Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/bindings/rust/src/cmap.rs b/bindings/rust/src/cmap.rs
index e0dd3d4c..454fbee2 100644
--- a/bindings/rust/src/cmap.rs
+++ b/bindings/rust/src/cmap.rs
@@ -1,898 +1,894 @@
// libcmap interface for Rust
// Copyright (c) 2021 Red Hat, Inc.
//
// All rights reserved.
//
// Author: Christine Caulfield (ccaulfi@redhat.com)
//
#![allow(clippy::type_complexity)]
// For the code generated by bindgen
use crate::sys::cmap as ffi;
use num_enum::TryFromPrimitive;
use std::any::type_name;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::ffi::CString;
use std::fmt;
use std::os::raw::{c_char, c_int, c_void};
use std::ptr::copy_nonoverlapping;
use std::sync::Mutex;
use crate::string_from_bytes;
use crate::{CsError, DispatchFlags, Result};
// Maps:
/// "Maps" available to [initialize]
pub enum Map {
Icmap,
Stats,
}
bitflags! {
/// Tracker types for cmap, both passed into [track_add]
/// and returned from its callback.
pub struct TrackType: i32
{
const DELETE = 1;
const MODIFY = 2;
const ADD = 4;
const PREFIX = 8;
}
}
impl fmt::Display for TrackType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.contains(TrackType::DELETE) {
write!(f, "DELETE ")?
}
if self.contains(TrackType::MODIFY) {
write!(f, "MODIFY ")?
}
if self.contains(TrackType::ADD) {
write!(f, "ADD ")?
}
if self.contains(TrackType::PREFIX) {
write!(f, "PREFIX ")
} else {
Ok(())
}
}
}
#[derive(Copy, Clone)]
/// A handle returned from [initialize], needs to be passed to all other cmap API calls
pub struct Handle {
cmap_handle: u64,
}
#[derive(Copy, Clone)]
/// A handle for a specific CMAP tracker. returned from [track_add].
/// There may be multiple TrackHandles per [Handle]
pub struct TrackHandle {
track_handle: u64,
notify_callback: NotifyCallback,
}
// Used to convert CMAP handles into one of ours, for callbacks
lazy_static! {
static ref TRACKHANDLE_HASH: Mutex<HashMap<u64, TrackHandle>> = Mutex::new(HashMap::new());
static ref HANDLE_HASH: Mutex<HashMap<u64, Handle>> = Mutex::new(HashMap::new());
}
/// Initialize a connection to the cmap subsystem.
/// map specifies which cmap "map" to use.
/// Returns a [Handle] into the cmap library
pub fn initialize(map: Map) -> Result<Handle> {
let mut handle: ffi::cmap_handle_t = 0;
let c_map = match map {
Map::Icmap => ffi::CMAP_MAP_ICMAP,
Map::Stats => ffi::CMAP_MAP_STATS,
};
unsafe {
let res = ffi::cmap_initialize_map(&mut handle, c_map);
if res == ffi::CS_OK {
let rhandle = Handle {
cmap_handle: handle,
};
HANDLE_HASH.lock().unwrap().insert(handle, rhandle);
Ok(rhandle)
} else {
Err(CsError::from_c(res))
}
}
}
/// Finish with a connection to corosync.
/// Takes a [Handle] as returned from [initialize]
pub fn finalize(handle: Handle) -> Result<()> {
let res = unsafe { ffi::cmap_finalize(handle.cmap_handle) };
if res == ffi::CS_OK {
HANDLE_HASH.lock().unwrap().remove(&handle.cmap_handle);
Ok(())
} else {
Err(CsError::from_c(res))
}
}
/// Return a file descriptor to use for poll/select on the CMAP handle.
/// Takes a [Handle] as returned from [initialize],
/// returns a C file descriptor as i32
pub fn fd_get(handle: Handle) -> Result<i32> {
let c_fd: *mut c_int = &mut 0 as *mut _ as *mut c_int;
let res = unsafe { ffi::cmap_fd_get(handle.cmap_handle, c_fd) };
if res == ffi::CS_OK {
Ok(c_fd as i32)
} else {
Err(CsError::from_c(res))
}
}
/// Dispatch any/all active CMAP callbacks.
