Page MenuHomeClusterLabs Projects

coroipcc.c
No OneTemporary

coroipcc.c

/*
* vi: set autoindent tabstop=4 shiftwidth=4 :
*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/un.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <assert.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <corosync/corotypes.h>
#include <corosync/ipc_gen.h>
#include <corosync/coroipcc.h>
enum SA_HANDLE_STATE {
SA_HANDLE_STATE_EMPTY,
SA_HANDLE_STATE_PENDINGREMOVAL,
SA_HANDLE_STATE_ACTIVE
};
struct saHandle {
int state;
void *instance;
int refCount;
uint32_t check;
};
struct ipc_segment {
int fd;
int shmid;
int semid;
int flow_control_state;
struct shared_memory *shared_memory;
uid_t euid;
};
#if defined(COROSYNC_LINUX)
/* SUN_LEN is broken for abstract namespace
*/
#define AIS_SUN_LEN(a) sizeof(*(a))
#else
#define AIS_SUN_LEN(a) SUN_LEN(a)
#endif
#ifdef SO_NOSIGPIPE
void socket_nosigpipe(int s)
{
int on = 1;
setsockopt(s, SOL_SOCKET, SO_NOSIGPIPE, (void *)&on, sizeof(on));
}
#endif
#ifndef MSG_NOSIGNAL
#define MSG_NOSIGNAL 0
#endif
static int
coroipcc_send (
int s,
void *msg,
size_t len)
{
int result;
struct msghdr msg_send;
struct iovec iov_send;
char *rbuf = (char *)msg;
int processed = 0;
msg_send.msg_iov = &iov_send;
msg_send.msg_iovlen = 1;
msg_send.msg_name = 0;
msg_send.msg_namelen = 0;
msg_send.msg_control = 0;
msg_send.msg_controllen = 0;
msg_send.msg_flags = 0;
retry_send:
iov_send.iov_base = &rbuf[processed];
iov_send.iov_len = len - processed;
result = sendmsg (s, &msg_send, MSG_NOSIGNAL);
/*
* return immediately on any kind of syscall error that maps to
* CS_ERR if no part of message has been sent
*/
if (result == -1 && processed == 0) {
if (errno == EINTR) {
goto error_exit;
}
if (errno == EAGAIN) {
goto error_exit;
}
if (errno == EFAULT) {
goto error_exit;
}
}
/*
* retry read operations that are already started except
* for fault in that case, return ERR_LIBRARY
*/
if (result == -1 && processed > 0) {
if (errno == EINTR) {
goto retry_send;
}
if (errno == EAGAIN) {
goto retry_send;
}
if (errno == EFAULT) {
goto error_exit;
}
}
/*
* return ERR_LIBRARY on any other syscall error
*/
if (result == -1) {
goto error_exit;
}
processed += result;
if (processed != len) {
goto retry_send;
}
return (0);
error_exit:
return (-1);
}
static int
coroipcc_recv (
int s,
void *msg,
size_t len)
{
int error = 0;
int result;
struct msghdr msg_recv;
struct iovec iov_recv;
char *rbuf = (char *)msg;
int processed = 0;
msg_recv.msg_iov = &iov_recv;
msg_recv.msg_iovlen = 1;
msg_recv.msg_name = 0;
msg_recv.msg_namelen = 0;
msg_recv.msg_control = 0;
msg_recv.msg_controllen = 0;
msg_recv.msg_flags = 0;
retry_recv:
iov_recv.iov_base = (void *)&rbuf[processed];
iov_recv.iov_len = len - processed;
result = recvmsg (s, &msg_recv, MSG_NOSIGNAL|MSG_WAITALL);
if (result == -1 && errno == EINTR) {
goto retry_recv;
}
if (result == -1 && errno == EAGAIN) {
goto retry_recv;
}
#if defined(COROSYNC_SOLARIS) || defined(COROSYNC_BSD) || defined(COROSYNC_DARWIN)
/* On many OS poll never return POLLHUP or POLLERR.
* EOF is detected when recvmsg return 0.
