Page MenuHomeClusterLabs Projects

crypto.c
No OneTemporary

crypto.c

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.com
*/
#include <config.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/poll.h>
#if defined(COROSYNC_BSD)
#include <sys/endian.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include "crypto.h"
#define CONST64(n) n ## ULL
typedef uint32_t ulong32;
typedef uint64_t ulong64;
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define ENDIAN_LITTLE
#elif __BYTE_ORDER == __BIG_ENDIAN
#define ENDIAN_BIG
#elif _BYTE_ORDER == _LITTLE_ENDIAN
#define ENDIAN_LITTLE
#elif _BYTE_ORDER == _BIG_ENDIAN
#define ENDIAN_BIG
#else
#error "cannot detect byte order"
#endif
#if defined(COROSYNC_LINUX)
#if __WORDSIZE == 64
#define ENDIAN_64BITWORD
#endif
#if __WORDSIZE == 32
#define ENDIAN_32BITWORD
#endif
#else
/* XXX need to find a better default
*/
#define ENDIAN_32BITWORD
#endif
/* ---- HELPER MACROS ---- */
#ifdef ENDIAN_NEUTRAL
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#endif /* ENDIAN_NEUTRAL */
#ifdef ENDIAN_LITTLE
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
memcpy(&(x), y, 4);
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#else /* 64-bit words then */
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64L(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64L(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_LITTLE */
#ifdef ENDIAN_BIG
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
memcpy(&(x), y, 4);
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
(((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
#else /* 64-bit words then */
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64H(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64H(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_BIG */
#define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \
((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) )
#if defined(__GNUC__) && defined(__i386__) && !defined(INTEL_CC)
static inline unsigned long ROL(unsigned long word, int i)
{
__asm__("roll %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
static inline unsigned long ROR(unsigned long word, int i)
{
__asm__("rorl %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#else
/* rotates the hard way */
#define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#endif
#define ROL64(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
#undef MAX
#undef MIN
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
/* extract a byte portably */
#define byte(x, n) (((x) >> (8 * (n))) & 255)
#define CONST64(n) n ## ULL
/* a simple macro for making hash "process" functions */
#define HASH_PROCESS(func_name, compress_name, state_var, block_size) \
int func_name (hash_state * md, const unsigned char *buf, unsigned long len) \
{ \
unsigned long n; \
if (md-> state_var .curlen > sizeof(md-> state_var .buf)) { \
return CRYPT_INVALID_ARG; \
} \
while (len > 0) { \
if (md-> state_var .curlen == 0 && len >= block_size) { \
compress_name (md, (unsigned char *)buf); \
md-> state_var .length += block_size * 8; \
buf += block_size; \
len -= block_size; \
} else { \
n = MIN(len, (block_size - md-> state_var .curlen)); \
memcpy(md-> state_var .buf + md-> state_var.curlen, buf, (size_t)n); \
md-> state_var .curlen += n; \
buf += n; \
len -= n; \
if (md-> state_var .curlen == block_size) { \
compress_name (md, md-> state_var .buf); \
md-> state_var .length += 8*block_size; \
md-> state_var .curlen = 0; \
} \
} \
} \
return CRYPT_OK; \
}
#define MAXBLOCKSIZE 128
/*
* The mycrypt_macros.h file
*/
/* ---- HELPER MACROS ---- */
#ifdef ENDIAN_NEUTRAL
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#endif /* ENDIAN_NEUTRAL */
#ifdef ENDIAN_LITTLE
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
memcpy(&(x), y, 4);
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#else /* 64-bit words then */
#define STORE32L(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32L(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64L(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64L(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_LITTLE */
#ifdef ENDIAN_BIG
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
memcpy(&(x), y, 4);
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
(((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
#else /* 64-bit words then */
#define STORE32H(x, y) \
{ unsigned long __t = (x); memcpy(y, &__t, 4); }
#define LOAD32H(x, y) \
{ memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64H(x, y) \
{ ulong64 __t = (x); memcpy(y, &__t, 8); }
#define LOAD64H(x, y) \
{ memcpy(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_BIG */