/// Takes a [Handle] as returned from [initialize],
/// flags [DispatchFlags] tells it how many items to dispatch before returning
pub fn dispatch(handle: Handle, flags: DispatchFlags) -> Result<()> {
let res = unsafe { ffi::cmap_dispatch(handle.cmap_handle, flags as u32) };
if res == ffi::CS_OK {
Ok(())
} else {
Err(CsError::from_c(res))
}
}
/// Get the current 'context' value for this handle
/// The context value is an arbitrary value that is always passed
/// back to callbacks to help identify the source
pub fn context_get(handle: Handle) -> Result<u64> {
let (res, context) = unsafe {
let mut context: u64 = 0;
let c_context: *mut c_void = &mut context as *mut _ as *mut c_void;
let r = ffi::cmap_context_get(handle.cmap_handle, c_context as *mut *const c_void);
(r, context)
};
if res == ffi::CS_OK {
Ok(context)
} else {
Err(CsError::from_c(res))
}
}
/// Set the current 'context' value for this handle
/// The context value is an arbitrary value that is always passed
/// back to callbacks to help identify the source.
/// Normally this is set in [initialize], but this allows it to be changed
pub fn context_set(handle: Handle, context: u64) -> Result<()> {
let res = unsafe {
let c_context = context as *mut c_void;
ffi::cmap_context_set(handle.cmap_handle, c_context)
};
if res == ffi::CS_OK {
Ok(())
} else {
Err(CsError::from_c(res))
}
}
/// The type of data returned from [get] or in a
/// tracker callback or iterator, part of the [Data] struct
#[derive(Clone, Copy, Debug, Eq, PartialEq, TryFromPrimitive)]
#[repr(u32)]
pub enum DataType {
Int8 = ffi::CMAP_VALUETYPE_INT8,
UInt8 = ffi::CMAP_VALUETYPE_UINT8,
Int16 = ffi::CMAP_VALUETYPE_INT16,
UInt16 = ffi::CMAP_VALUETYPE_UINT16,
Int32 = ffi::CMAP_VALUETYPE_INT32,
UInt32 = ffi::CMAP_VALUETYPE_UINT32,
Int64 = ffi::CMAP_VALUETYPE_INT64,
UInt64 = ffi::CMAP_VALUETYPE_UINT64,
Float = ffi::CMAP_VALUETYPE_FLOAT,
Double = ffi::CMAP_VALUETYPE_DOUBLE,
String = ffi::CMAP_VALUETYPE_STRING,
Binary = ffi::CMAP_VALUETYPE_BINARY,
Unknown = 999,
}
fn cmap_to_enum(cmap_type: u32) -> DataType {
match DataType::try_from(cmap_type) {
Ok(e) => e,
Err(_) => DataType::Unknown,
}
}
/// Data returned from the cmap::get() call and tracker & iterators.
/// Contains the data itself and the type of that data.
pub enum Data {
Int8(i8),
UInt8(u8),
Int16(i16),
UInt16(u16),
Int32(i32),
UInt32(u32),
Int64(i64),
UInt64(u64),
Float(f32),
Double(f64),
String(String),
Binary(Vec<u8>),
Unknown,
}
impl fmt::Display for DataType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
DataType::Int8 => write!(f, "Int8"),
DataType::UInt8 => write!(f, "UInt8"),
DataType::Int16 => write!(f, "Int16"),
DataType::UInt16 => write!(f, "UInt16"),
DataType::Int32 => write!(f, "Int32"),
DataType::UInt32 => write!(f, "UInt32"),
DataType::Int64 => write!(f, "Int64"),
DataType::UInt64 => write!(f, "UInt64"),
DataType::Float => write!(f, "Float"),
DataType::Double => write!(f, "Double"),
DataType::String => write!(f, "String"),
DataType::Binary => write!(f, "Binary"),
DataType::Unknown => write!(f, "Unknown"),
}
}
}
impl fmt::Display for Data {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Data::Int8(v) => write!(f, "{v} (Int8)"),
Data::UInt8(v) => write!(f, "{v} (UInt8)"),
Data::Int16(v) => write!(f, "{v} (Int16)"),
Data::UInt16(v) => write!(f, "{v} (UInt16)"),
Data::Int32(v) => write!(f, "{v} (Int32)"),
Data::UInt32(v) => write!(f, "{v} (UInt32)"),
Data::Int64(v) => write!(f, "{v} (Int64)"),
Data::UInt64(v) => write!(f, "{v} (UInt64)"),
Data::Float(v) => write!(f, "{v} (Float)"),
Data::Double(v) => write!(f, "{v} (Double)"),
Data::String(v) => write!(f, "{v} (String)"),
Data::Binary(v) => write!(f, "{v:?} (Binary)"),
Data::Unknown => write!(f, "Unknown)"),
}
}
}
const CMAP_KEYNAME_MAXLENGTH: usize = 255;
fn string_to_cstring_validated(key: &str, maxlen: usize) -> Result<CString> {
if maxlen > 0 && key.chars().count() >= maxlen {
return Err(CsError::CsErrInvalidParam);
}
match CString::new(key) {
Ok(n) => Ok(n),
Err(_) => Err(CsError::CsErrLibrary),
}
}
fn set_value(
handle: Handle,
key_name: &str,
datatype: DataType,
value: *mut c_void,
length: usize,
) -> Result<()> {
let csname = string_to_cstring_validated(key_name, CMAP_KEYNAME_MAXLENGTH)?;
let res = unsafe {
ffi::cmap_set(
handle.cmap_handle,
csname.as_ptr(),
value,
length,
datatype as u32,
)
};
if res == ffi::CS_OK {
Ok(())
} else {
Err(CsError::from_c(res))
}
}
// Returns type and size
fn generic_to_cmap<T>(_value: T) -> (DataType, usize) {
