Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/libknet/internals.h b/libknet/internals.h
index 3e4bbfaf..20f7e105 100644
--- a/libknet/internals.h
+++ b/libknet/internals.h
@@ -1,514 +1,527 @@
/*
* Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __KNET_INTERNALS_H__
#define __KNET_INTERNALS_H__
/*
* NOTE: you shouldn't need to include this header normally
*/
#include <pthread.h>
#include "libknet.h"
#include "onwire.h"
#include "compat.h"
#include "threads_common.h"
#define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE
#define KNET_DATABUFSIZE_CRYPT_PAD 1024
#define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD
#define KNET_DATABUFSIZE_COMPRESS_PAD 1024
#define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD
#define KNET_RING_RCVBUFF 8388608
#define PCKT_FRAG_MAX UINT8_MAX
#define PCKT_RX_BUFS 512
#define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX
typedef void *knet_transport_link_t; /* per link transport handle */
typedef void *knet_transport_t; /* per knet_h transport handle */
struct knet_transport_ops; /* Forward because of circular dependancy */
struct knet_mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */
};
struct knet_link {
/* required */
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
/* configurable */
unsigned int dynamic; /* see KNET_LINK_DYN_ define above */
uint8_t priority; /* higher priority == preferred for A/P */
unsigned long long ping_interval; /* interval */
unsigned long long pong_timeout; /* timeout */
unsigned long long pong_timeout_adj; /* timeout adjusted for latency */
uint8_t pong_timeout_backoff; /* see link.h for definition */
unsigned int latency_fix; /* precision */
uint8_t pong_count; /* how many ping/pong to send/receive before link is up */
uint64_t flags;
/* status */
struct knet_link_status status;
/* internals */
uint8_t link_id;
uint8_t transport_type; /* #defined constant from API */
knet_transport_link_t transport_link; /* link_info_t from transport */
int outsock;
unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/
unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */
unsigned int latency_exp;
uint8_t received_pong;
struct timespec ping_last;
/* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */
uint32_t proto_overhead;
struct timespec pmtud_last;
uint32_t last_ping_size;
uint32_t last_good_mtu;
uint32_t last_bad_mtu;
uint32_t last_sent_mtu;
uint32_t last_recv_mtu;
uint8_t has_valid_mtu;
};
#define KNET_CBUFFER_SIZE 4096
struct knet_host_defrag_buf {
char buf[KNET_DATABUFSIZE];
uint8_t in_use; /* 0 buffer is free, 1 is in use */
seq_num_t pckt_seq; /* identify the pckt we are receiving */
uint8_t frag_recv; /* how many frags did we receive */
uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */
uint8_t last_first; /* special case if we receive the last fragment first */
uint16_t frag_size; /* normal frag size (not the last one) */
uint16_t last_frag_size; /* the last fragment might not be aligned with MTU size */
struct timespec last_update; /* keep time of the last pckt */
};
struct knet_host {
/* required */
knet_node_id_t host_id;
/* configurable */
uint8_t link_handler_policy;
char name[KNET_MAX_HOST_LEN];
/* status */
struct knet_host_status status;
/* internals */
char circular_buffer[KNET_CBUFFER_SIZE];
seq_num_t rx_seq_num;
seq_num_t untimed_rx_seq_num;
seq_num_t timed_rx_seq_num;
uint8_t got_data;
/* defrag/reassembly buffers */
struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK];
char circular_buffer_defrag[KNET_CBUFFER_SIZE];
/* link stuff */
struct knet_link link[KNET_MAX_LINK];
uint8_t active_link_entries;
uint8_t active_links[KNET_MAX_LINK];
struct knet_host *next;
};
struct knet_sock {
int sockfd[2]; /* sockfd[0] will always be application facing
* and sockfd[1] internal if sockpair has been created by knet */
int is_socket; /* check if it's a socket for recvmmsg usage */
int is_created; /* knet created this socket and has to clean up on exit/del */
int in_use; /* set to 1 if it's use, 0 if free */
int has_error; /* set to 1 if there were errors reading from the sock
* and socket has been removed from epoll */
};
struct knet_fd_trackers {
uint8_t transport; /* transport type (UDP/SCTP...) */
uint8_t data_type; /* internal use for transport to define what data are associated
* to this fd */
void *data; /* pointer to the data */
};
#define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4