#define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \
((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) )
#define ROL64(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
#undef MAX
#undef MIN
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
/* extract a byte portably */
#define byte(x, n) (((x) >> (8 * (n))) & 255)
/* $Id: s128multab.h 213 2003-12-16 04:27:12Z ggr $ */
/* @(#)TuringMultab.h 1.3 (QUALCOMM) 02/09/03 */
/* Multiplication table for Turing using 0xD02B4367 */
static const ulong32 Multab[256] = {
0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9,
0x97AC41D1, 0x478702B6, 0x7AFAC71F, 0xAAD18478,
0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746,
0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697,
0xC62A4993, 0x16010AF4, 0x2B7CCF5D, 0xFB578C3A,
0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB,
0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5,
0x32938AAD, 0xE2B8C9CA, 0xDFC50C63, 0x0FEE4F04,
0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2,
0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613,
0xA2411084, 0x726A53E3, 0x4F17964A, 0x9F3CD52D,
0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC,
0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51,
0x90D29A29, 0x40F9D94E, 0x7D841CE7, 0xADAF5F80,
0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE,
0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F,
0xCFA869D6, 0x1F832AB1, 0x22FEEF18, 0xF2D5AC7F,
0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE,
0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90,
0x3B11AAE8, 0xEB3AE98F, 0xD6472C26, 0x066C6F41,
0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC,
0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D,
0x6A97A2AA, 0xBABCE1CD, 0x87C12464, 0x57EA6703,
0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2,
0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14,
0x9950BA6C, 0x497BF90B, 0x74063CA2, 0xA42D7FC5,
0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB,
0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A,
0xC8D6B22E, 0x18FDF149, 0x258034E0, 0xF5AB7787,
0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656,
0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568,
0x3C6F7110, 0xEC443277, 0xD139F7DE, 0x0112B4B9,
0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748,
0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699,
0xB008500E, 0x60231369, 0x5D5ED6C0, 0x8D7595A7,
0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476,
0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB,
0x829BDAA3, 0x52B099C4, 0x6FCD5C6D, 0xBFE61F0A,
0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34,
0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5,
0x1249408A, 0xC26203ED, 0xFF1FC644, 0x2F348523,
0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2,
0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC,
0xE6F083B4, 0x36DBC0D3, 0x0BA6057A, 0xDB8D461D,
0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0,
0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61,
0xB7768BF6, 0x675DC891, 0x5A200D38, 0x8A0B4E5F,
0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E,
0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E,
0x8B19FAE6, 0x5B32B981, 0x664F7C28, 0xB6643F4F,
0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71,
0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0,
0xDA9FF2A4, 0x0AB4B1C3, 0x37C9746A, 0xE7E2370D,
0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC,
0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2,
0x2E26319A, 0xFE0D72FD, 0xC370B754, 0x135BF433,
0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5,
0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24,
0xBEF4ABB3, 0x6EDFE8D4, 0x53A22D7D, 0x83896E1A,
0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB,
0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566,
0x8C67211E, 0x5C4C6279, 0x6131A7D0, 0xB11AE4B7,
0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789,
0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658,
};
/* $Id: s128sbox.h 213 2003-12-16 04:27:12Z ggr $ */
/* Sbox for SOBER-128 */
/*
* This is really the combination of two SBoxes; the least significant
* 24 bits comes from:
* 8->32 Sbox generated by Millan et. al. at Queensland University of
* Technology. See: E. Dawson, W. Millan, L. Burnett, G. Carter,
* "On the Design of 8*32 S-boxes". Unpublished report, by the
* Information Systems Research Centre,
* Queensland University of Technology, 1999.
*
* The most significant 8 bits are the Skipjack "F table", which can be
* found at http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack.pdf .
