO, info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = connect_sock;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_ADD, connect_sock, &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add connected socket to epoll pool: %s",
strerror(errno));
}
info->on_rx_epoll = 1;
info->connect_sock = connect_sock;
info->close_sock = 0;
kn_link->outsock = info->connect_sock;
if (_reconnect_socket(knet_h, kn_link) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
exit_error:
if (err) {
if (connect_sock >= 0) {
close(connect_sock);
}
}
errno = savederrno;
return err;
}
static void _lock_sleep_relock(knet_handle_t knet_h)
{
int i = 0;
/* Don't hold onto the lock while sleeping */
pthread_rwlock_unlock(&knet_h->global_rwlock);
while (i < 5) {
usleep(KNET_THREADS_TIMERES / 16);
if (!pthread_rwlock_rdlock(&knet_h->global_rwlock)) {
/*
* lock acquired, we can go out
*/
return;
} else {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to get read lock!");
i++;
}
}
/*
* time to crash! if we cannot re-acquire the lock
* there is no easy way out of this one
*/
assert(0);
}
int sctp_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
sctp_connect_link_info_t *connect_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_accepted_link_info_t *accepted_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_listen_link_info_t *listen_info;
if (recv_err < 0) {
switch (knet_h->knet_transport_fd_tracker[sockfd].data_type) {
case SCTP_CONNECT_LINK_INFO:
if (connect_info->link->transport_connected == 0) {
return -1;
}
break;
case SCTP_ACCEPTED_LINK_INFO:
listen_info = accepted_info->link_info;
if (listen_info->listen_sock != sockfd) {
if (listen_info->on_rx_epoll == 0) {
return -1;
}
}
break;
}
if (recv_errno == EAGAIN) {
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Sock: %d is overloaded. Slowing TX down", sockfd);
#endif
_lock_sleep_relock(knet_h);
return 1;
}
return -1;
}
return 0;
}
/*
* socket error management functions
*
* both called with global read lock.
*
* NOTE: we need to remove the fd from the epoll as soon as possible
* even before we notify the respective thread to take care of it
* because scheduling can make it so that this thread will overload
* and the threads supposed to take care of the error will never
* be able to take action.
* we CANNOT handle FDs here directly (close/reconnect/etc) due
* to locking context. We need to delegate that to their respective
* management threads within the global write lock.
*
* this function is called from:
* - RX thread with recv_err <= 0 directly on recvmmsg error
* - transport_rx_is_data when msg_len == 0 (recv_err = 1)
* - transport_rx_is_data on notification (recv_err = 2)
*
* basically this small abuse of recv_err is to detect notifications
* generated by sockets created by listen().
*/
int sctp_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
struct epoll_event ev;
sctp_accepted_link_info_t *accepted_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_listen_link_info_t *listen_info;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
switch (knet_h->knet_transport_fd_tracker[sockfd].data_type) {
case SCTP_CONNECT_LINK_INFO:
/*
* all connect link have notifications enabled
* and we accept only data from notification and
* generic recvmmsg errors.
*
* Errors generated by msg_len 0 can be ignored because
* they follow a notification (double notification)
*/
if (recv_err != 1) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Notifying connect thread that sockfd %d received an error", sockfd);
if (sendto(handle_info->connectsockfd[1], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to notify connect thread: %s", strerror(errno));
}
}
break;
case SCTP_ACCEPTED_LINK_INFO:
listen_info = accepted_info->link_info;
if (listen_info->listen_sock != sockfd) {
if (recv_err != 1) {
if (listen_info->on_rx_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = sockfd;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, sockfd, &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove EOFed socket from epoll pool: %s",
strerror(errno));
return -1;
}
listen_info->on_rx_epoll = 0;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Notifying listen thread that sockfd %d received an error", sockfd);
if (sendto(handle_info->listensockfd[1], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to notify listen thread: %s", strerror(errno));
}
}
} else {
/*
* this means the listen() socket has generated
* a notification. now what? :-)
*/
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for listen() socket %d", sockfd);
}
break;
default:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received unknown notification? %d", sockfd);
break;
}
/*
* Under RX pressure we need to give time to IPC to pick up the message
*/
_lock_sleep_relock(knet_h);
return 0;
}
/*
* NOTE: sctp_transport_rx_is_data is called with global rdlock
* delegate any FD error management to sctp_transport_rx_sock_error
* and keep this code to parsing incoming data only
*/
int sctp_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
size_t i;
struct iovec *iov = msg->msg_hdr.msg_iov;
size_t iovlen = msg->msg_hdr.msg_iovlen;
struct sctp_assoc_change *sac;
union sctp_notification *snp;
sctp_accepted_link_info_t *listen_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_connect_link_info_t *connect_info = knet_h->knet_transport_fd_tracker[sockfd].data;
if (!(msg->msg_hdr.msg_flags & MSG_NOTIFICATION)) {
if (msg->msg_len == 0) {
/*
* NOTE: with event notification enabled, we receive error twice:
* 1) from the event notification
* 2) followed by a 0 byte msg_len
*
* the event handler should take care to avoid #2 by stopping
* the rx thread from processing more packets than necessary.
*/
if (knet_h->knet_transport_fd_tracker[sockfd].data_type == SCTP_CONNECT_LINK_INFO) {
if (connect_info->sock_shutdown) {
return KNET_TRANSPORT_RX_OOB_DATA_CONTINUE;
}
} else {
if (listen_info->link_info->sock_shutdown) {
return KNET_TRANSPORT_RX_OOB_DATA_CONTINUE;
}
}
/*
* this is pretty much dead code and we should never hit it.
* keep it for safety and avoid the rx thread to process
* bad info / data.
*/
return KNET_TRANSPORT_RX_NOT_DATA_STOP;
}
/*
* missing MSG_EOR has to be treated as a short read
* from the socket and we need to fill in the mread buf
* while we wait for MSG_EOR
*/
if (!(msg->msg_hdr.msg_flags & MSG_EOR)) {
/*
* copy the incoming data into mread_buf + mread_len (incremental)
* and increase mread_len
*/
memmove(listen_info->mread_buf + listen_info->mread_len, iov->iov_base, msg->msg_len);
listen_info->mread_len = listen_info->mread_len + msg->msg_len;
return KNET_TRANSPORT_RX_NOT_DATA_CONTINUE;
}
/*
* got EOR.