*/
if (result == 0) {
error = -1;
goto error_exit;
}
#endif
if (result == -1 || result == 0) {
error = -1;
goto error_exit;
}
processed += result;
if (processed != len) {
goto retry_recv;
}
assert (processed == len);
error_exit:
return (0);
}
static int
priv_change_send (struct ipc_segment *ipc_segment)
{
char buf_req;
mar_req_priv_change req_priv_change;
unsigned int res;
req_priv_change.euid = geteuid();
/*
* Don't resend request unless euid has changed
*/
if (ipc_segment->euid == req_priv_change.euid) {
return (0);
}
req_priv_change.egid = getegid();
buf_req = MESSAGE_REQ_CHANGE_EUID;
res = coroipcc_send (ipc_segment->fd, &buf_req, 1);
if (res == -1) {
return (-1);
}
res = coroipcc_send (ipc_segment->fd, &req_priv_change,
sizeof (req_priv_change));
if (res == -1) {
return (-1);
}
ipc_segment->euid = req_priv_change.euid;
return (0);
}
#if defined(_SEM_SEMUN_UNDEFINED)
union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
};
#endif
cs_error_t
coroipcc_service_connect (
const char *socket_name,
enum service_types service,
void **shmseg)
{
int request_fd;
struct sockaddr_un address;
cs_error_t error;
struct ipc_segment *ipc_segment;
key_t shmkey = 0;
key_t semkey = 0;
int res;
mar_req_setup_t req_setup;
mar_res_setup_t res_setup;
union semun semun;
res_setup.error = CS_ERR_LIBRARY;
request_fd = socket (PF_UNIX, SOCK_STREAM, 0);
if (request_fd == -1) {
return (-1);
}
memset (&address, 0, sizeof (struct sockaddr_un));
#if defined(COROSYNC_BSD) || defined(COROSYNC_DARWIN)
address.sun_len = sizeof(struct sockaddr_un);
#endif
address.sun_family = PF_UNIX;
#if defined(COROSYNC_LINUX)
sprintf (address.sun_path + 1, "%s", socket_name);
#else
sprintf (address.sun_path, "%s/%s", SOCKETDIR, socket_name);
#endif
res = connect (request_fd, (struct sockaddr *)&address,
AIS_SUN_LEN(&address));
if (res == -1) {
close (request_fd);
return (CS_ERR_TRY_AGAIN);
}
ipc_segment = malloc (sizeof (struct ipc_segment));
if (ipc_segment == NULL) {
close (request_fd);
return (-1);
}
bzero (ipc_segment, sizeof (struct ipc_segment));
/*
* Allocate a shared memory segment
*/
while (1) {
shmkey = random();
if ((ipc_segment->shmid
= shmget (shmkey, sizeof (struct shared_memory),
IPC_CREAT|IPC_EXCL|0600)) != -1) {
break;
}
if (errno != EEXIST) {
goto error_exit;
}
}
/*
* Allocate a semaphore segment
*/
while (1) {
semkey = random();
ipc_segment->euid = geteuid ();
if ((ipc_segment->semid
= semget (semkey, 3, IPC_CREAT|IPC_EXCL|0600)) != -1) {
break;
}
if (errno != EEXIST) {
goto error_exit;
}
}
/*
* Attach to shared memory segment
*/
ipc_segment->shared_memory = shmat (ipc_segment->shmid, NULL, 0);
if (ipc_segment->shared_memory == (void *)-1) {
goto error_exit;
}
semun.val = 0;
res = semctl (ipc_segment->semid, 0, SETVAL, semun);
if (res != 0) {
goto error_exit;
}
res = semctl (ipc_segment->semid, 1, SETVAL, semun);
if (res != 0) {
goto error_exit;
}
req_setup.shmkey = shmkey;
req_setup.semkey = semkey;
req_setup.service = service;
error = coroipcc_send (request_fd, &req_setup, sizeof (mar_req_setup_t));
if (error != 0) {
goto error_exit;
}
error = coroipcc_recv (request_fd, &res_setup, sizeof (mar_res_setup_t));
if (error != 0) {
goto error_exit;
}
ipc_segment->fd = request_fd;
ipc_segment->flow_control_state = 0;
*shmseg = ipc_segment;
/*
* Something go wrong with server
* Cleanup all
*/
if (res_setup.error == CS_ERR_TRY_AGAIN) {
goto error_exit;
}
return (res_setup.error);