* In this optimised table, though, the intent is to XOR the word from
* the table selected by the high byte with the input word. Thus, the
* high byte is actually the Skipjack F-table entry XORED with its
* table index.
*/
static const ulong32 Sbox[256] = {
0xa3aa1887, 0xd65e435c, 0x0b65c042, 0x800e6ef4,
0xfc57ee20, 0x4d84fed3, 0xf066c502, 0xf354e8ae,
0xbb2ee9d9, 0x281f38d4, 0x1f829b5d, 0x735cdf3c,
0x95864249, 0xbc2e3963, 0xa1f4429f, 0xf6432c35,
0xf7f40325, 0x3cc0dd70, 0x5f973ded, 0x9902dc5e,
0xda175b42, 0x590012bf, 0xdc94d78c, 0x39aab26b,
0x4ac11b9a, 0x8c168146, 0xc3ea8ec5, 0x058ac28f,
0x52ed5c0f, 0x25b4101c, 0x5a2db082, 0x370929e1,
0x2a1843de, 0xfe8299fc, 0x202fbc4b, 0x833915dd,
0x33a803fa, 0xd446b2de, 0x46233342, 0x4fcee7c3,
0x3ad607ef, 0x9e97ebab, 0x507f859b, 0xe81f2e2f,
0xc55b71da, 0xd7e2269a, 0x1339c3d1, 0x7ca56b36,
0xa6c9def2, 0xb5c9fc5f, 0x5927b3a3, 0x89a56ddf,
0xc625b510, 0x560f85a7, 0xace82e71, 0x2ecb8816,
0x44951e2a, 0x97f5f6af, 0xdfcbc2b3, 0xce4ff55d,
0xcb6b6214, 0x2b0b83e3, 0x549ea6f5, 0x9de041af,
0x792f1f17, 0xf73b99ee, 0x39a65ec0, 0x4c7016c6,
0x857709a4, 0xd6326e01, 0xc7b280d9, 0x5cfb1418,
0xa6aff227, 0xfd548203, 0x506b9d96, 0xa117a8c0,
0x9cd5bf6e, 0xdcee7888, 0x61fcfe64, 0xf7a193cd,
0x050d0184, 0xe8ae4930, 0x88014f36, 0xd6a87088,
0x6bad6c2a, 0x1422c678, 0xe9204de7, 0xb7c2e759,
0x0200248e, 0x013b446b, 0xda0d9fc2, 0x0414a895,
0x3a6cc3a1, 0x56fef170, 0x86c19155, 0xcf7b8a66,
0x551b5e69, 0xb4a8623e, 0xa2bdfa35, 0xc4f068cc,
0x573a6acd, 0x6355e936, 0x03602db9, 0x0edf13c1,
0x2d0bb16d, 0x6980b83c, 0xfeb23763, 0x3dd8a911,
0x01b6bc13, 0xf55579d7, 0xf55c2fa8, 0x19f4196e,
0xe7db5476, 0x8d64a866, 0xc06e16ad, 0xb17fc515,
0xc46feb3c, 0x8bc8a306, 0xad6799d9, 0x571a9133,
0x992466dd, 0x92eb5dcd, 0xac118f50, 0x9fafb226,
0xa1b9cef3, 0x3ab36189, 0x347a19b1, 0x62c73084,
0xc27ded5c, 0x6c8bc58f, 0x1cdde421, 0xed1e47fb,
0xcdcc715e, 0xb9c0ff99, 0x4b122f0f, 0xc4d25184,
0xaf7a5e6c, 0x5bbf18bc, 0x8dd7c6e0, 0x5fb7e420,
0x521f523f, 0x4ad9b8a2, 0xe9da1a6b, 0x97888c02,
0x19d1e354, 0x5aba7d79, 0xa2cc7753, 0x8c2d9655,
0x19829da1, 0x531590a7, 0x19c1c149, 0x3d537f1c,
0x50779b69, 0xed71f2b7, 0x463c58fa, 0x52dc4418,
0xc18c8c76, 0xc120d9f0, 0xafa80d4d, 0x3b74c473,
0xd09410e9, 0x290e4211, 0xc3c8082b, 0x8f6b334a,
0x3bf68ed2, 0xa843cc1b, 0x8d3c0ff3, 0x20e564a0,
0xf8f55a4f, 0x2b40f8e7, 0xfea7f15f, 0xcf00fe21,
0x8a6d37d6, 0xd0d506f1, 0xade00973, 0xefbbde36,