* if mread_len is > 0 we are completing a packet from short reads
* complete reassembling the packet in mread_buf, copy it back in the iov
* and set the iov/msg len numbers (size) correctly
*/
if (listen_info->mread_len) {
/*
* add last fragment to mread_buf
*/
memmove(listen_info->mread_buf + listen_info->mread_len, iov->iov_base, msg->msg_len);
listen_info->mread_len = listen_info->mread_len + msg->msg_len;
/*
* move all back into the iovec
*/
memmove(iov->iov_base, listen_info->mread_buf, listen_info->mread_len);
msg->msg_len = listen_info->mread_len;
listen_info->mread_len = 0;
}
return KNET_TRANSPORT_RX_IS_DATA;
}
if (!(msg->msg_hdr.msg_flags & MSG_EOR)) {
return KNET_TRANSPORT_RX_NOT_DATA_STOP;
}
for (i = 0; i < iovlen; i++) {
snp = iov[i].iov_base;
switch (snp->sn_header.sn_type) {
case SCTP_ASSOC_CHANGE:
sac = &snp->sn_assoc_change;
switch (sac->sac_state) {
case SCTP_COMM_LOST:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change socket %d: comm_lost", sockfd);
sctp_transport_rx_sock_error(knet_h, sockfd, 2, 0);
return KNET_TRANSPORT_RX_OOB_DATA_STOP;
break;
case SCTP_COMM_UP:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change socket %d: comm_up", sockfd);
if (knet_h->knet_transport_fd_tracker[sockfd].data_type == SCTP_CONNECT_LINK_INFO) {
connect_info->link->transport_connected = 1;
}
break;
case SCTP_RESTART:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change socket %d: restart", sockfd);
break;
case SCTP_SHUTDOWN_COMP:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change socket %d: shutdown comp", sockfd);
if (knet_h->knet_transport_fd_tracker[sockfd].data_type == SCTP_CONNECT_LINK_INFO) {
connect_info->close_sock = 1;
}
sctp_transport_rx_sock_error(knet_h, sockfd, 2, 0);
return KNET_TRANSPORT_RX_OOB_DATA_STOP;
break;
case SCTP_CANT_STR_ASSOC:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change socket %d: cant str assoc", sockfd);
sctp_transport_rx_sock_error(knet_h, sockfd, 2, 0);
break;
default:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change socket %d: unknown %d", sockfd, sac->sac_state);
break;
}
break;
case SCTP_SHUTDOWN_EVENT:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp shutdown event socket %d", sockfd);
if (knet_h->knet_transport_fd_tracker[sockfd].data_type == SCTP_CONNECT_LINK_INFO) {
connect_info->link->transport_connected = 0;
connect_info->sock_shutdown = 1;
} else {
listen_info->link_info->sock_shutdown = 1;
}
break;
case SCTP_SEND_FAILED:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp send failed socket: %d", sockfd);
break;
case SCTP_PEER_ADDR_CHANGE:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp peer addr change socket %d", sockfd);
break;
case SCTP_REMOTE_ERROR:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp remote error socket %d", sockfd);
break;
default:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] unknown sctp event socket: %d type: %hu", sockfd, snp->sn_header.sn_type);
break;
}
}
return KNET_TRANSPORT_RX_OOB_DATA_CONTINUE;
}
/*
* connect / outgoing socket management thread
*/
/*
* _handle_connected_sctp* are called with a global write lock
* from the connect_thread
*/
static void _handle_connected_sctp_socket(knet_handle_t knet_h, int connect_sock)
{
int err;
unsigned int status, len = sizeof(status);
sctp_connect_link_info_t *info = knet_h->knet_transport_fd_tracker[connect_sock].data;
struct knet_link *kn_link = info->link;
if (info->close_sock) {
if (_close_connect_socket(knet_h, kn_link) < 0) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to close sock %d from _handle_connected_sctp_socket: %s", connect_sock, strerror(errno));
return;
}
info->close_sock = 0;
if (_create_connect_socket(knet_h, kn_link) < 0) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to recreate connecting sock! %s", strerror(errno));
return;
}
}
_reconnect_socket(knet_h, info->link);
err = getsockopt(connect_sock, SOL_SOCKET, SO_ERROR, &status, &len);
if (err) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP getsockopt() on connecting socket %d failed: %s",
connect_sock, strerror(errno));
return;
}
if (status) {
log_info(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP connect on %d to %s port %s failed: %s",
connect_sock, kn_link->status.dst_ipaddr, kn_link->status.dst_port,
strerror(status));
/*
* No need to create a new socket if connect failed,
* just retry connect
*/
return;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP handler fd %d now connected to %s port %s",
connect_sock,
kn_link->status.dst_ipaddr, kn_link->status.dst_port);
}
static void _handle_connected_sctp_notifications(knet_handle_t knet_h)
{
int sockfd = -1;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
if (recv(handle_info->connectsockfd[0], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Short read on connectsockfd");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for connected socket fd error");
return;
}
/*
* revalidate sockfd
*/
if ((sockfd < 0) || (sockfd >= KNET_MAX_FDS)) {
return;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Processing connected error on socket: %d", sockfd);
_handle_connected_sctp_socket(knet_h, sockfd);
}
static void *_sctp_connect_thread(void *data)
{
int savederrno;
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
set_thread_status(knet_h, KNET_THREAD_SCTP_CONN, KNET_THREAD_STARTED);
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(handle_info->connect_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
if (nev < 0) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP connect handler EPOLL ERROR: %s",
strerror(errno));
continue;
}
/*
* Sort out which FD has a connection
*/
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to get write lock: %s",
strerror(savederrno));
continue;
}
/*
* minor optimization: deduplicate events
*
* in some cases we can receive multiple notifcations
* of the same FD having issues or need handling.
* It's enough to process it once even tho it's safe
* to handle them multiple times.
*/
for (i = 0; i < nev; i++) {
if (events[i].data.fd == handle_info->connectsockfd[0]) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received notification from rx_error for connected socket");
_handle_connected_sctp_notifications(knet_h);
} else {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification on connected sockfd %d\n", events[i].data.fd);
}
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
/*
* this thread can generate events for itself.
* we need to sleep in between loops to allow other threads
* to be scheduled
*/
usleep(knet_h->reconnect_int * 1000);
}
set_thread_status(knet_h, KNET_THREAD_SCTP_CONN, KNET_THREAD_STOPPED);
return NULL;
}
/*
* listen/incoming connections management thread
*/
/*
* Listener received a new connection
* called with a write lock from main thread
*/
static void _handle_incoming_sctp(knet_handle_t knet_h, int listen_sock)
{
int err = 0, savederrno = 0;
int new_fd;
int i = -1;
sctp_listen_link_info_t *info = knet_h->knet_transport_fd_tracker[listen_sock].data;
struct epoll_event ev;
struct sockaddr_storage ss;
socklen_t sock_len = sizeof(ss);
char addr_str[KNET_MAX_HOST_LEN];
char port_str[KNET_MAX_PORT_LEN];
sctp_accepted_link_info_t *accept_info = NULL;
new_fd = accept(listen_sock, (struct sockaddr *)&ss, &sock_len);
if (new_fd < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: accept error: %s", strerror(errno));
goto exit_error;
}
if (knet_addrtostr(&ss, sizeof(ss),
addr_str, KNET_MAX_HOST_LEN,
port_str, KNET_MAX_PORT_LEN) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: unable to gather socket info");
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: received connection from: %s port: %s",
addr_str, port_str);
if (knet_h->use_access_lists) {
if (!check_validate(knet_h, listen_sock, KNET_TRANSPORT_SCTP, &ss)) {
savederrno = EINVAL;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Connection rejected from %s/%s", addr_str, port_str);
close(new_fd);
errno = savederrno;
return;
}
}
/*
* Keep a track of all accepted FDs
*/
for (i=0; i<MAX_ACCEPTED_SOCKS; i++) {
if (info->accepted_socks[i] == -1) {
info->accepted_socks[i] = new_fd;
break;
}
}
if (i == MAX_ACCEPTED_SOCKS) {
errno = EBUSY;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: too many connections!");
goto exit_error;
}
if (_configure_common_socket(knet_h, new_fd, 0, "SCTP incoming") < 0) { /* Inherit flags from listener? */
savederrno = errno;
err = -1;
goto exit_error;
}
if (_enable_sctp_notifications(knet_h, new_fd, "Incoming connection") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
accept_info = malloc(sizeof(sctp_accepted_link_info_t));
if (!accept_info) {
savederrno = errno;
err = -1;
goto exit_error;
}
memset(accept_info, 0, sizeof(sctp_accepted_link_info_t));
accept_info->link_info = info;
if (_set_fd_tracker(knet_h, new_fd, KNET_TRANSPORT_SCTP, SCTP_ACCEPTED_LINK_INFO, accept_info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(errno));
goto exit_error;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = new_fd;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_ADD, new_fd, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: unable to add accepted socket %d to epoll pool: %s",
new_fd, strerror(errno));
goto exit_error;
}
info->on_rx_epoll = 1;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: accepted new fd %d for %s/%s (listen fd: %d). index: %d",
