Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/libknet/compress.c b/libknet/compress.c
index 3f69e9d6..80a30681 100644
--- a/libknet/compress.c
+++ b/libknet/compress.c
@@ -1,126 +1,137 @@
/*
* Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "internals.h"
#include "compress.h"
#include "logging.h"
#include "compress_zlib.h"
#include "compress_lz4.h"
/*
* internal module switch data
*/
/*
* DO NOT CHANGE ORDER HERE OR ONWIRE COMPATIBILITY
* WILL BREAK!
*
* add after zlib and before NULL/NULL/NULL.
*/
compress_model_t compress_modules_cmds[] = {
{ "none", NULL, NULL, NULL },
{ "zlib", zlib_val_level, zlib_compress, zlib_decompress },
{ "lz4", lz4_val_level, lz4_compress, lz4_decompress },
{ "lz4hc", lz4hc_val_level, lz4hc_compress, lz4_decompress },
{ NULL, NULL, NULL, NULL },
};
static int get_model(const char *model)
{
int idx = 0;
while (compress_modules_cmds[idx].model_name != NULL) {
if (!strcmp(compress_modules_cmds[idx].model_name, model))
return idx;
idx++;
}
return -1;
}
static int get_max_model(void)
{
int idx = 0;
while (compress_modules_cmds[idx].model_name != NULL) {
idx++;
}
return idx - 1;
}
static int val_level(
knet_handle_t knet_h,
int compress_model,
int compress_level)
{
return compress_modules_cmds[compress_model].val_level(knet_h, compress_level);
}
int compress_init(
knet_handle_t knet_h,
struct knet_handle_compress_cfg *knet_handle_compress_cfg)
{
int cmp_model;
knet_h->compress_max_model = get_max_model();
if (!knet_handle_compress_cfg) {
return 0;
}
log_debug(knet_h, KNET_SUB_COMPRESS,
- "Initizializing compress module [%s/%d]",
- knet_handle_compress_cfg->compress_model, knet_handle_compress_cfg->compress_level);
+ "Initizializing compress module [%s/%d/%u]",
+ knet_handle_compress_cfg->compress_model, knet_handle_compress_cfg->compress_level, knet_handle_compress_cfg->compress_threshold);
cmp_model = get_model(knet_handle_compress_cfg->compress_model);
if (cmp_model < 0) {
log_err(knet_h, KNET_SUB_COMPRESS, "compress model %s not supported", knet_handle_compress_cfg->compress_model);
errno = EINVAL;
return -1;
}
if (cmp_model > 0) {
if (val_level(knet_h, cmp_model, knet_handle_compress_cfg->compress_level) < 0) {
log_err(knet_h, KNET_SUB_COMPRESS, "compress level %d not supported for model %s",
knet_handle_compress_cfg->compress_level, knet_handle_compress_cfg->compress_model);
errno = EINVAL;
return -1;
}
-
+ if (knet_handle_compress_cfg->compress_threshold > KNET_MAX_PACKET_SIZE) {
+ log_err(knet_h, KNET_SUB_COMPRESS, "compress threshold cannot be higher than KNET_MAX_PACKET_SIZE (%d).",
+ KNET_MAX_PACKET_SIZE);
+ errno = EINVAL;
+ return -1;
+ }
+ if (knet_handle_compress_cfg->compress_threshold == 0) {
+ knet_h->compress_threshold = KNET_COMPRESS_THRESHOLD;
+ log_debug(knet_h, KNET_SUB_COMPRESS, "resetting compression threshold to default (%d)", KNET_COMPRESS_THRESHOLD);
+ } else {
+ knet_h->compress_threshold = knet_handle_compress_cfg->compress_threshold;
+ }
}
knet_h->compress_model = cmp_model;
knet_h->compress_level = knet_handle_compress_cfg->compress_level;
return 0;
}
int compress(
knet_handle_t knet_h,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
return compress_modules_cmds[knet_h->compress_model].compress(knet_h, buf_in, buf_in_len, buf_out, buf_out_len);
}
int decompress(
knet_handle_t knet_h,
int compress_model,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
return compress_modules_cmds[compress_model].decompress(knet_h, buf_in, buf_in_len, buf_out, buf_out_len);
}
diff --git a/libknet/internals.h b/libknet/internals.h
index 129c39a3..77554802 100644
--- a/libknet/internals.h
+++ b/libknet/internals.h
@@ -1,481 +1,482 @@
/*
* Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __KNET_INTERNALS_H__
#define __KNET_INTERNALS_H__
/*
* NOTE: you shouldn't need to include this header normally
*/
#include "libknet.h"
#include "onwire.h"
#include "compat.h"
#define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE
#define KNET_DATABUFSIZE_CRYPT_PAD 1024
#define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD
#define KNET_DATABUFSIZE_COMPRESS_PAD 1024
#define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD
#define KNET_RING_RCVBUFF 8388608
#define PCKT_FRAG_MAX UINT8_MAX
#define PCKT_RX_BUFS 512
#define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX
typedef void *knet_transport_link_t; /* per link transport handle */
typedef void *knet_transport_t; /* per knet_h transport handle */
struct knet_transport_ops; /* Forward because of circular dependancy */
struct knet_mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */
};
struct knet_link {
/* required */
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
/* configurable */
unsigned int dynamic; /* see KNET_LINK_DYN_ define above */
uint8_t priority; /* higher priority == preferred for A/P */
unsigned long long ping_interval; /* interval */
unsigned long long pong_timeout; /* timeout */
unsigned int latency_fix; /* precision */
uint8_t pong_count; /* how many ping/pong to send/receive before link is up */
uint64_t flags;
/* status */
struct knet_link_status status;
/* internals */
uint8_t link_id;
uint8_t transport_type; /* #defined constant from API */
knet_transport_link_t transport_link; /* link_info_t from transport */
int outsock;
unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/
unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */
unsigned int latency_exp;
uint8_t received_pong;
struct timespec ping_last;
/* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */
uint32_t proto_overhead;
struct timespec pmtud_last;
uint32_t last_ping_size;
uint32_t last_good_mtu;
uint32_t last_bad_mtu;
uint32_t last_sent_mtu;
uint32_t last_recv_mtu;
uint8_t has_valid_mtu;
};
#define KNET_CBUFFER_SIZE 4096
struct knet_host_defrag_buf {
char buf[KNET_DATABUFSIZE];
uint8_t in_use; /* 0 buffer is free, 1 is in use */
seq_num_t pckt_seq; /* identify the pckt we are receiving */
uint8_t frag_recv; /* how many frags did we receive */
uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */
uint8_t last_first; /* special case if we receive the last fragment first */
uint16_t frag_size; /* normal frag size (not the last one) */
uint16_t last_frag_size; /* the last fragment might not be aligned with MTU size */
struct timespec last_update; /* keep time of the last pckt */
};
struct knet_host {
/* required */
knet_node_id_t host_id;
/* configurable */
uint8_t link_handler_policy;
char name[KNET_MAX_HOST_LEN];
/* status */
struct knet_host_status status;
/* internals */
char circular_buffer[KNET_CBUFFER_SIZE];
seq_num_t rx_seq_num;
seq_num_t untimed_rx_seq_num;
seq_num_t timed_rx_seq_num;
uint8_t got_data;
/* defrag/reassembly buffers */
struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK];
char circular_buffer_defrag[KNET_CBUFFER_SIZE];
/* link stuff */
struct knet_link link[KNET_MAX_LINK];
uint8_t active_link_entries;
uint8_t active_links[KNET_MAX_LINK];
struct knet_host *next;
};
struct knet_sock {
int sockfd[2]; /* sockfd[0] will always be application facing
* and sockfd[1] internal if sockpair has been created by knet */
int is_socket; /* check if it's a socket for recvmmsg usage */
int is_created; /* knet created this socket and has to clean up on exit/del */
int in_use; /* set to 1 if it's use, 0 if free */
int has_error; /* set to 1 if there were errors reading from the sock
* and socket has been removed from epoll */
};
struct knet_fd_trackers {
uint8_t transport; /* transport type (UDP/SCTP...) */
uint8_t data_type; /* internal use for transport to define what data are associated
* to this fd */
void *data; /* pointer to the data */
};
#define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4
struct knet_handle {
knet_node_id_t host_id;
unsigned int enabled:1;
struct knet_sock sockfd[KNET_DATAFD_MAX];
int logfd;
uint8_t log_levels[KNET_MAX_SUBSYSTEMS];
int hostsockfd[2];
int dstsockfd[2];
int send_to_links_epollfd;
int recv_from_links_epollfd;
int dst_link_handler_epollfd;
unsigned int pmtud_interval;
unsigned int data_mtu; /* contains the max data size that we can send onwire
* without frags */
struct knet_host *host_head;
struct knet_host *host_index[KNET_MAX_HOST];
knet_transport_t transports[KNET_MAX_TRANSPORTS+1];
struct knet_transport_ops *transport_ops[KNET_MAX_TRANSPORTS+1];
struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */
uint32_t reconnect_int;
knet_node_id_t host_ids[KNET_MAX_HOST];
size_t host_ids_entries;
struct knet_header *recv_from_sock_buf;
struct knet_header *send_to_links_buf[PCKT_FRAG_MAX];
struct knet_header *recv_from_links_buf[PCKT_RX_BUFS];
struct knet_header *pingbuf;
struct knet_header *pmtudbuf;
pthread_t send_to_links_thread;
pthread_t recv_from_links_thread;
pthread_t heartbt_thread;
pthread_t dst_link_handler_thread;
pthread_t pmtud_link_handler_thread;
int lock_init_done;
pthread_rwlock_t global_rwlock; /* global config lock */
pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */
pthread_cond_t pmtud_cond; /* conditional for above */
pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */
pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */
struct crypto_instance *crypto_instance;
uint16_t sec_header_size;
uint16_t sec_block_size;
uint16_t sec_hash_size;
uint16_t sec_salt_size;
unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX];
unsigned char *recv_from_links_buf_crypt;
unsigned char *recv_from_links_buf_decrypt;
unsigned char *pingbuf_crypt;
unsigned char *pmtudbuf_crypt;
int compress_model;
int compress_max_model;
int compress_level;
+ uint32_t compress_threshold;
unsigned char *recv_from_links_buf_decompress;
unsigned char *send_to_links_buf_compress;
seq_num_t tx_seq_num;
pthread_mutex_t tx_seq_num_mutex;
uint8_t has_loop_link;
uint8_t loop_link;
void *dst_host_filter_fn_private_data;
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_node_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries);
void *pmtud_notify_fn_private_data;
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu);
void *host_status_change_notify_fn_private_data;
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external);
void *sock_notify_fn_private_data;
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno);
int fini_in_progress;
};
/*
* NOTE: every single operation must be implementend
* for every protocol.
*/
typedef struct knet_transport_ops {
/*
* transport generic information
*/
const char *transport_name;
const uint8_t transport_id;
uint32_t transport_mtu_overhead;
/*
* transport init must allocate the new transport
* and perform all internal initializations
* (threads, lists, etc).
*/
int (*transport_init)(knet_handle_t knet_h);
/*
* transport free must releases _all_ resources
* allocated by tranport_init
*/
int (*transport_free)(knet_handle_t knet_h);
/*
* link operations should take care of all the
* sockets and epoll management for a given link/transport set
* transport_link_disable should return err = -1 and errno = EBUSY
* if listener is still in use, and any other errno in case
* the link cannot be disabled.
*
* set_config/clear_config are invoked in global write lock context
*/
int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link);
int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link);
/*
* transport callback for incoming dynamic connections
* this is called in global read lock context
*/
int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link);
/*
* per transport error handling of recvmmsg
* (see _handle_recv_from_links comments for details)
*/
/*
* transport_rx_sock_error is invoked when recvmmsg returns <= 0
*
* transport_rx_sock_error is invoked with both global_rdlock
*/
int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* transport_tx_sock_error is invoked with global_rwlock and
* it's invoked when sendto or sendmmsg returns =< 0
*
* it should return:
* -1 on internal error
* 0 ignore error and continue
* 1 retry
* any sleep or wait action should happen inside the transport code
*/
int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* this function is called on _every_ received packet
* to verify if the packet is data or internal protocol error handling
*
* it should return:
* -1 on error
* 0 packet is not data and we should continue the packet process loop
* 1 packet is not data and we should STOP the packet process loop
* 2 packet is data and should be parsed as such
*
* transport_rx_is_data is invoked with both global_rwlock
* and fd_tracker read lock (from RX thread)
*/
int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
} knet_transport_ops_t;
socklen_t sockaddr_len(const struct sockaddr_storage *ss);
/**
* This is a kernel style list implementation.
*
* @author Steven Dake <sdake@redhat.com>
*/
struct knet_list_head {
struct knet_list_head *next;
struct knet_list_head *prev;
};
/**
* @def KNET_LIST_DECLARE()
* Declare and initialize a list head.
*/
#define KNET_LIST_DECLARE(name) \
struct knet_list_head name = { &(name), &(name) }
#define KNET_INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/**
* Initialize the list entry.
*
* Points next and prev pointers to head.
* @param head pointer to the list head
*/
static inline void knet_list_init(struct knet_list_head *head)
{
head->next = head;
head->prev = head;
}
/**
* Add this element to the list.
*
* @param element the new element to insert.
