Page MenuHomeClusterLabs Projects

glock.c
No OneTemporary

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/semaphore.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <asm/uaccess.h>
#include "gfs.h"
#include "dio.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "lm.h"
#include "lops.h"
#include "quota.h"
#include "recovery.h"
/* Must be kept in sync with the beginning of struct gfs_glock */
struct glock_plug {
struct list_head gl_list;
unsigned long gl_flags;
};
struct greedy {
struct gfs_holder gr_gh;
struct delayed_work gr_work;
};
typedef void (*glock_examiner) (struct gfs_glock * gl, unsigned int *cnt);
/**
* relaxed_state_ok - is a requested lock compatible with the current lock mode?
* @actual: the current state of the lock
* @requested: the lock state that was requested by the caller
* @flags: the modifier flags passed in by the caller
*
* Returns: TRUE if the locks are compatible, FALSE otherwise
*
* It's often possible that a holder B may request the lock in SHARED mode,
* while another holder A (on this same node) has the lock in EXCLUSIVE mode
* (node must hold the glock in EXCLUSIVE mode for this situation, of course).
* This is okay to grant, in some cases, since both holders would have access
* to the in-core up-to-date cached data that the EX holder would write to disk.
* This is the default behavior.
*
* The EXACT flag disallows this behavior, though. A SHARED request would
* compatible only with a SHARED lock with this flag.
*
* The ANY flag provides broader permission to grant the lock to a holder,
* whatever the requested state is, as long as the lock is locked in any mode.
*/
static __inline__ int
relaxed_state_ok(unsigned int actual, unsigned requested, int flags)
{
if (actual == requested)
return TRUE;
if (flags & GL_EXACT)
return FALSE;
if (actual == LM_ST_EXCLUSIVE && requested == LM_ST_SHARED)
return TRUE;
if (actual != LM_ST_UNLOCKED && (flags & LM_FLAG_ANY))
return TRUE;
return FALSE;
}
/**
* gl_hash() - Turn glock number into hash bucket number
* @lock: The glock number
*
* Returns: The number of the corresponding hash bucket
*/
static unsigned int
gl_hash(struct lm_lockname *name)
{
unsigned int h;
h = gfs_hash(&name->ln_number, sizeof(uint64_t));
h = gfs_hash_more(&name->ln_type, sizeof(unsigned int), h);
h &= GFS_GL_HASH_MASK;
return h;
}
/**
* glock_hold() - increment reference count on glock
* @gl: The glock to hold
*
*/
static __inline__ void
glock_hold(struct gfs_glock *gl)
{
gfs_assert(gl->gl_sbd, atomic_read(&gl->gl_count) > 0,);
atomic_inc(&gl->gl_count);
}
/**
* glock_put() - Decrement reference count on glock
* @gl: The glock to put
*
*/
static __inline__ void
glock_put(struct gfs_glock *gl)
{
if (atomic_read(&gl->gl_count) == 1)
gfs_glock_schedule_for_reclaim(gl);
gfs_assert(gl->gl_sbd, atomic_read(&gl->gl_count) > 0,);
atomic_dec(&gl->gl_count);
}
/**
* queue_empty - check to see if a glock's queue is empty
* @gl: the glock
* @head: the head of the queue to check
*
* Returns: TRUE if the queue is empty
*/
static __inline__ int
queue_empty(struct gfs_glock *gl, struct list_head *head)
{
int empty;
spin_lock(&gl->gl_spin);
empty = list_empty(head);
spin_unlock(&gl->gl_spin);
return empty;
}
/**
* search_bucket() - Find struct gfs_glock by lock number
* @bucket: the bucket to search
* @name: The lock name
*
* Returns: NULL, or the struct gfs_glock with the requested number
*/
static struct gfs_glock *
search_bucket(struct gfs_gl_hash_bucket *bucket, struct lm_lockname *name)
{
struct list_head *tmp, *head;
struct gfs_glock *gl;
for (head = &bucket->hb_list, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gl = list_entry(tmp, struct gfs_glock, gl_list);
if (test_bit(GLF_PLUG, &gl->gl_flags))
continue;
if (!lm_name_equal(&gl->gl_name, name))
continue;
atomic_inc(&gl->gl_count);
return gl;
}
return NULL;
}
/**
* gfs_glock_find() - Find glock by lock number
* @sdp: The GFS superblock
* @name: The lock name
*
* Figure out what bucket the lock is in, acquire the read lock on
* it and call search_bucket().
*
* Returns: NULL, or the struct gfs_glock with the requested number
*/
struct gfs_glock *
gfs_glock_find(struct gfs_sbd *sdp, struct lm_lockname *name)
{
struct gfs_gl_hash_bucket *bucket = &sdp->sd_gl_hash[gl_hash(name)];
struct gfs_glock *gl;
read_lock(&bucket->hb_lock);
gl = search_bucket(bucket, name);
read_unlock(&bucket->hb_lock);
return gl;
}
/**
* glock_free() - Perform a few checks and then release struct gfs_glock
* @gl: The glock to release
*
* Also calls lock module to release its internal structure for this glock.
*
*/
static void
glock_free(struct gfs_glock *gl)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct inode *aspace = gl->gl_aspace;
gfs_assert_warn(sdp, list_empty(&gl->gl_list));
gfs_assert_warn(sdp, atomic_read(&gl->gl_count) == 1);
gfs_assert_warn(sdp, list_empty(&gl->gl_holders));
gfs_assert_warn(sdp, list_empty(&gl->gl_waiters1));
gfs_assert_warn(sdp, list_empty(&gl->gl_waiters2));
gfs_assert_warn(sdp, list_empty(&gl->gl_waiters3));
gfs_assert_warn(sdp, gl->gl_state == LM_ST_UNLOCKED);
gfs_assert_warn(sdp, !gl->gl_object);
gfs_assert_warn(sdp, !gl->gl_lvb);
gfs_assert_warn(sdp, list_empty(&gl->gl_reclaim));
gfs_lm_put_lock(sdp, gl->gl_lock);
if (aspace)
gfs_aspace_put(aspace);
kmem_cache_free(gfs_glock_cachep, gl);
atomic_dec(&sdp->sd_glock_count);
}
/**
* gfs_glock_get() - Get a glock, or create one if one doesn't exist
* @sdp: The GFS superblock
* @number: the lock number
* @glops: The glock_operations to use
* @create: If FALSE, don't create the glock if it doesn't exist
* @glp: the glock is returned here
*
* This does not lock a glock, just finds/creates structures for one.
*
* Returns: errno
*/
int
gfs_glock_get(struct gfs_sbd *sdp,
uint64_t number, struct gfs_glock_operations *glops,
int create, struct gfs_glock **glp)
{
struct lm_lockname name;
struct gfs_glock *gl, *tmp;
struct gfs_gl_hash_bucket *bucket;
int error;
/* Look for pre-existing glock in hash table */
name.ln_number = number;
name.ln_type = glops->go_type;
bucket = &sdp->sd_gl_hash[gl_hash(&name)];
read_lock(&bucket->hb_lock);
gl = search_bucket(bucket, &name);
read_unlock(&bucket->hb_lock);
if (gl || !create) {
*glp = gl;
return 0;
}
/* None found; create a new one */
gl = kmem_cache_alloc(gfs_glock_cachep, GFP_KERNEL);
if (!gl)
return -ENOMEM;
memset(gl, 0, sizeof(struct gfs_glock));
INIT_LIST_HEAD(&gl->gl_list);
gl->gl_name = name;
atomic_set(&gl->gl_count, 1);
spin_lock_init(&gl->gl_spin);
gl->gl_state = LM_ST_UNLOCKED;
INIT_LIST_HEAD(&gl->gl_holders);
INIT_LIST_HEAD(&gl->gl_waiters1);
INIT_LIST_HEAD(&gl->gl_waiters2);
INIT_LIST_HEAD(&gl->gl_waiters3);
gl->gl_ops = glops;
INIT_LE(&gl->gl_new_le, &gfs_glock_lops);
INIT_LE(&gl->gl_incore_le, &gfs_glock_lops);
gl->gl_bucket = bucket;
INIT_LIST_HEAD(&gl->gl_reclaim);
gl->gl_sbd = sdp;
INIT_LIST_HEAD(&gl->gl_ail_bufs);
/* If this glock protects actual on-disk data or metadata blocks,
create a VFS inode to manage the pages/buffers holding them. */
if (glops == &gfs_inode_glops ||
glops == &gfs_rgrp_glops ||
glops == &gfs_meta_glops) {
gl->gl_aspace = gfs_aspace_get(sdp);
if (!gl->gl_aspace) {
error = -ENOMEM;
goto fail;
}
}
/* Ask lock module to find/create its structure for this lock
(but this doesn't lock the inter-node lock yet) */
error = gfs_lm_get_lock(sdp, &name, &gl->gl_lock);
if (error)
goto fail_aspace;
atomic_inc(&sdp->sd_glock_count);
/* Double-check, in case another process created the glock, and has
put it in the hash table while we were preparing this one */
write_lock(&bucket->hb_lock);
tmp = search_bucket(bucket, &name);
if (tmp) {
/* Somebody beat us to it; forget the one we prepared */
write_unlock(&bucket->hb_lock);
glock_free(gl);
gl = tmp;
} else {
/* Add our glock to hash table */
list_add_tail(&gl->gl_list, &bucket->hb_list);
write_unlock(&bucket->hb_lock);
}
*glp = gl;
return 0;
fail_aspace:
if (gl->gl_aspace)
gfs_aspace_put(gl->gl_aspace);
fail:
kmem_cache_free(gfs_glock_cachep, gl);
return error;
}
/**
* gfs_glock_hold() - As glock_hold(), but suitable for exporting
* @gl: The glock to hold
*
*/
void
gfs_glock_hold(struct gfs_glock *gl)
{
glock_hold(gl);
}
/**
* gfs_glock_put() - As glock_put(), but suitable for exporting
* @gl: The glock to put
*
*/
void
gfs_glock_put(struct gfs_glock *gl)
{
glock_put(gl);
}
/**
* gfs_holder_init - initialize a struct gfs_holder in the default way
* @gl: the glock
* @state: the state we're requesting
* @flags: the modifier flags
* @gh: the holder structure
*
*/
void
gfs_holder_init(struct gfs_glock *gl, unsigned int state, int flags,
struct gfs_holder *gh)
{
memset(gh, 0, sizeof(struct gfs_holder));
INIT_LIST_HEAD(&gh->gh_list);
gh->gh_gl = gl;
gh->gh_owner = current;
gh->gh_state = state;
gh->gh_flags = flags;
if (gh->gh_state == LM_ST_EXCLUSIVE)
gh->gh_flags |= GL_LOCAL_EXCL;
init_completion(&gh->gh_wait);
glock_hold(gl);
}
/**
* gfs_holder_reinit - reinitialize a struct gfs_holder so we can requeue it
* @state: the state we're requesting
* @flags: the modifier flags
* @gh: the holder structure
*
* Preserve holder's associated glock and owning process.