new_fd, addr_str, port_str, info->listen_sock, i);
exit_error:
if (err) {
if ((i >= 0) && (i < MAX_ACCEPTED_SOCKS)) {
info->accepted_socks[i] = -1;
}
_set_fd_tracker(knet_h, new_fd, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL);
free(accept_info);
if (new_fd >= 0) {
close(new_fd);
}
}
errno = savederrno;
return;
}
/*
* Listen thread received a notification of a bad socket that needs closing
* called with a write lock from main thread
*/
static void _handle_listen_sctp_errors(knet_handle_t knet_h)
{
int sockfd = -1;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
sctp_accepted_link_info_t *accept_info;
sctp_listen_link_info_t *info;
struct knet_host *host;
int link_idx;
int i;
if (recv(handle_info->listensockfd[0], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Short read on listensockfd");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for listen socket fd error");
return;
}
/*
* revalidate sockfd
*/
if ((sockfd < 0) || (sockfd >= KNET_MAX_FDS)) {
return;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Processing listen error on socket: %d", sockfd);
accept_info = knet_h->knet_transport_fd_tracker[sockfd].data;
info = accept_info->link_info;
/*
* clear all links using this accepted socket as
* outbound dynamically connected socket
*/
for (host = knet_h->host_head; host != NULL; host = host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if ((host->link[link_idx].dynamic == KNET_LINK_DYNIP) &&
(host->link[link_idx].outsock == sockfd)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Found dynamic connection on host %d link %d (%d)",
host->host_id, link_idx, sockfd);
host->link[link_idx].status.dynconnected = 0;
host->link[link_idx].transport_connected = 0;
host->link[link_idx].outsock = 0;
memset(&host->link[link_idx].dst_addr, 0, sizeof(struct sockaddr_storage));
}
}
}
for (i=0; i<MAX_ACCEPTED_SOCKS; i++) {
if (sockfd == info->accepted_socks[i]) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Closing accepted socket %d", sockfd);
_set_fd_tracker(knet_h, sockfd, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL);
info->accepted_socks[i] = -1;
free(accept_info);
close(sockfd);
break; /* Keeps covscan happy */
}
}
}
static void *_sctp_listen_thread(void *data)
{
int savederrno;
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
set_thread_status(knet_h, KNET_THREAD_SCTP_LISTEN, KNET_THREAD_STARTED);
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(handle_info->listen_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
if (nev < 0) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP listen handler EPOLL ERROR: %s",
strerror(errno));
continue;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to get write lock: %s",
strerror(savederrno));
continue;
}
/*
* Sort out which FD has an incoming connection
*/
for (i = 0; i < nev; i++) {
if (events[i].data.fd == handle_info->listensockfd[0]) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received notification from rx_error for listener/accepted socket");
_handle_listen_sctp_errors(knet_h);
} else {
if (_is_valid_fd(knet_h, events[i].data.fd) == 1) {
_handle_incoming_sctp(knet_h, events[i].data.fd);
} else {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received listen notification from invalid socket");
}
}
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_SCTP_LISTEN, KNET_THREAD_STOPPED);
return NULL;
}
/*
* sctp_link_listener_start/stop are called in global write lock
* context from set_config and clear_config.
*/
static sctp_listen_link_info_t *sctp_link_listener_start(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
int listen_sock = -1;
struct epoll_event ev;
sctp_listen_link_info_t *info = NULL;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
/*
* Only allocate a new listener if src address is different
*/
knet_list_for_each_entry(info, &handle_info->listen_links_list, list) {
if (memcmp(&info->src_address, &kn_link->src_addr, sizeof(struct sockaddr_storage)) == 0) {
if ((check_add(knet_h, info->listen_sock, KNET_TRANSPORT_SCTP, -1,
&kn_link->dst_addr, &kn_link->dst_addr, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != EEXIST)) {
return NULL;
}
return info;
}
}
info = malloc(sizeof(sctp_listen_link_info_t));
if (!info) {
err = -1;
goto exit_error;
}
memset(info, 0, sizeof(sctp_listen_link_info_t));
memset(info->accepted_socks, -1, sizeof(info->accepted_socks));
memmove(&info->src_address, &kn_link->src_addr, sizeof(struct sockaddr_storage));
listen_sock = socket(kn_link->src_addr.ss_family, SOCK_STREAM, IPPROTO_SCTP);
if (listen_sock < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_configure_sctp_socket(knet_h, listen_sock, &kn_link->src_addr, kn_link->flags, "SCTP listener") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
if (bind(listen_sock, (struct sockaddr *)&kn_link->src_addr, sockaddr_len(&kn_link->src_addr)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to bind listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (listen(listen_sock, 5) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to listen on listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_set_fd_tracker(knet_h, listen_sock, KNET_TRANSPORT_SCTP, SCTP_LISTENER_LINK_INFO, info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
if ((check_add(knet_h, listen_sock, KNET_TRANSPORT_SCTP, -1,
&kn_link->dst_addr, &kn_link->dst_addr, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != EEXIST)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to configure default access lists: %s",
strerror(savederrno));
goto exit_error;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = listen_sock;
if (epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_ADD, listen_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add listener to epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_listener_epoll = 1;
info->listen_sock = listen_sock;
knet_list_add(&info->list, &handle_info->listen_links_list);
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Listening on fd %d for %s:%s", listen_sock, kn_link->status.src_ipaddr, kn_link->status.src_port);
exit_error:
if (err) {
if ((info) && (info->on_listener_epoll)) {
epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_DEL, listen_sock, &ev);
}
if (listen_sock >= 0) {
check_rmall(knet_h, listen_sock, KNET_TRANSPORT_SCTP);
close(listen_sock);
}
if (info) {
free(info);
info = NULL;
}
}
errno = savederrno;
return info;
}
static int sctp_link_listener_stop(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
int found = 0, i;
struct knet_host *host;
int link_idx;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
sctp_connect_link_info_t *this_link_info = kn_link->transport_link;
sctp_listen_link_info_t *info = this_link_info->listener;
sctp_connect_link_info_t *link_info;
struct epoll_event ev;
for (host = knet_h->host_head; host != NULL; host = host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if (&host->link[link_idx] == kn_link)
continue;
link_info = host->link[link_idx].transport_link;
if ((link_info) &&
(link_info->listener == info)) {
found = 1;
break;
}
}
}
if ((check_rm(knet_h, info->listen_sock, KNET_TRANSPORT_SCTP,
&kn_link->dst_addr, &kn_link->dst_addr, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != ENOENT)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove default access lists for %d", info->listen_sock);
}
if (found) {
this_link_info->listener = NULL;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP listener socket %d still in use", info->listen_sock);
savederrno = EBUSY;
err = -1;
goto exit_error;
}
if (info->on_listener_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->listen_sock;
if (epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_DEL, info->listen_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove listener to epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_listener_epoll = 0;
}
if (_set_fd_tracker(knet_h, info->listen_sock, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
check_rmall(knet_h, info->listen_sock, KNET_TRANSPORT_SCTP);
close(info->listen_sock);
for (i=0; i< MAX_ACCEPTED_SOCKS; i++) {
if (info->accepted_socks[i] > -1) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->accepted_socks[i];
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, info->accepted_socks[i], &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove EOFed socket from epoll pool: %s",
strerror(errno));
}
info->on_rx_epoll = 0;
free(knet_h->knet_transport_fd_tracker[info->accepted_socks[i]].data);
close(info->accepted_socks[i]);
if (_set_fd_tracker(knet_h, info->accepted_socks[i], KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
info->accepted_socks[i] = -1;
}
}
knet_list_del(&info->list);
free(info);
this_link_info->listener = NULL;
exit_error:
errno = savederrno;
return err;
}
/*
* Links config/clear. Both called with global wrlock from link_set_config/clear_config
*/
int sctp_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
int savederrno = 0, err = 0;
sctp_connect_link_info_t *info;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
info = malloc(sizeof(sctp_connect_link_info_t));
if (!info) {
goto exit_error;
}
memset(info, 0, sizeof(sctp_connect_link_info_t));
kn_link->transport_link = info;
info->link = kn_link;
memmove(&info->dst_address, &kn_link->dst_addr, sizeof(struct sockaddr_storage));
info->connect_sock = -1;