* @param head pointer to the list head
*/
static inline void knet_list_add(struct knet_list_head *element,
struct knet_list_head *head)
{
head->next->prev = element;
element->next = head->next;
element->prev = head;
head->next = element;
}
/**
* Add to the list (but at the end of the list).
*
* @param element pointer to the element to add
* @param head pointer to the list head
* @see knet_list_add()
*/
static inline void knet_list_add_tail(struct knet_list_head *element,
struct knet_list_head *head)
{
head->prev->next = element;
element->next = head;
element->prev = head->prev;
head->prev = element;
}
/**
* Delete an entry from the list.
*
* @param _remove the list item to remove
*/
static inline void knet_list_del(struct knet_list_head *_remove)
{
_remove->next->prev = _remove->prev;
_remove->prev->next = _remove->next;
}
/**
* Replace old entry by new one
* @param old: the element to be replaced
* @param new: the new element to insert
*/
static inline void knet_list_replace(struct knet_list_head *old,
struct knet_list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
/**
* Tests whether list is the last entry in list head
* @param list: the entry to test
* @param head: the head of the list
* @return boolean true/false
*/
static inline int knet_list_is_last(const struct knet_list_head *list,
const struct knet_list_head *head)
{
return list->next == head;
}
/**
* A quick test to see if the list is empty (pointing to it's self).
* @param head pointer to the list head
* @return boolean true/false
*/
static inline int32_t knet_list_empty(const struct knet_list_head *head)
{
return head->next == head;
}
/**
* Get the struct for this entry
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_entry(ptr,type,member)\
((type *)((char *)(ptr)-(char*)(&((type *)0)->member)))
/**
* Get the first element from a list
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_first_entry(ptr, type, member) \
knet_list_entry((ptr)->next, type, member)
/**
* Iterate over a list
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* Iterate over a list backwards
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each_reverse(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* Iterate over a list safe against removal of list entry
* @param pos: the &struct list_head to use as a loop counter.
* @param n: another &struct list_head to use as temporary storage
* @param head: the head for your list.
*/
#define knet_list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* Iterate over list of given type
* @param pos: the type * to use as a loop counter.
* @param head: the head for your list.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_for_each_entry(pos, head, member) \
for (pos = knet_list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = knet_list_entry(pos->member.next, typeof(*pos), member))
#endif
diff --git a/libknet/libknet.h b/libknet/libknet.h
index 11f72a76..ebde18f1 100644
--- a/libknet/libknet.h
+++ b/libknet/libknet.h
@@ -1,1636 +1,1647 @@
/*
* Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __LIBKNET_H__
#define __LIBKNET_H__
#include <stdint.h>
#include <time.h>
#include <netinet/in.h>
/*
* libknet limits
*/
/*
* Maximum number of hosts
*/
typedef uint16_t knet_node_id_t;
#define KNET_MAX_HOST 65536
/*
* Maximum number of links between 2 hosts
*/
#define KNET_MAX_LINK 8
/*
* Maximum packet size that should be written to datafd
* see knet_handle_new for details
*/
#define KNET_MAX_PACKET_SIZE 65536
/*
* Buffers used for pretty logging
* host is used to store both ip addresses and hostnames
*/
#define KNET_MAX_HOST_LEN 256
#define KNET_MAX_PORT_LEN 6
/*
* Some notifications can be generated either on TX or RX
*/
#define KNET_NOTIFY_TX 0
#define KNET_NOTIFY_RX 1
/*
* Link flags
*/
/*
* Where possible, set traffic priority to high.
* On Linux this sets the TOS to INTERACTIVE (6),
* see tc-prio(8) for more infomation
*/
#define KNET_LINK_FLAG_TRAFFICHIPRIO (1ULL << 0)
typedef struct knet_handle *knet_handle_t;
/*
* Handle structs/API calls
*/
/*
* knet_handle_new
*
* host_id - Each host in a knet is identified with a unique
* ID. when creating a new handle local host_id
* must be specified (0 to UINT16T_MAX are all valid).
* It is the user's responsibility to check that the value
* is unique, or bad things might happen.
*
* log_fd - Write file descriptor. If set to a value > 0, it will be used
* to write log packets (see below) from libknet to the application.
* Setting to 0 will disable logging from libknet.
* It is possible to enable logging at any given time (see logging API
* below).
* Make sure to either read from this filedescriptor properly and/or
* mark it O_NONBLOCK, otherwise if the fd becomes full, libknet could
* block.
*
* default_log_level -
* If logfd is specified, it will initialize all subsystems to log
* at default_log_level value. (see logging API below)
*
* on success, a new knet_handle_t is returned.
* on failure, NULL is returned and errno is set.
*/
knet_handle_t knet_handle_new(knet_node_id_t host_id,
int log_fd,
uint8_t default_log_level);
/*
* knet_handle_free
*
* knet_h - pointer to knet_handle_t
*
* Destroy a knet handle, free all resources
*
* knet_handle_free returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_free(knet_handle_t knet_h);
/*
* knet_handle_enable_sock_notify
*
* knet_h - pointer to knet_handle_t
*
* sock_notify_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* sock_notify_fn
* A callback function that is invoked every time
* a socket in the datafd pool will report an error (-1)
* or an end of read (0) (see socket.7).
* This function MUST NEVER block or add substantial delays.
* The callback is invoked in an internal unlocked area
* to allow calls to knet_handle_add_datafd/knet_handle_remove_datafd
* to swap/replace the bad fd.
* if both err and errno are 0, it means that the socket
* has received a 0 byte packet (EOF?).
* The callback function must either remove the fd from knet
* (by calling knet_handle_remove_fd()) or dup a new fd in its place.
* Failure to do this can cause problems.
*
* knet_handle_enable_sock_notify returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_enable_sock_notify(knet_handle_t knet_h,
void *sock_notify_fn_private_data,
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)); /* sorry! can't call it errno ;) */
/*
* knet_handle_add_datafd
*
* IMPORTANT: In order to add datafd to knet, knet_handle_enable_sock_notify
* _MUST_ be set and be able to handle both errors (-1) and
* 0 bytes read / write from the provided datafd.
* On read error (< 0) from datafd, the socket is automatically
* removed from polling to avoid spinning on dead sockets.
* It is safe to call knet_handle_remove_datafd even on sockets
* that have been removed.
*
* knet_h - pointer to knet_handle_t
*
* *datafd - read/write file descriptor.
* knet will read data here to send to the other hosts
* and will write data received from the network.
* Each data packet can be of max size KNET_MAX_PACKET_SIZE!
* Applications using knet_send/knet_recv will receive a
* proper error if the packet size is not within boundaries.
* Applications using their own functions to write to the
* datafd should NOT write more than KNET_MAX_PACKET_SIZE.
*
* Please refer to handle.c on how to set up a socketpair.
*
* datafd can be 0, and knet_handle_add_datafd will create a properly
* populated socket pair the same way as ping_test, or a value
* higher than 0. A negative number will return an error.
* On exit knet_handle_free will take care to cleanup the
* socketpair only if they have been created by knet_handle_add_datafd.
*
* It is possible to pass either sockets or normal fds.
* User provided datafd will be marked as non-blocking and close-on-exit.
*
* *channel - This value has the same effect of VLAN tagging.
* A negative value will auto-allocate a channel.
* Setting a value between 0 and 31 will try to allocate that
* specific channel (unless already in use).
*
* It is possible to add up to 32 datafds but be aware that each
* one of them must have a receiving end on the other host.
*
* Example:
* hostA channel 0 will be delivered to datafd on hostB channel 0
* hostA channel 1 to hostB channel 1.
*
* Each channel must have a unique file descriptor.
*
* If your application could have 2 channels on one host and one
* channel on another host, then you can use dst_host_filter
* to manipulate channel values on TX and RX.
*
* knet_handle_add_datafd returns:
*
* 0 on success
* *datafd will be populated with a socket if the original value was 0
* or if a specific fd was set, the value is untouched.
* *channel will be populated with a channel number if the original value
* was negative or the value is untouched if a specific channel
* was requested.
*
* -1 on error and errno is set.
* *datafd and *channel are untouched or empty.
*/
#define KNET_DATAFD_MAX 32
int knet_handle_add_datafd(knet_handle_t knet_h, int *datafd, int8_t *channel);
/*
* knet_handle_remove_datafd
*
* knet_h - pointer to knet_handle_t
*
* datafd - file descriptor to remove.
* NOTE that if the socket/fd was created by knet_handle_add_datafd,
* the socket will be closed by libknet.
*
* knet_handle_remove_datafd returns:
*
* 0 on success
*
* -1 on error and errno is set.
*/
int knet_handle_remove_datafd(knet_handle_t knet_h, int datafd);
/*
* knet_handle_get_channel
*
* knet_h - pointer to knet_handle_t
*
* datafd - get the channel associated to this datafd
*
* *channel - will contain the result
*
* knet_handle_get_channel returns:
*
* 0 on success
* and *channel will contain the result
*
* -1 on error and errno is set.
* and *channel content is meaningless
*/
int knet_handle_get_channel(knet_handle_t knet_h, const int datafd, int8_t *channel);
/*
* knet_handle_get_datafd
*
* knet_h - pointer to knet_handle_t
*
* channel - get the datafd associated to this channel
*
* *datafd - will contain the result
*
* knet_handle_get_datafd returns:
*
* 0 on success
* and *datafd will contain the results
*
* -1 on error and errno is set.
* and *datafd content is meaningless
*/
int knet_handle_get_datafd(knet_handle_t knet_h, const int8_t channel, int *datafd);
/*
* knet_recv
*
* knet_h - pointer to knet_handle_t
*
* buff - pointer to buffer to store the received data
*
* buff_len - buffer lenght
*
* knet_recv is a commodity function to wrap iovec operations
* around a socket. It returns a call to readv(2).
*/
ssize_t knet_recv(knet_handle_t knet_h,
char *buff,
const size_t buff_len,
const int8_t channel);
/*
* knet_send
*
* knet_h - pointer to knet_handle_t
*
* buff - pointer to the buffer of data to send
*
* buff_len - length of data to send
*
* knet_send is a commodity function to wrap iovec operations
* around a socket. It returns a call to writev(2).
*/
ssize_t knet_send(knet_handle_t knet_h,
const char *buff,
const size_t buff_len,
const int8_t channel);
/*
* knet_send_sync
*
* knet_h - pointer to knet_handle_t
*
* buff - pointer to the buffer of data to send
*
* buff_len - length of data to send
*
* channel - data channel to use (see knet_handle_add_datafd)
*
* All knet RX/TX operations are async for performance reasons.
* There are applications that might need a sync version of data
* transmission and receive errors in case of failure to deliver
* to another host.
* knet_send_sync bypasses the whole TX async layer and delivers
* data directly to the link layer, and returns errors accordingly.
* knet_send_sync allows to send only one packet to one host at
* a time. It does NOT support multiple destinations or multicast
* packets. Decision is still based on dst_host_filter_fn.
*
* knet_send_sync returns 0 on success and -1 on error.
*
* In addition to normal sendmmsg errors, knet_send_sync can fail
* due to:
*
* ECANCELED - data forward is disabled
* EFAULT - dst_host_filter fatal error
* EINVAL - dst_host_filter did not provide
* dst_host_ids_entries on unicast pckts
* E2BIG - dst_host_filter did return more than one
* dst_host_ids_entries on unicast pckts
* ENOMSG - received unknown message type
* EHOSTDOWN - unicast pckt cannot be delivered because
* dest host is not connected yet
* ECHILD - crypto failed
* EAGAIN - sendmmsg was unable to send all messages and
* there was no progress during retry
*/
int knet_send_sync(knet_handle_t knet_h,
const char *buff,
const size_t buff_len,
const int8_t channel);
/*
* knet_handle_enable_filter
*
* knet_h - pointer to knet_handle_t
*
* dst_host_filter_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* dst_host_filter_fn -
* is a callback function that is invoked every time
* a packet hits datafd (see knet_handle_new).
* the function allows users to tell libknet where the
* packet has to be delivered.
*
* const unsigned char *outdata - is a pointer to the
* current packet
* ssize_t outdata_len - lenght of the above data
* uint8_t tx_rx - filter is called on tx or rx
* (see defines below)
* knet_node_id_t this_host_id - host_id processing the packet
* knet_node_id_t src_host_id - host_id that generated the
* packet
* knet_node_id_t *dst_host_ids - array of KNET_MAX_HOST knet_node_id_t
* where to store the destinations
* size_t *dst_host_ids_entries - number of hosts to send the message
*
* dst_host_filter_fn should return
* -1 on error, packet is discarded.
* 0 packet is unicast and should be sent to dst_host_ids and there are
* dst_host_ids_entries in the buffer.
* 1 packet is broadcast/multicast and is sent all hosts.
* contents of dst_host_ids and dst_host_ids_entries are ignored.
* (see also kronosnetd/etherfilter.* for an example that filters based
* on ether protocol)
*
* knet_handle_enable_filter returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_enable_filter(knet_handle_t knet_h,
void *dst_host_filter_fn_private_data,
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_host_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries));
/*
* knet_handle_setfwd
*
* knet_h - pointer to knet_handle_t
*
* enable - set to 1 to allow data forwarding, 0 to disable data forwarding.
*
* knet_handle_setfwd returns:
*
* 0 on success
* -1 on error and errno is set.