0x84670fa8, 0xfa31ab9e, 0xaedab618, 0xc01f52f5,
0x6558eb4f, 0x71b9e343, 0x4b8d77dd, 0x8cb93da6,
0x740fd52d, 0x425412f8, 0xc5a63360, 0x10e53ad0,
0x5a700f1c, 0x8324ed0b, 0xe53dc1ec, 0x1a366795,
0x6d549d15, 0xc5ce46d7, 0xe17abe76, 0x5f48e0a0,
0xd0f07c02, 0x941249b7, 0xe49ed6ba, 0x37a47f78,
0xe1cfffbd, 0xb007ca84, 0xbb65f4da, 0xb59f35da,
0x33d2aa44, 0x417452ac, 0xc0d674a7, 0x2d61a46a,
0xdc63152a, 0x3e12b7aa, 0x6e615927, 0xa14fb118,
0xa151758d, 0xba81687b, 0xe152f0b3, 0x764254ed,
0x34c77271, 0x0a31acab, 0x54f94aec, 0xb9e994cd,
0x574d9e81, 0x5b623730, 0xce8a21e8, 0x37917f0b,
0xe8a9b5d6, 0x9697adf8, 0xf3d30431, 0x5dcac921,
0x76b35d46, 0xaa430a36, 0xc2194022, 0x22bca65e,
0xdaec70ba, 0xdfaea8cc, 0x777bae8b, 0x242924d5,
0x1f098a5a, 0x4b396b81, 0x55de2522, 0x435c1cb8,
0xaeb8fe1d, 0x9db3c697, 0x5b164f83, 0xe0c16376,
0xa319224c, 0xd0203b35, 0x433ac0fe, 0x1466a19a,
0x45f0b24f, 0x51fda998, 0xc0d52d71, 0xfa0896a8,
0xf9e6053f, 0xa4b0d300, 0xd499cbcc, 0xb95e3d40,
};
/* Implementation of SOBER-128 by Tom St Denis.
* Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM.
*/
const struct _prng_descriptor sober128_desc =
{
"sober128", 64,
&sober128_start,
&sober128_add_entropy,
&sober128_ready,
&sober128_read,
};
const struct _prng_descriptor *prng_descriptor[] = {
&sober128_desc
};
/* don't change these... */
#define N 17
#define FOLD N /* how many iterations of folding to do */
#define INITKONST 0x6996c53a /* value of KONST to use during key loading */
#define KEYP 15 /* where to insert key words */
#define FOLDP 4 /* where to insert non-linear feedback */
#define B(x,i) ((unsigned char)(((x) >> (8*i)) & 0xFF))
static ulong32 BYTE2WORD(const unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
return t;
}
#define WORD2BYTE(w, b) STORE32L(b, w)
static void XORWORD(ulong32 w, unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
t ^= w;
STORE32L(t, b);
}
/* give correct offset for the current position of the register,
* where logically R[0] is at position "zero".
*/
#define OFF(zero, i) (((zero)+(i)) % N)
/* step the LFSR */
/* After stepping, "zero" moves right one place */
#define STEP(R,z) \
R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF];
static void cycle(ulong32 *R)
{
ulong32 t;
int i;
STEP(R,0);
t = R[0];
for (i = 1; i < N; ++i) {
R[i-1] = R[i];
}
R[N-1] = t;
}
/* Return a non-linear function of some parts of the register.