info->listener = sctp_link_listener_start(knet_h, kn_link);
if (!info->listener) {
savederrno = errno;
err = -1;
goto exit_error;
}
if (kn_link->dynamic == KNET_LINK_STATIC) {
if (_create_connect_socket(knet_h, kn_link) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
kn_link->outsock = info->connect_sock;
}
knet_list_add(&info->list, &handle_info->connect_links_list);
exit_error:
if (err) {
if (info) {
if (info->connect_sock >= 0) {
close(info->connect_sock);
}
if (info->listener) {
sctp_link_listener_stop(knet_h, kn_link);
}
kn_link->transport_link = NULL;
free(info);
}
}
errno = savederrno;
return err;
}
/*
* called with global wrlock
*/
int sctp_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
sctp_connect_link_info_t *info;
if (!kn_link) {
errno = EINVAL;
return -1;
}
info = kn_link->transport_link;
if (!info) {
errno = EINVAL;
return -1;
}
if ((sctp_link_listener_stop(knet_h, kn_link) <0) && (errno != EBUSY)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove listener transport: %s",
strerror(savederrno));
goto exit_error;
}
if (_close_connect_socket(knet_h, kn_link) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to close connected socket: %s",
strerror(savederrno));
goto exit_error;
}
knet_list_del(&info->list);
free(info);
kn_link->transport_link = NULL;
exit_error:
errno = savederrno;
return err;
}
/*
* transport_free and transport_init are
* called only from knet_handle_new and knet_handle_free.
* all resources (hosts/links) should have been already freed at this point
* and they are called in a write locked context, hence they
* don't need their own locking.
*/
int sctp_transport_free(knet_handle_t knet_h)
{
sctp_handle_info_t *handle_info;
void *thread_status;
struct epoll_event ev;
if (!knet_h->transports[KNET_TRANSPORT_SCTP]) {
errno = EINVAL;
return -1;
}
handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
/*
* keep it here while we debug list usage and such
*/
if (!knet_list_empty(&handle_info->listen_links_list)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Internal error. listen links list is not empty");
}
if (!knet_list_empty(&handle_info->connect_links_list)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Internal error. connect links list is not empty");
}
if (handle_info->listen_thread) {
pthread_cancel(handle_info->listen_thread);
pthread_join(handle_info->listen_thread, &thread_status);
}
if (handle_info->connect_thread) {
pthread_cancel(handle_info->connect_thread);
pthread_join(handle_info->connect_thread, &thread_status);
}
if (handle_info->listensockfd[0] >= 0) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->listensockfd[0];
epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_DEL, handle_info->listensockfd[0], &ev);
}
if (handle_info->connectsockfd[0] >= 0) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->connectsockfd[0];
epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_DEL, handle_info->connectsockfd[0], &ev);
}
_close_socketpair(knet_h, handle_info->connectsockfd);
_close_socketpair(knet_h, handle_info->listensockfd);
if (handle_info->listen_epollfd >= 0) {
close(handle_info->listen_epollfd);
}
if (handle_info->connect_epollfd >= 0) {
close(handle_info->connect_epollfd);
}
free(handle_info->event_subscribe_buffer);
free(handle_info);
knet_h->transports[KNET_TRANSPORT_SCTP] = NULL;
return 0;
}
static int _sctp_subscribe_init(knet_handle_t knet_h)
{
int test_socket, savederrno;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
char dummy_events[100];
struct sctp_event_subscribe *events;
/* Below we set the first 6 fields of this expanding struct.
* SCTP_EVENTS is deprecated, but SCTP_EVENT is not available
* on Linux; on the other hand, FreeBSD and old Linux does not
* accept small transfers, so we can't simply use this minimum
* everywhere. Thus we query and store the native size. */
const unsigned int subscribe_min = 6;
test_socket = socket(PF_INET, SOCK_STREAM, IPPROTO_SCTP);
if (test_socket < 0) {
if (errno == EPROTONOSUPPORT) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP not supported, skipping initialization");
return 0;
}
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create test socket: %s",
strerror(savederrno));
return savederrno;
}
handle_info->event_subscribe_kernel_size = sizeof dummy_events;
if (getsockopt(test_socket, IPPROTO_SCTP, SCTP_EVENTS, &dummy_events,
&handle_info->event_subscribe_kernel_size)) {
close(test_socket);
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to query kernel size of struct sctp_event_subscribe: %s",
strerror(savederrno));
return savederrno;
}
close(test_socket);
if (handle_info->event_subscribe_kernel_size < subscribe_min) {
savederrno = ERANGE;
log_err(knet_h, KNET_SUB_TRANSP_SCTP,
"No kernel support for the necessary notifications: struct sctp_event_subscribe is %u bytes, %u needed",
handle_info->event_subscribe_kernel_size, subscribe_min);
return savederrno;
}
events = malloc(handle_info->event_subscribe_kernel_size);
if (!events) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSP_SCTP,
"Failed to allocate event subscribe buffer: %s", strerror(savederrno));
return savederrno;
}
memset(events, 0, handle_info->event_subscribe_kernel_size);
events->sctp_data_io_event = 1;
events->sctp_association_event = 1;
events->sctp_address_event = 1;
events->sctp_send_failure_event = 1;
events->sctp_peer_error_event = 1;
events->sctp_shutdown_event = 1;
handle_info->event_subscribe_buffer = (char *)events;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Size of struct sctp_event_subscribe is %u in kernel, %zu in user space",
handle_info->event_subscribe_kernel_size, sizeof(struct sctp_event_subscribe));
return 0;
}
int sctp_transport_init(knet_handle_t knet_h)
{
int err = 0, savederrno = 0;
sctp_handle_info_t *handle_info;
struct epoll_event ev;
if (knet_h->transports[KNET_TRANSPORT_SCTP]) {
errno = EEXIST;
return -1;
}
handle_info = malloc(sizeof(sctp_handle_info_t));
if (!handle_info) {
return -1;
}
memset(handle_info, 0,sizeof(sctp_handle_info_t));
knet_h->transports[KNET_TRANSPORT_SCTP] = handle_info;
savederrno = _sctp_subscribe_init(knet_h);
if (savederrno) {
err = -1;
goto exit_fail;
}
knet_list_init(&handle_info->listen_links_list);
knet_list_init(&handle_info->connect_links_list);
handle_info->listen_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (handle_info->listen_epollfd < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create epoll listen fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(handle_info->listen_epollfd)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set CLOEXEC on listen_epollfd: %s",
strerror(savederrno));
goto exit_fail;
}
handle_info->connect_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (handle_info->connect_epollfd < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create epoll connect fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(handle_info->connect_epollfd)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set CLOEXEC on connect_epollfd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_init_socketpair(knet_h, handle_info->connectsockfd) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to init connect socketpair: %s",
strerror(savederrno));
goto exit_fail;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->connectsockfd[0];
if (epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_ADD, handle_info->connectsockfd[0], &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add connectsockfd[0] to connect epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
if (_init_socketpair(knet_h, handle_info->listensockfd) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to init listen socketpair: %s",
strerror(savederrno));
goto exit_fail;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->listensockfd[0];
if (epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_ADD, handle_info->listensockfd[0], &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add listensockfd[0] to listen epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
/*
* Start connect & listener threads
*/
set_thread_status(knet_h, KNET_THREAD_SCTP_LISTEN, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&handle_info->listen_thread, 0, _sctp_listen_thread, (void *) knet_h);
if (savederrno) {
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to start sctp listen thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_SCTP_CONN, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&handle_info->connect_thread, 0, _sctp_connect_thread, (void *) knet_h);
if (savederrno) {
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to start sctp connect thread: %s",
strerror(savederrno));
goto exit_fail;
}
exit_fail:
if (err < 0) {
sctp_transport_free(knet_h);
}
errno = savederrno;
return err;
}
int sctp_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link)
{
kn_link->outsock = sockfd;
kn_link->status.dynconnected = 1;
kn_link->transport_connected = 1;
return 0;
}
int sctp_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link)
{
sctp_connect_link_info_t *this_link_info = kn_link->transport_link;
sctp_listen_link_info_t *info = this_link_info->listener;
return info->listen_sock;
}
#endif
diff --git a/man/doxyxml.c b/man/doxyxml.c
index 2f289767..343449c4 100644
--- a/man/doxyxml.c
+++ b/man/doxyxml.c
@@ -1,930 +1,937 @@
/*
* Copyright (C) 2018-2019 Red Hat, Inc. All rights reserved.