match type_name::<T>() {
"u8" => (DataType::UInt8, 1),
"i8" => (DataType::Int8, 1),
"u16" => (DataType::UInt16, 2),
"i16" => (DataType::Int16, 2),
"u32" => (DataType::UInt32, 4),
"i32" => (DataType::Int32, 4),
"u64" => (DataType::UInt64, 4),
"f32" => (DataType::Float, 4),
"f64" => (DataType::Double, 8),
"&str" => (DataType::String, 0),
// Binary not currently supported here
_ => (DataType::Unknown, 0),
}
}
fn is_numeric_type(dtype: DataType) -> bool {
matches!(
dtype,
DataType::UInt8
| DataType::Int8
| DataType::UInt16
| DataType::Int16
| DataType::UInt32
| DataType::Int32
| DataType::UInt64
| DataType::Int64
| DataType::Float
| DataType::Double
)
}
/// Function to set a generic numeric value
/// This doesn't work for strings or binaries
pub fn set_number<T: Copy>(handle: Handle, key_name: &str, value: T) -> Result<()> {
let (c_type, c_size) = generic_to_cmap(value);
if is_numeric_type(c_type) {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, c_type, c_value as *mut c_void, c_size)
} else {
Err(CsError::CsErrNotSupported)
}
}
pub fn set_u8(handle: Handle, key_name: &str, value: u8) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, DataType::UInt8, c_value as *mut c_void, 1)
}
/// Sets an i8 value into cmap
pub fn set_i8(handle: Handle, key_name: &str, value: i8) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, DataType::Int8, c_value as *mut c_void, 1)
}
/// Sets a u16 value into cmap
pub fn set_u16(handle: Handle, key_name: &str, value: u16) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(
handle,
key_name,
DataType::UInt16,
c_value as *mut c_void,
2,
)
}
/// Sets an i16 value into cmap
pub fn set_i16(handle: Handle, key_name: &str, value: i16) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, DataType::Int16, c_value as *mut c_void, 2)
}
/// Sets a u32 value into cmap
pub fn set_u32(handle: Handle, key_name: &str, value: u32) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, DataType::UInt32, c_value, 4)
}
/// Sets an i32 value into cmap
pub fn set_i132(handle: Handle, key_name: &str, value: i32) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, DataType::Int32, c_value as *mut c_void, 4)
}
/// Sets a u64 value into cmap
pub fn set_u64(handle: Handle, key_name: &str, value: u64) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(
handle,
key_name,
DataType::UInt64,
c_value as *mut c_void,
8,
)
}
/// Sets an i64 value into cmap
pub fn set_i164(handle: Handle, key_name: &str, value: i64) -> Result<()> {
let mut tmp = value;
let c_value: *mut c_void = &mut tmp as *mut _ as *mut c_void;
set_value(handle, key_name, DataType::Int64, c_value as *mut c_void, 8)
}
/// Sets a string value into cmap
pub fn set_string(handle: Handle, key_name: &str, value: &str) -> Result<()> {
let v_string = string_to_cstring_validated(value, 0)?;
set_value(
handle,
key_name,
DataType::String,
v_string.as_ptr() as *mut c_void,
value.chars().count(),
)
}
/// Sets a binary value into cmap
pub fn set_binary(handle: Handle, key_name: &str, value: &[u8]) -> Result<()> {
set_value(
handle,
key_name,
DataType::Binary,
value.as_ptr() as *mut c_void,
value.len(),
)
}
/// Sets a [Data] type into cmap
pub fn set(handle: Handle, key_name: &str, data: &Data) -> Result<()> {
let (datatype, datalen, c_value) = match data {
Data::Int8(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::Int8, 1, cv)
}
Data::UInt8(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::UInt8, 1, cv)
}
Data::Int16(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::Int16, 2, cv)
}
Data::UInt16(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::UInt8, 2, cv)
}
Data::Int32(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::Int32, 4, cv)
}
Data::UInt32(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::UInt32, 4, cv)
}
Data::Int64(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::Int64, 8, cv)
}
Data::UInt64(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::UInt64, 8, cv)
}
Data::Float(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::Float, 4, cv)
}
Data::Double(v) => {
let mut tmp = *v;
let cv: *mut c_void = &mut tmp as *mut _ as *mut c_void;
(DataType::Double, 8, cv)
}
Data::String(v) => {
let cv = string_to_cstring_validated(v, 0)?;
// Can't let cv go out of scope
return set_value(
handle,
key_name,
DataType::String,
cv.as_ptr() as *mut c_void,
v.chars().count(),
);
}
Data::Binary(v) => {
// Vec doesn't return quite the right types.