*
* By default data forwarding is off and no traffic will pass through knet until
* it is set on.
*/
int knet_handle_setfwd(knet_handle_t knet_h, unsigned int enabled);
/*
* knet_handle_pmtud_setfreq
*
* knet_h - pointer to knet_handle_t
*
* interval - define the interval in seconds between PMTUd scans
* range from 1 to 86400 (24h)
*
* knet_handle_pmtud_setfreq returns:
*
* 0 on success
* -1 on error and errno is set.
*
* default interval is 60.
*/
#define KNET_PMTUD_DEFAULT_INTERVAL 60
int knet_handle_pmtud_setfreq(knet_handle_t knet_h, unsigned int interval);
/*
* knet_handle_pmtud_getfreq
*
* knet_h - pointer to knet_handle_t
*
* interval - pointer where to store the current interval value
*
* knet_handle_pmtud_setfreq returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_pmtud_getfreq(knet_handle_t knet_h, unsigned int *interval);
/*
* knet_handle_enable_pmtud_notify
*
* knet_h - pointer to knet_handle_t
*
* pmtud_notify_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* pmtud_notify_fn
* is a callback function that is invoked every time
* a path MTU size change is detected.
* The function allows libknet to notify the user
* of data MTU, that's the max value that can be send
* onwire without fragmentation. The data MTU will always
* be lower than real link MTU because it accounts for
* protocol overhead, knet packet header and (if configured)
* crypto overhead,
* This function MUST NEVER block or add substantial delays.
*
* knet_handle_enable_pmtud_notify returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_enable_pmtud_notify(knet_handle_t knet_h,
void *pmtud_notify_fn_private_data,
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu));
/*
* knet_handle_pmtud_get
*
* knet_h - pointer to knet_handle_t
*
* data_mtu - pointer where to store data_mtu (see above)
*
* knet_handle_pmtud_get returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_pmtud_get(knet_handle_t knet_h,
unsigned int *data_mtu);
/*
* knet_handle_crypto
*
* knet_h - pointer to knet_handle_t
*
* knet_handle_crypto_cfg -
* pointer to a knet_handle_crypto_cfg structure
*
* crypto_model should contain the model name.
* Currently only "nss" is supported.
* Setting to "none" will disable crypto.
*
* crypto_cipher_type
* should contain the cipher algo name.
* It can be set to "none" to disable
* encryption.
* Currently supported by "nss" model:
* "3des", "aes128", "aes192" and "aes256".
*
* crypto_hash_type
* should contain the hashing algo name.
* It can be set to "none" to disable
* hashing.
* Currently supported by "nss" model:
* "md5", "sha1", "sha256", "sha384" and "sha512".
*
* private_key will contain the private shared key.
* It has to be at least KNET_MIN_KEY_LEN long.
*
* private_key_len
* length of the provided private_key.
*
* Implementation notes/current limitations:
* - enabling crypto, will increase latency as packets have
* to processed.
* - enabling crypto might reduce the overall throughtput
* due to crypto data overhead.
* - re-keying is not implemented yet.
* - private/public key encryption/hashing is not currently
* planned.
* - crypto key must be the same for all hosts in the same
* knet instance.
* - it is safe to call knet_handle_crypto multiple times at runtime.
* The last config will be used.
* IMPORTANT: a call to knet_handle_crypto can fail due to:
* 1) failure to obtain locking
* 2) errors to initializing the crypto level.
* This can happen even in subsequent calls to knet_handle_crypto.
* A failure in crypto init, might leave your traffic unencrypted!
* It's best to stop data forwarding (see above), change crypto config,
* start forward again.
*
* knet_handle_crypto returns:
*
* 0 on success
* -1 on error and errno is set.
* -2 on crypto subsystem initialization error. No errno is provided at the moment (yet).
*/
#define KNET_MIN_KEY_LEN 256
#define KNET_MAX_KEY_LEN 4096
struct knet_handle_crypto_cfg {
char crypto_model[16];
char crypto_cipher_type[16];
char crypto_hash_type[16];
unsigned char private_key[KNET_MAX_KEY_LEN];
unsigned int private_key_len;
};
int knet_handle_crypto(knet_handle_t knet_h,
struct knet_handle_crypto_cfg *knet_handle_crypto_cfg);
/*
* knet_handle_compress
*
* knet_h - pointer to knet_handle_t
*
* knet_handle_compress_cfg -
* pointer to a knet_handle_compress_cfg structure
*
* compress_model should contain the mode name.
* Currently only "zlib" and "lz4" are supported.
* Setting to "none" will disable compress.
*
+ * compress_threshold
+ * tells the transmission thread to NOT compress
+ * any packets that are smaller than the value
+ * indicated. Default 100 bytes.
+ * Set to 0 to reset to the default.
+ * Set to 1 to compress everything.
+ * Max accepted value is KNET_MAX_PACKET_SIZE.
+ *
* compress_level some compression libraries allows tuning of compression
* parameters.
* For example zlib value ranges from 0 to 9 where 0 is no
* compression and 9 is max compression.
* This value is passed pristine to the compression library.
* zlib: 0 (no compression), 1 (minimal) .. 9 (max compression).
* lz4: 1 (max compression)... 9 (fastest compression).
* lz4hc: 1 (min compression) ... LZ4HC_MAX_CLEVEL (16) or LZ4HC_CLEVEL_MAX (12)
* depends on the installed version of lz4hc. libknet can detects the max
* value and will print an appropriate warning.
* Please refere to the library man pages
* on how to be set this value, as it is passed
* unmodified to the compression algorithm where supported.
*
* Implementation notes:
* - it is possible to enable/disable compression at any time.
* - nodes can be using different compression algorithm at any time.
* - knet does NOT implement compression algorithm directly. it relies
* on external libraries for this functionality. Please read
* the libraries man pages to figure out which algorithm/compression
* level is best for the data you are planning to transmit.
*
* knet_handle_compress returns:
*
* 0 on success
* -1 on error and errno is set. EINVAL means that either the model or the
* level are not supported.
*/
+#define KNET_COMPRESS_THRESHOLD 100
+
struct knet_handle_compress_cfg {
- char compress_model[16];
- int compress_level;
+ char compress_model[16];
+ uint32_t compress_threshold;
+ int compress_level;
};
int knet_handle_compress(knet_handle_t knet_h,
struct knet_handle_compress_cfg *knet_handle_compress_cfg);
/*
* host structs/API calls
*/
/*
* knet_host_add
*
* knet_h - pointer to knet_handle_t
*
* host_id - each host in a knet is identified with a unique ID
* (see also knet_handle_new documentation above)
*
* knet_host_add returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_add(knet_handle_t knet_h, knet_node_id_t host_id);
/*
* knet_host_remove
*
* knet_h - pointer to knet_handle_t
*
* host_id - each host in a knet is identified with a unique ID
* (see also knet_handle_new documentation above)
*
* knet_host_remove returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_remove(knet_handle_t knet_h, knet_node_id_t host_id);
/*
* knet_host_set_name
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* name - this name will be used for pretty logging and eventually
* search for hosts (see also get_name and get_id below).
* Only up to KNET_MAX_HOST_LEN - 1 bytes will be accepted and
* name has to be unique for each host.
*
* knet_host_set_name returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_set_name(knet_handle_t knet_h, knet_node_id_t host_id,
const char *name);
/*
* knet_host_get_name_by_host_id
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* name - pointer to a preallocated buffer of at least size KNET_MAX_HOST_LEN
* where the current host name will be stored
* (as set by knet_host_set_name or default by knet_host_add)
*
* knet_host_get_name_by_host_id returns:
*
* 0 on success
* -1 on error and errno is set (name is left untouched)
*/
int knet_host_get_name_by_host_id(knet_handle_t knet_h, knet_node_id_t host_id,
char *name);
/*
* knet_host_get_id_by_host_name
*
* knet_h - pointer to knet_handle_t
*
* name - name to lookup, max len KNET_MAX_HOST_LEN
*
* host_id - where to store the result
*
* knet_host_get_id_by_host_name returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_id_by_host_name(knet_handle_t knet_h, const char *name,
knet_node_id_t *host_id);
/*
* knet_host_get_host_list
*
* knet_h - pointer to knet_handle_t
*
* host_ids - array of at lest KNET_MAX_HOST size
*
* host_ids_entries -
* number of entries writted in host_ids
*
* knet_host_get_host_list returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_host_list(knet_handle_t knet_h,
knet_node_id_t *host_ids, size_t *host_ids_entries);
/*
* define switching policies
*/
#define KNET_LINK_POLICY_PASSIVE 0
#define KNET_LINK_POLICY_ACTIVE 1
#define KNET_LINK_POLICY_RR 2
/*
* knet_host_set_policy
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* policy - there are currently 3 kind of simple switching policies
* as defined above, based on link configuration.
* KNET_LINK_POLICY_PASSIVE - the active link with the lowest
* priority will be used.
* if one or more active links share
* the same priority, the one with
* lowest link_id will be used.
*
* KNET_LINK_POLICY_ACTIVE - all active links will be used
* simultaneously to send traffic.
* link priority is ignored.
*
* KNET_LINK_POLICY_RR - round-robin policy, every packet
* will be send on a different active
* link.
*
* knet_host_set_policy returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_set_policy(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t policy);
/*
* knet_host_get_policy
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* policy - will contain the current configured switching policy.
* Default is passive when creating a new host.
*
* knet_host_get_policy returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_policy(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t *policy);
/*
* knet_host_enable_status_change_notify
*
* knet_h - pointer to knet_handle_t
*
* host_status_change_notify_fn_private_data
* void pointer to data that can be used to identify
* the callback.
*
* host_status_change_notify_fn
* is a callback function that is invoked every time
* there is a change in the host status.
* host status is identified by:
* - reachable, this host can send/receive data to/from host_id
* - remote, 0 if the host_id is connected locally or 1 if
* the there is one or more knet host(s) in between.
* NOTE: re-switching is NOT currently implemented,
* but this is ready for future and can avoid
* an API/ABI breakage later on.
* - external, 0 if the host_id is configured locally or 1 if
* it has been added from remote nodes config.
* NOTE: dynamic topology is NOT currently implemented,
* but this is ready for future and can avoid
* an API/ABI breakage later on.
* This function MUST NEVER block or add substantial delays.
*
* knet_host_status_change_notify returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_enable_status_change_notify(knet_handle_t knet_h,
void *host_status_change_notify_fn_private_data,
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external));
/*
* define host status structure for quick lookup
* struct is in flux as more stats will be added soon
*
* reachable host_id can be seen either directly connected
* or via another host_id
*
* remote 0 = node is connected locally, 1 is visible via
* via another host_id
*
* external 0 = node is configured/known locally,
* 1 host_id has been received via another host_id
*/
struct knet_host_status {
uint8_t reachable;
uint8_t remote;
uint8_t external;
/* add host statistics */
};
/*
* knet_host_status_get
*
* knet_h - pointer to knet_handle_t
*
* status - pointer to knet_host_status struct (see above)
*
* knet_handle_pmtud_get returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_host_get_status(knet_handle_t knet_h, knet_node_id_t host_id,
struct knet_host_status *status);
/*
* link structs/API calls
*
* every host allocated/managed by knet_host_* has
* KNET_MAX_LINK structures to define the network
* paths that connect 2 hosts.
*
* Each link is identified by a link_id that has a
* values between 0 and KNET_MAX_LINK - 1.
*
* KNOWN LIMITATIONS:
*
* - let's assume the scenario where two hosts are connected
* with any number of links. link_id must match on both sides.
* If host_id 0 link_id 0 is configured to connect IP1 to IP2 and
* host_id 0 link_id 1 is configured to connect IP3 to IP4,
* host_id 1 link_id 0 _must_ connect IP2 to IP1 and likewise
* host_id 1 link_id 1 _must_ connect IP4 to IP3.
* We might be able to lift this restriction in future, by using
* other data to determine src/dst link_id, but for now, deal with it.
*/
/*
* commodity functions to convert strings to sockaddr and viceversa
*/
/*
* knet_strtoaddr
*
* host - IPaddr/hostname to convert
* be aware only the first IP address will be returned
* in case a hostname resolves to multiple IP
*
* port - port to connect to
*
* ss - sockaddr_storage where to store the converted data
*
* sslen - len of the sockaddr_storage
*
* knet_strtoaddr returns same error codes as getaddrinfo
*
*/
int knet_strtoaddr(const char *host, const char *port,
struct sockaddr_storage *ss, socklen_t sslen);
/*
* knet_addrtostr
*
* ss - sockaddr_storage to convert
*
* sslen - len of the sockaddr_storage
*
* host - IPaddr/hostname where to store data
* (recommended size: KNET_MAX_HOST_LEN)
*
* port - port buffer where to store data
* (recommended size: KNET_MAX_PORT_LEN)
*
* knet_strtoaddr returns same error codes as getnameinfo
*/
int knet_addrtostr(const struct sockaddr_storage *ss, socklen_t sslen,
char *addr_buf, size_t addr_buf_size,
char *port_buf, size_t port_buf_size);
/*
* knet_handle_get_transport_list
*
* knet_h - pointer to knet_handle_t
*
* transport_list - an array of struct transport_info that must be
* at least of size struct transport_info * KNET_MAX_TRANSPORTS
*
* transport_list_entries - pointer to a size_t where to store how many transports
* are available in this build of libknet.