*/
#define NLFUNC(c,z) \
{ \
t = c->R[OFF(z,0)] + c->R[OFF(z,16)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = ROR(t, 8); \
t = ((t + c->R[OFF(z,1)]) ^ c->konst) + c->R[OFF(z,6)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = t + c->R[OFF(z,13)]; \
}
static ulong32 nltap(struct sober128_prng *c)
{
ulong32 t;
NLFUNC(c, 0);
return t;
}
/* initialise to known state
*/
int sober128_start(prng_state *prng)
{
int i;
struct sober128_prng *c;
c = &(prng->sober128);
/* Register initialised to Fibonacci numbers */
c->R[0] = 1;
c->R[1] = 1;
for (i = 2; i < N; ++i) {
c->R[i] = c->R[i-1] + c->R[i-2];
}
c->konst = INITKONST;
/* next add_entropy will be the key */
c->flag = 1;
c->set = 0;
return CRYPT_OK;
}
/* Save the current register state
*/
static void s128_savestate(struct sober128_prng *c)
{
int i;
for (i = 0; i < N; ++i) {
c->initR[i] = c->R[i];
}
}
/* initialise to previously saved register state
*/
static void s128_reloadstate(struct sober128_prng *c)
{
int i;
for (i = 0; i < N; ++i) {
c->R[i] = c->initR[i];
}
}
/* Initialise "konst"
*/
static void s128_genkonst(struct sober128_prng *c)
{
ulong32 newkonst;
do {
cycle(c->R);
newkonst = nltap(c);
} while ((newkonst & 0xFF000000) == 0);
c->konst = newkonst;
}
/* Load key material into the register
*/
#define ADDKEY(k) \
c->R[KEYP] += (k);
#define XORNL(nl) \
c->R[FOLDP] ^= (nl);
/* nonlinear diffusion of register for key */
#define DROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); c->R[OFF((z+1),FOLDP)] ^= t;
static void s128_diffuse(struct sober128_prng *c)
{
ulong32 t;
/* relies on FOLD == N == 17! */
DROUND(0);
DROUND(1);
DROUND(2);
DROUND(3);
DROUND(4);
DROUND(5);
DROUND(6);
DROUND(7);
DROUND(8);
DROUND(9);
DROUND(10);
DROUND(11);
DROUND(12);
DROUND(13);
DROUND(14);
DROUND(15);
DROUND(16);
}
int sober128_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng)
{
struct sober128_prng *c;
ulong32 i, k;
c = &(prng->sober128);
if (c->flag == 1) {
/* this is the first call to the add_entropy so this input is the key */
/* len must be multiple of 4 bytes */
assert ((len & 3) == 0);
for (i = 0; i < len; i += 4) {
k = BYTE2WORD(&buf[i]);
ADDKEY(k);
cycle(c->R);
XORNL(nltap(c));
}
/* also fold in the length of the key */
ADDKEY(len);
/* now diffuse */
s128_diffuse(c);
s128_genkonst(c);
s128_savestate(c);
c->nbuf = 0;
c->flag = 0;
c->set = 1;
} else {
/* ok we are adding an IV then... */
s128_reloadstate(c);
/* len must be multiple of 4 bytes */
assert ((len & 3) == 0);
for (i = 0; i < len; i += 4) {
k = BYTE2WORD(&buf[i]);
ADDKEY(k);
cycle(c->R);
XORNL(nltap(c));
}
/* also fold in the length of the key */
ADDKEY(len);
/* now diffuse */
s128_diffuse(c);
c->nbuf = 0;
}
return CRYPT_OK;
}
int sober128_ready(prng_state *prng)
{
return prng->sober128.set == 1 ? CRYPT_OK : CRYPT_ERROR;
}
/* XOR pseudo-random bytes into buffer
*/
#define SROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); XORWORD(t, buf+(z*4));
unsigned long sober128_read(unsigned char *buf, unsigned long nbytes, prng_state *prng)
{
struct sober128_prng *c;
ulong32 t, tlen;