error_exit:
close (request_fd);
if (ipc_segment->shmid > 0)
shmctl (ipc_segment->shmid, IPC_RMID, NULL);
if (ipc_segment->semid > 0)
semctl (ipc_segment->semid, 0, IPC_RMID);
return (res_setup.error);
}
cs_error_t
coroipcc_service_disconnect (
void *ipc_context)
{
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_context;
shutdown (ipc_segment->fd, SHUT_RDWR);
close (ipc_segment->fd);
shmdt (ipc_segment->shared_memory);
free (ipc_segment);
return (CS_OK);
}
int
coroipcc_dispatch_flow_control_get (
void *ipc_context)
{
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_context;
return (ipc_segment->flow_control_state);
}
int
coroipcc_fd_get (void *ipc_ctx)
{
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_ctx;
return (ipc_segment->fd);
}
static void memcpy_swrap (
void *dest, void *src, int len, unsigned int *read)
{
char *dest_chr = (char *)dest;
char *src_chr = (char *)src;
unsigned int first_read;
unsigned int second_read;
first_read = len;
second_read = 0;
if (len + *read >= DISPATCH_SIZE) {
first_read = DISPATCH_SIZE - *read;
second_read = (len + *read) % DISPATCH_SIZE;
}
memcpy (dest_chr, &src_chr[*read], first_read);
if (second_read) {
memcpy (&dest_chr[first_read], src_chr,
second_read);
}
*read = (*read + len) % (DISPATCH_SIZE);
}
int original_flow = -1;
int
coroipcc_dispatch_recv (void *ipc_ctx, void *data, int timeout)
{
struct pollfd ufds;
struct sembuf sop;
int poll_events;
mar_res_header_t *header;
char buf;
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_ctx;
int res;
unsigned int my_read;
char buf_two = 1;
ufds.fd = ipc_segment->fd;
ufds.events = POLLIN;
ufds.revents = 0;
retry_poll:
poll_events = poll (&ufds, 1, timeout);
if (poll_events == -1 && errno == EINTR) {
goto retry_poll;
} else
if (poll_events == -1) {
return (-1);
} else
if (poll_events == 0) {
return (0);
}
if (poll_events == 1 && (ufds.revents & (POLLERR|POLLHUP))) {
return (-1);
}
retry_recv:
res = recv (ipc_segment->fd, &buf, 1, 0);
if (res == -1 && errno == EINTR) {
goto retry_recv;
} else
if (res == -1) {
return (-1);
}
if (res == 0) {
return (-1);
}
ipc_segment->flow_control_state = 0;
if (buf == 1 || buf == 2) {
ipc_segment->flow_control_state = 1;
}
/*
* Notify executive to flush any pending dispatch messages
*/
if (ipc_segment->flow_control_state) {
buf_two = MESSAGE_REQ_OUTQ_FLUSH;
res = coroipcc_send (ipc_segment->fd, &buf_two, 1);
assert (res == 0); //TODO
}
/*
* This is just a notification of flow control starting at the addition
* of a new pending message, not a message to dispatch
*/
if (buf == 2) {
return (0);
}
if (buf == 3) {
return (0);
}
sop.sem_num = 2;
sop.sem_op = -1;
sop.sem_flg = 0;
retry_semop:
res = semop (ipc_segment->semid, &sop, 1);
if (res == -1 && errno == EINTR) {
goto retry_semop;
} else
if (res == -1 && errno == EACCES) {
priv_change_send (ipc_segment);
goto retry_semop;
} else
if (res == -1) {
return (-1);
}
if (ipc_segment->shared_memory->read + sizeof (mar_res_header_t) >= DISPATCH_SIZE) {
my_read = ipc_segment->shared_memory->read;
memcpy_swrap (data,
ipc_segment->shared_memory->dispatch_buffer,
sizeof (mar_res_header_t),
&ipc_segment->shared_memory->read);
header = (mar_res_header_t *)data;
memcpy_swrap (
(void *)((char *)data + sizeof (mar_res_header_t)),
ipc_segment->shared_memory->dispatch_buffer,
header->size - sizeof (mar_res_header_t),
&ipc_segment->shared_memory->read);
} else {