*
* knet_handle_get_transport_list returns:
*
* 0 on success
* -1 on error and errno is set.
*/
#define KNET_TRANSPORT_LOOPBACK 0
#define KNET_TRANSPORT_UDP 1
#define KNET_TRANSPORT_SCTP 2
#define KNET_MAX_TRANSPORTS 3
/*
* The Loopback transport is only valid for connections to localhost, the host
* with the same node_id specified in knet_handle_new(). Only one link of this
* type is allowed. Data sent down a LOOPBACK link will be copied directly from
* the knet send datafd to the knet receive datafd so the application must be set
* up to take data from that socket at least as often as it is sent or deadlocks
* could occur. If used, a LOOPBACK link must be the only link configured to the
* local host.
*/
struct transport_info {
const char *name; /* UDP/SCTP/etc... */
uint8_t id; /* value that can be used for link_set_config */
uint8_t properties; /* currently unused */
};
int knet_handle_get_transport_list(knet_handle_t knet_h,
struct transport_info *transport_list, size_t *transport_list_entries);
/*
* knet_handle_get_transport_name_by_id
*
* knet_h - pointer to knet_handle_t
*
* transport - one of the above KNET_TRANSPORT_xxx constants
*
* knet_handle_get_transport_name_by_id returns:
*
* pointer to the name on success or
* NULL on error and errno is set.
*/
const char *knet_handle_get_transport_name_by_id(knet_handle_t knet_h, uint8_t transport);
/*
* knet_handle_get_transport_id_by_name
*
* knet_h - pointer to knet_handle_t
*
* name - transport name (UDP/SCTP/etc)
*
* knet_handle_get_transport_name_by_id returns:
*
* KNET_MAX_TRANSPORTS on error and errno is set accordingly
* KNET_TRANSPORT_xxx on success.
*/
uint8_t knet_handle_get_transport_id_by_name(knet_handle_t knet_h, const char *name);
/*
* knet_handle_set_transport_reconnect_interval
*
* knet_h - pointer to knet_handle_t
*
* msecs - milliseconds
*
* knet_handle_set_transport_reconnect_interval returns:
*
* 0 on success
* -1 on error and errno is set.
*/
#define KNET_TRANSPORT_DEFAULT_RECONNECT_INTERVAL 1000
int knet_handle_set_transport_reconnect_interval(knet_handle_t knet_h, uint32_t msecs);
/*
* knet_handle_get_transport_reconnect_interval
*
* knet_h - pointer to knet_handle_t
*
* msecs - milliseconds
*
* knet_handle_get_transport_reconnect_interval returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_handle_get_transport_reconnect_interval(knet_handle_t knet_h, uint32_t *msecs);
/*
* knet_link_set_config
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* transport - one of the above KNET_TRANSPORT_xxx constants
*
* src_addr - sockaddr_storage that can be either IPv4 or IPv6
*
* dst_addr - sockaddr_storage that can be either IPv4 or IPv6
* this can be null if we don't know the incoming
* IP address/port and the link will remain quiet
* till the node on the other end will initiate a
* connection
*
* flags - KNET_LINK_FLAG_*
*
* knet_link_set_config returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t transport,
struct sockaddr_storage *src_addr,
struct sockaddr_storage *dst_addr,
uint64_t flags);
/*
* knet_link_get_config
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* transport - see above
*
* src_addr - sockaddr_storage that can be either IPv4 or IPv6
*
* dst_addr - sockaddr_storage that can be either IPv4 or IPv6
*
* dynamic - 0 if dst_addr is static or 1 if dst_addr is dynamic.
* In case of 1, dst_addr can be NULL and it will be left
* untouched.
*
* flags - KNET_LINK_FLAG_*
*
* knet_link_get_config returns:
*
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_get_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *transport,
struct sockaddr_storage *src_addr,
struct sockaddr_storage *dst_addr,
uint8_t *dynamic,
uint64_t *flags);
/*
* knet_link_clear_config
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* knet_link_clear_config returns:
*
* 0 on success.
* -1 on error and errno is set.
*/
int knet_link_clear_config(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id);
/*
* knet_link_set_enable
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* enabled - 0 disable the link, 1 enable the link
*
* knet_link_set_enable returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_enable(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
unsigned int enabled);
/*
* knet_link_get_enable
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* enabled - 0 disable the link, 1 enable the link
*
* knet_link_get_enable returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_enable(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
unsigned int *enabled);
/*
* knet_link_set_ping_timers
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* interval - specify the ping interval
*
* timeout - if no pong is received within this time,
* the link is declared dead
*
* precision - how many values of latency are used to calculate
* the average link latency (see also get_status below)
*
* knet_link_set_ping_timers returns:
*
* 0 on success
* -1 on error and errno is set.
*/
#define KNET_LINK_DEFAULT_PING_INTERVAL 1000 /* 1 second */
#define KNET_LINK_DEFAULT_PING_TIMEOUT 2000 /* 2 seconds */
#define KNET_LINK_DEFAULT_PING_PRECISION 2048 /* samples */
int knet_link_set_ping_timers(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
time_t interval, time_t timeout, unsigned int precision);
/*
* knet_link_get_ping_timers
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* interval - ping intervall
*
* timeout - if no pong is received within this time,
* the link is declared dead
*
* precision - how many values of latency are used to calculate
* the average link latency (see also get_status below)
*
* knet_link_get_ping_timers returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_ping_timers(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
time_t *interval, time_t *timeout, unsigned int *precision);
/*
* knet_link_set_pong_count
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* pong_count - how many valid ping/pongs before a link is marked UP.
* default: 5, value should be > 0
*
* knet_link_set_pong_count returns:
*
* 0 on success
* -1 on error and errno is set.
*/
#define KNET_LINK_DEFAULT_PONG_COUNT 5
int knet_link_set_pong_count(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t pong_count);
/*
* knet_link_get_pong_count
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* pong_count - see above
*
* knet_link_get_pong_count returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_pong_count(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *pong_count);
/*
* knet_link_set_priority
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* priority - specify the switching priority for this link
* see also knet_host_set_policy
*
* knet_link_set_priority returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_set_priority(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t priority);
/*
* knet_link_get_priority
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* priority - gather the switching priority for this link
* see also knet_host_set_policy
*
* knet_link_get_priority returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_priority(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
uint8_t *priority);
/*
* knet_link_get_link_list
*
* knet_h - pointer to knet_handle_t
*
* link_ids - array of at lest KNET_MAX_LINK size
* with the list of configured links for a certain host.
*
* link_ids_entries -
* number of entries contained in link_ids
*
* knet_link_get_link_list returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_link_list(knet_handle_t knet_h, knet_node_id_t host_id,
uint8_t *link_ids, size_t *link_ids_entries);
/*
* define link status structure for quick lookup
*
* src/dst_{ipaddr,port} strings are filled by
* getnameinfo(3) when configuring the link.
* if the link is dynamic (see knet_link_set_config)
* dst_ipaddr/port will contain ipaddr/port of the currently
* connected peer or "Unknown" if it was not possible
* to determine the ipaddr/port at runtime.
*
* enabled see also knet_link_set/get_enable.
*
* connected the link is connected to a peer and ping/pong traffic
* is flowing.
*
* dynconnected the link has dynamic ip on the other end, and
* we can see the other host is sending pings to us.
*
* latency average latency of this link
* see also knet_link_set/get_timeout.
*
* pong_last if the link is down, this value tells us how long
* ago this link was active. A value of 0 means that the link
* has never been active.
*
* knet_link_stats structure that contains details statistics for the link
*/
#define MAX_LINK_EVENTS 16
struct knet_link_stats {
/* onwire values */
uint64_t tx_data_packets;
uint64_t rx_data_packets;
uint64_t tx_data_bytes;
uint64_t rx_data_bytes;
uint64_t rx_ping_packets;
uint64_t tx_ping_packets;
uint64_t rx_ping_bytes;
uint64_t tx_ping_bytes;
uint64_t rx_pong_packets;
uint64_t tx_pong_packets;
uint64_t rx_pong_bytes;
uint64_t tx_pong_bytes;
uint64_t rx_pmtu_packets;
uint64_t tx_pmtu_packets;
uint64_t rx_pmtu_bytes;
uint64_t tx_pmtu_bytes;
/* Only filled in when requested */
uint64_t tx_total_packets;
uint64_t rx_total_packets;
uint64_t tx_total_bytes;
uint64_t rx_total_bytes;
uint64_t tx_total_errors;
uint64_t tx_total_retries;
uint32_t tx_pmtu_errors;
uint32_t tx_pmtu_retries;
uint32_t tx_ping_errors;
uint32_t tx_ping_retries;
uint32_t tx_pong_errors;
uint32_t tx_pong_retries;
uint32_t tx_data_errors;
uint32_t tx_data_retries;
/* measured in usecs */
uint32_t latency_min;
uint32_t latency_max;
uint32_t latency_ave;
uint32_t latency_samples;
/* how many times the link has been going up/down */
uint32_t down_count;
uint32_t up_count;
/*
* circular buffer of time_t structs collecting the history
* of up/down events on this link.
* the index indicates current/last event.
* it is safe to walk back the history by decreasing the index
*/
time_t last_up_times[MAX_LINK_EVENTS];
time_t last_down_times[MAX_LINK_EVENTS];
int8_t last_up_time_index;
int8_t last_down_time_index;
/* Always add new stats at the end */
};
struct knet_link_status {
size_t size; /* For ABI checking */
char src_ipaddr[KNET_MAX_HOST_LEN];
char src_port[KNET_MAX_PORT_LEN];
char dst_ipaddr[KNET_MAX_HOST_LEN];
char dst_port[KNET_MAX_PORT_LEN];
uint8_t enabled; /* link is configured and admin enabled for traffic */
uint8_t connected; /* link is connected for data (local view) */
uint8_t dynconnected; /* link has been activated by remote dynip */
unsigned long long latency; /* average latency computed by fix/exp */
struct timespec pong_last;
unsigned int mtu; /* current detected MTU on this link */
unsigned int proto_overhead; /* contains the size of the IP protocol, knet headers and
* crypto headers (if configured). This value is filled in
* ONLY after the first PMTUd run on that given link,
* and can change if link configuration or crypto configuration
* changes at runtime.
* WARNING: in general mtu + proto_overhead might or might
* not match the output of ifconfig mtu due to crypto
* requirements to pad packets to some specific boundaries. */
/* Link statistics */
struct knet_link_stats stats;
};
/*
* knet_link_get_status
*
* knet_h - pointer to knet_handle_t
*
* host_id - see above
*
* link_id - see above
*
* status - pointer to knet_link_status struct (see above)
*
* struct_size - max size of knet_link_status - allows library to
* add fields without ABI change. Returned structure
* will be truncated to this length and .size member
* indicates the full size.
*
* knet_link_get_status returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_link_get_status(knet_handle_t knet_h, knet_node_id_t host_id, uint8_t link_id,
struct knet_link_status *status, size_t struct_size);
/*
* logging structs/API calls
*/
/*
* libknet is composed of several subsystems. In order
* to easily distinguish log messages coming from different
* places, each subsystem has its own ID.
*
* 0-19 config/management
* 20-39 internal threads
* 40-59 transports
* 60-69 crypto implementations
*/
#define KNET_SUB_COMMON 0 /* common.c */
#define KNET_SUB_HANDLE 1 /* handle.c alloc/dealloc config changes */
#define KNET_SUB_HOST 2 /* host add/del/modify */
#define KNET_SUB_LISTENER 3 /* listeners add/del/modify... */
#define KNET_SUB_LINK 4 /* link add/del/modify */
#define KNET_SUB_TRANSPORT 5 /* Transport common */
#define KNET_SUB_CRYPTO 6 /* crypto.c config generic layer */
#define KNET_SUB_COMPRESS 7 /* compress.c config generic layer */
#define KNET_SUB_FILTER 19 /* allocated for users to log from dst_filter */
#define KNET_SUB_DSTCACHE 20 /* switching thread (destination cache handling) */
#define KNET_SUB_HEARTBEAT 21 /* heartbeat thread */
#define KNET_SUB_PMTUD 22 /* Path MTU Discovery thread */
#define KNET_SUB_TX 23 /* send to link thread */
#define KNET_SUB_RX 24 /* recv from link thread */
#define KNET_SUB_TRANSP_BASE 40 /* Base log level for transports */
#define KNET_SUB_TRANSP_LOOPBACK (KNET_SUB_TRANSP_BASE + KNET_TRANSPORT_LOOPBACK)
#define KNET_SUB_TRANSP_UDP (KNET_SUB_TRANSP_BASE + KNET_TRANSPORT_UDP)
#define KNET_SUB_TRANSP_SCTP (KNET_SUB_TRANSP_BASE + KNET_TRANSPORT_SCTP)
#define KNET_SUB_NSSCRYPTO 60 /* nsscrypto.c */
#define KNET_SUB_ZLIBCOMP 70 /* compress_zlib.c */
#define KNET_SUB_LZ4COMP 71 /* compress_lz4.c */
#define KNET_SUB_LZ4HCCOMP 72 /* compress_lz4.c */
#define KNET_SUB_UNKNOWN 254
#define KNET_MAX_SUBSYSTEMS KNET_SUB_UNKNOWN + 1
/*
* Convert between subsystem IDs and names
*/
/*
* knet_log_get_subsystem_name
*
* return internal name of the subsystem or "common"
*/
const char *knet_log_get_subsystem_name(uint8_t subsystem);
/*
* knet_log_get_subsystem_id
*
* return internal ID of the subsystem or KNET_SUB_COMMON
*/
uint8_t knet_log_get_subsystem_id(const char *name);
/*
* 4 log levels are enough for everybody
*/
#define KNET_LOG_ERR 0 /* unrecoverable errors/conditions */
#define KNET_LOG_WARN 1 /* recoverable errors/conditions */
#define KNET_LOG_INFO 2 /* info, link up/down, config changes.. */
#define KNET_LOG_DEBUG 3
/*
* Convert between log level values and names
*/
/*
* knet_log_get_loglevel_name
*
* return internal name of the log level or "ERROR" for unknown values
*/
const char *knet_log_get_loglevel_name(uint8_t level);
/*
* knet_log_get_loglevel_id
*
* return internal log level ID or KNET_LOG_ERR for invalid names
*/
uint8_t knet_log_get_loglevel_id(const char *name);
/*
* every log message is composed by a text message (including a trailing \n)
* and message level/subsystem IDs.