* Reset all holder state flags (we're starting a new request from scratch),
* except for HIF_ALLOCED.
* Don't do glock_hold() again (it was done in gfs_holder_init()).
* Don't mess with the glock.
*
* Rules:
* Holder must have been gfs_holder_init()d already
* Holder must *not* be in glock's holder list or wait queues now
*/
void
gfs_holder_reinit(unsigned int state, int flags, struct gfs_holder *gh)
{
int alloced;
gfs_assert_warn(gh->gh_gl->gl_sbd,
list_empty(&gh->gh_list));
gh->gh_state = state;
gh->gh_flags = flags;
if (gh->gh_state == LM_ST_EXCLUSIVE)
gh->gh_flags |= GL_LOCAL_EXCL;
alloced = test_bit(HIF_ALLOCED, &gh->gh_iflags);
memset(&gh->gh_iflags, 0, sizeof(unsigned long));
if (alloced)
set_bit(HIF_ALLOCED, &gh->gh_iflags);
}
/**
* gfs_holder_uninit - uninitialize a holder structure (drop reference on glock)
* @gh: the holder structure
*
*/
void
gfs_holder_uninit(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
gfs_assert_warn(gl->gl_sbd, list_empty(&gh->gh_list));
gh->gh_gl = NULL;
glock_put(gl);
}
/**
* gfs_holder_get - get a struct gfs_holder structure
* @gl: the glock
* @state: the state we're requesting
* @flags: the modifier flags
*
* Figure out how big an impact this function has. Either:
* 1) Replace it with a cache of structures hanging off the struct gfs_sbd
* 2) Leave it like it is
*
* Returns: the holder structure, NULL on ENOMEM
*/
struct gfs_holder *
gfs_holder_get(struct gfs_glock *gl, unsigned int state, int flags)
{
struct gfs_holder *gh;
gh = kmalloc(sizeof(struct gfs_holder), GFP_KERNEL);
if (!gh)
return NULL;
gfs_holder_init(gl, state, flags, gh);
set_bit(HIF_ALLOCED, &gh->gh_iflags);
return gh;
}
/**
* gfs_holder_put - get rid of a struct gfs_holder structure
* @gh: the holder structure
*
*/
void
gfs_holder_put(struct gfs_holder *gh)
{
if (gfs_assert_warn(gh->gh_gl->gl_sbd,
test_bit(HIF_ALLOCED, &gh->gh_iflags)))
return;
gfs_holder_uninit(gh);
kfree(gh);
}
/**
* handle_recurse - put other holder structures (marked recursive) into the holders list
* @gh: the holder structure
*
*/
static void
handle_recurse(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
struct list_head *tmp, *head, *next;
struct gfs_holder *tmp_gh;
int found = FALSE;
if (gfs_assert_warn(sdp, gh->gh_owner))
return;
for (head = &gl->gl_waiters3, tmp = head->next, next = tmp->next;
tmp != head;
tmp = next, next = tmp->next) {
tmp_gh = list_entry(tmp, struct gfs_holder, gh_list);
if (tmp_gh->gh_owner != gh->gh_owner)
continue;
gfs_assert_warn(sdp, test_bit(HIF_RECURSE, &tmp_gh->gh_iflags));
list_move_tail(&tmp_gh->gh_list, &gl->gl_holders);
tmp_gh->gh_error = 0;
set_bit(HIF_HOLDER, &tmp_gh->gh_iflags);
complete(&tmp_gh->gh_wait);
found = TRUE;
}
gfs_assert_warn(sdp, found);
}
/**
* do_unrecurse - a recursive holder was just dropped of the waiters3 list
* @gh: the holder
*
* If there is only one other recursive holder, clear its HIF_RECURSE bit
* (it's no longer a recursive request).
* If there is more than one, leave them alone (they're recursive!).
*
*/
static void
do_unrecurse(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
struct list_head *tmp, *head;
struct gfs_holder *tmp_gh, *last_gh = NULL;
int found = FALSE;
if (gfs_assert_warn(sdp, gh->gh_owner))
return;
for (head = &gl->gl_waiters3, tmp = head->next;
tmp != head;
tmp = tmp->next) {
tmp_gh = list_entry(tmp, struct gfs_holder, gh_list);
if (tmp_gh->gh_owner != gh->gh_owner)
continue;
gfs_assert_warn(sdp, test_bit(HIF_RECURSE, &tmp_gh->gh_iflags));
/* found more than one */
if (found)
return;
found = TRUE;
last_gh = tmp_gh;
}
/* found just one */
if (!gfs_assert_warn(sdp, found))
clear_bit(HIF_RECURSE, &last_gh->gh_iflags);
}
/**
* rq_mutex - process a mutex request in the queue
* @gh: the glock holder
*
* Returns: TRUE if the queue is blocked (always, since there can be only one
* holder of the mutex).
*
* See lock_on_glock()
*/
static int
rq_mutex(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
list_del_init(&gh->gh_list);
/* gh->gh_error never examined. */
set_bit(GLF_LOCK, &gl->gl_flags);
complete(&gh->gh_wait);
return TRUE;
}
/**
* rq_promote - process a promote request in the queue
* @gh: the glock holder
*
* Acquire a new inter-node lock, or change a lock state to more restrictive.
*
* Returns: TRUE if the queue is blocked
*/
static int
rq_promote(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
int recurse;
if (!relaxed_state_ok(gl->gl_state, gh->gh_state, gh->gh_flags)) {
if (list_empty(&gl->gl_holders)) {
gl->gl_req_gh = gh;
set_bit(GLF_LOCK, &gl->gl_flags);
spin_unlock(&gl->gl_spin);
/* If we notice a lot of glocks in reclaim list, free
up memory for 2 of them before locking a new one */
if (atomic_read(&sdp->sd_reclaim_count) >
gfs_tune_get(sdp, gt_reclaim_limit) &&
!(gh->gh_flags & LM_FLAG_PRIORITY)) {
gfs_reclaim_glock(sdp);
gfs_reclaim_glock(sdp);
}
glops->go_xmote_th(gl, gh->gh_state,
gh->gh_flags);
spin_lock(&gl->gl_spin);
}
return TRUE;
}
if (list_empty(&gl->gl_holders)) {
set_bit(HIF_FIRST, &gh->gh_iflags);
set_bit(GLF_LOCK, &gl->gl_flags);
recurse = FALSE;
} else {
struct gfs_holder *next_gh;
if (gh->gh_flags & GL_LOCAL_EXCL)
return TRUE;
next_gh = list_entry(gl->gl_holders.next, struct gfs_holder, gh_list);
if (next_gh->gh_flags & GL_LOCAL_EXCL)
return TRUE;
recurse = test_bit(HIF_RECURSE, &gh->gh_iflags);
}
list_move_tail(&gh->gh_list, &gl->gl_holders);
gh->gh_error = 0;
set_bit(HIF_HOLDER, &gh->gh_iflags);
if (recurse)
handle_recurse(gh);
complete(&gh->gh_wait);
return FALSE;
}
/**
* rq_demote - process a demote request in the queue
* @gh: the glock holder
*
* Returns: TRUE if the queue is blocked
*
* Unlock an inter-node lock, or change a lock state to less restrictive.
* If the glock is already the same as the holder's requested state, or is
* UNLOCKED, no lock module request is required.
* Otherwise, we need to ask lock module to unlock or change locked state
* of the glock.
* If requested state is UNLOCKED, or current glock state is SHARED or
* DEFERRED (neither of which have a less restrictive state other than
* UNLOCK), we call go_drop_th() to unlock the lock.
* Otherwise (i.e. requested is SHARED or DEFERRED, and current is EXCLUSIVE),
* we can continue to hold the lock, and just ask for a new state;
* we call go_xmote_th() to change state.
*
* Must be called with glock's gl->gl_spin locked.
*/
static int
rq_demote(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_glock_operations *glops = gl->gl_ops;
if (!list_empty(&gl->gl_holders))
return TRUE;
if (gl->gl_state == gh->gh_state || gl->gl_state == LM_ST_UNLOCKED) {
list_del_init(&gh->gh_list);
gh->gh_error = 0;
spin_unlock(&gl->gl_spin);
if (test_bit(HIF_DEALLOC, &gh->gh_iflags))
gfs_holder_put(gh);
else
complete(&gh->gh_wait);
spin_lock(&gl->gl_spin);
} else {
gl->gl_req_gh = gh;
set_bit(GLF_LOCK, &gl->gl_flags);
spin_unlock(&gl->gl_spin);
if (gh->gh_state == LM_ST_UNLOCKED ||
gl->gl_state != LM_ST_EXCLUSIVE)
/* Unlock */
glops->go_drop_th(gl);
else
/* Change state while holding lock */
glops->go_xmote_th(gl, gh->gh_state, gh->gh_flags);
spin_lock(&gl->gl_spin);
}
return FALSE;
}
/**
* rq_greedy - process a queued request to drop greedy status
* @gh: the glock holder
*
* Returns: TRUE if the queue is blocked
*/
static int
rq_greedy(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
list_del_init(&gh->gh_list);
/* gh->gh_error never examined. */
clear_bit(GLF_GREEDY, &gl->gl_flags);
spin_unlock(&gl->gl_spin);
gfs_holder_uninit(gh);
kfree(container_of(gh, struct greedy, gr_gh));
spin_lock(&gl->gl_spin);
return FALSE;
}
/**
* run_queue - process holder structures on the glock's wait queues
* @gl: the glock
*
* Rules:
* Caller must hold gl->gl_spin.
*/
static void
run_queue(struct gfs_glock *gl)
{
struct gfs_holder *gh;
int blocked = TRUE;
for (;;) {
/* Another process is manipulating the glock structure;
we can't do anything now */
if (test_bit(GLF_LOCK, &gl->gl_flags))
break;
/* Waiting to manipulate the glock structure */
if (!list_empty(&gl->gl_waiters1)) {
gh = list_entry(gl->gl_waiters1.next,
struct gfs_holder, gh_list);
if (test_bit(HIF_MUTEX, &gh->gh_iflags))
blocked = rq_mutex(gh);
else
gfs_assert_warn(gl->gl_sbd, FALSE);
/* Waiting to demote the lock, or drop greedy status */
} else if (!list_empty(&gl->gl_waiters2) &&
!test_bit(GLF_SKIP_WAITERS2, &gl->gl_flags)) {
gh = list_entry(gl->gl_waiters2.next,
struct gfs_holder, gh_list);
if (test_bit(HIF_DEMOTE, &gh->gh_iflags))
blocked = rq_demote(gh);
else if (test_bit(HIF_GREEDY, &gh->gh_iflags))
blocked = rq_greedy(gh);
else
gfs_assert_warn(gl->gl_sbd, FALSE);
/* Waiting to promote the lock */
} else if (!list_empty(&gl->gl_waiters3)) {
gh = list_entry(gl->gl_waiters3.next,
struct gfs_holder, gh_list);
if (test_bit(HIF_PROMOTE, &gh->gh_iflags))
blocked = rq_promote(gh);
else
gfs_assert_warn(gl->gl_sbd, FALSE);
} else
break;
if (blocked)
break;
}
}
/**
* lock_on_glock - acquire a local lock on a glock (structure)
* @gl: the glock
*
* Gives caller exclusive access to manipulate a glock structure.