return set_value(
handle,
key_name,
DataType::Binary,
v.as_ptr() as *mut c_void,
v.len(),
);
}
Data::Unknown => return Err(CsError::CsErrInvalidParam),
};
set_value(handle, key_name, datatype, c_value, datalen)
}
// Local function to parse out values from the C mess
// Assumes the c_value is complete. So cmap::get() will need to check the size
// and re-get before calling us with a resized buffer
fn c_to_data(value_size: usize, c_key_type: u32, c_value: *const u8) -> Result<Data> {
unsafe {
match cmap_to_enum(c_key_type) {
DataType::UInt8 => {
let mut ints = [0u8; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr(), value_size);
Ok(Data::UInt8(ints[0]))
}
DataType::Int8 => {
let mut ints = [0i8; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::Int8(ints[0]))
}
DataType::UInt16 => {
let mut ints = [0u16; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::UInt16(ints[0]))
}
DataType::Int16 => {
let mut ints = [0i16; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::Int16(ints[0]))
}
DataType::UInt32 => {
let mut ints = [0u32; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::UInt32(ints[0]))
}
DataType::Int32 => {
let mut ints = [0i32; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::Int32(ints[0]))
}
DataType::UInt64 => {
let mut ints = [0u64; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::UInt64(ints[0]))
}
DataType::Int64 => {
let mut ints = [0i64; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::Int64(ints[0]))
}
DataType::Float => {
let mut ints = [0f32; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::Float(ints[0]))
}
DataType::Double => {
let mut ints = [0f64; 1];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr() as *mut u8, value_size);
Ok(Data::Double(ints[0]))
}
DataType::String => {
- let mut ints = Vec::<u8>::new();
- ints.resize(value_size, 0u8);
+ let mut ints = vec![0u8; value_size];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr(), value_size);
// -1 here so CString doesn't see the NUL
let cs = match CString::new(&ints[0..value_size - 1_usize]) {
Ok(c1) => c1,
Err(_) => return Err(CsError::CsErrLibrary),
};
match cs.into_string() {
Ok(s) => Ok(Data::String(s)),
Err(_) => Err(CsError::CsErrLibrary),
}
}
DataType::Binary => {
- let mut ints = Vec::<u8>::new();
- ints.resize(value_size, 0u8);
+ let mut ints = vec![0u8; value_size];
copy_nonoverlapping(c_value as *mut u8, ints.as_mut_ptr(), value_size);
Ok(Data::Binary(ints))
}
DataType::Unknown => Ok(Data::Unknown),
}
}
}
const INITIAL_SIZE: usize = 256;
/// Get a value from cmap, returned as a [Data] struct, so could be anything
pub fn get(handle: Handle, key_name: &str) -> Result<Data> {
let csname = string_to_cstring_validated(key_name, CMAP_KEYNAME_MAXLENGTH)?;
let mut value_size: usize = 16;
let mut c_key_type: u32 = 0;
- let mut c_value = Vec::<u8>::new();
// First guess at a size for Strings and Binaries. Expand if needed
- c_value.resize(INITIAL_SIZE, 0u8);
+ let mut c_value = vec![0u8; INITIAL_SIZE];
unsafe {
let res = ffi::cmap_get(
handle.cmap_handle,
csname.as_ptr(),
c_value.as_mut_ptr() as *mut c_void,
&mut value_size,
&mut c_key_type,
);
if res == ffi::CS_OK {
if value_size > INITIAL_SIZE {
// Need to try again with a bigger buffer
c_value.resize(value_size, 0u8);
let res2 = ffi::cmap_get(
handle.cmap_handle,
csname.as_ptr(),
c_value.as_mut_ptr() as *mut c_void,
&mut value_size,
&mut c_key_type,
);
if res2 != ffi::CS_OK {
return Err(CsError::from_c(res2));
}
}
// Convert to Rust type and return as a Data enum
c_to_data(value_size, c_key_type, c_value.as_ptr())
} else {
Err(CsError::from_c(res))
}
}
}
/// increment the value in a cmap key (must be a numeric type)
pub fn inc(handle: Handle, key_name: &str) -> Result<()> {
let csname = string_to_cstring_validated(key_name, CMAP_KEYNAME_MAXLENGTH)?;
let res = unsafe { ffi::cmap_inc(handle.cmap_handle, csname.as_ptr()) };
if res == ffi::CS_OK {
Ok(())
} else {
Err(CsError::from_c(res))
}
}
/// decrement the value in a cmap key (must be a numeric type)
pub fn dec(handle: Handle, key_name: &str) -> Result<()> {
let csname = string_to_cstring_validated(key_name, CMAP_KEYNAME_MAXLENGTH)?;
let res = unsafe { ffi::cmap_dec(handle.cmap_handle, csname.as_ptr()) };
if res == ffi::CS_OK {
Ok(())
} else {
Err(CsError::from_c(res))
}
}
// Callback for CMAP notify events from corosync, convert params to Rust and pass on.