* In order to make debugging easier it is possible to send those packets
* straight to stdout/stderr (see knet_bench.c stdout option).
*/
#define KNET_MAX_LOG_MSG_SIZE 256
struct knet_log_msg {
char msg[KNET_MAX_LOG_MSG_SIZE - (sizeof(uint8_t)*2)];
uint8_t subsystem; /* KNET_SUB_* */
uint8_t msglevel; /* KNET_LOG_* */
};
/*
* knet_log_set_log_level
*
* knet_h - same as above
*
* subsystem - same as above
*
* level - same as above
*
* knet_log_set_loglevel allows fine control of log levels by subsystem.
* See also knet_handle_new for defaults.
*
* knet_log_set_loglevel returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_log_set_loglevel(knet_handle_t knet_h, uint8_t subsystem,
uint8_t level);
/*
* knet_log_get_log_level
*
* knet_h - same as above
*
* subsystem - same as above
*
* level - same as above
*
* knet_log_get_loglevel returns:
*
* 0 on success
* -1 on error and errno is set.
*/
int knet_log_get_loglevel(knet_handle_t knet_h, uint8_t subsystem,
uint8_t *level);
#endif
diff --git a/libknet/tests/api_knet_handle_compress.c b/libknet/tests/api_knet_handle_compress.c
index 0a6e90f7..55bac3d2 100644
--- a/libknet/tests/api_knet_handle_compress.c
+++ b/libknet/tests/api_knet_handle_compress.c
@@ -1,151 +1,169 @@
/*
* Copyright (C) 2016 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "libknet.h"
#include "internals.h"
#include "test-common.h"
static void test(void)
{
knet_handle_t knet_h;
int logfds[2];
struct knet_handle_compress_cfg knet_handle_compress_cfg;
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
printf("Test knet_handle_compress incorrect knet_h\n");
if ((!knet_handle_compress(NULL, &knet_handle_compress_cfg)) || (errno != EINVAL)) {
printf("knet_handle_compress accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_new(1, logfds[1], KNET_LOG_DEBUG);
if (!knet_h) {
printf("knet_handle_new failed: %s\n", strerror(errno));
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_handle_compress with invalid cfg\n");
if ((!knet_handle_compress(knet_h, NULL)) || (errno != EINVAL)) {
printf("knet_handle_compress accepted invalid cfg or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_handle_compress with un-initialized cfg\n");
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
if ((!knet_handle_compress(knet_h, &knet_handle_compress_cfg)) || (errno != EINVAL)) {
printf("knet_handle_compress accepted invalid un-initialized cfg\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_handle_compress with none compress model (disable compress)\n");
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
strncpy(knet_handle_compress_cfg.compress_model, "none", sizeof(knet_handle_compress_cfg.compress_model) - 1);
if (knet_handle_compress(knet_h, &knet_handle_compress_cfg) != 0) {
printf("knet_handle_compress did not accept none compress mode cfg\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_handle_compress with zlib compress and negative level\n");
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
strncpy(knet_handle_compress_cfg.compress_model, "zlib", sizeof(knet_handle_compress_cfg.compress_model) - 1);
knet_handle_compress_cfg.compress_level = -1;
if ((!knet_handle_compress(knet_h, &knet_handle_compress_cfg)) || (errno != EINVAL)) {
printf("knet_handle_compress accepted invalid (-1) compress level for zlib\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_handle_compress with zlib compress and excessive compress level\n");
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
strncpy(knet_handle_compress_cfg.compress_model, "zlib", sizeof(knet_handle_compress_cfg.compress_model) - 1);
knet_handle_compress_cfg.compress_level = 10;
if ((!knet_handle_compress(knet_h, &knet_handle_compress_cfg)) || (errno != EINVAL)) {
printf("knet_handle_compress accepted invalid (10) compress level for zlib\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
- printf("Test knet_handle_compress with zlib compress model normal compress level)\n");
+ printf("Test knet_handle_compress with zlib compress and excessive compress threshold\n");
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
strncpy(knet_handle_compress_cfg.compress_model, "zlib", sizeof(knet_handle_compress_cfg.compress_model) - 1);
knet_handle_compress_cfg.compress_level = 1;
+ knet_handle_compress_cfg.compress_threshold = KNET_MAX_PACKET_SIZE +1;
+
+ if ((!knet_handle_compress(knet_h, &knet_handle_compress_cfg)) || (errno != EINVAL)) {
+ printf("knet_handle_compress accepted invalid compress threshold\n");
+ knet_handle_free(knet_h);
+ flush_logs(logfds[0], stdout);
+ close_logpipes(logfds);
+ exit(FAIL);
+ }
+
+ flush_logs(logfds[0], stdout);
+
+ printf("Test knet_handle_compress with zlib compress model normal compress level and threshold\n");
+
+ memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
+ strncpy(knet_handle_compress_cfg.compress_model, "zlib", sizeof(knet_handle_compress_cfg.compress_model) - 1);
+ knet_handle_compress_cfg.compress_level = 1;
+ knet_handle_compress_cfg.compress_threshold = 64;
if (knet_handle_compress(knet_h, &knet_handle_compress_cfg) != 0) {
printf("knet_handle_compress did not accept zlib compress mode with compress level 1 cfg\n");
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
need_root();
test();
return PASS;
}
diff --git a/libknet/tests/knet_bench.c b/libknet/tests/knet_bench.c
index d2406914..90885c54 100644
--- a/libknet/tests/knet_bench.c
+++ b/libknet/tests/knet_bench.c
@@ -1,1025 +1,1026 @@
/*
* Copyright (C) 2016 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <pthread.h>
#include <sys/types.h>
#include <inttypes.h>
#include "libknet.h"
#include "compat.h"
#include "internals.h"
#include "netutils.h"
#include "transports.h"
#include "threads_common.h"
#include "test-common.h"
#define MAX_NODES 128
static int senderid = -1;
static int thisnodeid = -1;
static knet_handle_t knet_h;
static int datafd = 0;
static int8_t channel = 0;
static int globallistener = 0;
static int continous = 0;
static struct sockaddr_storage allv4;
static struct sockaddr_storage allv6;
static int broadcast_test = 1;
static pthread_t rx_thread = (pthread_t)NULL;
static char *rx_buf[PCKT_FRAG_MAX];
static int wait_for_perf_rx = 0;
static char *compresscfg = NULL;
static int bench_shutdown_in_progress = 0;
static pthread_mutex_t shutdown_mutex = PTHREAD_MUTEX_INITIALIZER;
#define TEST_PING 0
#define TEST_PING_AND_DATA 1
#define TEST_PERF_BY_SIZE 2
#define TEST_PERF_BY_TIME 3
static int test_type = TEST_PING;
#define TEST_START 2
#define TEST_STOP 4
#define TEST_COMPLETE 6
#define ONE_GIGABYTE 1073741824
static uint64_t perf_by_size_size = 1 * ONE_GIGABYTE;
static uint64_t perf_by_time_secs = 10;
struct node {
int nodeid;
int links;
struct sockaddr_storage address[KNET_MAX_LINK];
};
static void print_help(void)
{
printf("knet_bench usage:\n");
printf(" -h print this help (no really)\n");
printf(" -d enable debug logs (default INFO)\n");
printf(" -c [implementation]:[crypto]:[hashing] crypto configuration. (default disabled)\n");
printf(" Example: -c nss:aes128:sha1\n");
- printf(" -z [implementation]:[level] compress configuration. (default disabled)\n");
+ printf(" -z [implementation]:[level]:[threshold] compress configuration. (default disabled)\n");
printf(" Example: -z zlib:5\n");
printf(" -p [active|passive|rr] (default: passive)\n");
printf(" -P [udp|sctp] (default: udp) protocol (transport) to use\n");
printf(" -t [nodeid] This nodeid (required)\n");
printf(" -n [nodeid],[link1_ip_addr],[link2_..] Other nodes information (at least one required)\n");
printf(" Example: -t 1,192.168.8.1,3ffe::8:1,..\n");
printf(" can be repeated up to %d and should contain also the localnode info\n", MAX_NODES);
printf(" -b [port] baseport (default: 50000)\n");
printf(" -l enable global listener on 0.0.0.0/:: (default: off, incompatible with -o)\n");
printf(" -o enable baseport offset per nodeid\n");
printf(" -w dont wait for all nodes to be up before starting the test (default: wait)\n");
printf(" -T [ping|ping_data|perf-by-size|perf-by-time]\n");
printf(" test type (default: ping)\n");
printf(" ping: will wait for all hosts to join the knet network, sleep 5 seconds and quit\n");
printf(" ping_data: will wait for all hosts to join the knet network, sends some data to all nodes and quit\n");
printf(" perf-by-size: will wait for all hosts to join the knet network,\n");
printf(" perform a series of benchmarks by transmitting a known\n");
printf(" size/quantity of packets and measuring the time, then quit\n");
printf(" perf-by-time: will wait for all hosts to join the knet network,\n");
printf(" perform a series of benchmarks by transmitting a known\n");
printf(" size of packets for a given amount of time (10 seconds)\n");
printf(" and measuring the quantity of data transmitted, then quit\n");
printf(" -s nodeid that will generate traffic for benchmarks\n");
printf(" -S [size|seconds] when used in combination with -T perf-by-size it indicates how many GB of traffic to generate for the test. (default: 1GB)\n");
printf(" when used in combination with -T perf-by-time it indicates how many Seconds of traffic to generate for the test. (default: 10 seconds)\n");
printf(" -C repeat the test continously (default: off)\n");
}
static void parse_nodes(char *nodesinfo[MAX_NODES], int onidx, int port, struct node nodes[MAX_NODES], int *thisidx)
{
int i;
char *temp = NULL;
char port_str[10];
memset(port_str, 0, sizeof(port_str));
sprintf(port_str, "%d", port);
for (i = 0; i < onidx; i++) {
nodes[i].nodeid = atoi(strtok(nodesinfo[i], ","));
if ((nodes[i].nodeid < 0) || (nodes[i].nodeid > KNET_MAX_HOST)) {
printf("Invalid nodeid: %d (0 - %d)\n", nodes[i].nodeid, KNET_MAX_HOST);
exit(FAIL);
}
if (thisnodeid == nodes[i].nodeid) {
*thisidx = i;
}
while((temp = strtok(NULL, ","))) {
if (nodes[i].links == KNET_MAX_LINK) {
printf("Too many links configured. Max %d\n", KNET_MAX_LINK);
exit(FAIL);
}
if (knet_strtoaddr(temp, port_str,
&nodes[i].address[nodes[i].links],
sizeof(struct sockaddr_storage)) < 0) {
printf("Unable to convert %s to sockaddress\n", temp);
exit(FAIL);
}
nodes[i].links++;
}
}
if (knet_strtoaddr("0.0.0.0", port_str, &allv4, sizeof(struct sockaddr_storage)) < 0) {
printf("Unable to convert 0.0.0.0 to sockaddress\n");
exit(FAIL);
}
if (knet_strtoaddr("::", port_str, &allv6, sizeof(struct sockaddr_storage)) < 0) {
printf("Unable to convert :: to sockaddress\n");
exit(FAIL);
}
for (i = 1; i < onidx; i++) {
if (nodes[0].links != nodes[i].links) {
printf("knet_bench does not support unbalanced link configuration\n");
exit(FAIL);
}
}
return;
}
static int private_data;
static void sock_notify(void *pvt_data,
int local_datafd,
int8_t local_channel,
uint8_t tx_rx,
int error,
int errorno)
{
printf("Error (%d - %d - %s) from socket: %d\n", error, errorno, strerror(errno), local_datafd);
return;
}
static int ping_dst_host_filter(void *pvt_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_host_id,
int8_t *dst_channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries)
{
if (broadcast_test) {
return 1;
}
if (tx_rx == KNET_NOTIFY_TX) {
memmove(&dst_host_ids[0], outdata, 2);
} else {
dst_host_ids[0] = this_host_id;
}
*dst_host_ids_entries = 1;
return 0;
}
static void setup_knet(int argc, char *argv[])