*
* Author: Christine Caulfield <ccaulfie@redhat.com>
*
* This software licensed under GPL-2.0+
*/
/*
* NOTE: this code is very rough, it does the bare minimum to parse the
* XML out from doxygen and is probably very fragile to changes in that XML
* schema. It probably leaks memory all over the place too.
*
* In its favour, it *does* generate man pages and should only be run very ocasionally
*/
#define _DEFAULT_SOURCE
#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _XOPEN_SOURCE_EXTENDED
#include <stdlib.h>
#include <sys/time.h>
#include <time.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <getopt.h>
#include <errno.h>
#include <libxml/tree.h>
#include <qb/qblist.h>
#include <qb/qbmap.h>
#define XML_DIR "../man/xml-knet"
#define XML_FILE "libknet_8h.xml"
/*
* This isn't a maximum size, it just defines how long a parameter
* type can get before we decide it's not worth lining everything up to.
* it's mainly to stop function pointer types (which can get VERY long because
* of all *their* parameters) making everything else 'line-up' over separate lines
*/
#define LINE_LENGTH 80
static int print_ascii = 1;
static int print_man = 0;
static int print_params = 0;
static int num_functions = 0;
static const char *man_section="3";
static const char *package_name="Kronosnet";
static const char *header="Kronosnet Programmer's Manual";
static const char *output_dir="./";
static const char *xml_dir = XML_DIR;
static const char *xml_file = XML_FILE;
static const char *manpage_date = NULL;
static long manpage_year = LONG_MIN;
static struct qb_list_head params_list;
static struct qb_list_head retval_list;
static qb_map_t *function_map;
static qb_map_t *structures_map;
static qb_map_t *used_structures_map;
struct param_info {
char *paramname;
char *paramtype;
char *paramdesc;
struct param_info *next;
struct qb_list_head list;
};
struct struct_info {
enum {STRUCTINFO_STRUCT, STRUCTINFO_ENUM} kind;
char *structname;
struct qb_list_head params_list; /* our params */
struct qb_list_head list;
};
static char *get_texttree(int *type, xmlNode *cur_node, char **returntext);
static void traverse_node(xmlNode *parentnode, const char *leafname, void (do_members(xmlNode*, void*)), void *arg);
static void free_paraminfo(struct param_info *pi)
{
free(pi->paramname);
free(pi->paramtype);
free(pi->paramdesc);
free(pi);
}
static char *get_attr(xmlNode *node, const char *tag)
{
xmlAttr *this_attr;
for (this_attr = node->properties; this_attr; this_attr = this_attr->next) {
if (this_attr->type == XML_ATTRIBUTE_NODE && strcmp((char *)this_attr->name, tag) == 0) {
return strdup((char *)this_attr->children->content);
}
}
return NULL;
}
static char *get_child(xmlNode *node, const char *tag)
{
xmlNode *this_node;
xmlNode *child;
char buffer[1024] = {'\0'};
char *refid = NULL;
char *declname = NULL;
for (this_node = node->children; this_node; this_node = this_node->next) {
if ((strcmp( (char*)this_node->name, "declname") == 0)) {
declname = strdup((char*)this_node->children->content);
}
if ((this_node->type == XML_ELEMENT_NODE && this_node->children) && ((strcmp((char *)this_node->name, tag) == 0))) {
refid = NULL;
for (child = this_node->children; child; child = child->next) {
if (child->content) {
- strcat(buffer, (char *)child->content);
+ strncat(buffer, (char *)child->content, sizeof(buffer)-1);
}
if ((strcmp( (char*)child->name, "ref") == 0)) {
if (child->children->content) {
- strcat(buffer,(char *)child->children->content);
+ strncat(buffer, (char *)child->children->content, sizeof(buffer)-1);
}
refid = get_attr(child, "refid");
}
}
}
if (declname && refid) {
qb_map_put(used_structures_map, refid, declname);
}
}
return strdup(buffer);
}
static struct param_info *find_param_by_name(struct qb_list_head *list, const char *name)
{
struct qb_list_head *iter;
struct param_info *pi;
qb_list_for_each(iter, list) {
pi = qb_list_entry(iter, struct param_info, list);
if (strcmp(pi->paramname, name) == 0) {
return pi;
}
}
return NULL;
}
static int not_all_whitespace(char *string)
{
unsigned int i;
for (i=0; i<strlen(string); i++) {
if (string[i] != ' ' &&
string[i] != '\n' &&
string[i] != '\r' &&
string[i] != '\t')
return 1;
}
return 0;
}
static void get_param_info(xmlNode *cur_node, struct qb_list_head *list)
{
xmlNode *this_tag;
xmlNode *sub_tag;
char *paramname = NULL;
char *paramdesc = NULL;
struct param_info *pi;
/* This is not robust, and very inflexible */
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
for (sub_tag = this_tag->children; sub_tag; sub_tag = sub_tag->next) {
if (sub_tag->type == XML_ELEMENT_NODE && strcmp((char *)sub_tag->name, "parameternamelist") == 0) {
paramname = (char*)sub_tag->children->next->children->content;
}
- if (sub_tag->type == XML_ELEMENT_NODE && strcmp((char *)sub_tag->name, "parameterdescription") == 0) {
+ if (paramname && sub_tag->type == XML_ELEMENT_NODE && strcmp((char *)sub_tag->name, "parameterdescription") == 0) {
paramdesc = (char*)sub_tag->children->next->children->content;
/* Add text to the param_map */
pi = find_param_by_name(list, paramname);
if (pi) {
pi->paramdesc = paramdesc;
}
else {
pi = malloc(sizeof(struct param_info));
if (pi) {
pi->paramname = paramname;
pi->paramdesc = paramdesc;
pi->paramtype = NULL; /* retval */
qb_list_add_tail(&pi->list, list);
}
}
}
}
}
}
static char *get_text(xmlNode *cur_node, char **returntext)
{
xmlNode *this_tag;
xmlNode *sub_tag;
char *kind;
char buffer[4096] = {'\0'};
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
if (this_tag->type == XML_TEXT_NODE && strcmp((char *)this_tag->name, "text") == 0) {
if (not_all_whitespace((char*)this_tag->content)) {
- strcat(buffer, (char*)this_tag->content);
- strcat(buffer, "\n");
+ strncat(buffer, (char*)this_tag->content, sizeof(buffer)-1);
+ strncat(buffer, "\n", sizeof(buffer)-1);
}
}
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "emphasis") == 0) {
if (print_man) {
- strcat(buffer, "\\fB");
+ strncat(buffer, "\\fB", sizeof(buffer)-1);
}
- strcat(buffer, (char*)this_tag->children->content);
+ strncat(buffer, (char*)this_tag->children->content, sizeof(buffer)-1);