extern "C" fn rust_notify_fn(
cmap_handle: ffi::cmap_handle_t,
cmap_track_handle: ffi::cmap_track_handle_t,
event: i32,
key_name: *const ::std::os::raw::c_char,
new_value: ffi::cmap_notify_value,
old_value: ffi::cmap_notify_value,
user_data: *mut ::std::os::raw::c_void,
) {
// If cmap_handle doesn't match then throw away the callback.
if let Some(r_cmap_handle) = HANDLE_HASH.lock().unwrap().get(&cmap_handle) {
if let Some(h) = TRACKHANDLE_HASH.lock().unwrap().get(&cmap_track_handle) {
let r_keyname = match string_from_bytes(key_name, CMAP_KEYNAME_MAXLENGTH) {
Ok(s) => s,
Err(_) => return,
};
let r_old = match c_to_data(old_value.len, old_value.type_, old_value.data as *const u8)
{
Ok(v) => v,
Err(_) => return,
};
let r_new = match c_to_data(new_value.len, new_value.type_, new_value.data as *const u8)
{
Ok(v) => v,
Err(_) => return,
};
if let Some(cb) = h.notify_callback.notify_fn {
(cb)(
r_cmap_handle,
h,
TrackType { bits: event },
&r_keyname,
&r_old,
&r_new,
user_data as u64,
);
}
}
}
}
/// Callback function called every time a tracker reports a change in a tracked value
#[derive(Copy, Clone)]
pub struct NotifyCallback {
pub notify_fn: Option<
fn(
handle: &Handle,
track_handle: &TrackHandle,
event: TrackType,
key_name: &str,
new_value: &Data,
old_value: &Data,
user_data: u64,
),
>,
}
/// Track changes in cmap values, multiple [TrackHandle]s per [Handle] are allowed
pub fn track_add(
handle: Handle,
key_name: &str,
track_type: TrackType,
notify_callback: &NotifyCallback,
user_data: u64,
) -> Result<TrackHandle> {
let c_name = string_to_cstring_validated(key_name, CMAP_KEYNAME_MAXLENGTH)?;
let mut c_trackhandle = 0u64;
let res = unsafe {
ffi::cmap_track_add(
handle.cmap_handle,
c_name.as_ptr(),
track_type.bits,
Some(rust_notify_fn),
user_data as *mut c_void,
&mut c_trackhandle,
)
};
if res == ffi::CS_OK {
let rhandle = TrackHandle {
track_handle: c_trackhandle,
notify_callback: *notify_callback,
};
TRACKHANDLE_HASH
.lock()
.unwrap()
.insert(c_trackhandle, rhandle);
Ok(rhandle)
} else {
Err(CsError::from_c(res))
}
}
/// Remove a tracker frm this [Handle]
pub fn track_delete(handle: Handle, track_handle: TrackHandle) -> Result<()> {
let res = unsafe { ffi::cmap_track_delete(handle.cmap_handle, track_handle.track_handle) };
if res == ffi::CS_OK {
TRACKHANDLE_HASH
.lock()
.unwrap()
.remove(&track_handle.track_handle);
Ok(())
} else {
Err(CsError::from_c(res))
}
}
/// Create one of these to start iterating over cmap values.