{
int logfd;
int rv;
char *cryptocfg = NULL, *policystr = NULL, *protostr = NULL;
char *othernodeinfo[MAX_NODES];
struct node nodes[MAX_NODES];
int thisidx = -1;
int onidx = 0;
int debug = KNET_LOG_INFO;
int port = 50000, portoffset = 0;
int thisport = 0, otherport = 0;
int thisnewport = 0, othernewport = 0;
struct sockaddr_in *so_in;
struct sockaddr_in6 *so_in6;
struct sockaddr_storage *src;
int i, link_idx, allnodesup = 0;
int policy = KNET_LINK_POLICY_PASSIVE, policyfound = 0;
int protocol = KNET_TRANSPORT_UDP, protofound = 0;
int wait = 1;
struct knet_handle_crypto_cfg knet_handle_crypto_cfg;
char *cryptomodel = NULL, *cryptotype = NULL, *cryptohash = NULL;
struct knet_handle_compress_cfg knet_handle_compress_cfg;
memset(nodes, 0, sizeof(nodes));
while ((rv = getopt(argc, argv, "CT:S:s:ldowb:t:n:c:p:P:z:h")) != EOF) {
switch(rv) {
case 'h':
print_help();
exit(PASS);
break;
case 'd':
debug = KNET_LOG_DEBUG;
break;
case 'c':
if (cryptocfg) {
printf("Error: -c can only be specified once\n");
exit(FAIL);
}
cryptocfg = optarg;
break;
case 'p':
if (policystr) {
printf("Error: -p can only be specified once\n");
exit(FAIL);
}
policystr = optarg;
if (!strcmp(policystr, "active")) {
policy = KNET_LINK_POLICY_ACTIVE;
policyfound = 1;
}
/*
* we can't use rr because clangs can't compile
* an array of 3 strings, one of which is 2 bytes long
*/
if (!strcmp(policystr, "round-robin")) {
policy = KNET_LINK_POLICY_RR;
policyfound = 1;
}
if (!strcmp(policystr, "passive")) {
policy = KNET_LINK_POLICY_PASSIVE;
policyfound = 1;
}
if (!policyfound) {
printf("Error: invalid policy %s specified. -p accepts active|passive|rr\n", policystr);
exit(FAIL);
}
break;
case 'P':
if (protostr) {
printf("Error: -P can only be specified once\n");
exit(FAIL);
}
protostr = optarg;
if (!strcmp(protostr, "udp")) {
protocol = KNET_TRANSPORT_UDP;
protofound = 1;
}
if (!strcmp(protostr, "sctp")) {
protocol = KNET_TRANSPORT_SCTP;
protofound = 1;
}
if (!protofound) {
printf("Error: invalid protocol %s specified. -P accepts udp|sctp\n", policystr);
exit(FAIL);
}
break;
case 't':
if (thisnodeid >= 0) {
printf("Error: -t can only be specified once\n");
exit(FAIL);
}
thisnodeid = atoi(optarg);
if ((thisnodeid < 0) || (thisnodeid > 65536)) {
printf("Error: -t nodeid out of range %d (1 - 65536)\n", thisnodeid);
exit(FAIL);
}
break;
case 'n':
if (onidx == MAX_NODES) {
printf("Error: too many other nodes. Max %d\n", MAX_NODES);
exit(FAIL);
}
othernodeinfo[onidx] = optarg;
onidx++;
break;
case 'b':
port = atoi(optarg);
if ((port < 1) || (port > 65536)) {
printf("Error: port %d out of range (1 - 65536)\n", port);
exit(FAIL);
}
break;
case 'o':
if (globallistener) {
printf("Error: -l cannot be used with -o\n");
exit(FAIL);
}
portoffset = 1;
break;
case 'l':
if (portoffset) {
printf("Error: -o cannot be used with -l\n");
exit(FAIL);
}
globallistener = 1;
break;
case 'w':
wait = 0;
break;
case 's':
if (senderid >= 0) {
printf("Error: -s can only be specified once\n");
exit(FAIL);
}
senderid = atoi(optarg);
if ((senderid < 0) || (senderid > 65536)) {
printf("Error: -s nodeid out of range %d (1 - 65536)\n", senderid);
exit(FAIL);
}
break;
case 'T':
if (!strcmp("ping", optarg)) {
test_type = TEST_PING;
}
if (!strcmp("ping_data", optarg)) {
test_type = TEST_PING_AND_DATA;
}
if (!strcmp("perf-by-size", optarg)) {
test_type = TEST_PERF_BY_SIZE;
}
if (!strcmp("perf-by-time", optarg)) {
test_type = TEST_PERF_BY_TIME;
}
break;
case 'S':
perf_by_size_size = (uint64_t)atoi(optarg) * ONE_GIGABYTE;
perf_by_time_secs = (uint64_t)atoi(optarg);
break;
case 'C':
continous = 1;
break;
case 'z':
if (compresscfg) {
printf("Error: -c can only be specified once\n");
exit(FAIL);
}
compresscfg = optarg;
break;
default:
break;
}
}
if (thisnodeid < 0) {
printf("Who am I?!? missing -t from command line?\n");
exit(FAIL);
}
if (onidx < 1) {
printf("no other nodes configured?!? missing -n from command line\n");
exit(FAIL);
}
parse_nodes(othernodeinfo, onidx, port, nodes, &thisidx);
if (thisidx < 0) {
printf("no config for this node found\n");
exit(FAIL);
}
if (senderid >= 0) {
for (i=0; i < onidx; i++) {
if (senderid == nodes[i].nodeid) {
break;
}
}
if (i == onidx) {
printf("Unable to find senderid in nodelist\n");
exit(FAIL);
}
}
if (((test_type == TEST_PERF_BY_SIZE) || (test_type == TEST_PERF_BY_TIME)) && (senderid < 0)) {
printf("Error: performance test requires -s to be set (for now)\n");
exit(FAIL);
}
logfd = start_logging(stdout);
knet_h = knet_handle_new(thisnodeid, logfd, debug);
if (!knet_h) {
printf("Unable to knet_handle_new: %s\n", strerror(errno));
exit(FAIL);
}
if (cryptocfg) {
memset(&knet_handle_crypto_cfg, 0, sizeof(knet_handle_crypto_cfg));
cryptomodel = strtok(cryptocfg, ":");
cryptotype = strtok(NULL, ":");
cryptohash = strtok(NULL, ":");
if (cryptomodel) {
strncpy(knet_handle_crypto_cfg.crypto_model, cryptomodel, sizeof(knet_handle_crypto_cfg.crypto_model) - 1);
}
if (cryptotype) {
strncpy(knet_handle_crypto_cfg.crypto_cipher_type, cryptotype, sizeof(knet_handle_crypto_cfg.crypto_cipher_type) - 1);
}
if (cryptohash) {
strncpy(knet_handle_crypto_cfg.crypto_hash_type, cryptohash, sizeof(knet_handle_crypto_cfg.crypto_hash_type) - 1);
}
knet_handle_crypto_cfg.private_key_len = KNET_MAX_KEY_LEN;
if (knet_handle_crypto(knet_h, &knet_handle_crypto_cfg)) {
printf("Unable to init crypto\n");
exit(FAIL);
}
}
if (compresscfg) {
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
snprintf(knet_handle_compress_cfg.compress_model, 16, "%s", strtok(compresscfg, ":"));
knet_handle_compress_cfg.compress_level = atoi(strtok(NULL, ":"));
+ knet_handle_compress_cfg.compress_threshold = atoi(strtok(NULL, ":"));
if (knet_handle_compress(knet_h, &knet_handle_compress_cfg)) {
printf("Unable to configure compress\n");
exit(FAIL);
}
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
exit(FAIL);
}
if (knet_handle_pmtud_setfreq(knet_h, 60) < 0) {
printf("knet_handle_pmtud_setfreq failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
exit(FAIL);
}
for (i=0; i < onidx; i++) {
if (i == thisidx) {
continue;
}
if (knet_host_add(knet_h, nodes[i].nodeid) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_host_set_policy(knet_h, nodes[i].nodeid, policy) < 0) {
printf("knet_host_set_policy failed: %s\n", strerror(errno));
exit(FAIL);
}
for (link_idx = 0; link_idx < nodes[i].links; link_idx++) {
if (portoffset) {
if (nodes[thisidx].address[link_idx].ss_family == AF_INET) {
so_in = (struct sockaddr_in *)&nodes[thisidx].address[link_idx];
thisport = ntohs(so_in->sin_port);
thisnewport = thisport + nodes[i].nodeid;
so_in->sin_port = (htons(thisnewport));
so_in = (struct sockaddr_in *)&nodes[i].address[link_idx];
otherport = ntohs(so_in->sin_port);
othernewport = otherport + nodes[thisidx].nodeid;
so_in->sin_port = (htons(othernewport));
} else {
so_in6 = (struct sockaddr_in6 *)&nodes[thisidx].address[link_idx];
thisport = ntohs(so_in6->sin6_port);
thisnewport = thisport + nodes[i].nodeid;
so_in6->sin6_port = (htons(thisnewport));
so_in6 = (struct sockaddr_in6 *)&nodes[i].address[link_idx];
otherport = ntohs(so_in6->sin6_port);
othernewport = otherport + nodes[thisidx].nodeid;
so_in6->sin6_port = (htons(othernewport));
}
}
if (!globallistener) {
src = &nodes[thisidx].address[link_idx];
} else {
if (nodes[thisidx].address[link_idx].ss_family == AF_INET) {
src = &allv4;
} else {
src = &allv6;
}
}
if (knet_link_set_config(knet_h, nodes[i].nodeid, link_idx,
protocol, src,
&nodes[i].address[link_idx], 0) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
exit(FAIL);
}
if (portoffset) {
if (nodes[thisidx].address[link_idx].ss_family == AF_INET) {
so_in = (struct sockaddr_in *)&nodes[thisidx].address[link_idx];
so_in->sin_port = (htons(thisport));
so_in = (struct sockaddr_in *)&nodes[i].address[link_idx];
so_in->sin_port = (htons(otherport));
} else {
so_in6 = (struct sockaddr_in6 *)&nodes[thisidx].address[link_idx];
so_in6->sin6_port = (htons(thisport));
so_in6 = (struct sockaddr_in6 *)&nodes[i].address[link_idx];
so_in6->sin6_port = (htons(otherport));
}
}
if (knet_link_set_enable(knet_h, nodes[i].nodeid, link_idx, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_link_set_ping_timers(knet_h, nodes[i].nodeid, link_idx, 1000, 10000, 2048) < 0) {
printf("knet_link_set_ping_timers failed: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_link_set_pong_count(knet_h, nodes[i].nodeid, link_idx, 2) < 0) {
printf("knet_link_set_pong_count failed: %s\n", strerror(errno));
exit(FAIL);
}
}
}
if (knet_handle_enable_filter(knet_h, NULL, ping_dst_host_filter)) {
printf("Unable to enable dst_host_filter: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
exit(FAIL);
}
if (wait) {
while(!allnodesup) {
allnodesup = 1;
for (i=0; i < onidx; i++) {
if (i == thisidx) {
continue;
}
if(knet_h->host_index[nodes[i].nodeid]->status.reachable != 1) {
printf("waiting host %d to be reachable\n", nodes[i].nodeid);
allnodesup = 0;
}
}
if (!allnodesup) {
sleep(1);
}
}
sleep(1);
}
}
static void *_rx_thread(void *args)
{
int rx_epoll;
struct epoll_event ev;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
struct sockaddr_storage address[PCKT_FRAG_MAX];
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
struct iovec iov_in[PCKT_FRAG_MAX];
int i, msg_recv;
struct timespec clock_start, clock_end;
unsigned long long time_diff = 0;
uint64_t rx_pkts = 0;
uint64_t rx_bytes = 0;
unsigned int current_pckt_size = 0;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
rx_buf[i] = malloc(KNET_MAX_PACKET_SIZE);
if (!rx_buf[i]) {
printf("RXT: Unable to malloc!\n");
return NULL;
}
memset(rx_buf[i], 0, KNET_MAX_PACKET_SIZE);
iov_in[i].iov_base = (void *)rx_buf[i];
iov_in[i].iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_name = &address[i];
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[i].msg_hdr.msg_iov = &iov_in[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
rx_epoll = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (rx_epoll < 0) {
printf("RXT: Unable to create epoll!\nHALTING RX THREAD!\n");
return NULL;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = datafd;
if (epoll_ctl(rx_epoll, EPOLL_CTL_ADD, datafd, &ev)) {
printf("RXT: Unable to add datafd to epoll\nHALTING RX THREAD!\n");
return NULL;
}
memset(&clock_start, 0, sizeof(clock_start));
memset(&clock_end, 0, sizeof(clock_start));
while (!bench_shutdown_in_progress) {
if (epoll_wait(rx_epoll, events, KNET_EPOLL_MAX_EVENTS, 1) >= 1) {
msg_recv = _recvmmsg(datafd, &msg[0], PCKT_FRAG_MAX, MSG_DONTWAIT | MSG_NOSIGNAL);
if (msg_recv < 0) {
printf("RXT: error from recvmmsg: %s\n", strerror(errno));
}
switch(test_type) {
case TEST_PING_AND_DATA:
for (i = 0; i < msg_recv; i++) {
if (msg[i].msg_len == 0) {
printf("RXT: received 0 bytes message?\n");
}
printf("received %u bytes message: %s\n", msg[i].msg_len, (char *)msg[i].msg_hdr.msg_iov->iov_base);
}
break;
case TEST_PERF_BY_TIME:
case TEST_PERF_BY_SIZE:
for (i = 0; i < msg_recv; i++) {
if (msg[i].msg_len < 64) {
if (msg[i].msg_len == 0) {
printf("RXT: received 0 bytes message?\n");
}
if (msg[i].msg_len == TEST_START) {
if (clock_gettime(CLOCK_MONOTONIC, &clock_start) != 0) {
printf("Unable to get start time!\n");
}
}
if (msg[i].msg_len == TEST_STOP) {
double average_rx_mbytes;