c = &(prng->sober128);
t = 0;
tlen = nbytes;
/* handle any previously buffered bytes */
while (c->nbuf != 0 && nbytes != 0) {
*buf++ ^= c->sbuf & 0xFF;
c->sbuf >>= 8;
c->nbuf -= 8;
--nbytes;
}
#ifndef SMALL_CODE
/* do lots at a time, if there's enough to do */
while (nbytes >= N*4) {
SROUND(0);
SROUND(1);
SROUND(2);
SROUND(3);
SROUND(4);
SROUND(5);
SROUND(6);
SROUND(7);
SROUND(8);
SROUND(9);
SROUND(10);
SROUND(11);
SROUND(12);
SROUND(13);
SROUND(14);
SROUND(15);
SROUND(16);
buf += 4*N;
nbytes -= 4*N;
}
#endif
/* do small or odd size buffers the slow way */
while (4 <= nbytes) {
cycle(c->R);
t = nltap(c);
XORWORD(t, buf);
buf += 4;
nbytes -= 4;
}
/* handle any trailing bytes */
if (nbytes != 0) {
cycle(c->R);
c->sbuf = nltap(c);
c->nbuf = 32;
while (c->nbuf != 0 && nbytes != 0) {
*buf++ ^= c->sbuf & 0xFF;
c->sbuf >>= 8;
c->nbuf -= 8;
--nbytes;
}
}
return tlen;
}
/* SHA1 code by Tom St Denis */
const struct _hash_descriptor sha1_desc =
{
"sha1",
2,
20,
64,
/* DER identifier */
{ 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E,
0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14 },
15,
&sha1_init,
&sha1_process,
&sha1_done,
};
#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)
static void sha1_compress(hash_state *md, const unsigned char *buf)
{
ulong32 a,b,c,d,e,W[80],i;
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32H(W[i], buf + (4*i));
}
/* copy state */
a = md->sha1.state[0];
b = md->sha1.state[1];
c = md->sha1.state[2];
d = md->sha1.state[3];
e = md->sha1.state[4];
/* expand it */
for (i = 16; i < 80; i++) {
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
}
/* compress */
/* round one */
#define FF0(a,b,c,d,e,i) e = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROL(b, 30);
#define FF1(a,b,c,d,e,i) e = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROL(b, 30);
#define FF2(a,b,c,d,e,i) e = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROL(b, 30);
#define FF3(a,b,c,d,e,i) e = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROL(b, 30);
for (i = 0; i < 20; ) {
FF0(a,b,c,d,e,i++);
FF0(e,a,b,c,d,i++);
FF0(d,e,a,b,c,i++);
FF0(c,d,e,a,b,i++);
FF0(b,c,d,e,a,i++);
}
/* round two */
for (; i < 40; ) {
FF1(a,b,c,d,e,i++);
FF1(e,a,b,c,d,i++);
FF1(d,e,a,b,c,i++);
FF1(c,d,e,a,b,i++);
FF1(b,c,d,e,a,i++);
}
/* round three */
for (; i < 60; ) {
FF2(a,b,c,d,e,i++);
FF2(e,a,b,c,d,i++);
FF2(d,e,a,b,c,i++);
FF2(c,d,e,a,b,i++);
FF2(b,c,d,e,a,i++);
}
/* round four */
for (; i < 80; ) {
FF3(a,b,c,d,e,i++);
FF3(e,a,b,c,d,i++);
FF3(d,e,a,b,c,i++);
FF3(c,d,e,a,b,i++);
FF3(b,c,d,e,a,i++);
}
#undef FF0
#undef FF1
#undef FF2
#undef FF3
/* store */
md->sha1.state[0] = md->sha1.state[0] + a;
md->sha1.state[1] = md->sha1.state[1] + b;
md->sha1.state[2] = md->sha1.state[2] + c;
md->sha1.state[3] = md->sha1.state[3] + d;
md->sha1.state[4] = md->sha1.state[4] + e;
}
void sha1_init(hash_state * md)
{
md->sha1.state[0] = 0x67452301UL;
md->sha1.state[1] = 0xefcdab89UL;
md->sha1.state[2] = 0x98badcfeUL;
md->sha1.state[3] = 0x10325476UL;
md->sha1.state[4] = 0xc3d2e1f0UL;
md->sha1.curlen = 0;