* Has nothing to do with inter-node lock state or GL_LOCAL_EXCL!
*
* If structure already locked, places temporary holder structure on glock's
* wait-for-exclusive-access queue, and blocks until exclusive access granted.
*/
static void
lock_on_glock(struct gfs_glock *gl)
{
struct gfs_holder gh;
gfs_holder_init(gl, 0, 0, &gh);
set_bit(HIF_MUTEX, &gh.gh_iflags);
spin_lock(&gl->gl_spin);
if (test_and_set_bit(GLF_LOCK, &gl->gl_flags))
list_add_tail(&gh.gh_list, &gl->gl_waiters1);
else
complete(&gh.gh_wait);
spin_unlock(&gl->gl_spin);
wait_for_completion(&gh.gh_wait);
gfs_holder_uninit(&gh);
}
/**
* trylock_on_glock - try to acquire a local lock on a glock (structure)
* @gl: the glock
*
* Returns: TRUE if the glock is acquired
*
* Tries to give caller exclusive access to manipulate a glock structure.
* Has nothing to do with inter-node lock state or LOCAL_EXCL!
*
* If structure already locked, does not block to wait; returns FALSE.
*/
static int
trylock_on_glock(struct gfs_glock *gl)
{
int acquired = TRUE;
spin_lock(&gl->gl_spin);
if (test_and_set_bit(GLF_LOCK, &gl->gl_flags))
acquired = FALSE;
spin_unlock(&gl->gl_spin);
return acquired;
}
/**
* unlock_on_glock - release a local lock on a glock (structure)
* @gl: the glock
*
* Caller is done manipulating glock structure.
* Service any others waiting for exclusive access.
*/
static void
unlock_on_glock(struct gfs_glock *gl)
{
spin_lock(&gl->gl_spin);
clear_bit(GLF_LOCK, &gl->gl_flags);
run_queue(gl);
spin_unlock(&gl->gl_spin);
}
/**
* handle_callback - add a demote request to a lock's queue
* @gl: the glock
* @state: the state the caller wants us to change to
*
* Called when we learn that another node needs a lock held by this node,
* or when this node simply wants to drop a lock as soon as it's done with
* it (NOCACHE flag), or dump a glock out of glock cache (reclaim it).
*
* We are told the @state that will satisfy the needs of the caller, so
* we can ask for a demote to that state.
*
* If another demote request is already on the queue for a different state, just
* set its request to UNLOCK (and don't bother queueing a request for us).
* This consolidates LM requests and moves the lock to the least restrictive
* state, so it will be compatible with whatever reason we were called.
* No need to be too smart here. Demotes between the shared and deferred
* states will often fail, so don't even try.
*
* Otherwise, queue a demote request to the requested state.
*/
static void
handle_callback(struct gfs_glock *gl, unsigned int state)
{
struct list_head *tmp, *head;
struct gfs_holder *gh, *new_gh = NULL;
if (gfs_assert_warn(gl->gl_sbd, state != LM_ST_EXCLUSIVE))
return;
restart:
spin_lock(&gl->gl_spin);
/* If another queued demote request is for a different state,
set its request to UNLOCKED */
for (head = &gl->gl_waiters2, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gh = list_entry(tmp, struct gfs_holder, gh_list);
if (test_bit(HIF_DEMOTE, &gh->gh_iflags) &&
gl->gl_req_gh != gh) {
if (gh->gh_state != state)
gh->gh_state = LM_ST_UNLOCKED;
goto out;
}
}
/* pass 2; add new holder to glock's demote request queue */
if (new_gh) {
list_add_tail(&new_gh->gh_list, &gl->gl_waiters2);
new_gh = NULL;
/* pass 1; set up a new holder struct for a demote request, then
check again to see if another process added a demote request
while we were preparing this one. */
} else {
spin_unlock(&gl->gl_spin);
RETRY_MALLOC(new_gh = gfs_holder_get(gl, state, LM_FLAG_TRY),
new_gh);
set_bit(HIF_DEMOTE, &new_gh->gh_iflags);
set_bit(HIF_DEALLOC, &new_gh->gh_iflags);
new_gh->gh_owner = NULL;
goto restart;
}
out:
spin_unlock(&gl->gl_spin);
if (new_gh)
gfs_holder_put(new_gh);
}
/**
* state_change - record that the glock is now in a different state
* @gl: the glock
* @new_state the new state
*
*/
static void
state_change(struct gfs_glock *gl, unsigned int new_state)
{
struct gfs_sbd *sdp = gl->gl_sbd;
int held1, held2;
held1 = (gl->gl_state != LM_ST_UNLOCKED);
held2 = (new_state != LM_ST_UNLOCKED);
if (held1 != held2) {
if (held2) {
atomic_inc(&sdp->sd_glock_held_count);
glock_hold(gl);
} else {
atomic_dec(&sdp->sd_glock_held_count);
glock_put(gl);
}
}
gl->gl_state = new_state;
}
/**
* xmote_bh - Called after the lock module is done acquiring a lock
* @gl: The glock in question
* @ret: the int returned from the lock module
*
*/
static void
xmote_bh(struct gfs_glock *gl, unsigned int ret)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
struct gfs_holder *gh = gl->gl_req_gh;
int prev_state = gl->gl_state;
int op_done = TRUE;
gfs_assert_warn(sdp, test_bit(GLF_LOCK, &gl->gl_flags));
gfs_assert_warn(sdp, queue_empty(gl, &gl->gl_holders));
gfs_assert_warn(sdp, !(ret & LM_OUT_ASYNC));
state_change(gl, ret & LM_OUT_ST_MASK);
if (prev_state != LM_ST_UNLOCKED && !(ret & LM_OUT_CACHEABLE)) {
if (glops->go_inval)
glops->go_inval(gl, DIO_METADATA | DIO_DATA);
} else if (gl->gl_state == LM_ST_DEFERRED) {
/* We might not want to do this here.
Look at moving to the inode glops. */
if (glops->go_inval)
glops->go_inval(gl, DIO_DATA);
}
/* Deal with each possible exit condition */
if (!gh)
gl->gl_stamp = jiffies;
else if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
gh->gh_error = -EIO;
if (test_bit(HIF_RECURSE, &gh->gh_iflags))
do_unrecurse(gh);
spin_unlock(&gl->gl_spin);
} else if (test_bit(HIF_DEMOTE, &gh->gh_iflags)) {
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
if (gl->gl_state == gh->gh_state ||
gl->gl_state == LM_ST_UNLOCKED)
gh->gh_error = 0;
else {
if (gfs_assert_warn(sdp, gh->gh_flags &
(LM_FLAG_TRY | LM_FLAG_TRY_1CB)) == -1)
printk("GFS: fsid=%s: ret = 0x%.8X\n",
sdp->sd_fsname, ret);
gh->gh_error = GLR_TRYFAILED;
}
spin_unlock(&gl->gl_spin);
if (ret & LM_OUT_CANCELED)
handle_callback(gl, LM_ST_UNLOCKED); /* Lame */
} else if (ret & LM_OUT_CANCELED) {
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
gh->gh_error = GLR_CANCELED;
if (test_bit(HIF_RECURSE, &gh->gh_iflags))
do_unrecurse(gh);
spin_unlock(&gl->gl_spin);
} else if (relaxed_state_ok(gl->gl_state, gh->gh_state, gh->gh_flags)) {
spin_lock(&gl->gl_spin);
list_move_tail(&gh->gh_list, &gl->gl_holders);
gh->gh_error = 0;
set_bit(HIF_HOLDER, &gh->gh_iflags);
spin_unlock(&gl->gl_spin);
set_bit(HIF_FIRST, &gh->gh_iflags);
op_done = FALSE;
} else if (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB)) {
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
gh->gh_error = GLR_TRYFAILED;
if (test_bit(HIF_RECURSE, &gh->gh_iflags))
do_unrecurse(gh);
spin_unlock(&gl->gl_spin);
} else {
if (gfs_assert_withdraw(sdp, FALSE) == -1)
printk("GFS: fsid=%s: ret = 0x%.8X\n",
sdp->sd_fsname, ret);
}
if (glops->go_xmote_bh)
glops->go_xmote_bh(gl);
if (op_done) {
spin_lock(&gl->gl_spin);
gl->gl_req_gh = NULL;
gl->gl_req_bh = NULL;
clear_bit(GLF_LOCK, &gl->gl_flags);
run_queue(gl);
spin_unlock(&gl->gl_spin);
}
glock_put(gl);
if (gh) {
if (test_bit(HIF_DEALLOC, &gh->gh_iflags))
gfs_holder_put(gh);
else
complete(&gh->gh_wait);
}
}
/**
* gfs_glock_xmote_th - Call into the lock module to acquire or change a glock
* @gl: The glock in question
* @state: the requested state
* @flags: modifier flags to the lock call
*
* Used to acquire a new glock, or to change an already-acquired glock to
* more/less restrictive state (other than LM_ST_UNLOCKED).
*
* *Not* used to unlock a glock; use gfs_glock_drop_th() for that.