#define KNET_MAX_COMPRESS_METHODS UINT8_MAX
struct knet_handle_stats_extra {
uint64_t tx_crypt_pmtu_packets;
uint64_t tx_crypt_pmtu_reply_packets;
uint64_t tx_crypt_ping_packets;
uint64_t tx_crypt_pong_packets;
};
struct knet_handle {
knet_node_id_t host_id;
unsigned int enabled:1;
struct knet_sock sockfd[KNET_DATAFD_MAX];
int logfd;
uint8_t log_levels[KNET_MAX_SUBSYSTEMS];
int hostsockfd[2];
int dstsockfd[2];
int send_to_links_epollfd;
int recv_from_links_epollfd;
int dst_link_handler_epollfd;
unsigned int pmtud_interval;
unsigned int data_mtu; /* contains the max data size that we can send onwire
* without frags */
struct knet_host *host_head;
struct knet_host *host_index[KNET_MAX_HOST];
knet_transport_t transports[KNET_MAX_TRANSPORTS+1];
struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */
struct knet_handle_stats stats;
struct knet_handle_stats_extra stats_extra;
uint32_t reconnect_int;
knet_node_id_t host_ids[KNET_MAX_HOST];
size_t host_ids_entries;
struct knet_header *recv_from_sock_buf;
struct knet_header *send_to_links_buf[PCKT_FRAG_MAX];
struct knet_header *recv_from_links_buf[PCKT_RX_BUFS];
struct knet_header *pingbuf;
struct knet_header *pmtudbuf;
uint8_t threads_status[KNET_THREAD_MAX];
pthread_mutex_t threads_status_mutex;
pthread_t send_to_links_thread;
pthread_t recv_from_links_thread;
pthread_t heartbt_thread;
pthread_t dst_link_handler_thread;
pthread_t pmtud_link_handler_thread;
pthread_rwlock_t global_rwlock; /* global config lock */
pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */
pthread_cond_t pmtud_cond; /* conditional for above */
pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */
pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */
pthread_mutex_t backoff_mutex; /* used to protect dst_link->pong_timeout_adj */
pthread_mutex_t kmtu_mutex; /* used to protect kernel_mtu */
uint32_t kernel_mtu; /* contains the MTU detected by the kernel on a given link */
int pmtud_waiting;
int pmtud_running;
int pmtud_forcerun;
int pmtud_abort;
struct crypto_instance *crypto_instance;
size_t sec_header_size;
size_t sec_block_size;
size_t sec_hash_size;
size_t sec_salt_size;
unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX];
unsigned char *recv_from_links_buf_crypt;
unsigned char *recv_from_links_buf_decrypt;
unsigned char *pingbuf_crypt;
unsigned char *pmtudbuf_crypt;
int compress_model;
int compress_level;
size_t compress_threshold;
void *compress_int_data[KNET_MAX_COMPRESS_METHODS]; /* for compress method private data */
unsigned char *recv_from_links_buf_decompress;
unsigned char *send_to_links_buf_compress;
seq_num_t tx_seq_num;
pthread_mutex_t tx_seq_num_mutex;
uint8_t has_loop_link;
uint8_t loop_link;
void *dst_host_filter_fn_private_data;
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_node_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries);
void *pmtud_notify_fn_private_data;
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu);
void *host_status_change_notify_fn_private_data;
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external);
void *sock_notify_fn_private_data;
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno);
int fini_in_progress;
uint64_t flags;
};
extern pthread_rwlock_t shlib_rwlock; /* global shared lib load lock */
/*
* NOTE: every single operation must be implementend
* for every protocol.
*/
+/*
+ * make it easier to map values in transports.c
+ */
+#define TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED 0
+#define TRANSPORT_PROTO_IS_CONNECTION_ORIENTED 1
+
typedef struct knet_transport_ops {
/*
* transport generic information
*/
const char *transport_name;
const uint8_t transport_id;
const uint8_t built_in;
+/*
+ * connection oriented protocols like SCTP
+ * don´t need dst_addr in sendto calls and
+ * on some OSes are considered EINVAL.
+ */
+ uint8_t transport_is_connection_oriented;
+
uint32_t transport_mtu_overhead;
/*
* transport init must allocate the new transport
* and perform all internal initializations
* (threads, lists, etc).
*/
int (*transport_init)(knet_handle_t knet_h);
/*
* transport free must releases _all_ resources
* allocated by tranport_init
*/
int (*transport_free)(knet_handle_t knet_h);
/*
* link operations should take care of all the
* sockets and epoll management for a given link/transport set
* transport_link_disable should return err = -1 and errno = EBUSY
* if listener is still in use, and any other errno in case
* the link cannot be disabled.