pub struct CmapIterStart {
iter_handle: u64,
cmap_handle: u64,
}
pub struct CmapIntoIter {
cmap_handle: u64,
iter_handle: u64,
}
/// Value returned from the iterator. contains the key name and the [Data]
pub struct CmapIter {
key_name: String,
data: Data,
}
impl CmapIter {
pub fn key_name(&self) -> &str {
&self.key_name
}
pub fn data(&self) -> &Data {
&self.data
}
}
impl fmt::Debug for CmapIter {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}: {}", self.key_name, self.data)
}
}
impl Iterator for CmapIntoIter {
type Item = CmapIter;
fn next(&mut self) -> Option<CmapIter> {
let mut c_key_name = [0u8; CMAP_KEYNAME_MAXLENGTH + 1];
let mut c_value_len = 0usize;
let mut c_value_type = 0u32;
let res = unsafe {
ffi::cmap_iter_next(
self.cmap_handle,
self.iter_handle,
c_key_name.as_mut_ptr() as *mut c_char,
&mut c_value_len,
&mut c_value_type,
)
};
if res == ffi::CS_OK {
// Return the Data for this iteration
- let mut c_value = Vec::<u8>::new();
- c_value.resize(c_value_len, 0u8);
+ let mut c_value = vec![0u8; c_value_len];
let res = unsafe {
ffi::cmap_get(
self.cmap_handle,
c_key_name.as_ptr() as *mut c_char,
c_value.as_mut_ptr() as *mut c_void,
&mut c_value_len,
&mut c_value_type,
)
};
if res == ffi::CS_OK {
match c_to_data(c_value_len, c_value_type, c_value.as_ptr()) {
Ok(d) => {
let r_keyname = match string_from_bytes(
c_key_name.as_ptr() as *mut c_char,
CMAP_KEYNAME_MAXLENGTH,
) {
Ok(s) => s,
Err(_) => return None,
};
Some(CmapIter {
key_name: r_keyname,
data: d,
})
}
Err(_) => None,
}
} else {
// cmap_get returned error
None
}
} else if res == ffi::CS_ERR_NO_SECTIONS {
// End of list
unsafe {
// Yeah, we don't check this return code. There's nowhere to report it.
ffi::cmap_iter_finalize(self.cmap_handle, self.iter_handle)
};
None
} else {
None
}
}
}
impl CmapIterStart {
/// Create a new [CmapIterStart] object for iterating over a list of cmap keys
pub fn new(cmap_handle: Handle, prefix: &str) -> Result<CmapIterStart> {
let mut iter_handle: u64 = 0;
let res = unsafe {
let c_prefix = string_to_cstring_validated(prefix, CMAP_KEYNAME_MAXLENGTH)?;
ffi::cmap_iter_init(cmap_handle.cmap_handle, c_prefix.as_ptr(), &mut iter_handle)
};
if res == ffi::CS_OK {
Ok(CmapIterStart {
cmap_handle: cmap_handle.cmap_handle,
iter_handle,
})
} else {
Err(CsError::from_c(res))
}
}
}
impl IntoIterator for CmapIterStart {
type Item = CmapIter;
type IntoIter = CmapIntoIter;
fn into_iter(self) -> Self::IntoIter {
CmapIntoIter {
iter_handle: self.iter_handle,
cmap_handle: self.cmap_handle,
}
}
}
diff --git a/bindings/rust/src/lib.rs b/bindings/rust/src/lib.rs
index cd4326e7..dbf34fc1 100644
--- a/bindings/rust/src/lib.rs
+++ b/bindings/rust/src/lib.rs
@@ -1,297 +1,296 @@
//! This crate provides access to the corosync libraries cpg, cfg, cmap, quorum & votequorum
//! from Rust. They are a fairly thin layer around the actual API calls but with Rust data types
//! and iterators.
//!
//! Corosync is a low-level provider of cluster services for high-availability clusters,
//! for more information about corosync see <https://corosync.github.io/corosync/>
//!
//! No more information about corosync itself will be provided here, it is expected that if
//! you feel you need access to the Corosync API calls, you know what they do :)
//!
//! # Example
//! ```
//! extern crate rust_corosync as corosync;
//! use corosync::cmap;
//!
//! fn main()
//! {
//! // Open connection to corosync libcmap
//! let handle =
//! match cmap::initialize(cmap::Map::Icmap) {
//! Ok(h) => {
//! println!("cmap initialized.");
//! h
//! }
//! Err(e) => {
//! println!("Error in CMAP (Icmap) init: {}", e);
//! return;
//! }
//! };
//!
//! // Set a numeric value (this is a generic fn)
//! match cmap::set_number(handle, "test.test_uint32", 456)
//! {
//! Ok(_) => {}
//! Err(e) => {
//! println!("Error in CMAP set_u32: {}", e);
//! return;
//! }
//! };
//!