*/
void
gfs_glock_xmote_th(struct gfs_glock *gl, unsigned int state, int flags)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
int lck_flags = flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB |
LM_FLAG_NOEXP | LM_FLAG_ANY |
LM_FLAG_PRIORITY);
unsigned int lck_ret;
gfs_assert_warn(sdp, test_bit(GLF_LOCK, &gl->gl_flags));
gfs_assert_warn(sdp, queue_empty(gl, &gl->gl_holders));
gfs_assert_warn(sdp, state != LM_ST_UNLOCKED);
gfs_assert_warn(sdp, state != gl->gl_state);
/* Current state EX, may need to sync log/data/metadata to disk */
if (gl->gl_state == LM_ST_EXCLUSIVE) {
if (glops->go_sync)
glops->go_sync(gl, DIO_METADATA | DIO_DATA);
}
glock_hold(gl);
gl->gl_req_bh = xmote_bh;
atomic_inc(&sdp->sd_lm_lock_calls);
lck_ret = gfs_lm_lock(sdp, gl->gl_lock,
gl->gl_state, state,
lck_flags);
if (gfs_assert_withdraw(sdp, !(lck_ret & LM_OUT_ERROR)))
goto out;
if (lck_ret & LM_OUT_ASYNC)
gfs_assert_warn(sdp, lck_ret == LM_OUT_ASYNC);
else
xmote_bh(gl, lck_ret);
out:
return;
}
/**
* drop_bh - Called after a lock module unlock completes
* @gl: the glock
* @ret: the return status
*
* Doesn't wake up the process waiting on the struct gfs_holder (if any)
* Doesn't drop the reference on the glock the top half took out
*
*/
static void
drop_bh(struct gfs_glock *gl, unsigned int ret)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
struct gfs_holder *gh = gl->gl_req_gh;
clear_bit(GLF_PREFETCH, &gl->gl_flags);
gfs_assert_warn(sdp, test_bit(GLF_LOCK, &gl->gl_flags));
gfs_assert_warn(sdp, queue_empty(gl, &gl->gl_holders));
gfs_assert_warn(sdp, !ret);
state_change(gl, LM_ST_UNLOCKED);
if (glops->go_inval)
glops->go_inval(gl, DIO_METADATA | DIO_DATA);
if (gh) {
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
gh->gh_error = 0;
spin_unlock(&gl->gl_spin);
}
if (glops->go_drop_bh)
glops->go_drop_bh(gl);
spin_lock(&gl->gl_spin);
gl->gl_req_gh = NULL;
gl->gl_req_bh = NULL;
clear_bit(GLF_LOCK, &gl->gl_flags);
run_queue(gl);
spin_unlock(&gl->gl_spin);
glock_put(gl);
if (gh) {
if (test_bit(HIF_DEALLOC, &gh->gh_iflags))
gfs_holder_put(gh);
else
complete(&gh->gh_wait);
}
}
/**
* gfs_glock_drop_th - call into the lock module to unlock a lock
* @gl: the glock
*
*/
void
gfs_glock_drop_th(struct gfs_glock *gl)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
unsigned int ret;
gfs_assert_warn(sdp, test_bit(GLF_LOCK, &gl->gl_flags));
gfs_assert_warn(sdp, queue_empty(gl, &gl->gl_holders));
gfs_assert_warn(sdp, gl->gl_state != LM_ST_UNLOCKED);
/* Leaving state EX, may need to sync log/data/metadata to disk */
if (gl->gl_state == LM_ST_EXCLUSIVE) {
if (glops->go_sync)
glops->go_sync(gl, DIO_METADATA | DIO_DATA);
}
glock_hold(gl);
gl->gl_req_bh = drop_bh;
atomic_inc(&sdp->sd_lm_unlock_calls);
ret = gfs_lm_unlock(sdp, gl->gl_lock, gl->gl_state);
if (gfs_assert_withdraw(sdp, !(ret & LM_OUT_ERROR)))
goto out;
if (!ret)
drop_bh(gl, ret);
else
gfs_assert_warn(sdp, ret == LM_OUT_ASYNC);
out:
return;
}
/**
* do_cancels - cancel requests for locks stuck waiting on an expire flag
* @gh: the LM_FLAG_PRIORITY holder waiting to acquire the lock
*
* Don't cancel GL_NOCANCEL requests.
*/
static void
do_cancels(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
spin_lock(&gl->gl_spin);
while (gl->gl_req_gh != gh &&
!test_bit(HIF_HOLDER, &gh->gh_iflags) &&
!list_empty(&gh->gh_list)) {
if (gl->gl_req_bh &&
!(gl->gl_req_gh &&
(gl->gl_req_gh->gh_flags & GL_NOCANCEL))) {
spin_unlock(&gl->gl_spin);
gfs_lm_cancel(gl->gl_sbd, gl->gl_lock);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 10);
spin_lock(&gl->gl_spin);
} else {
spin_unlock(&gl->gl_spin);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 10);
spin_lock(&gl->gl_spin);
}
}
spin_unlock(&gl->gl_spin);
}
/**
* glock_wait_internal - wait on a glock acquisition
* @gh: the glock holder
*
* Returns: 0 on success
*/
static int
glock_wait_internal(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
int error = 0;
if (test_bit(HIF_ABORTED, &gh->gh_iflags))
return -EIO;
if (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB)) {
spin_lock(&gl->gl_spin);
if (gl->gl_req_gh != gh &&
!test_bit(HIF_HOLDER, &gh->gh_iflags) &&
!list_empty(&gh->gh_list)) {
list_del_init(&gh->gh_list);
gh->gh_error = GLR_TRYFAILED;
if (test_bit(HIF_RECURSE, &gh->gh_iflags))
do_unrecurse(gh);
run_queue(gl);
spin_unlock(&gl->gl_spin);
return GLR_TRYFAILED;
}
spin_unlock(&gl->gl_spin);
}
if ((gh->gh_flags & LM_FLAG_PRIORITY) &&
!(gh->gh_flags & GL_NOCANCEL_OTHER))
do_cancels(gh);
wait_for_completion(&gh->gh_wait);
if (gh->gh_error)
return gh->gh_error;
gfs_assert_withdraw(sdp, test_bit(HIF_HOLDER, &gh->gh_iflags));
gfs_assert_withdraw(sdp, relaxed_state_ok(gl->gl_state,
gh->gh_state,
gh->gh_flags));
if (test_bit(HIF_FIRST, &gh->gh_iflags)) {
gfs_assert_warn(sdp, test_bit(GLF_LOCK, &gl->gl_flags));
if (glops->go_lock) {
error = glops->go_lock(gl, gh->gh_flags);
if (error) {
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
gh->gh_error = error;
if (test_and_clear_bit(HIF_RECURSE, &gh->gh_iflags))
do_unrecurse(gh);
spin_unlock(&gl->gl_spin);
}
}
spin_lock(&gl->gl_spin);
gl->gl_req_gh = NULL;
gl->gl_req_bh = NULL;
clear_bit(GLF_LOCK, &gl->gl_flags);
if (test_bit(HIF_RECURSE, &gh->gh_iflags))
handle_recurse(gh);
run_queue(gl);
spin_unlock(&gl->gl_spin);
}
return error;
}
/**
* add_to_queue - Add a holder to the wait-for-promotion queue or holder list
* (according to recursion)
* @gh: the holder structure to add
*
* If the hold requestor's process already has a granted lock (on holder list),
* and this new request is compatible, go ahead and grant it, adding this
* new holder to the glock's holder list.
*
* If the hold requestor's process has earlier requested a lock, and is still
* waiting for it to be granted, and this new request is compatible with
* the earlier one, they can be handled at the same time when the request
* is finally granted. Mark both (all) with RECURSE flags, and add new
* holder to wait-for-promotion queue.
*
* If there is no previous holder from this process (on holder list or wait-
* for-promotion queue), simply add new holder to wait-for-promotion queue.
*/
static void
add_to_queue(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
struct list_head *tmp, *head;
struct gfs_holder *tmp_gh;
if (gh->gh_owner) {
/* Search through glock's holders list to see if this process
already holds a granted lock. */
for (head = &gl->gl_holders, tmp = head->next;
tmp != head;
tmp = tmp->next) {
tmp_gh = list_entry(tmp, struct gfs_holder, gh_list);
if (tmp_gh->gh_owner == gh->gh_owner) {
/* Make sure pre-existing holder is compatible
with this new one. */
if (gfs_assert_warn(sdp, (gh->gh_flags & LM_FLAG_ANY) ||
!(tmp_gh->gh_flags & LM_FLAG_ANY)) ||
gfs_assert_warn(sdp, (tmp_gh->gh_flags & GL_LOCAL_EXCL) ||
!(gh->gh_flags & GL_LOCAL_EXCL)) ||
gfs_assert_warn(sdp, relaxed_state_ok(gl->gl_state,
gh->gh_state,
gh->gh_flags)))
goto fail;
/* We're good! Grant the hold. */
list_add_tail(&gh->gh_list, &gl->gl_holders);
set_bit(HIF_HOLDER, &gh->gh_iflags);
gh->gh_error = 0;
complete(&gh->gh_wait);
return;
}
}
/* If not, Search through glock's wait-for-promotion list to
see if this process already is waiting for a grant. */
for (head = &gl->gl_waiters3, tmp = head->next;
tmp != head;
tmp = tmp->next) {
tmp_gh = list_entry(tmp, struct gfs_holder, gh_list);
if (tmp_gh->gh_owner == gh->gh_owner) {
/* Yes, make sure it is compatible with new */
if (gfs_assert_warn(sdp, test_bit(HIF_PROMOTE,
&tmp_gh->gh_iflags)) ||
gfs_assert_warn(sdp, (gh->gh_flags & LM_FLAG_ANY) ||
!(tmp_gh->gh_flags & LM_FLAG_ANY)) ||
gfs_assert_warn(sdp, (tmp_gh->gh_flags & GL_LOCAL_EXCL) ||
!(gh->gh_flags & GL_LOCAL_EXCL)) ||
gfs_assert_warn(sdp, relaxed_state_ok(tmp_gh->gh_state,
gh->gh_state,
gh->gh_flags)))
goto fail;
/* OK, make sure they're marked, so
* when one gets granted, the other will too. */
set_bit(HIF_RECURSE, &gh->gh_iflags);
set_bit(HIF_RECURSE, &tmp_gh->gh_iflags);
list_add_tail(&gh->gh_list, &gl->gl_waiters3);
return;
}
}
}
/* Else, no recursion ...
If high priority request, add to head of promote queue, else tail */
if (gh->gh_flags & LM_FLAG_PRIORITY)
list_add(&gh->gh_list, &gl->gl_waiters3);
else
list_add_tail(&gh->gh_list, &gl->gl_waiters3);
return;
fail:
set_bit(HIF_ABORTED, &gh->gh_iflags);
}
/**
* gfs_glock_nq - enqueue a struct gfs_holder onto a glock (acquire a glock)
* @gh: the holder structure
*
* if (gh->gh_flags & GL_ASYNC), this never returns an error
*
* Returns: 0, GLR_TRYFAILED, or errno on failure
*
* Rules:
* @gh must not be already attached to a glock.
* Don't ask for UNLOCKED state (use gfs_glock_dq() for that).
* LM_FLAG_ANY (liberal) and GL_EXACT (restrictive) are mutually exclusive.