md->sha1.length = 0;
}
HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
int sha1_done(hash_state * md, unsigned char *hash)
{
int i;
/*
* Assert there isn't an invalid argument
*/
assert (md->sha1.curlen < sizeof (md->sha1.buf));
/* increase the length of the message */
md->sha1.length += md->sha1.curlen * 8;
/* append the '1' bit */
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha1.curlen > 56) {
while (md->sha1.curlen < 64) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
sha1_compress(md, md->sha1.buf);
md->sha1.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha1.curlen < 56) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha1.length, md->sha1.buf+56);
sha1_compress(md, md->sha1.buf);
/* copy output */
for (i = 0; i < 5; i++) {
STORE32H(md->sha1.state[i], hash+(4*i));
}
return CRYPT_OK;
}
/* Submited by Dobes Vandermeer (dobes@smartt.com) */
/*
(1) append zeros to the end of K to create a B byte string
(e.g., if K is of length 20 bytes and B=64, then K will be
appended with 44 zero bytes 0x00)
(2) XOR (bitwise exclusive-OR) the B byte string computed in step
(1) with ipad (ipad = the byte 0x36 repeated B times)
(3) append the stream of data 'text' to the B byte string resulting
from step (2)
(4) apply H to the stream generated in step (3)
(5) XOR (bitwise exclusive-OR) the B byte string computed in
step (1) with opad (opad = the byte 0x5C repeated B times.)
(6) append the H result from step (4) to the B byte string
resulting from step (5)
(7) apply H to the stream generated in step (6) and output
the result
*/
int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen)
{
unsigned char buf[128];
unsigned long hashsize;
unsigned long i;
int err;
hmac->hash = hash;
hashsize = hash_descriptor[hash]->hashsize;
/* valid key length? */
assert (keylen > 0);
assert (keylen <= hash_descriptor[hash]->blocksize);
memcpy(hmac->key, key, (size_t)keylen);
if(keylen < hash_descriptor[hash]->blocksize) {
memset((hmac->key) + keylen, 0, (size_t)(hash_descriptor[hash]->blocksize - keylen));
}
// Create the initial vector for step (3)
for(i=0; i < hash_descriptor[hash]->blocksize; i++) {
buf[i] = hmac->key[i] ^ 0x36;
}
// Pre-pend that to the hash data
hash_descriptor[hash]->init(&hmac->md);
err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize);
return err;
}
int hmac_process(hmac_state *hmac, const unsigned char *buf, unsigned long len)
{
return hash_descriptor[hmac->hash]->process(&hmac->md, buf, len);
}
/* Submited by Dobes Vandermeer (dobes@smartt.com) */
/*
(1) append zeros to the end of K to create a B byte string
(e.g., if K is of length 20 bytes and B=64, then K will be
appended with 44 zero bytes 0x00)
(2) XOR (bitwise exclusive-OR) the B byte string computed in step
(1) with ipad (ipad = the byte 0x36 repeated B times)
(3) append the stream of data 'text' to the B byte string resulting
from step (2)
(4) apply H to the stream generated in step (3)
(5) XOR (bitwise exclusive-OR) the B byte string computed in
step (1) with opad (opad = the byte 0x5C repeated B times.)