if (print_man) {
- strcat(buffer, "\\fR");
+ strncat(buffer, "\\fR", sizeof(buffer)-1);
}
}
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "itemizedlist") == 0) {
for (sub_tag = this_tag->children; sub_tag; sub_tag = sub_tag->next) {
if (sub_tag->type == XML_ELEMENT_NODE && strcmp((char *)sub_tag->name, "listitem") == 0) {
- strcat(buffer, (char*)sub_tag->children->children->content);
- strcat(buffer, "\n");
+ strncat(buffer, (char*)sub_tag->children->children->content, sizeof(buffer)-1);
+ strncat(buffer, "\n", sizeof(buffer)-1);
}
}
}
/* Look for subsections - return value & params */
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "simplesect") == 0) {
char *tmp;
kind = get_attr(this_tag, "kind");
tmp = get_text(this_tag->children, NULL);
if (returntext && strcmp(kind, "return") == 0) {
*returntext = tmp;
}
+ free(kind);
}
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "parameterlist") == 0) {
kind = get_attr(this_tag, "kind");
if (strcmp(kind, "param") == 0) {
get_param_info(this_tag, &params_list);
}
if (strcmp(kind, "retval") == 0) {
get_param_info(this_tag, &retval_list);
}
+ free(kind);
}
}
return strdup(buffer);
}
static void read_structname(xmlNode *cur_node, void *arg)
{
struct struct_info *si=arg;
xmlNode *this_tag;
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
if (strcmp((char*)this_tag->name, "compoundname") == 0) {
si->structname = strdup((char*)this_tag->children->content);
}
}
}
/* Called from traverse_node() */
static void read_struct(xmlNode *cur_node, void *arg)
{
xmlNode *this_tag;
struct struct_info *si=arg;
struct param_info *pi;
char fullname[1024];
char *type = NULL;
char *name = NULL;
const char *args="";
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
if (strcmp((char*)this_tag->name, "type") == 0) {
type = (char*)this_tag->children->content ;
}
if (strcmp((char*)this_tag->name, "name") == 0) {
name = (char*)this_tag->children->content ;
}
if (this_tag->children && strcmp((char*)this_tag->name, "argsstring") == 0) {
args = (char*)this_tag->children->content;
}
}
if (name) {
pi = malloc(sizeof(struct param_info));
if (pi) {
snprintf(fullname, sizeof(fullname), "%s%s", name, args);
pi->paramtype = type?strdup(type):strdup("");
pi->paramname = strdup(fullname);
pi->paramdesc = NULL;
qb_list_add_tail(&pi->list, &si->params_list);
}
}
}
static int read_structure_from_xml(char *refid, char *name)
{
char fname[PATH_MAX];
xmlNode *rootdoc;
xmlDocPtr doc;
struct struct_info *si;
int ret = -1;
snprintf(fname, sizeof(fname), "%s/%s.xml", xml_dir, refid);
doc = xmlParseFile(fname);
if (doc == NULL) {
fprintf(stderr, "Error: unable to open xml file for %s\n", refid);
return -1;
}
rootdoc = xmlDocGetRootElement(doc);
if (!rootdoc) {
fprintf(stderr, "Can't find \"document root\"\n");
return -1;
}
si = malloc(sizeof(struct struct_info));
if (si) {
si->kind = STRUCTINFO_STRUCT;
qb_list_init(&si->params_list);
traverse_node(rootdoc, "memberdef", read_struct, si);
traverse_node(rootdoc, "compounddef", read_structname, si);
ret = 0;
qb_map_put(structures_map, refid, si);
}
xmlFreeDoc(doc);
return ret;
}
static void print_param(FILE *manfile, struct param_info *pi, int field_width, int bold, const char *delimiter)
{
char *asterisks = " ";
char *type = pi->paramtype;
/* Reformat pointer params so they look nicer */
if (pi->paramtype[strlen(pi->paramtype)-1] == '*') {
asterisks=" *";
type = strdup(pi->paramtype);
type[strlen(type)-1] = '\0';
/* Cope with double pointers */
if (pi->paramtype[strlen(type)-1] == '*') {
asterisks="**";
type[strlen(type)-1] = '\0';
}
}
fprintf(manfile, " %s%-*s%s%s\\fI%s\\fP%s\n",
bold?"\\fB":"", field_width, type,
asterisks, bold?"\\fP":"", pi->paramname, delimiter);
if (type != pi->paramtype) {
free(type);
}
}
static void print_structure(FILE *manfile, char *refid, char *name)
{
struct struct_info *si;
struct param_info *pi;
struct qb_list_head *iter;
unsigned int max_param_length=0;
/* If it's not been read in - go and look for it */
si = qb_map_get(structures_map, refid);
if (!si) {
if (!read_structure_from_xml(refid, name)) {
si = qb_map_get(structures_map, refid);
}
}
if (si) {
qb_list_for_each(iter, &si->params_list) {
pi = qb_list_entry(iter, struct param_info, list);
if (strlen(pi->paramtype) > max_param_length) {
max_param_length = strlen(pi->paramtype);
}
}
if (si->kind == STRUCTINFO_STRUCT) {
fprintf(manfile, "struct %s {\n", si->structname);
} else if (si->kind == STRUCTINFO_ENUM) {
fprintf(manfile, "enum %s {\n", si->structname);
} else {
fprintf(manfile, "%s {\n", si->structname);
}
qb_list_for_each(iter, &si->params_list) {
pi = qb_list_entry(iter, struct param_info, list);
print_param(manfile, pi, max_param_length, 0,";");
}
fprintf(manfile, "};\n");
}
}
char *get_texttree(int *type, xmlNode *cur_node, char **returntext)
{
xmlNode *this_tag;
char *tmp = NULL;
char buffer[4096] = {'\0'};
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "para") == 0) {
tmp = get_text(this_tag, returntext);
- strcat(buffer, tmp);
- strcat(buffer, "\n");
+ strncat(buffer, tmp, sizeof(buffer)-1);
+ strncat(buffer, "\n", sizeof(buffer)-1);
free(tmp);
}
}
if (buffer[0]) {
- tmp = strdup(buffer);
+ return strdup(buffer);
+ } else {
+ return NULL;
}
-
- return tmp;
}
/* The text output is VERY basic and just a check that it's working really */
static void print_text(char *name, char *def, char *brief, char *args, char *detailed,
struct qb_list_head *param_list, char *returntext)
{
printf(" ------------------ %s --------------------\n", name);
printf("NAME\n");
printf(" %s - %s\n", name, brief);
printf("SYNOPSIS\n");
printf(" %s %s\n\n", name, args);
printf("DESCRIPTION\n");
printf(" %s\n", detailed);
if (returntext) {
printf("RETURN VALUE\n");
printf(" %s\n", returntext);
}
}
/* Print a long string with para marks in it. */
static void man_print_long_string(FILE *manfile, char *text)
{
char *next_nl;
char *current = text;
next_nl = strchr(text, '\n');
while (next_nl && *next_nl != '\0') {
*next_nl = '\0';
if (strlen(current)) {
fprintf(manfile, ".PP\n%s\n", current);
}
*next_nl = '\n';
current = next_nl+1;