header = (mar_res_header_t *)&ipc_segment->shared_memory->dispatch_buffer[ipc_segment->shared_memory->read];
memcpy_swrap (
data,
ipc_segment->shared_memory->dispatch_buffer,
header->size,
&ipc_segment->shared_memory->read);
}
return (1);
}
static cs_error_t
coroipcc_msg_send (
void *ipc_context,
struct iovec *iov,
int iov_len)
{
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_context;
struct sembuf sop;
int i;
int res;
int req_buffer_idx = 0;
for (i = 0; i < iov_len; i++) {
memcpy (&ipc_segment->shared_memory->req_buffer[req_buffer_idx],
iov[i].iov_base,
iov[i].iov_len);
req_buffer_idx += iov[i].iov_len;
}
/*
* Signal semaphore #0 indicting a new message from client
* to server request queue
*/
sop.sem_num = 0;
sop.sem_op = 1;
sop.sem_flg = 0;
retry_semop:
res = semop (ipc_segment->semid, &sop, 1);
if (res == -1 && errno == EINTR) {
goto retry_semop;
} else
if (res == -1 && errno == EACCES) {
priv_change_send (ipc_segment);
goto retry_semop;
} else
if (res == -1) {
return (CS_ERR_LIBRARY);
}
return (CS_OK);
}
static cs_error_t
coroipcc_reply_receive (
void *ipc_context,
void *res_msg, int res_len)
{
struct sembuf sop;
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_context;
int res;
/*
* Wait for semaphore #1 indicating a new message from server
* to client in the response queue
*/
sop.sem_num = 1;
sop.sem_op = -1;
sop.sem_flg = 0;
retry_semop:
res = semop (ipc_segment->semid, &sop, 1);
if (res == -1 && errno == EINTR) {
goto retry_semop;
} else
if (res == -1 && errno == EACCES) {
priv_change_send (ipc_segment);
goto retry_semop;
} else
if (res == -1) {
return (CS_ERR_LIBRARY);
}
memcpy (res_msg, ipc_segment->shared_memory->res_buffer, res_len);
return (CS_OK);
}
static cs_error_t
coroipcc_reply_receive_in_buf (
void *ipc_context,
void **res_msg)
{
struct sembuf sop;
struct ipc_segment *ipc_segment = (struct ipc_segment *)ipc_context;
int res;
/*
* Wait for semaphore #1 indicating a new message from server
* to client in the response queue
*/
sop.sem_num = 1;
sop.sem_op = -1;
sop.sem_flg = 0;
retry_semop:
res = semop (ipc_segment->semid, &sop, 1);
if (res == -1 && errno == EINTR) {
goto retry_semop;
} else
if (res == -1 && errno == EACCES) {
priv_change_send (ipc_segment);
goto retry_semop;
} else
if (res == -1) {
return (CS_ERR_LIBRARY);
}
*res_msg = (char *)ipc_segment->shared_memory->res_buffer;
return (CS_OK);
}
cs_error_t
coroipcc_msg_send_reply_receive (
void *ipc_context,
struct iovec *iov,
int iov_len,
void *res_msg,
int res_len)
{
cs_error_t res;
res = coroipcc_msg_send (ipc_context, iov, iov_len);
if (res != CS_OK) {
return (res);
}
res = coroipcc_reply_receive (ipc_context, res_msg, res_len);
if (res != CS_OK) {
return (res);
}
return (CS_OK);
}
cs_error_t
coroipcc_msg_send_reply_receive_in_buf (
void *ipc_context,
struct iovec *iov,
int iov_len,
void **res_msg)
{
unsigned int res;
res = coroipcc_msg_send (ipc_context, iov, iov_len);
if (res != CS_OK) {
return (res);
}
res = coroipcc_reply_receive_in_buf (ipc_context, res_msg);
if (res != CS_OK) {
return (res);
}
return (CS_OK);
}
cs_error_t
saHandleCreate (
struct saHandleDatabase *handleDatabase,
int instanceSize,
uint64_t *handleOut)
{
uint32_t handle;
uint32_t check;
void *newHandles = NULL;
int found = 0;
void *instance;
int i;
pthread_mutex_lock (&handleDatabase->mutex);
for (handle = 0; handle < handleDatabase->handleCount; handle++) {
if (handleDatabase->handles[handle].state == SA_HANDLE_STATE_EMPTY) {