(6) append the H result from step (4) to the B byte string
resulting from step (5)
(7) apply H to the stream generated in step (6) and output
the result
*/
int hmac_done(hmac_state *hmac, unsigned char *hashOut, unsigned long *outlen)
{
unsigned char buf[128];
unsigned char isha[256];
unsigned long hashsize, i;
int hash, err;
/* test hash */
hash = hmac->hash;
/* get the hash message digest size */
hashsize = hash_descriptor[hash]->hashsize;
// Get the hash of the first HMAC vector plus the data
if ((err = hash_descriptor[hash]->done(&hmac->md, isha)) != CRYPT_OK) {
goto __ERR;
}
// Create the second HMAC vector vector for step (3)
for(i=0; i < hash_descriptor[hash]->blocksize; i++) {
buf[i] = hmac->key[i] ^ 0x5C;
}
// Now calculate the "outer" hash for step (5), (6), and (7)
hash_descriptor[hash]->init(&hmac->md);
if ((err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize)) != CRYPT_OK) {
goto __ERR;
}
if ((err = hash_descriptor[hash]->process(&hmac->md, isha, hashsize)) != CRYPT_OK) {
goto __ERR;
}
if ((err = hash_descriptor[hash]->done(&hmac->md, buf)) != CRYPT_OK) {
goto __ERR;
}
// copy to output
for (i = 0; i < hashsize && i < *outlen; i++) {
hashOut[i] = buf[i];
}
*outlen = i;
err = CRYPT_OK;
__ERR:
return err;
}
const struct _hash_descriptor *hash_descriptor[] =
{
&sha1_desc
};
/* portable way to get secure random bits to feed a PRNG */
/* on *NIX read /dev/random */
static unsigned long rng_nix(unsigned char *buf, unsigned long len,
void (*callback)(void))
{
int fd;
unsigned long rb;
fd = open ("/dev/urandom", O_RDONLY);
rb = (unsigned long)read (fd, buf, len);
close (fd);
return (rb);
}
/* on ANSI C platforms with 100 < CLOCKS_PER_SEC < 10000 */
#if defined(XCLOCKS_PER_SEC)
#define ANSI_RNG
static unsigned long rng_ansic(unsigned char *buf, unsigned long len,
void (*callback)(void))
{
clock_t t1;
int l, acc, bits, a, b;
if (XCLOCKS_PER_SEC < 100 || XCLOCKS_PER_SEC > 10000) {
return 0;
}
l = len;
bits = 8;
acc = a = b = 0;
while (len--) {
if (callback != NULL) callback();
while (bits--) {
do {
t1 = XCLOCK(); while (t1 == XCLOCK()) a ^= 1;
t1 = XCLOCK(); while (t1 == XCLOCK()) b ^= 1;
} while (a == b);
acc = (acc << 1) | a;
}
*buf++ = acc;
acc = 0;
bits = 8;
}
acc = bits = a = b = 0;
return l;
}
#endif
unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,
void (*callback)(void))
{
unsigned long x;
x = rng_nix(buf, len, callback); if (x != 0) { return x; }
#ifdef ANSI_RNG
x = rng_ansic(buf, len, callback); if (x != 0) { return x; }
#endif
return 0;
}
int rng_make_prng(int bits, int wprng, prng_state *prng,
void (*callback)(void))
{
unsigned char buf[256];
int err;
if (bits < 64 || bits > 1024) {
return CRYPT_INVALID_PRNGSIZE;
}
if ((err = prng_descriptor[wprng]->start(prng)) != CRYPT_OK) {
return err;
}
bits = ((bits/8)+((bits&7)!=0?1:0)) * 2;
if (rng_get_bytes(buf, (unsigned long)bits, callback) != (unsigned long)bits) {
return CRYPT_ERROR_READPRNG;
}
if ((err = prng_descriptor[wprng]->add_entropy(buf, (unsigned long)bits, prng)) != CRYPT_OK) {
return err;
}
if ((err = prng_descriptor[wprng]->ready(prng)) != CRYPT_OK) {
return err;
}
return CRYPT_OK;
}

File Metadata

Mime Type
text/x-c
Expires
Wed, Feb 26, 9:53 PM (6 h, 15 m ago)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1434591
Default Alt Text
crypto.c (45 KB)

Event Timeline