*
* set_config/clear_config are invoked in global write lock context
*/
int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link);
int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link);
/*
* transport callback for incoming dynamic connections
* this is called in global read lock context
*/
int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link);
/*
* per transport error handling of recvmmsg
* (see _handle_recv_from_links comments for details)
*/
/*
* transport_rx_sock_error is invoked when recvmmsg returns <= 0
*
* transport_rx_sock_error is invoked with both global_rdlock
*/
int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* transport_tx_sock_error is invoked with global_rwlock and
* it's invoked when sendto or sendmmsg returns =< 0
*
* it should return:
* -1 on internal error
* 0 ignore error and continue
* 1 retry
* any sleep or wait action should happen inside the transport code
*/
int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* this function is called on _every_ received packet
* to verify if the packet is data or internal protocol error handling
*
* it should return:
* -1 on error
* 0 packet is not data and we should continue the packet process loop
* 1 packet is not data and we should STOP the packet process loop
* 2 packet is data and should be parsed as such
*
* transport_rx_is_data is invoked with both global_rwlock
* and fd_tracker read lock (from RX thread)
*/
int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
} knet_transport_ops_t;
socklen_t sockaddr_len(const struct sockaddr_storage *ss);
struct pretty_names {
const char *name;
uint8_t val;
};
/**
* This is a kernel style list implementation.
*
* @author Steven Dake <sdake@redhat.com>
*/
struct knet_list_head {
struct knet_list_head *next;
struct knet_list_head *prev;
};
/**
* @def KNET_LIST_DECLARE()
* Declare and initialize a list head.
*/
#define KNET_LIST_DECLARE(name) \
struct knet_list_head name = { &(name), &(name) }
#define KNET_INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/**
* Initialize the list entry.
*
* Points next and prev pointers to head.
* @param head pointer to the list head
*/
static inline void knet_list_init(struct knet_list_head *head)
{
head->next = head;
head->prev = head;
}
/**
* Add this element to the list.
*
* @param element the new element to insert.
* @param head pointer to the list head
*/
static inline void knet_list_add(struct knet_list_head *element,
struct knet_list_head *head)
{
head->next->prev = element;
element->next = head->next;
element->prev = head;
head->next = element;
}
/**
* Add to the list (but at the end of the list).
*
* @param element pointer to the element to add
* @param head pointer to the list head
* @see knet_list_add()
*/
static inline void knet_list_add_tail(struct knet_list_head *element,
struct knet_list_head *head)
{
head->prev->next = element;
element->next = head;
element->prev = head->prev;
head->prev = element;
}
/**
* Delete an entry from the list.
*
* @param _remove the list item to remove
*/
static inline void knet_list_del(struct knet_list_head *_remove)
{
_remove->next->prev = _remove->prev;
_remove->prev->next = _remove->next;
}
/**
* Replace old entry by new one
* @param old: the element to be replaced
* @param new: the new element to insert
*/
static inline void knet_list_replace(struct knet_list_head *old,
struct knet_list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
/**
* Tests whether list is the last entry in list head
* @param list: the entry to test
* @param head: the head of the list
* @return boolean true/false
*/
static inline int knet_list_is_last(const struct knet_list_head *list,
const struct knet_list_head *head)
{
return list->next == head;
}
/**
* A quick test to see if the list is empty (pointing to it's self).
* @param head pointer to the list head
* @return boolean true/false
*/
static inline int32_t knet_list_empty(const struct knet_list_head *head)
{
return head->next == head;
}
/**
* Get the struct for this entry
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_entry(ptr,type,member)\
((type *)((char *)(ptr)-(char*)(&((type *)0)->member)))
/**
* Get the first element from a list
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_first_entry(ptr, type, member) \
knet_list_entry((ptr)->next, type, member)
/**
* Iterate over a list
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* Iterate over a list backwards
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each_reverse(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* Iterate over a list safe against removal of list entry
* @param pos: the &struct list_head to use as a loop counter.
* @param n: another &struct list_head to use as temporary storage
* @param head: the head for your list.
*/
#define knet_list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* Iterate over list of given type
* @param pos: the type * to use as a loop counter.