found = 1;
break;
}
}
if (found == 0) {
handleDatabase->handleCount += 1;
newHandles = (struct saHandle *)realloc (handleDatabase->handles,
sizeof (struct saHandle) * handleDatabase->handleCount);
if (newHandles == NULL) {
pthread_mutex_unlock (&handleDatabase->mutex);
return (CS_ERR_NO_MEMORY);
}
handleDatabase->handles = newHandles;
}
instance = malloc (instanceSize);
if (instance == 0) {
free (newHandles);
pthread_mutex_unlock (&handleDatabase->mutex);
return (CS_ERR_NO_MEMORY);
}
/*
* This code makes sure the random number isn't zero
* We use 0 to specify an invalid handle out of the 1^64 address space
* If we get 0 200 times in a row, the RNG may be broken
*/
for (i = 0; i < 200; i++) {
check = random();
if (check != 0) {
break;
}
}
memset (instance, 0, instanceSize);
handleDatabase->handles[handle].state = SA_HANDLE_STATE_ACTIVE;
handleDatabase->handles[handle].instance = instance;
handleDatabase->handles[handle].refCount = 1;
handleDatabase->handles[handle].check = check;
*handleOut = (uint64_t)((uint64_t)check << 32 | handle);
pthread_mutex_unlock (&handleDatabase->mutex);
return (CS_OK);
}
cs_error_t
saHandleDestroy (
struct saHandleDatabase *handleDatabase,
uint64_t inHandle)
{
cs_error_t error = CS_OK;
uint32_t check = inHandle >> 32;
uint32_t handle = inHandle & 0xffffffff;
pthread_mutex_lock (&handleDatabase->mutex);
if (check != handleDatabase->handles[handle].check) {
pthread_mutex_unlock (&handleDatabase->mutex);
error = CS_ERR_BAD_HANDLE;
return (error);
}
handleDatabase->handles[handle].state = SA_HANDLE_STATE_PENDINGREMOVAL;
pthread_mutex_unlock (&handleDatabase->mutex);
saHandleInstancePut (handleDatabase, inHandle);
return (error);
}
cs_error_t
saHandleInstanceGet (
struct saHandleDatabase *handleDatabase,
uint64_t inHandle,
void **instance)
{
uint32_t check = inHandle >> 32;
uint32_t handle = inHandle & 0xffffffff;
cs_error_t error = CS_OK;
pthread_mutex_lock (&handleDatabase->mutex);
if (handle >= (uint64_t)handleDatabase->handleCount) {
error = CS_ERR_BAD_HANDLE;
goto error_exit;
}
if (handleDatabase->handles[handle].state != SA_HANDLE_STATE_ACTIVE) {
error = CS_ERR_BAD_HANDLE;
goto error_exit;
}
if (check != handleDatabase->handles[handle].check) {
error = CS_ERR_BAD_HANDLE;
goto error_exit;
}
*instance = handleDatabase->handles[handle].instance;
handleDatabase->handles[handle].refCount += 1;
error_exit:
pthread_mutex_unlock (&handleDatabase->mutex);
return (error);
}
cs_error_t
saHandleInstancePut (
struct saHandleDatabase *handleDatabase,
uint64_t inHandle)
{
void *instance;
cs_error_t error = CS_OK;
uint32_t check = inHandle >> 32;
uint32_t handle = inHandle & 0xffffffff;
pthread_mutex_lock (&handleDatabase->mutex);
if (check != handleDatabase->handles[handle].check) {
error = CS_ERR_BAD_HANDLE;
goto error_exit;
}
handleDatabase->handles[handle].refCount -= 1;
assert (handleDatabase->handles[handle].refCount >= 0);
if (handleDatabase->handles[handle].refCount == 0) {
instance = (handleDatabase->handles[handle].instance);
handleDatabase->handleInstanceDestructor (instance);
free (instance);
memset (&handleDatabase->handles[handle], 0, sizeof (struct saHandle));
}
error_exit:
pthread_mutex_unlock (&handleDatabase->mutex);
return (error);
}

File Metadata

Mime Type
text/x-c
Expires
Wed, Feb 26, 12:45 PM (20 h, 24 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1465359
Default Alt Text
coroipcc.c (19 KB)

Event Timeline