*/
int
gfs_glock_nq(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
int error = 0;
atomic_inc(&sdp->sd_glock_nq_calls);
restart:
if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)) ||
gfs_assert_warn(sdp, list_empty(&gh->gh_list)) ||
gfs_assert_warn(sdp, gh->gh_state != LM_ST_UNLOCKED) ||
gfs_assert_warn(sdp, (gh->gh_flags & (LM_FLAG_ANY | GL_EXACT)) !=
(LM_FLAG_ANY | GL_EXACT))) {
set_bit(HIF_ABORTED, &gh->gh_iflags);
return -EIO;
}
set_bit(HIF_PROMOTE, &gh->gh_iflags);
spin_lock(&gl->gl_spin);
add_to_queue(gh);
run_queue(gl);
spin_unlock(&gl->gl_spin);
if (!(gh->gh_flags & GL_ASYNC)) {
error = glock_wait_internal(gh);
if (error == GLR_CANCELED) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ);
goto restart;
}
}
clear_bit(GLF_PREFETCH, &gl->gl_flags);
return error;
}
/**
* gfs_glock_poll - poll to see if an async request has been completed
* @gh: the holder
*
* Returns: TRUE if the request is ready to be gfs_glock_wait()ed on
*/
int
gfs_glock_poll(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
int ready = FALSE;
gfs_assert_warn(gl->gl_sbd, gh->gh_flags & GL_ASYNC);
spin_lock(&gl->gl_spin);
if (test_bit(HIF_HOLDER, &gh->gh_iflags))
ready = TRUE;
else if (list_empty(&gh->gh_list)) {
if (gh->gh_error == GLR_CANCELED) {
spin_unlock(&gl->gl_spin);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ);
if (gfs_glock_nq(gh))
return TRUE;
return FALSE;
} else
ready = TRUE;
}
spin_unlock(&gl->gl_spin);
return ready;
}
/**
* gfs_glock_wait - wait for a lock acquisition that ended in a GLR_ASYNC
* @gh: the holder structure
*
* Returns: 0, GLR_TRYFAILED, or errno on failure
*/
int
gfs_glock_wait(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
int error;
gfs_assert_warn(gl->gl_sbd, gh->gh_flags & GL_ASYNC);
error = glock_wait_internal(gh);
if (error == GLR_CANCELED) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ);
gh->gh_flags &= ~GL_ASYNC;
error = gfs_glock_nq(gh);
}
return error;
}
/**
* gfs_glock_dq - dequeue a struct gfs_holder from a glock (release a glock)
* @gh: the glock holder
*
* This releases a local process' hold on a glock, and services other waiters.
* If this is the last holder on this node, calls glock operation go_unlock(),
* and go_sync() if requested by glock's GL_SYNC flag.
* If glock's GL_NOCACHE flag is set, requests demotion to unlock the inter-
* node lock now, rather than caching the glock for later use.
* Otherwise, this function does *not* release the glock at inter-node scope.
* The glock will stay in glock cache until:
* -- This node uses it again (extending residence in glock cache), or
* -- Another node asks (via callback) for the lock, or
* -- The glock sits unused in glock cache for a while, and the cleanup
* daemons (gfs_scand and gfs_glockd) reclaim it.
*/
void
gfs_glock_dq(struct gfs_holder *gh)
{
struct gfs_glock *gl = gh->gh_gl;
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
atomic_inc(&gl->gl_sbd->sd_glock_dq_calls);
gfs_assert_withdraw(sdp, !queue_empty(gl, &gh->gh_list));
gfs_assert_withdraw(sdp, test_bit(HIF_HOLDER, &gh->gh_iflags));
if (gh->gh_flags & GL_SYNC)
set_bit(GLF_SYNC, &gl->gl_flags);
/* Don't cache glock; request demote to unlock at inter-node scope */
if (gh->gh_flags & GL_NOCACHE && gl->gl_holders.next == &gh->gh_list &&
gl->gl_holders.prev == &gh->gh_list)
/* There's a race here. If there are two holders, and both
* are dq'ed at almost the same time, you can't guarantee that
* you will call handle_callback. Fixing this will require
* some refactoring */
handle_callback(gl, LM_ST_UNLOCKED);
lock_on_glock(gl);
spin_lock(&gl->gl_spin);
list_del_init(&gh->gh_list);
/* If last holder, do appropriate glock operations, set cache timer */
if (list_empty(&gl->gl_holders)) {
spin_unlock(&gl->gl_spin);
if (glops->go_unlock)
glops->go_unlock(gl, gh->gh_flags);
/* Do "early" sync, if requested by holder */
if (test_bit(GLF_SYNC, &gl->gl_flags)) {
if (glops->go_sync)
glops->go_sync(gl,
DIO_METADATA |
DIO_DATA |
DIO_INVISIBLE);
}
gl->gl_stamp = jiffies;
spin_lock(&gl->gl_spin);
}
clear_bit(GLF_LOCK, &gl->gl_flags);
run_queue(gl);
spin_unlock(&gl->gl_spin);
}
/**
* gfs_glock_prefetch - Try to prefetch a glock
* @gl: the glock
* @state: the state to prefetch in
* @flags: flags passed to go_xmote_th()
*
* Bypass request queues of glock (i.e. no holder involved), and directly call
* go_xmote_th() to ask lock module for lock, to put in glock cache for
* later use.
*
* Will not prefetch the lock (no need to) if a process on this node is already
* interested in the lock, or if it's sitting in glock cache in a compatible
* state.
*
* Rules:
* Don't ask for UNLOCKED state (use gfs_glock_dq() for that).
* LM_FLAG_ANY (liberal) and GL_EXACT (restrictive) are mutually exclusive.
*/
void
gfs_glock_prefetch(struct gfs_glock *gl, unsigned int state, int flags)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
if (gfs_assert_warn(sdp, state != LM_ST_UNLOCKED) ||
gfs_assert_warn(sdp, (flags & (LM_FLAG_ANY | GL_EXACT)) !=
(LM_FLAG_ANY | GL_EXACT)))
return;
spin_lock(&gl->gl_spin);
/* Should we prefetch? */
if (test_bit(GLF_LOCK, &gl->gl_flags) ||
!list_empty(&gl->gl_holders) ||
!list_empty(&gl->gl_waiters1) ||
!list_empty(&gl->gl_waiters2) ||
!list_empty(&gl->gl_waiters3) ||
relaxed_state_ok(gl->gl_state, state, flags)) {
spin_unlock(&gl->gl_spin);
return;
}
/* Let bottom half know we're prefetching, ask lock module for lock */
set_bit(GLF_PREFETCH, &gl->gl_flags);
if (gfs_assert_warn(sdp, !gl->gl_req_gh))
gl->gl_req_gh = NULL;
set_bit(GLF_LOCK, &gl->gl_flags);
spin_unlock(&gl->gl_spin);
glops->go_xmote_th(gl, state, flags);
atomic_inc(&gl->gl_sbd->sd_glock_prefetch_calls);
}
/**
* gfs_glock_force_drop - Force a glock to be uncached
* @gl: the glock
*
*/
void
gfs_glock_force_drop(struct gfs_glock *gl)
{
struct gfs_holder gh;
gfs_holder_init(gl, LM_ST_UNLOCKED, 0, &gh);
set_bit(HIF_DEMOTE, &gh.gh_iflags);
gh.gh_owner = NULL;
spin_lock(&gl->gl_spin);
list_add_tail(&gh.gh_list, &gl->gl_waiters2);
run_queue(gl);
spin_unlock(&gl->gl_spin);
wait_for_completion(&gh.gh_wait);
gfs_holder_uninit(&gh);
}
/**
* greedy_work -
* @data:
*
*/
static void
greedy_work(struct work_struct *work)
{
struct greedy *gr = container_of(work, struct greedy, gr_work.work);
struct gfs_holder *gh = &gr->gr_gh;
struct gfs_glock *gl = gh->gh_gl;
struct gfs_glock_operations *glops = gl->gl_ops;
clear_bit(GLF_SKIP_WAITERS2, &gl->gl_flags);
if (glops->go_greedy)
glops->go_greedy(gl);
spin_lock(&gl->gl_spin);
if (list_empty(&gl->gl_waiters2)) {
clear_bit(GLF_GREEDY, &gl->gl_flags);
spin_unlock(&gl->gl_spin);
gfs_holder_uninit(gh);
kfree(gr);
} else {
glock_hold(gl);
list_add_tail(&gh->gh_list, &gl->gl_waiters2);
run_queue(gl);
spin_unlock(&gl->gl_spin);
glock_put(gl);
}
}
/**
* gfs_glock_be_greedy -
* @gl:
* @time:
*
* Returns: 0 if go_greedy will be called, 1 otherwise
*/
int
gfs_glock_be_greedy(struct gfs_glock *gl, unsigned int time)
{
struct greedy *gr;
struct gfs_holder *gh;
if (!time ||
gl->gl_sbd->sd_args.ar_localcaching ||
test_and_set_bit(GLF_GREEDY, &gl->gl_flags))
return 1;
gr = kmalloc(sizeof(struct greedy), GFP_KERNEL);
if (!gr) {
clear_bit(GLF_GREEDY, &gl->gl_flags);
return 1;
}
gh = &gr->gr_gh;
gfs_holder_init(gl, 0, 0, gh);
set_bit(HIF_GREEDY, &gh->gh_iflags);
gh->gh_owner = NULL;
INIT_DELAYED_WORK(&gr->gr_work, greedy_work);
set_bit(GLF_SKIP_WAITERS2, &gl->gl_flags);
schedule_delayed_work(&gr->gr_work, time);
return 0;
}
/**
* gfs_glock_nq_init - intialize a holder and enqueue it on a glock
* @gl: the glock
* @state: the state we're requesting
* @flags: the modifier flags
* @gh: the holder structure
*
* Returns: 0, GLR_*, or errno
*/
int
gfs_glock_nq_init(struct gfs_glock *gl, unsigned int state, int flags,
struct gfs_holder *gh)
{
int error;
gfs_holder_init(gl, state, flags, gh);
error = gfs_glock_nq(gh);
if (error)
gfs_holder_uninit(gh);
return error;
}
/**
* gfs_glock_dq_uninit - dequeue a holder from a glock and initialize it
* @gh: the holder structure
*
*/
void
gfs_glock_dq_uninit(struct gfs_holder *gh)
{
gfs_glock_dq(gh);
gfs_holder_uninit(gh);
}
/**
* gfs_glock_nq_num - acquire a glock based on lock number
* @sdp: the filesystem
* @number: the lock number
* @glops: the glock operations for the type of glock
* @state: the state to acquire the glock in
* @flags: modifier flags for the aquisition
* @gh: the struct gfs_holder