next_nl = strchr(current, '\n');
}
}
static void print_manpage(char *name, char *def, char *brief, char *args, char *detailed,
struct qb_list_head *param_map, char *returntext)
{
char manfilename[PATH_MAX];
char gendate[64];
const char *dateptr = gendate;
FILE *manfile;
time_t t;
struct tm *tm;
qb_map_iter_t *map_iter;
struct qb_list_head *iter;
struct qb_list_head *tmp;
const char *p;
void *data;
unsigned int max_param_type_len;
unsigned int max_param_name_len;
unsigned int num_param_descs;
int param_count = 0;
int param_num = 0;
struct param_info *pi;
t = time(NULL);
tm = localtime(&t);
if (!tm) {
perror("unable to get localtime");
exit(1);
}
strftime(gendate, sizeof(gendate), "%Y-%m-%d", tm);
if (manpage_date) {
dateptr = manpage_date;
}
if (manpage_year == LONG_MIN) {
manpage_year = tm->tm_year+1900;
}
snprintf(manfilename, sizeof(manfilename), "%s/%s.%s", output_dir, name, man_section);
manfile = fopen(manfilename, "w+");
if (!manfile) {
perror("unable to open output file");
printf("%s", manfilename);
exit(1);
}
/* Work out the length of the parameters, so we can line them up */
max_param_type_len = 0;
max_param_name_len = 0;
num_param_descs = 0;
qb_list_for_each(iter, &params_list) {
pi = qb_list_entry(iter, struct param_info, list);
if ((strlen(pi->paramtype) < LINE_LENGTH) &&
(strlen(pi->paramtype) > max_param_type_len)) {
max_param_type_len = strlen(pi->paramtype);
}
if (strlen(pi->paramname) > max_param_name_len) {
max_param_name_len = strlen(pi->paramname);
}
if (pi->paramdesc) {
num_param_descs++;
}
param_count++;
}
/* Off we go */
fprintf(manfile, ".\\\" Automatically generated man page, do not edit\n");
fprintf(manfile, ".TH %s %s %s \"%s\" \"%s\"\n", name, man_section, dateptr, package_name, header);
fprintf(manfile, ".SH NAME\n");
fprintf(manfile, "%s \\- %s\n", name, brief);
fprintf(manfile, ".SH SYNOPSIS\n");
fprintf(manfile, ".nf\n");
fprintf(manfile, ".B #include <libknet.h>\n");
fprintf(manfile, ".sp\n");
fprintf(manfile, "\\fB%s\\fP(\n", def);
qb_list_for_each(iter, &params_list) {
pi = qb_list_entry(iter, struct param_info, list);
print_param(manfile, pi, max_param_type_len, 1, ++param_num < param_count?",":"");
}
fprintf(manfile, ");\n");
fprintf(manfile, ".fi\n");
if (print_params && num_param_descs) {
fprintf(manfile, ".SH PARAMS\n");
qb_list_for_each(iter, &params_list) {
pi = qb_list_entry(iter, struct param_info, list);
fprintf(manfile, "\\fB%-*s \\fP\\fI%s\\fP\n", (int)max_param_name_len, pi->paramname,
pi->paramdesc);
fprintf(manfile, ".PP\n");
}
}
fprintf(manfile, ".SH DESCRIPTION\n");
man_print_long_string(manfile, detailed);
if (qb_map_count_get(used_structures_map)) {
fprintf(manfile, ".SH STRUCTURES\n");
map_iter = qb_map_iter_create(used_structures_map);
for (p = qb_map_iter_next(map_iter, &data); p; p = qb_map_iter_next(map_iter, &data)) {
fprintf(manfile, ".nf\n");
fprintf(manfile, "\\fB\n");
print_structure(manfile, (char*)p, (char *)data);
fprintf(manfile, "\\fP\n");
fprintf(manfile, ".fi\n");
}
qb_map_iter_free(map_iter);
fprintf(manfile, ".RE\n");
}
if (returntext) {
fprintf(manfile, ".SH RETURN VALUE\n");
man_print_long_string(manfile, returntext);
}
qb_list_for_each(iter, &retval_list) {
pi = qb_list_entry(iter, struct param_info, list);
fprintf(manfile, "\\fB%-*s \\fP\\fI%s\\fP\n", 10, pi->paramname,
pi->paramdesc);
fprintf(manfile, ".PP\n");
}
fprintf(manfile, ".SH SEE ALSO\n");
fprintf(manfile, ".PP\n");
fprintf(manfile, ".nh\n");
fprintf(manfile, ".ad l\n");
param_num = 0;
map_iter = qb_map_iter_create(function_map);
for (p = qb_map_iter_next(map_iter, &data); p; p = qb_map_iter_next(map_iter, &data)) {
/* Exclude us! */
if (strcmp(data, name)) {
fprintf(manfile, "\\fI%s(%s)%s", (char *)data, man_section,
param_num < (num_functions - 1)?", ":"");
}
param_num++;
}
qb_map_iter_free(map_iter);
fprintf(manfile, "\n");
fprintf(manfile, ".ad\n");
fprintf(manfile, ".hy\n");
fprintf(manfile, ".SH \"COPYRIGHT\"\n");
fprintf(manfile, ".PP\n");
fprintf(manfile, "Copyright (C) 2010-%4ld Red Hat, Inc. All rights reserved.\n", manpage_year);
fclose(manfile);
/* Free the params & retval info */
qb_list_for_each_safe(iter, tmp, &params_list) {
pi = qb_list_entry(iter, struct param_info, list);
qb_list_del(&pi->list);
free_paraminfo(pi);
}
qb_list_for_each_safe(iter, tmp, &retval_list) {
pi = qb_list_entry(iter, struct param_info, list);
qb_list_del(&pi->list);
free_paraminfo(pi);
}
/* Free used-structures map */
map_iter = qb_map_iter_create(used_structures_map);
for (p = qb_map_iter_next(map_iter, &data); p; p = qb_map_iter_next(map_iter, &data)) {
qb_map_rm(used_structures_map, p);
free(data);
}
}
/* Same as traverse_members, but to collect function names */
static void collect_functions(xmlNode *cur_node, void *arg)
{
xmlNode *this_tag;
char *kind;
char *name = NULL;
if (cur_node->name && strcmp((char *)cur_node->name, "memberdef") == 0) {
kind = get_attr(cur_node, "kind");
if (kind && strcmp(kind, "function") == 0) {
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "name") == 0) {
name = strdup((char *)this_tag->children->content);
}
}
if (name) {
qb_map_put(function_map, name, name);
num_functions++;
}
}
+ free(kind);
}
}
/* Same as traverse_members, but to collect enums. The behave like structures for,
but, for some reason, are in the main XML file rather than their own */
static void collect_enums(xmlNode *cur_node, void *arg)
{
xmlNode *this_tag;
struct struct_info *si;
char *kind;
char *refid = NULL;
char *name = NULL;
if (cur_node->name && strcmp((char *)cur_node->name, "memberdef") == 0) {
kind = get_attr(cur_node, "kind");
if (kind && strcmp(kind, "enum") == 0) {
refid = get_attr(cur_node, "id");
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next) {
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "name") == 0) {
name = strdup((char *)this_tag->children->content);
+ break;
}
}
if (name) {
si = malloc(sizeof(struct struct_info));
if (si) {
si->kind = STRUCTINFO_ENUM;
qb_list_init(&si->params_list);
si->structname = strdup(name);
traverse_node(cur_node, "enumvalue", read_struct, si);
qb_map_put(structures_map, refid, si);