//! // Get a value - this will be a Data struct
//! match cmap::get(handle, "test.test_uint32")
//! {
//! Ok(v) => {
//! println!("GOT value {}", v);
//! }
//! Err(e) => {
//! println!("Error in CMAP get: {}", e);
//! return;
//! }
//! };
//!
//! // Use an iterator
//! match cmap::CmapIterStart::new(handle, "totem.") {
//! Ok(cmap_iter) => {
//! for i in cmap_iter {
//! println!("ITER: {:?}", i);
//! }
//! println!("");
//! }
//! Err(e) => {
//! println!("Error in CMAP iter start: {}", e);
//! }
//! }
//!
//! // Close this connection
//! match cmap::finalize(handle)
//! {
//! Ok(_) => {}
//! Err(e) => {
//! println!("Error in CMAP get: {}", e);
//! return;
//! }
//! };
//! }
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate bitflags;
/// cfg is the internal configuration and information library for corosync, it is
/// mainly used by internal tools but may also contain API calls useful to some applications
/// that need detailed information about or control of the operation of corosync and the cluster.
pub mod cfg;
/// cmap is the internal 'database' of corosync - though it is NOT replicated. Mostly it contains
/// a copy of the corosync.conf file and information about the running state of the daemon.
/// The cmap API provides two 'maps'. Icmap, which is as above, and Stats, which contains very detailed
/// statistics on the running system, this includes network and IPC calls.
pub mod cmap;
/// cpg is the Control Process Groups subsystem of corosync and is usually used for sending
/// messages around the cluster. All processes using CPG belong to a named group (whose members
/// they can query) and all messages are sent with delivery guarantees.
pub mod cpg;
/// Quorum provides basic information about the quorate state of the cluster with callbacks
/// when nodelists change.
pub mod quorum;
///votequorum is the main quorum provider for corosync, using this API, users can query the state
/// of nodes in the cluster, request callbacks when the nodelists change, and set up a quorum device.
pub mod votequorum;
mod sys;
use num_enum::TryFromPrimitive;
use std::convert::TryFrom;
use std::error::Error;
use std::ffi::CString;
use std::fmt;
use std::ptr::copy_nonoverlapping;
// This needs to be kept up-to-date!
/// Error codes returned from the corosync libraries
#[derive(Debug, Eq, PartialEq, Copy, Clone, TryFromPrimitive)]
#[repr(u32)]
pub enum CsError {
CsOk = 1,
CsErrLibrary = 2,
CsErrVersion = 3,
CsErrInit = 4,
CsErrTimeout = 5,
CsErrTryAgain = 6,
CsErrInvalidParam = 7,
CsErrNoMemory = 8,
CsErrBadHandle = 9,
CsErrBusy = 10,
CsErrAccess = 11,
CsErrNotExist = 12,
CsErrNameTooLong = 13,
CsErrExist = 14,
CsErrNoSpace = 15,
CsErrInterrupt = 16,
CsErrNameNotFound = 17,
CsErrNoResources = 18,
CsErrNotSupported = 19,
CsErrBadOperation = 20,
CsErrFailedOperation = 21,
CsErrMessageError = 22,
CsErrQueueFull = 23,
CsErrQueueNotAvailable = 24,
CsErrBadFlags = 25,
CsErrTooBig = 26,
CsErrNoSection = 27,
CsErrContextNotFound = 28,
CsErrTooManyGroups = 30,
CsErrSecurity = 100,
#[num_enum(default)]
CsErrRustCompat = 998, // Set if we get a unknown return from corosync
CsErrRustString = 999, // Set if we get a string conversion error
}
/// Result type returned from most corosync library calls.