*
* Returns: errno
*/
int
gfs_glock_nq_num(struct gfs_sbd *sdp,
uint64_t number, struct gfs_glock_operations *glops,
unsigned int state, int flags, struct gfs_holder *gh)
{
struct gfs_glock *gl;
int error;
error = gfs_glock_get(sdp, number, glops, CREATE, &gl);
if (!error) {
error = gfs_glock_nq_init(gl, state, flags, gh);
glock_put(gl);
}
return error;
}
/**
* glock_compare - Compare two struct gfs_glock structures for sorting
* @arg_a: the first structure
* @arg_b: the second structure
*
*/
static int
glock_compare(const void *arg_a, const void *arg_b)
{
struct gfs_holder *gh_a = *(struct gfs_holder **)arg_a;
struct gfs_holder *gh_b = *(struct gfs_holder **)arg_b;
struct lm_lockname *a = &gh_a->gh_gl->gl_name;
struct lm_lockname *b = &gh_b->gh_gl->gl_name;
int ret = 0;
if (a->ln_number > b->ln_number)
ret = 1;
else if (a->ln_number < b->ln_number)
ret = -1;
else {
if (gh_a->gh_state == LM_ST_SHARED &&
gh_b->gh_state == LM_ST_EXCLUSIVE)
ret = 1;
else if (!(gh_a->gh_flags & GL_LOCAL_EXCL) &&
(gh_b->gh_flags & GL_LOCAL_EXCL))
ret = 1;
}
return ret;
}
/**
* nq_m_sync - synchonously acquire more than one glock in deadlock free order
* @num_gh: the number of structures
* @ghs: an array of struct gfs_holder structures
*
* Returns: 0 on success (all glocks acquired), errno on failure (no glocks acquired)
*/
static int
nq_m_sync(unsigned int num_gh, struct gfs_holder *ghs, struct gfs_holder **p)
{
unsigned int x;
int error = 0;
for (x = 0; x < num_gh; x++)
p[x] = &ghs[x];
gfs_sort(p, num_gh, sizeof(struct gfs_holder *), glock_compare);
for (x = 0; x < num_gh; x++) {
p[x]->gh_flags &= ~(LM_FLAG_TRY | GL_ASYNC);
error = gfs_glock_nq(p[x]);
if (error) {
while (x--)
gfs_glock_dq(p[x]);
break;
}
}
return error;
}
/**
* gfs_glock_nq_m - acquire multiple glocks
* @num_gh: the number of structures
* @ghs: an array of struct gfs_holder structures
*
* Figure out how big an impact this function has. Either:
* 1) Replace this code with code that calls gfs_glock_prefetch()
* 2) Forget async stuff and just call nq_m_sync()
* 3) Leave it like it is
*
* Returns: 0 on success (all glocks acquired), errno on failure (no glocks acquired)
*/
int
gfs_glock_nq_m(unsigned int num_gh, struct gfs_holder *ghs)
{
int *e;
unsigned int x;
int borked = FALSE, serious = 0;
int error = 0;
if (!num_gh)
return 0;
/* For just one gh, do request synchronously */
if (num_gh == 1) {
ghs->gh_flags &= ~(LM_FLAG_TRY | GL_ASYNC);
return gfs_glock_nq(ghs);
}
/* using sizeof(struct gfs_holder *) instead of sizeof(int), because
* we're also using this memory for nq_m_sync and ints should never be
* larger than pointers.... I hope
*/
e = kmalloc(num_gh * sizeof(struct gfs_holder *), GFP_KERNEL);
if (!e)
return -ENOMEM;
/* Send off asynchronous requests */
for (x = 0; x < num_gh; x++) {
ghs[x].gh_flags |= LM_FLAG_TRY | GL_ASYNC;
error = gfs_glock_nq(&ghs[x]);
if (error) {
borked = TRUE;
serious = error;
num_gh = x;
break;
}
}
/* Wait for all to complete */
for (x = 0; x < num_gh; x++) {
error = e[x] = glock_wait_internal(&ghs[x]);
if (error) {
borked = TRUE;
if (error != GLR_TRYFAILED && error != GLR_CANCELED)
serious = error;
}
}
/* If all good, done! */
if (!borked) {
kfree(e);
return 0;
}
for (x = 0; x < num_gh; x++)
if (!e[x])
gfs_glock_dq(&ghs[x]);
if (serious)
error = serious;
else {
for (x = 0; x < num_gh; x++)
gfs_holder_reinit(ghs[x].gh_state, ghs[x].gh_flags,
&ghs[x]);
error = nq_m_sync(num_gh, ghs, (struct gfs_holder **)e);
}
kfree(e);
return error;
}
/**
* gfs_glock_dq_m - release multiple glocks
* @num_gh: the number of structures
* @ghs: an array of struct gfs_holder structures
*
*/
void
gfs_glock_dq_m(unsigned int num_gh, struct gfs_holder *ghs)
{
unsigned int x;
for (x = 0; x < num_gh; x++)
gfs_glock_dq(&ghs[x]);
}
/**
* gfs_glock_prefetch_num - prefetch a glock based on lock number
* @sdp: the filesystem
* @number: the lock number
* @glops: the glock operations for the type of glock
* @state: the state to acquire the glock in
* @flags: modifier flags for the aquisition
*
* Returns: errno
*/
void
gfs_glock_prefetch_num(struct gfs_sbd *sdp,
uint64_t number, struct gfs_glock_operations *glops,
unsigned int state, int flags)
{
struct gfs_glock *gl;
int error;
if (atomic_read(&sdp->sd_reclaim_count) < gfs_tune_get(sdp, gt_reclaim_limit)) {
error = gfs_glock_get(sdp, number, glops, CREATE, &gl);
if (!error) {
gfs_glock_prefetch(gl, state, flags);
glock_put(gl);
}
}
}
/**
* gfs_lvb_hold - attach a LVB from a glock
* @gl: The glock in question
*
*/
int
gfs_lvb_hold(struct gfs_glock *gl)
{
int error;
lock_on_glock(gl);
if (!atomic_read(&gl->gl_lvb_count)) {
gfs_assert_warn(gl->gl_sbd, !gl->gl_lvb);
error = gfs_lm_hold_lvb(gl->gl_sbd, gl->gl_lock, &gl->gl_lvb);
if (error) {
unlock_on_glock(gl);
return error;
}
glock_hold(gl);
}
atomic_inc(&gl->gl_lvb_count);
unlock_on_glock(gl);
return 0;
}
/**
* gfs_lvb_unhold - detach a LVB from a glock
* @gl: The glock in question
*
*/
void
gfs_lvb_unhold(struct gfs_glock *gl)
{
glock_hold(gl);
lock_on_glock(gl);
if (!gfs_assert_warn(gl->gl_sbd, atomic_read(&gl->gl_lvb_count) > 0) &&
atomic_dec_and_test(&gl->gl_lvb_count)) {
gfs_assert_warn(gl->gl_sbd, gl->gl_lvb);
gfs_lm_unhold_lvb(gl->gl_sbd, gl->gl_lock, gl->gl_lvb);
gl->gl_lvb = NULL;
glock_put(gl);
}
unlock_on_glock(gl);
glock_put(gl);
}
#if 0
/**
* gfs_lvb_sync - sync a LVB
* @gl: The glock in question
*
*/
void
gfs_lvb_sync(struct gfs_glock *gl)
{
if (gfs_assert_warn(gl->gl_sbd, atomic_read(&gl->gl_lvb_count)))
return;
lock_on_glock(gl);
if (!gfs_assert_warn(gl->gl_sbd, gfs_glock_is_held_excl(gl)))
gfs_lm_sync_lvb(gl->gl_sbd, gl->gl_lock, gl->gl_lvb);
unlock_on_glock(gl);
}
#endif
/**
* blocking_cb -
* @sdp:
* @name:
* @state:
*
*/
void
blocking_cb(struct gfs_sbd *sdp, struct lm_lockname *name, unsigned int state)
{
struct gfs_glock *gl;
gl = gfs_glock_find(sdp, name);
if (!gl)
return;
if (gl->gl_ops->go_callback)
gl->gl_ops->go_callback(gl, state);
handle_callback(gl, state);
spin_lock(&gl->gl_spin);
run_queue(gl);
spin_unlock(&gl->gl_spin);
glock_put(gl);
}
/**
* gfs_glock_cb - Callback used by locking module
* @fsdata: Pointer to the superblock
* @type: Type of callback
* @data: Type dependent data pointer
*
* Called by the locking module when it wants to tell us something.
* Either we need to drop a lock, one of our ASYNC requests completed, or
* another client expired (crashed/died) and we need to recover its journal.
* If another node needs a lock held by this node, we queue a request to demote
* our lock to a state compatible with that needed by the other node.
* For example, if the other node needs EXCLUSIVE, we request UNLOCKED.
* SHARED and DEFERRED modes can be shared with other nodes, so we request
* accordingly.
* Once all incompatible holders on this node are done with the lock, the
* queued request will cause run_queue() to call the lock module to demote
* our lock to a compatible state, allowing the other node to grab the lock.
*/
void
gfs_glock_cb(void *fsdata, unsigned int type, void *data)
{
struct gfs_sbd *sdp = fsdata;
atomic_inc(&sdp->sd_lm_callbacks);
switch (type) {
case LM_CB_NEED_E:
blocking_cb(sdp, (struct lm_lockname *)data, LM_ST_UNLOCKED);
return;
case LM_CB_NEED_D:
blocking_cb(sdp, (struct lm_lockname *)data, LM_ST_DEFERRED);
return;
case LM_CB_NEED_S:
blocking_cb(sdp, (struct lm_lockname *)data, LM_ST_SHARED);
return;
case LM_CB_ASYNC: {
struct lm_async_cb *async = (struct lm_async_cb *)data;
struct gfs_glock *gl;
gl = gfs_glock_find(sdp, &async->lc_name);
if (gfs_assert_warn(sdp, gl))
return;
if (!gfs_assert_warn(sdp, gl->gl_req_bh))
gl->gl_req_bh(gl, async->lc_ret);
glock_put(gl);
return;
}
case LM_CB_NEED_RECOVERY:
gfs_add_dirty_j(sdp, *(unsigned int *)data);
if (sdp->sd_recoverd_process)
wake_up_process(sdp->sd_recoverd_process);
return;
case LM_CB_DROPLOCKS:
gfs_gl_hash_clear(sdp, FALSE);
gfs_quota_scan(sdp);
return;
default:
gfs_assert_warn(sdp, FALSE);
return;
}
}
/**
* gfs_try_toss_inode - try to remove a particular GFS inode struct from cache
* sdp: the filesystem
* inum: the inode number
*
* Look for the glock protecting the inode of interest.
* If no process is manipulating or holding the glock, see if the glock
* has a gfs_inode attached.
* If gfs_inode has no references, unhold its iopen glock, release any
* indirect addressing buffers, and destroy the gfs_inode.