}
+ free(name);
}
}
+ free(kind);
}
}
static void traverse_members(xmlNode *cur_node, void *arg)
{
xmlNode *this_tag;
if (cur_node->name && strcmp((char *)cur_node->name, "memberdef") == 0) {
char *kind = NULL;
char *def = NULL;
char *args = NULL;
char *name = NULL;
char *brief = NULL;
char *detailed = NULL;
char *returntext = NULL;
int type;
kind=def=args=name=NULL;
kind = get_attr(cur_node, "kind");
for (this_tag = cur_node->children; this_tag; this_tag = this_tag->next)
{
if (!this_tag->children || !this_tag->children->content)
continue;
- if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "definition") == 0)
+ if (!def && this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "definition") == 0)
def = strdup((char *)this_tag->children->content);
- if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "argsstring") == 0)
+ if (!args && this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "argsstring") == 0)
args = strdup((char *)this_tag->children->content);
- if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "name") == 0)
+ if (!name && this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "name") == 0)
name = strdup((char *)this_tag->children->content);
- if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "briefdescription") == 0) {
+ if (!brief && this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "briefdescription") == 0) {
brief = get_texttree(&type, this_tag, &returntext);
if (brief) {
/*
* apparently brief text contains extra trailing space and 2 \n.
* remove them.
*/
brief[strlen(brief) - 3] = '\0';
}
}
- if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "detaileddescription") == 0) {
+ if (!detailed && this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "detaileddescription") == 0) {
detailed = get_texttree(&type, this_tag, &returntext);
}
/* Get all the params */
if (this_tag->type == XML_ELEMENT_NODE && strcmp((char *)this_tag->name, "param") == 0) {
char *param_type = get_child(this_tag, "type");
char *param_name = get_child(this_tag, "declname");
struct param_info *pi = malloc(sizeof(struct param_info));
if (pi) {
pi->paramname = param_name;
pi->paramtype = param_type;
pi->paramdesc = NULL;
qb_list_add_tail(&pi->list, &params_list);
}
}
}
if (kind && strcmp(kind, "function") == 0) {
-
/* Make sure function has a doxygen description */
if (!detailed) {
fprintf(stderr, "No doxygen description for function '%s' - please fix this\n", name);
exit(1);
}
if (print_man) {
print_manpage(name, def, brief, args, detailed, &params_list, returntext);
}
else {
print_text(name, def, brief, args, detailed, &params_list, returntext);
}
}
free(kind);
free(def);
free(args);
+ free(detailed);
+ free(brief);
free(name);
}
}
static void traverse_node(xmlNode *parentnode, const char *leafname, void (do_members(xmlNode*, void*)), void *arg)
{
xmlNode *cur_node;
for (cur_node = parentnode->children; cur_node; cur_node = cur_node->next) {
if (cur_node->type == XML_ELEMENT_NODE && cur_node->name
&& strcmp((char*)cur_node->name, leafname)==0) {
do_members(cur_node, arg);
continue;
}
if (cur_node->type == XML_ELEMENT_NODE) {
traverse_node(cur_node, leafname, do_members, arg);
}
}
}
static void usage(char *name)
{
printf("Usage:\n");
printf(" %s [OPTIONS] [<XML file>]\n", name);
printf("\n");
printf(" <XML file> defaults to %s\n", XML_FILE);
printf("\n");
printf(" -a Print ASCII dump of man pages to stdout\n");
printf(" -m Write man page files to <output dir>\n");
printf(" -P Print PARAMS section\n");
printf(" -s <s> Write man pages into section <s> <default 3)\n");
printf(" -p <package> Use <package> name. default <Kronosnet>\n");
printf(" -H <header> Set header (default \"Kronosnet Programmer's Manual\"\n");
printf(" -D <date> Date to print at top of man pages (format not checked, default: today)\n");
printf(" -Y <year> Year to print at end of copyright line (default: today's year)\n");
printf(" -o <dir> Write all man pages to <dir> (default .)\n");
printf(" -d <dir> Directory for XML files (default %s)\n", XML_DIR);
printf(" -h Print this usage text\n");
}
int main(int argc, char *argv[])
{
xmlNode *rootdoc;
xmlDocPtr doc;
int quiet=0;
int opt;
char xml_filename[PATH_MAX];
while ( (opt = getopt_long(argc, argv, "H:amPD:Y:s:d:o:p:f:h?", NULL, NULL)) != EOF)
{
switch(opt)
{
case 'a':
print_ascii = 1;
print_man = 0;
break;
case 'm':
print_man = 1;
print_ascii = 0;
break;
case 'P':
print_params = 1;
break;
case 's':
man_section = optarg;
break;
case 'd':
xml_dir = optarg;
break;
case 'D':
manpage_date = optarg;
break;
case 'Y':
manpage_year = strtol(optarg, NULL, 10);
/*
* Don't make too many assumptions about the year. I was on call at the
* 2000 rollover. #experience
*/
if (manpage_year == LONG_MIN || manpage_year == LONG_MAX ||
manpage_year < 1900) {
fprintf(stderr, "Value passed to -Y is not a valid year number\n");
return 1;
}
break;
case 'p':
package_name = optarg;
break;
case 'H':
header = optarg;
break;
case 'o':
output_dir = optarg;
break;
case '?':
case 'h':
usage(argv[0]);
return 0;
}
}
if (argv[optind]) {
xml_file = argv[optind];
}
if (!quiet) {
fprintf(stderr, "reading xml ... ");
}
snprintf(xml_filename, sizeof(xml_filename), "%s/%s", xml_dir, xml_file);
doc = xmlParseFile(xml_filename);
if (doc == NULL) {
fprintf(stderr, "Error: unable to read xml file %s\n", xml_filename);
exit(1);
}
rootdoc = xmlDocGetRootElement(doc);
if (!rootdoc) {
fprintf(stderr, "Can't find \"document root\"\n");
exit(1);
}
if (!quiet)
fprintf(stderr, "done.\n");
qb_list_init(&params_list);
qb_list_init(&retval_list);
structures_map = qb_hashtable_create(10);
function_map = qb_hashtable_create(10);
used_structures_map = qb_hashtable_create(10);
/* Collect functions */
traverse_node(rootdoc, "memberdef", collect_functions, NULL);
/* Collect enums */
traverse_node(rootdoc, "memberdef", collect_enums, NULL);
/* print pages */
traverse_node(rootdoc, "memberdef", traverse_members, NULL);
return 0;
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Feb 25, 5:21 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1463820
Default Alt Text
(523 KB)

Event Timeline