/// Contains a [CsError] and possibly other data as required
pub type Result<T> = ::std::result::Result<T, CsError>;
impl fmt::Display for CsError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
CsError::CsOk => write!(f, "OK"),
CsError::CsErrLibrary => write!(f, "ErrLibrary"),
CsError::CsErrVersion => write!(f, "ErrVersion"),
CsError::CsErrInit => write!(f, "ErrInit"),
CsError::CsErrTimeout => write!(f, "ErrTimeout"),
CsError::CsErrTryAgain => write!(f, "ErrTryAgain"),
CsError::CsErrInvalidParam => write!(f, "ErrInvalidParam"),
CsError::CsErrNoMemory => write!(f, "ErrNoMemory"),
CsError::CsErrBadHandle => write!(f, "ErrbadHandle"),
CsError::CsErrBusy => write!(f, "ErrBusy"),
CsError::CsErrAccess => write!(f, "ErrAccess"),
CsError::CsErrNotExist => write!(f, "ErrNotExist"),
CsError::CsErrNameTooLong => write!(f, "ErrNameTooLong"),
CsError::CsErrExist => write!(f, "ErrExist"),
CsError::CsErrNoSpace => write!(f, "ErrNoSpace"),
CsError::CsErrInterrupt => write!(f, "ErrInterrupt"),
CsError::CsErrNameNotFound => write!(f, "ErrNameNotFound"),
CsError::CsErrNoResources => write!(f, "ErrNoResources"),
CsError::CsErrNotSupported => write!(f, "ErrNotSupported"),
CsError::CsErrBadOperation => write!(f, "ErrBadOperation"),
CsError::CsErrFailedOperation => write!(f, "ErrFailedOperation"),
CsError::CsErrMessageError => write!(f, "ErrMEssageError"),
CsError::CsErrQueueFull => write!(f, "ErrQueueFull"),
CsError::CsErrQueueNotAvailable => write!(f, "ErrQueueNotAvailable"),
CsError::CsErrBadFlags => write!(f, "ErrBadFlags"),
CsError::CsErrTooBig => write!(f, "ErrTooBig"),
CsError::CsErrNoSection => write!(f, "ErrNoSection"),
CsError::CsErrContextNotFound => write!(f, "ErrContextNotFound"),
CsError::CsErrTooManyGroups => write!(f, "ErrTooManyGroups"),
CsError::CsErrSecurity => write!(f, "ErrSecurity"),
CsError::CsErrRustCompat => write!(f, "ErrRustCompat"),
CsError::CsErrRustString => write!(f, "ErrRustString"),
}
}
}
impl Error for CsError {}
// This is dependant on the num_enum crate, converts a C cs_error_t into the Rust enum
// There seems to be some debate as to whether this should be part of the language:
// https://internals.rust-lang.org/t/pre-rfc-enum-from-integer/6348/25
impl CsError {
fn from_c(cserr: u32) -> CsError {
match CsError::try_from(cserr) {
Ok(e) => e,
Err(_) => CsError::CsErrRustCompat,
}
}
}
/// Flags to use with dispatch functions, eg [cpg::dispatch]
/// One will dispatch a single callback (blocking) and return.
/// All will loop trying to dispatch all possible callbacks.
/// Blocking is like All but will block between callbacks.
/// OneNonBlocking will dispatch a single callback only if one is available,
/// otherwise it will return even if no callback is available.
#[derive(Copy, Clone)]
// The numbers match the C enum, of course.
pub enum DispatchFlags {
One = 1,
All = 2,
Blocking = 3,
OneNonblocking = 4,
}
/// Flags to use with (most) tracking API calls
#[derive(Copy, Clone)]
// Same here
pub enum TrackFlags {
Current = 1,
Changes = 2,
ChangesOnly = 4,
}
/// A corosync nodeid
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct NodeId {
id: u32,
}
impl fmt::Display for NodeId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.id)
}
}
// Conversion from a NodeId to and from u32
impl From<u32> for NodeId {
fn from(id: u32) -> NodeId {
NodeId { id }
}
}
impl From<NodeId> for u32 {
fn from(nodeid: NodeId) -> u32 {
nodeid.id
}
}
// General internal routine to copy bytes from a C array into a Rust String
fn string_from_bytes(bytes: *const ::std::os::raw::c_char, max_length: usize) -> Result<String> {
- let mut newbytes = Vec::<u8>::new();
- newbytes.resize(max_length, 0u8);
+ let mut newbytes = vec![0u8; max_length];
// Get length of the string in old-fashioned style
let mut length: usize = 0;
let mut count = 0;
let mut tmpbytes = bytes;
while count < max_length || length == 0 {
if unsafe { *tmpbytes } == 0 && length == 0 {
length = count;
break;
}
count += 1;
tmpbytes = unsafe { tmpbytes.offset(1) }
}
// Cope with an empty string
if length == 0 {
return Ok(String::new());
}
unsafe {
// We need to fully copy it, not shallow copy it.
// Messy casting on both parts of the copy here to get it to work on both signed
// and unsigned char machines
copy_nonoverlapping(bytes as *mut i8, newbytes.as_mut_ptr() as *mut i8, length);
}
let cs = match CString::new(&newbytes[0..length]) {
Ok(c1) => c1,
Err(_) => return Err(CsError::CsErrRustString),
};
// This is just to convert the error type
match cs.into_string() {
Ok(s) => Ok(s),
Err(_) => Err(CsError::CsErrRustString),
}
}

File Metadata

Mime Type
text/x-diff
Expires
Thu, Oct 16, 12:16 AM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
2530773
Default Alt Text
(39 KB)

Event Timeline