double average_rx_pkts;
double time_diff_sec;
if (clock_gettime(CLOCK_MONOTONIC, &clock_end) != 0) {
printf("Unable to get end time!\n");
}
timespec_diff(clock_start, clock_end, &time_diff);
/*
* adjust for sleep(2) between sending the last data and TEST_STOP
*/
time_diff = time_diff - 2000000000llu;
/*
* convert to seconds
*/
time_diff_sec = (double)time_diff / 1000000000llu;
average_rx_mbytes = (double)((rx_bytes / time_diff_sec) / (1024 * 1024));
average_rx_pkts = (double)(rx_pkts / time_diff_sec);
printf("Execution time: %8.4f secs Average speed: %8.4f MB/sec %8.4f pckts/sec (size: %u total: %" PRIu64 ")\n", time_diff_sec, average_rx_mbytes, average_rx_pkts, current_pckt_size, rx_pkts);
rx_pkts = 0;
rx_bytes = 0;
current_pckt_size = 0;
}
if (msg[i].msg_len == TEST_COMPLETE) {
wait_for_perf_rx = 1;
}
continue;
}
rx_pkts++;
rx_bytes = rx_bytes + msg[i].msg_len;
current_pckt_size = msg[i].msg_len;
}
break;
}
}
}
epoll_ctl(rx_epoll, EPOLL_CTL_DEL, datafd, &ev);
close(rx_epoll);
return NULL;
}
static void setup_data_txrx_common(void)
{
if (!rx_thread) {
if (knet_handle_enable_filter(knet_h, NULL, ping_dst_host_filter)) {
printf("Unable to enable dst_host_filter: %s\n", strerror(errno));
exit(FAIL);
}
printf("Setting up rx thread\n");
if (pthread_create(&rx_thread, 0, _rx_thread, NULL)) {
printf("Unable to start rx thread\n");
exit(FAIL);
}
}
}
static void stop_rx_thread(void)
{
void *retval;
int i;
if (rx_thread) {
printf("Shutting down rx thread\n");
sleep(2);
pthread_cancel(rx_thread);
pthread_join(rx_thread, &retval);
for (i = 0; i < PCKT_FRAG_MAX; i ++) {
free(rx_buf[i]);
}
}
}
static void send_ping_data(void)
{
char buf[65535];
ssize_t len;
memset(&buf, 0, sizeof(buf));
snprintf(buf, sizeof(buf), "Hello world!");
if (compresscfg) {
len = sizeof(buf);
} else {
len = strlen(buf);
}
if (knet_send(knet_h, buf, len, channel) != len) {
printf("Error sending hello world: %s\n", strerror(errno));
}
sleep(1);
}
static int send_messages(struct knet_mmsghdr *msg, int msgs_to_send)
{
int sent_msgs, prev_sent, progress, total_sent;
total_sent = 0;
sent_msgs = 0;
prev_sent = 0;
progress = 1;
retry:
errno = 0;
sent_msgs = _sendmmsg(datafd, &msg[0], msgs_to_send, MSG_NOSIGNAL);
if (sent_msgs < 0) {
if ((errno == EAGAIN) || (errno == EWOULDBLOCK)) {
usleep(KNET_THREADS_TIMERES / 16);
goto retry;
}
printf("Unable to send messages: %s\n", strerror(errno));
return -1;
}
total_sent = total_sent + sent_msgs;
if ((sent_msgs >= 0) && (sent_msgs < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
msgs_to_send = msgs_to_send - sent_msgs;
prev_sent = prev_sent + sent_msgs;
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
goto retry;
}
if (!progress) {
printf("Unable to send more messages after retry\n");
}
}
return total_sent;
}
static int setup_send_buffers_common(struct knet_mmsghdr *msg, struct iovec *iov_out, char *tx_buf[])
{
int i;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
tx_buf[i] = malloc(KNET_MAX_PACKET_SIZE);
if (!tx_buf[i]) {
printf("TXT: Unable to malloc!\n");
return -1;
}
memset(tx_buf[i], 0, KNET_MAX_PACKET_SIZE);
iov_out[i].iov_base = (void *)tx_buf[i];
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_iov = &iov_out[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
return 0;
}
static void send_perf_data_by_size(void)
{
char *tx_buf[PCKT_FRAG_MAX];
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
struct iovec iov_out[PCKT_FRAG_MAX];
char ctrl_message[16];
int sent_msgs;
int i;
uint64_t total_pkts_to_tx;
uint64_t packets_to_send;
uint32_t packetsize = 64;
setup_send_buffers_common(msg, iov_out, tx_buf);
while (packetsize <= KNET_MAX_PACKET_SIZE) {
for (i = 0; i < PCKT_FRAG_MAX; i++) {
iov_out[i].iov_len = packetsize;
}
total_pkts_to_tx = perf_by_size_size / packetsize;
printf("Testing with %u packet size. Total bytes to transfer: %" PRIu64 " (%" PRIu64 " packets)\n", packetsize, perf_by_size_size, total_pkts_to_tx);
memset(ctrl_message, 0, sizeof(ctrl_message));
knet_send(knet_h, ctrl_message, TEST_START, channel);
while (total_pkts_to_tx > 0) {
if (total_pkts_to_tx >= PCKT_FRAG_MAX) {
packets_to_send = PCKT_FRAG_MAX;
} else {
packets_to_send = total_pkts_to_tx;
}
sent_msgs = send_messages(&msg[0], packets_to_send);
if (sent_msgs < 0) {
printf("Something went wrong, aborting\n");
exit(FAIL);
}
total_pkts_to_tx = total_pkts_to_tx - sent_msgs;
}
sleep(2);
knet_send(knet_h, ctrl_message, TEST_STOP, channel);
if (packetsize == KNET_MAX_PACKET_SIZE) {
break;
}
/*
* Use a multiplier that can always divide properly a GB
* into smaller chunks without worry about boundaries
*/
packetsize *= 4;
if (packetsize > KNET_MAX_PACKET_SIZE) {
packetsize = KNET_MAX_PACKET_SIZE;
}
}
knet_send(knet_h, ctrl_message, TEST_COMPLETE, channel);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
free(tx_buf[i]);
}
}
static void send_perf_data_by_time(void)
{
char *tx_buf[PCKT_FRAG_MAX];
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
struct iovec iov_out[PCKT_FRAG_MAX];
char ctrl_message[16];
int sent_msgs;
int i;
uint32_t packetsize = 65536;
struct timespec clock_start, clock_end;
unsigned long long time_diff = 0;
setup_send_buffers_common(msg, iov_out, tx_buf);
memset(&clock_start, 0, sizeof(clock_start));
memset(&clock_end, 0, sizeof(clock_start));
while (packetsize <= KNET_MAX_PACKET_SIZE) {
for (i = 0; i < PCKT_FRAG_MAX; i++) {
iov_out[i].iov_len = packetsize;
}
printf("Testing with %u bytes packet size for %" PRIu64 " seconds.\n", packetsize, perf_by_time_secs);
memset(ctrl_message, 0, sizeof(ctrl_message));
knet_send(knet_h, ctrl_message, TEST_START, channel);
if (clock_gettime(CLOCK_MONOTONIC, &clock_start) != 0) {
printf("Unable to get start time!\n");
}
time_diff = 0;
while (time_diff < (perf_by_time_secs * 1000000000llu)) {
sent_msgs = send_messages(&msg[0], PCKT_FRAG_MAX);
if (sent_msgs < 0) {
printf("Something went wrong, aborting\n");
exit(FAIL);
}
if (clock_gettime(CLOCK_MONOTONIC, &clock_end) != 0) {
printf("Unable to get end time!\n");
}
timespec_diff(clock_start, clock_end, &time_diff);
}
sleep(2);
knet_send(knet_h, ctrl_message, TEST_STOP, channel);
if (packetsize == KNET_MAX_PACKET_SIZE) {
break;
}
/*
* Use a multiplier that can always divide properly a GB
* into smaller chunks without worry about boundaries
*/
packetsize *= 4;
if (packetsize > KNET_MAX_PACKET_SIZE) {
packetsize = KNET_MAX_PACKET_SIZE;
}
}
knet_send(knet_h, ctrl_message, TEST_COMPLETE, channel);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
free(tx_buf[i]);
}
}
static void cleanup_all(void)
{
if (pthread_mutex_lock(&shutdown_mutex)) {
return;
}
if (bench_shutdown_in_progress) {
pthread_mutex_unlock(&shutdown_mutex);
return;
}
bench_shutdown_in_progress = 1;
pthread_mutex_unlock(&shutdown_mutex);
if (rx_thread) {
stop_rx_thread();
}
knet_handle_stop(knet_h);
}
static void sigint_handler(int signum)
{
printf("Cleaning up... got signal: %d\n", signum);
cleanup_all();
exit(PASS);
}
int main(int argc, char *argv[])
{
if (signal(SIGINT, sigint_handler) == SIG_ERR) {
printf("Unable to configure SIGINT handler\n");
exit(FAIL);
}
need_root();
setup_knet(argc, argv);
setup_data_txrx_common();
sleep(5);
restart:
switch(test_type) {
default:
case TEST_PING: /* basic ping, no data */
sleep(5);
break;
case TEST_PING_AND_DATA:
send_ping_data();
break;
case TEST_PERF_BY_SIZE:
if (senderid == thisnodeid) {
send_perf_data_by_size();
} else {
printf("Waiting for perf rx thread to finish\n");
while(!wait_for_perf_rx) {
sleep(1);
}
}
break;
case TEST_PERF_BY_TIME:
if (senderid == thisnodeid) {
send_perf_data_by_time();
} else {
printf("Waiting for perf rx thread to finish\n");
while(!wait_for_perf_rx) {
sleep(1);
}
}
break;
}
if (continous) {
goto restart;
}
cleanup_all();
return PASS;
}
diff --git a/libknet/threads_tx.c b/libknet/threads_tx.c
index 41724d4b..2f8b84cc 100644
--- a/libknet/threads_tx.c
+++ b/libknet/threads_tx.c
@@ -1,679 +1,679 @@
/*
* Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <math.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "transports.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_tx.h"
#include "netutils.h"
/*
* SEND
*/
static int _dispatch_to_links(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_mmsghdr *msg, int msgs_to_send)
{
int link_idx, msg_idx, sent_msgs, prev_sent, progress;
int err = 0, savederrno = 0;
unsigned int i;
struct knet_mmsghdr *cur;
struct knet_link *cur_link;
for (link_idx = 0; link_idx < dst_host->active_link_entries; link_idx++) {
sent_msgs = 0;
prev_sent = 0;
progress = 1;
cur_link = &dst_host->link[dst_host->active_links[link_idx]];
if (cur_link->transport_type == KNET_TRANSPORT_LOOPBACK) {
continue;
}
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_name = &cur_link->dst_addr;
for (i=0; i<msg[msg_idx].msg_hdr.msg_iovlen; i++) {
cur_link->status.stats.tx_data_bytes += msg[msg_idx].msg_hdr.msg_iov[i].iov_len;
}
cur_link->status.stats.tx_data_packets++;
msg_idx++;
}
retry:
cur = &msg[prev_sent];
sent_msgs = _sendmmsg(dst_host->link[dst_host->active_links[link_idx]].outsock,
&cur[0], msgs_to_send - prev_sent, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
err = knet_h->transport_ops[dst_host->link[dst_host->active_links[link_idx]].transport_type]->transport_tx_sock_error(knet_h, dst_host->link[dst_host->active_links[link_idx]].outsock, sent_msgs, savederrno);
switch(err) {
case -1: /* unrecoverable error */
cur_link->status.stats.tx_data_errors++;
goto out_unlock;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
cur_link->status.stats.tx_data_retries++;
goto retry;
break;
}
prev_sent = prev_sent + sent_msgs;
if ((sent_msgs >= 0) && (prev_sent < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TX, "Unable to send all (%d/%d) data packets to host %s (%u) link %s:%s (%u)",
sent_msgs, msg_idx,
dst_host->name, dst_host->host_id,
dst_host->link[dst_host->active_links[link_idx]].status.dst_ipaddr,
dst_host->link[dst_host->active_links[link_idx]].status.dst_port,
dst_host->link[dst_host->active_links[link_idx]].link_id);
#endif
goto retry;
}
if (!progress) {
savederrno = EAGAIN;
err = -1;
goto out_unlock;
}
}
if ((dst_host->link_handler_policy == KNET_LINK_POLICY_RR) &&
(dst_host->active_link_entries > 1)) {
uint8_t cur_link_id = dst_host->active_links[0];
memmove(&dst_host->active_links[0], &dst_host->active_links[1], KNET_MAX_LINK - 1);
dst_host->active_links[dst_host->active_link_entries - 1] = cur_link_id;
break;
}
}
out_unlock:
errno = savederrno;
return err;
}
static int _parse_recv_from_sock(knet_handle_t knet_h, ssize_t inlen, int8_t channel, int is_sync)
{
ssize_t outlen, frag_len;
struct knet_host *dst_host;
knet_node_id_t dst_host_ids_temp[KNET_MAX_HOST];
size_t dst_host_ids_entries_temp = 0;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[PCKT_FRAG_MAX][2];
int iovcnt_out = 2;
uint8_t frag_idx;
unsigned int temp_data_mtu;
size_t host_idx;
int send_mcast = 0;
struct knet_header *inbuf;
int savederrno = 0;
int err = 0;
seq_num_t tx_seq_num;
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
int msgs_to_send, msg_idx;
unsigned int i;
int send_local = 0;
int data_compressed = 0;
inbuf = knet_h->recv_from_sock_buf;
if ((knet_h->enabled != 1) &&
(inbuf->kh_type != KNET_HEADER_TYPE_HOST_INFO)) { /* data forward is disabled */