*/
void
gfs_try_toss_inode(struct gfs_sbd *sdp, struct gfs_inum *inum)
{
struct gfs_glock *gl;
struct gfs_inode *ip;
int error;
error = gfs_glock_get(sdp,
inum->no_formal_ino, &gfs_inode_glops,
NO_CREATE, &gl);
if (error || !gl)
return;
if (!trylock_on_glock(gl))
goto out;
if (!queue_empty(gl, &gl->gl_holders))
goto out_unlock;
ip = get_gl2ip(gl);
if (!ip)
goto out_unlock;
if (atomic_read(&ip->i_count))
goto out_unlock;
gfs_inode_destroy(ip);
out_unlock:
unlock_on_glock(gl);
out:
glock_put(gl);
}
/**
* gfs_iopen_go_callback - Try to kick the inode/vnode associated with an iopen glock from memory
* @io_gl: the iopen glock
* @state: the state into which the glock should be put
*
*/
void
gfs_iopen_go_callback(struct gfs_glock *io_gl, unsigned int state)
{
struct gfs_glock *i_gl;
struct gfs_inode *ip;
if (state != LM_ST_UNLOCKED)
return;
spin_lock(&io_gl->gl_spin);
i_gl = get_gl2gl(io_gl);
if (i_gl) {
glock_hold(i_gl);
spin_unlock(&io_gl->gl_spin);
} else {
spin_unlock(&io_gl->gl_spin);
return;
}
if (trylock_on_glock(i_gl)) {
if (queue_empty(i_gl, &i_gl->gl_holders)) {
ip = get_gl2ip(i_gl);
if (ip) {
gfs_try_toss_vnode(ip);
unlock_on_glock(i_gl);
gfs_glock_schedule_for_reclaim(i_gl);
goto out;
}
}
unlock_on_glock(i_gl);
}
out:
glock_put(i_gl);
}
/**
* demote_ok - Check to see if it's ok to unlock a glock (to remove it
* from glock cache)
* @gl: the glock
*
* Called when trying to reclaim glocks, once it's determined that the glock
* has no holders on this node.
*
* Returns: TRUE if it's ok
*
* It's not okay if:
* -- glock is STICKY
* -- PREFETCHed glock has not been given enough chance to be used
* -- glock-type-specific test says "no"
*/
static int
demote_ok(struct gfs_glock *gl)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_glock_operations *glops = gl->gl_ops;
int demote = TRUE;
if (test_bit(GLF_STICKY, &gl->gl_flags))
demote = FALSE;
else if (test_bit(GLF_PREFETCH, &gl->gl_flags))
demote = time_after_eq(jiffies,
gl->gl_stamp +
gfs_tune_get(sdp, gt_prefetch_secs) * HZ);
else if (glops->go_demote_ok)
demote = glops->go_demote_ok(gl);
return demote;
}
/**
* gfs_glock_schedule_for_reclaim - Add a glock to the reclaim list
* @gl: the glock
*
*/
void
gfs_glock_schedule_for_reclaim(struct gfs_glock *gl)
{
struct gfs_sbd *sdp = gl->gl_sbd;
spin_lock(&sdp->sd_reclaim_lock);
if (list_empty(&gl->gl_reclaim)) {
glock_hold(gl);
list_add(&gl->gl_reclaim, &sdp->sd_reclaim_list);
atomic_inc(&sdp->sd_reclaim_count);
}
spin_unlock(&sdp->sd_reclaim_lock);
wake_up(&sdp->sd_reclaim_wchan);
}
/**
* gfs_reclaim_glock - process the next glock on the filesystem's reclaim list
* @sdp: the filesystem
*
* Called from gfs_glockd() glock reclaim daemon, or when promoting a
* (different) glock and we notice that there are a lot of glocks in the
* reclaim list.
*
* Remove glock from filesystem's reclaim list, update reclaim statistics.
* If no holders (might have gotten added since glock was placed on reclaim
* list):
* -- Destroy any now-unused inode protected by glock
* (and release hold on iopen glock).
* -- Ask for demote to UNLOCKED to enable removal of glock from glock cache.
*
* If no further interest in glock struct, remove it from glock cache, and
* free it from memory. (During normal operation, this is the only place
* that this is done).
*
* Glock-type-specific considerations for permission to demote are handled
* in demote_ok(). This includes how long to retain a glock in cache after it
* is no longer held by any process.
*/
void
gfs_reclaim_glock(struct gfs_sbd *sdp)
{
struct gfs_glock *gl;
struct gfs_gl_hash_bucket *bucket;
spin_lock(&sdp->sd_reclaim_lock);
/* Nothing to reclaim? Done! */
if (list_empty(&sdp->sd_reclaim_list)) {
spin_unlock(&sdp->sd_reclaim_lock);
return;
}
/* Remove next victim from reclaim list */
gl = list_entry(sdp->sd_reclaim_list.next,
struct gfs_glock, gl_reclaim);
list_del_init(&gl->gl_reclaim);
spin_unlock(&sdp->sd_reclaim_lock);
atomic_dec(&sdp->sd_reclaim_count);
atomic_inc(&sdp->sd_reclaimed);
if (trylock_on_glock(gl)) {
if (queue_empty(gl, &gl->gl_holders)) {
/* Inode glock-type-specific; free unused gfs inode,
and release hold on iopen glock */
if (gl->gl_ops == &gfs_inode_glops) {
struct gfs_inode *ip = get_gl2ip(gl);
if (ip && !atomic_read(&ip->i_count))
gfs_inode_destroy(ip);
}
/* Generic (including inodes); try to unlock glock */
if (gl->gl_state != LM_ST_UNLOCKED &&
demote_ok(gl))
handle_callback(gl, LM_ST_UNLOCKED);
}
unlock_on_glock(gl);
}
bucket = gl->gl_bucket;
/* If glock struct's only remaining reference is from being put on
the reclaim list, remove glock from hash table (sd_gl_hash),
and free the glock's memory */
write_lock(&bucket->hb_lock);
if (atomic_read(&gl->gl_count) == 1) {
list_del_init(&gl->gl_list);
write_unlock(&bucket->hb_lock);
glock_free(gl);
} else {
write_unlock(&bucket->hb_lock);
glock_put(gl); /* see gfs_glock_schedule_for_reclaim() */
}
}
/**
* examine_bucket - Call a function for glock in a hash bucket
* @examiner: the function
* @sdp: the filesystem
* @bucket: the bucket
*
* Returns: TRUE if the bucket has entries
*/
static int
examine_bucket(glock_examiner examiner,
struct gfs_sbd *sdp, struct gfs_gl_hash_bucket *bucket,
unsigned int *purge_nr)
{
struct glock_plug plug;
struct list_head *tmp;
struct gfs_glock *gl;
int entries;
/* Add "plug" to end of bucket list, work back up list from there */
memset(&plug.gl_flags, 0, sizeof(unsigned long));
set_bit(GLF_PLUG, &plug.gl_flags);
write_lock(&bucket->hb_lock);
list_add(&plug.gl_list, &bucket->hb_list);
write_unlock(&bucket->hb_lock);
/* Look at each bucket entry */
for (;;) {
write_lock(&bucket->hb_lock);
/* Work back up list from plug */
for (;;) {
tmp = plug.gl_list.next;
/* Top of list; we're done */
if (tmp == &bucket->hb_list) {
list_del(&plug.gl_list);
entries = !list_empty(&bucket->hb_list);
write_unlock(&bucket->hb_lock);
return entries;
}
gl = list_entry(tmp, struct gfs_glock, gl_list);
/* Move plug up list */
list_move(&plug.gl_list, &gl->gl_list);
if (test_bit(GLF_PLUG, &gl->gl_flags))
continue;
/* glock_hold; examiner must glock_put() */
atomic_inc(&gl->gl_count);
break;
}
write_unlock(&bucket->hb_lock);
examiner(gl, purge_nr);
}
}
static void
try_purge_iopen(struct gfs_glock *gl, unsigned int *p_count)
{
struct gfs_glock *i_gl;
if (*p_count == 0)
return;
/* find the associated inode glock */
i_gl = get_gl2gl(gl);
if (!i_gl)
return;
/*
* If the associated inode glock has been in unlocked
* state, try to purge it.
*/
if (trylock_on_glock(i_gl)) {
if (i_gl->gl_state == LM_ST_UNLOCKED) {
*p_count = *p_count - 1;
unlock_on_glock(i_gl);
atomic_inc(&gl->gl_count);
gfs_iopen_go_callback(gl, LM_ST_UNLOCKED);
handle_callback(gl, LM_ST_UNLOCKED);
spin_lock(&gl->gl_spin);
run_queue(gl);
spin_unlock(&gl->gl_spin);
glock_put(gl);
} else
unlock_on_glock(i_gl);
}
return;
}
/**
* scan_glock - look at a glock and see if we can reclaim it
* @gl: the glock to look at
*
* Called via examine_bucket() when trying to release glocks from glock cache,
* during normal operation (i.e. not unmount time).
*
* Place glock on filesystem's reclaim list if, on this node:
* -- No process is manipulating glock struct, and
* -- No current holders, and either:
* -- GFS incore inode, protected by glock, is no longer in use, or
* -- Glock-type-specific demote_ok glops gives permission
*/
static void
scan_glock(struct gfs_glock *gl, unsigned int *p_count)
{
if (trylock_on_glock(gl)) {
if (queue_empty(gl, &gl->gl_holders)) {
/* Inode glock-type-specific; reclaim glock if gfs inode
no longer in use. */
if (gl->gl_ops == &gfs_inode_glops) {
struct gfs_inode *ip = get_gl2ip(gl);
if (ip && !atomic_read(&ip->i_count)) {
unlock_on_glock(gl);
gfs_glock_schedule_for_reclaim(gl);
goto out;
}
}
/* Generic (including inodes not scheduled above) */
if (gl->gl_state != LM_ST_UNLOCKED &&
demote_ok(gl)) {
unlock_on_glock(gl);
gfs_glock_schedule_for_reclaim(gl);
goto out;
}
}
/* iopen always has holder(s) */
if (gl->gl_name.ln_type == LM_TYPE_IOPEN) {
unlock_on_glock(gl);
try_purge_iopen(gl, p_count);
goto out;
}
unlock_on_glock(gl);
}
out:
glock_put(gl); /* see examine_bucket() */
}
/**
* gfs_scand_internal - Look for glocks and inodes to toss from memory
* @sdp: the filesystem
*
* Invokes scan_glock() for each glock in each cache bucket.
*
* Steps of reclaiming a glock:
* -- scan_glock() places eligible glocks on filesystem's reclaim list.
* -- gfs_reclaim_glock() processes list members, attaches demotion requests
* to wait queues of glocks still locked at inter-node scope.
* -- Demote to UNLOCKED state (if not already unlocked).
* -- gfs_reclaim_lock() cleans up glock structure.
*/
void
gfs_scand_internal(struct gfs_sbd *sdp)
{
unsigned int x, purge_nr;
if (!sdp->sd_tune.gt_glock_purge)
purge_nr = 0;
else
purge_nr = atomic_read(&sdp->sd_glock_count) *
sdp->sd_tune.gt_glock_purge / 100;
for (x = 0; x < GFS_GL_HASH_SIZE; x++) {
examine_bucket(scan_glock, sdp, &sdp->sd_gl_hash[x], &purge_nr);
cond_resched();
}
}
/**
* clear_glock - look at a glock and see if we can free it from glock cache
* @gl: the glock to look at
*
* Called via examine_bucket() when unmounting the filesystem, or
* when inter-node lock manager requests DROPLOCKS because it is running
* out of capacity.
*
* Similar to gfs_reclaim_glock(), except does *not*:
* -- Consult demote_ok() for permission
* -- Increment sdp->sd_reclaimed statistic
*
*/
static void
clear_glock(struct gfs_glock *gl, unsigned int *unused)
{
struct gfs_sbd *sdp = gl->gl_sbd;
struct gfs_gl_hash_bucket *bucket = gl->gl_bucket;
spin_lock(&sdp->sd_reclaim_lock);
if (!list_empty(&gl->gl_reclaim)) {
list_del_init(&gl->gl_reclaim);
atomic_dec(&sdp->sd_reclaim_count);
glock_put(gl); /* see gfs_glock_schedule_for_reclaim() */
}
spin_unlock(&sdp->sd_reclaim_lock);
if (trylock_on_glock(gl)) {
if (queue_empty(gl, &gl->gl_holders)) {
/* Inode glock-type-specific; free unused gfs inode,
and release hold on iopen glock */
if (gl->gl_ops == &gfs_inode_glops) {
struct gfs_inode *ip = get_gl2ip(gl);
if (ip && !atomic_read(&ip->i_count))
gfs_inode_destroy(ip);
}
/* Generic (including inodes); unlock glock */
if (gl->gl_state != LM_ST_UNLOCKED)
handle_callback(gl, LM_ST_UNLOCKED);
}
unlock_on_glock(gl);
}
/* If glock struct's only remaining reference is from examine_bucket(),
remove glock from hash table (sd_gl_hash), and free glock's memory */
write_lock(&bucket->hb_lock);
if (atomic_read(&gl->gl_count) == 1) {
list_del_init(&gl->gl_list);
write_unlock(&bucket->hb_lock);
glock_free(gl);
} else {
write_unlock(&bucket->hb_lock);
glock_put(gl); /* see examine_bucket() */
}
}
/**
* gfs_gl_hash_clear - Empty out the glock hash table
* @sdp: the filesystem
* @wait: wait until it's all gone
*
* Called when unmounting the filesystem, or when inter-node lock manager
* requests DROPLOCKS because it is running out of capacity.
*/
void
gfs_gl_hash_clear(struct gfs_sbd *sdp, int wait)
{
unsigned long t;
unsigned int x;
int cont;
t = jiffies;
for (;;) {
cont = FALSE;
for (x = 0; x < GFS_GL_HASH_SIZE; x++)
if (examine_bucket(clear_glock, sdp, &sdp->sd_gl_hash[x], 0))
cont = TRUE;
if (!wait || !cont)
break;
if (time_after_eq(jiffies, t + gfs_tune_get(sdp, gt_stall_secs) * HZ)) {
printk("GFS: fsid=%s: Unmount seems to be stalled. Dumping lock state...\n",
sdp->sd_fsname);
gfs_dump_lockstate(sdp, NULL);
t = jiffies;
}
invalidate_inodes(sdp->sd_vfs);
schedule_timeout_interruptible(HZ / 10);
}
}
/*
* Diagnostic routines to help debug distributed deadlock
*/
/**
* dump_holder - print information about a glock holder
* @str: a string naming the type of holder
* @gh: the glock holder
* @buf: the buffer
* @size: the size of the buffer
* @count: where we are in the buffer
*
* Returns: 0 on success, -ENOBUFS when we run out of space
*/
static int
dump_holder(char *str, struct gfs_holder *gh,
char *buf, unsigned int size, unsigned int *count)
{
unsigned int x;
int error = -ENOBUFS;
gfs_printf(" %s\n", str);
gfs_printf(" owner = %ld\n",
(gh->gh_owner) ? (long)gh->gh_owner->pid : -1);
gfs_printf(" gh_state = %u\n", gh->gh_state);
gfs_printf(" gh_flags =");
for (x = 0; x < 32; x++)
if (gh->gh_flags & (1 << x))
gfs_printf(" %u", x);
gfs_printf(" \n");
gfs_printf(" error = %d\n", gh->gh_error);
gfs_printf(" gh_iflags =");
for (x = 0; x < 32; x++)
if (test_bit(x, &gh->gh_iflags))
gfs_printf(" %u", x);
gfs_printf(" \n");
error = 0;
out:
return error;
}
/**
* dump_inode - print information about an inode
* @ip: the inode
* @buf: the buffer
* @size: the size of the buffer
* @count: where we are in the buffer
*
* Returns: 0 on success, -ENOBUFS when we run out of space
*/
static int
dump_inode(struct gfs_inode *ip,
char *buf, unsigned int size, unsigned int *count)
{
unsigned int x;
int error = -ENOBUFS;
gfs_printf(" Inode:\n");
gfs_printf(" num = %" PRIu64 "/%" PRIu64 "\n",
ip->i_num.no_formal_ino, ip->i_num.no_addr);
gfs_printf(" type = %u\n", ip->i_di.di_type);
gfs_printf(" i_count = %d\n", atomic_read(&ip->i_count));
gfs_printf(" i_flags =");
for (x = 0; x < 32; x++)
if (test_bit(x, &ip->i_flags))
gfs_printf(" %u", x);
gfs_printf(" \n");
gfs_printf(" vnode = %s\n", (ip->i_vnode) ? "yes" : "no");
error = 0;
out:
return error;
}
/**
* dump_glock - print information about a glock
* @gl: the glock
* @buf: the buffer
* @size: the size of the buffer
* @count: where we are in the buffer
*
* Returns: 0 on success, -ENOBUFS when we run out of space
*/
static int
dump_glock(struct gfs_glock *gl,
char *buf, unsigned int size, unsigned int *count)
{
struct list_head *head, *tmp;
struct gfs_holder *gh;
unsigned int x;
int error = -ENOBUFS;
spin_lock(&gl->gl_spin);
gfs_printf("Glock (%u, %" PRIu64 ")\n",
gl->gl_name.ln_type,
gl->gl_name.ln_number);
gfs_printf(" gl_flags =");
for (x = 0; x < 32; x++)
if (test_bit(x, &gl->gl_flags))
gfs_printf(" %u", x);
gfs_printf(" \n");
gfs_printf(" gl_count = %d\n", atomic_read(&gl->gl_count));
gfs_printf(" gl_state = %u\n", gl->gl_state);
gfs_printf(" req_gh = %s\n", (gl->gl_req_gh) ? "yes" : "no");
gfs_printf(" req_bh = %s\n", (gl->gl_req_bh) ? "yes" : "no");
gfs_printf(" lvb_count = %d\n", atomic_read(&gl->gl_lvb_count));
gfs_printf(" object = %s\n", (gl->gl_object) ? "yes" : "no");
gfs_printf(" new_le = %s\n", (gl->gl_new_le.le_trans) ? "yes" : "no");
gfs_printf(" incore_le = %s\n", (gl->gl_incore_le.le_trans) ? "yes" : "no");
gfs_printf(" reclaim = %s\n",
(list_empty(&gl->gl_reclaim)) ? "no" : "yes");
if (gl->gl_aspace)
gfs_printf(" aspace = %lu\n",
gl->gl_aspace->i_mapping->nrpages);
else
gfs_printf(" aspace = no\n");
gfs_printf(" ail_bufs = %s\n",
(list_empty(&gl->gl_ail_bufs)) ? "no" : "yes");
if (gl->gl_req_gh) {
error = dump_holder("Request", gl->gl_req_gh, buf, size, count);
if (error)
goto out;
}
for (head = &gl->gl_holders, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gh = list_entry(tmp, struct gfs_holder, gh_list);
error = dump_holder("Holder", gh, buf, size, count);
if (error)
goto out;
}
for (head = &gl->gl_waiters1, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gh = list_entry(tmp, struct gfs_holder, gh_list);
error = dump_holder("Waiter1", gh, buf, size, count);
if (error)
goto out;
}
for (head = &gl->gl_waiters2, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gh = list_entry(tmp, struct gfs_holder, gh_list);
error = dump_holder("Waiter2", gh, buf, size, count);
if (error)
goto out;
}
for (head = &gl->gl_waiters3, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gh = list_entry(tmp, struct gfs_holder, gh_list);
error = dump_holder("Waiter3", gh, buf, size, count);
if (error)
goto out;
}
if (gl->gl_ops == &gfs_inode_glops && get_gl2ip(gl)) {
if (!test_bit(GLF_LOCK, &gl->gl_flags) &&
list_empty(&gl->gl_holders)) {
error = dump_inode(get_gl2ip(gl), buf, size, count);
if (error)
goto out;
} else {
error = -ENOBUFS;
gfs_printf(" Inode: busy\n");
}
}
error = 0;
out:
spin_unlock(&gl->gl_spin);
return error;
}
/**
* gfs_dump_lockstate - print out the current lockstate
* @sdp: the filesystem
* @ub: the buffer to copy the information into
*
* If @ub is NULL, dump the lockstate to the console.
*
*/
int
gfs_dump_lockstate(struct gfs_sbd *sdp, struct gfs_user_buffer *ub)
{
struct gfs_gl_hash_bucket *bucket;
struct list_head *tmp, *head;
struct gfs_glock *gl;
char *buf = NULL;
unsigned int size = gfs_tune_get(sdp, gt_lockdump_size);
unsigned int x, count;
int error = 0;
if (ub) {
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
}
for (x = 0; x < GFS_GL_HASH_SIZE; x++) {
bucket = &sdp->sd_gl_hash[x];
count = 0;
read_lock(&bucket->hb_lock);
for (head = &bucket->hb_list, tmp = head->next;
tmp != head;
tmp = tmp->next) {
gl = list_entry(tmp, struct gfs_glock, gl_list);
if (test_bit(GLF_PLUG, &gl->gl_flags))
continue;
error = dump_glock(gl, buf, size, &count);
if (error)
break;
}
read_unlock(&bucket->hb_lock);
if (error)
break;
if (ub) {
if (ub->ub_count + count > ub->ub_size) {
error = -ENOMEM;
break;
}
if (copy_to_user(ub->ub_data + ub->ub_count, buf, count)) {
error = -EFAULT;
break;
}
ub->ub_count += count;
}
}
if (ub)
kfree(buf);
return error;
}

File Metadata

Mime Type
text/x-c
Expires
Wed, Feb 26, 3:33 PM (9 h, 17 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1465484
Default Alt Text
glock.c (71 KB)

Event Timeline