log_debug(knet_h, KNET_SUB_TX, "Received data packet but forwarding is disabled");
savederrno = ECANCELED;
err = -1;
goto out_unlock;
}
/*
* move this into a separate function to expand on
* extra switching rules
*/
switch(inbuf->kh_type) {
case KNET_HEADER_TYPE_DATA:
if (knet_h->dst_host_filter_fn) {
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
inlen,
KNET_NOTIFY_TX,
knet_h->host_id,
knet_h->host_id,
&channel,
dst_host_ids_temp,
&dst_host_ids_entries_temp);
if (bcast < 0) {
log_debug(knet_h, KNET_SUB_TX, "Error from dst_host_filter_fn: %d", bcast);
savederrno = EFAULT;
err = -1;
goto out_unlock;
}
if ((!bcast) && (!dst_host_ids_entries_temp)) {
log_debug(knet_h, KNET_SUB_TX, "Message is unicast but no dst_host_ids_entries");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
}
/* Send to localhost if appropriate and enabled */
if (knet_h->has_loop_link) {
send_local = 0;
if (bcast) {
send_local = 1;
} else {
for (i=0; i< dst_host_ids_entries_temp; i++) {
if (dst_host_ids_temp[i] == knet_h->host_id) {
send_local = 1;
}
}
}
if (send_local) {
const unsigned char *buf = inbuf->khp_data_userdata;
ssize_t buflen = inlen;
struct knet_link *local_link;
local_link = knet_h->host_index[knet_h->host_id]->link;
local_retry:
err = write(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], buf, buflen);
if (err < 0) {
log_err(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local failed. error=%s\n", strerror(errno));
local_link->status.stats.tx_data_errors++;
}
if (err > 0 && err < buflen) {
log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %ld\n", err, inlen);
local_link->status.stats.tx_data_retries++;
buf += err;
buflen -= err;
usleep(KNET_THREADS_TIMERES / 16);
goto local_retry;
}
if (err == buflen) {
local_link->status.stats.tx_data_packets++;
local_link->status.stats.tx_data_bytes += inlen;
}
}
}
break;
case KNET_HEADER_TYPE_HOST_INFO:
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
bcast = 0;
dst_host_ids_temp[0] = knet_hostinfo->khi_dst_node_id;
dst_host_ids_entries_temp = 1;
knet_hostinfo->khi_dst_node_id = htons(knet_hostinfo->khi_dst_node_id);
}
break;
default:
log_warn(knet_h, KNET_SUB_TX, "Receiving unknown messages from socket");
savederrno = ENOMSG;
err = -1;
goto out_unlock;
break;
}
if (is_sync) {
if ((bcast) ||
((!bcast) && (dst_host_ids_entries_temp > 1))) {
log_debug(knet_h, KNET_SUB_TX, "knet_send_sync is only supported with unicast packets for one destination");
savederrno = E2BIG;
err = -1;
goto out_unlock;
}
}
/*
* check destinations hosts before spending time
* in fragmenting/encrypting packets to save
* time processing data for unreachable hosts.
* for unicast, also remap the destination data
* to skip unreachable hosts.
*/
if (!bcast) {
dst_host_ids_entries = 0;
for (host_idx = 0; host_idx < dst_host_ids_entries_temp; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids_temp[host_idx]];
if (!dst_host) {
continue;
}
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
dst_host_ids[dst_host_ids_entries] = dst_host_ids_temp[host_idx];
dst_host_ids_entries++;
}
}
if (!dst_host_ids_entries) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
} else {
send_mcast = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
send_mcast = 1;
break;
}
}
if (!send_mcast) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
}
if (!knet_h->data_mtu) {
/*
* using MIN_MTU_V4 for data mtu is not completely accurate but safe enough
*/
log_debug(knet_h, KNET_SUB_TX,
"Received data packet but data MTU is still unknown."
" Packet might not be delivered."
" Assuming mininum IPv4 mtu (%d)",
KNET_PMTUD_MIN_MTU_V4);
temp_data_mtu = KNET_PMTUD_MIN_MTU_V4;
} else {
/*
* take a copy of the mtu to avoid value changing under
* our feet while we are sending a fragmented pckt
*/
temp_data_mtu = knet_h->data_mtu;
}
/*
* compress data
*/
- if (knet_h->compress_model > 0) {
+ if ((knet_h->compress_model > 0) && (inlen > knet_h->compress_threshold)) {
ssize_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS;
err = compress(knet_h,
(const unsigned char *)inbuf->khp_data_userdata, inlen,
knet_h->send_to_links_buf_compress, &cmp_outlen);
if (err < 0) {
log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(errno));
} else {
if (cmp_outlen < inlen) {
memmove(inbuf->khp_data_userdata, knet_h->send_to_links_buf_compress, cmp_outlen);
inlen = cmp_outlen;
data_compressed = 1;
}
}
}
/*
* prepare the outgoing buffers
*/
frag_len = inlen;
frag_idx = 0;
inbuf->khp_data_bcast = bcast;
inbuf->khp_data_frag_num = ceil((float)inlen / temp_data_mtu);
inbuf->khp_data_channel = channel;
if (data_compressed) {
inbuf->khp_data_compress = knet_h->compress_model;
} else {
inbuf->khp_data_compress = 0;
}
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get seq mutex lock");
goto out_unlock;
}
knet_h->tx_seq_num++;
/*
* force seq_num 0 to detect a node that has crashed and rejoining
* the knet instance. seq_num 0 will clear the buffers in the RX
* thread
*/
if (knet_h->tx_seq_num == 0) {
knet_h->tx_seq_num++;
}
/*
* cache the value in locked context
*/
tx_seq_num = knet_h->tx_seq_num;
inbuf->khp_data_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
/*
* forcefully broadcast a ping to all nodes every SEQ_MAX / 8
* pckts.
* this solves 2 problems:
* 1) on TX socket overloads we generate extra pings to keep links alive
* 2) in 3+ nodes setup, where all the traffic is flowing between node 1 and 2,
* node 3+ will be able to keep in sync on the TX seq_num even without
* receiving traffic or pings in betweens. This avoids issues with
* rollover of the circular buffer
*/
if (tx_seq_num % (SEQ_MAX / 8) == 0) {
_send_pings(knet_h, 0);
}
if (inbuf->khp_data_frag_num > 1) {
while (frag_idx < inbuf->khp_data_frag_num) {
/*
* set the iov_base
*/
iov_out[frag_idx][0].iov_base = (void *)knet_h->send_to_links_buf[frag_idx];
iov_out[frag_idx][0].iov_len = KNET_HEADER_DATA_SIZE;
iov_out[frag_idx][1].iov_base = inbuf->khp_data_userdata + (temp_data_mtu * frag_idx);
/*
* set the len
*/
if (frag_len > temp_data_mtu) {
iov_out[frag_idx][1].iov_len = temp_data_mtu;
} else {
iov_out[frag_idx][1].iov_len = frag_len;
}
/*
* copy the frag info on all buffers
*/
knet_h->send_to_links_buf[frag_idx]->kh_type = inbuf->kh_type;
knet_h->send_to_links_buf[frag_idx]->khp_data_seq_num = inbuf->khp_data_seq_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_frag_num = inbuf->khp_data_frag_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_bcast = inbuf->khp_data_bcast;
knet_h->send_to_links_buf[frag_idx]->khp_data_channel = inbuf->khp_data_channel;
knet_h->send_to_links_buf[frag_idx]->khp_data_compress = inbuf->khp_data_compress;
frag_len = frag_len - temp_data_mtu;
frag_idx++;
}
iovcnt_out = 2;
} else {
iov_out[frag_idx][0].iov_base = (void *)inbuf;
iov_out[frag_idx][0].iov_len = frag_len + KNET_HEADER_DATA_SIZE;
iovcnt_out = 1;
}
if (knet_h->crypto_instance) {
frag_idx = 0;
while (frag_idx < inbuf->khp_data_frag_num) {
if (crypto_encrypt_and_signv(
knet_h,
iov_out[frag_idx], iovcnt_out,
knet_h->send_to_links_buf_crypt[frag_idx],
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to encrypt packet");
savederrno = ECHILD;
err = -1;
goto out_unlock;
}
iov_out[frag_idx][0].iov_base = knet_h->send_to_links_buf_crypt[frag_idx];
iov_out[frag_idx][0].iov_len = outlen;
frag_idx++;
}
iovcnt_out = 1;
}
memset(&msg, 0, sizeof(msg));
msgs_to_send = inbuf->khp_data_frag_num;
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[msg_idx].msg_hdr.msg_iov = &iov_out[msg_idx][0];
msg[msg_idx].msg_hdr.msg_iovlen = iovcnt_out;
msg_idx++;
}
if (!bcast) {
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids[host_idx]];
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
} else {
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (dst_host->status.reachable) {
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
}
}
out_unlock:
errno = savederrno;
return err;
}
int knet_send_sync(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get TX mutex lock: %s",
strerror(savederrno));
err = -1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = KNET_HEADER_TYPE_DATA;
memmove(knet_h->recv_from_sock_buf->khp_data_userdata, buff, buff_len);
err = _parse_recv_from_sock(knet_h, buff_len, channel, 1);
savederrno = errno;
pthread_mutex_unlock(&knet_h->tx_mutex);
out:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return err;
}
static void _handle_send_to_links(knet_handle_t knet_h, struct msghdr *msg, int sockfd, int8_t channel, int type)
{
ssize_t inlen = 0;
int savederrno = 0, docallback = 0;
if ((channel >= 0) &&
(channel < KNET_DATAFD_MAX) &&
(!knet_h->sockfd[channel].is_socket)) {
inlen = readv(sockfd, msg->msg_iov, 1);
} else {
inlen = recvmsg(sockfd, msg, MSG_DONTWAIT | MSG_NOSIGNAL);
}
if (inlen == 0) {
savederrno = 0;
docallback = 1;
goto out;
}
if (inlen < 0) {
savederrno = errno;
docallback = 1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = type;
_parse_recv_from_sock(knet_h, inlen, channel, 0);
out:
if (inlen < 0) {
struct epoll_event ev;
memset(&ev, 0, sizeof(struct epoll_event));
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s",
knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
} else {
knet_h->sockfd[channel].has_error = 1;
}
}
if (docallback) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_TX,
inlen,
savederrno);
}
}
void *_handle_send_to_links_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
int i, nev, type;
int8_t channel;
struct iovec iov_in;
struct msghdr msg;
struct sockaddr_storage address;
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)knet_h->recv_from_sock_buf->khp_data_userdata;
iov_in.iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = &address;
msg.msg_namelen = sizeof(struct sockaddr_storage);
msg.msg_iov = &iov_in;
msg.msg_iovlen = 1;
knet_h->recv_from_sock_buf->kh_version = KNET_HEADER_VERSION;
knet_h->recv_from_sock_buf->khp_data_frag_seq = 0;
knet_h->recv_from_sock_buf->kh_node = htons(knet_h->host_id);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
knet_h->send_to_links_buf[i]->kh_version = KNET_HEADER_VERSION;
knet_h->send_to_links_buf[i]->khp_data_frag_seq = i + 1;
knet_h->send_to_links_buf[i]->kh_node = htons(knet_h->host_id);
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->send_to_links_epollfd, events, KNET_EPOLL_MAX_EVENTS + 1, -1);
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get read lock");
continue;
}
for (i = 0; i < nev; i++) {
if (events[i].data.fd == knet_h->hostsockfd[0]) {
type = KNET_HEADER_TYPE_HOST_INFO;
channel = -1;
} else {
type = KNET_HEADER_TYPE_DATA;
for (channel = 0; channel < KNET_DATAFD_MAX; channel++) {
if ((knet_h->sockfd[channel].in_use) &&
(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) {
break;
}
}
}
if (pthread_mutex_lock(&knet_h->tx_mutex) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get mutex lock");
continue;
}
_handle_send_to_links(knet_h, &msg, events[i].data.fd, channel, type);
pthread_mutex_unlock(&knet_h->tx_mutex);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
return NULL;
}

File Metadata

Mime Type
text/x-diff
Expires
Wed, Feb 26, 4:23 PM (6 h, 16 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1465556
Default Alt Text
(121 KB)

Event Timeline