* @param head: the head for your list.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_for_each_entry(pos, head, member) \
for (pos = knet_list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = knet_list_entry(pos->member.next, typeof(*pos), member))
#endif
diff --git a/libknet/tests/api_knet_send.c b/libknet/tests/api_knet_send.c
index e7f84565..3dfb6d0b 100644
--- a/libknet/tests/api_knet_send.c
+++ b/libknet/tests/api_knet_send.c
@@ -1,320 +1,326 @@
/*
* Copyright (C) 2016-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include "libknet.h"
#include "internals.h"
#include "netutils.h"
#include "test-common.h"
static int private_data;
static void sock_notify(void *pvt_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno)
{
return;
}
-static void test(void)
+static void test(uint8_t transport)
{
knet_handle_t knet_h;
int logfds[2];
int datafd = 0;
int8_t channel = 0;
struct knet_link_status link_status;
char send_buff[KNET_MAX_PACKET_SIZE];
char recv_buff[KNET_MAX_PACKET_SIZE];
ssize_t send_len = 0;
int recv_len = 0;
int savederrno;
struct sockaddr_storage lo;
if (make_local_sockaddr(&lo, 0) < 0) {
printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno));
exit(FAIL);
}
memset(send_buff, 0, sizeof(send_buff));
printf("Test knet_send incorrect knet_h\n");
if ((!knet_send(NULL, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno));
exit(FAIL);
}
setup_logpipes(logfds);
knet_h = knet_handle_start(logfds, KNET_LOG_DEBUG);
printf("Test knet_send with no send_buff\n");
if ((!knet_send(knet_h, NULL, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid send_buff or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid send_buff len (0)\n");
if ((!knet_send(knet_h, send_buff, 0, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid send_buff len (0) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid send_buff len (> KNET_MAX_PACKET_SIZE)\n");
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE + 1, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid send_buff len (> KNET_MAX_PACKET_SIZE) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid channel (-1)\n");
channel = -1;
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid channel (-1) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with invalid channel (KNET_DATAFD_MAX)\n");
channel = KNET_DATAFD_MAX;
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid channel (KNET_DATAFD_MAX) or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with unconfigured channel\n");
channel = 0;
if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) {
printf("knet_send accepted invalid unconfigured channel or returned incorrect error: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
printf("Test knet_send with valid data\n");
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_host_add(knet_h, 1) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
- if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) {
+ if (knet_link_set_config(knet_h, 1, 0, transport, &lo, &lo, 0) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (wait_for_host(knet_h, 1, 10, logfds[0], stdout) < 0) {
printf("timeout waiting for host to be reachable");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel);
if (send_len <= 0) {
printf("knet_send failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (send_len != sizeof(send_buff)) {
printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
flush_logs(logfds[0], stdout);
if (wait_for_packet(knet_h, 10, datafd)) {
printf("Error waiting for packet: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel);
savederrno = errno;
if (recv_len != send_len) {
printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) {
printf("helgrind exception. this is normal due to possible timeouts\n");
exit(PASS);
}
exit(FAIL);
}
if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) {
printf("recv and send buffers are different!\n");
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
/* A sanity check on the stats */
if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) {
printf("knet_link_get_status failed: %s\n", strerror(errno));
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
exit(FAIL);
}
if (link_status.stats.tx_data_packets != 2 ||
link_status.stats.rx_data_packets != 2 ||
link_status.stats.tx_data_bytes < KNET_MAX_PACKET_SIZE ||
link_status.stats.rx_data_bytes < KNET_MAX_PACKET_SIZE ||
link_status.stats.tx_data_bytes > KNET_MAX_PACKET_SIZE*2 ||
link_status.stats.rx_data_bytes > KNET_MAX_PACKET_SIZE*2) {
printf("stats look wrong: tx_packets: %" PRIu64 " (%" PRIu64 " bytes), rx_packets: %" PRIu64 " (%" PRIu64 " bytes)\n",
link_status.stats.tx_data_packets,
link_status.stats.tx_data_bytes,
link_status.stats.rx_data_packets,
link_status.stats.rx_data_bytes);
}
flush_logs(logfds[0], stdout);
knet_link_set_enable(knet_h, 1, 0, 0);
knet_link_clear_config(knet_h, 1, 0);
knet_host_remove(knet_h, 1);
knet_handle_free(knet_h);
flush_logs(logfds[0], stdout);
close_logpipes(logfds);
}
int main(int argc, char *argv[])
{
- test();
+ printf("Testing with UDP\n");
+ test(KNET_TRANSPORT_UDP);
+
+#ifdef HAVE_NETINET_SCTP_H
+ printf("Testing with SCTP\n");
+ test(KNET_TRANSPORT_SCTP);
+#endif
return PASS;
}
diff --git a/libknet/tests/knet_bench.c b/libknet/tests/knet_bench.c
index 2871feb8..f60b5b1b 100644
--- a/libknet/tests/knet_bench.c
+++ b/libknet/tests/knet_bench.c
@@ -1,1296 +1,1296 @@
/*
* Copyright (C) 2016-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <pthread.h>
#include <sys/types.h>
#include <inttypes.h>
#include "libknet.h"
#include "compat.h"
#include "internals.h"
#include "netutils.h"
#include "transport_common.h"
#include "threads_common.h"
#include "test-common.h"
#define MAX_NODES 128
static int senderid = -1;
static int thisnodeid = -1;
static knet_handle_t knet_h;
static int datafd = 0;
static int8_t channel = 0;
static int globallistener = 0;
static int continous = 0;
static int show_stats = 0;
static struct sockaddr_storage allv4;
static struct sockaddr_storage allv6;
static int broadcast_test = 1;
static pthread_t rx_thread = (pthread_t)NULL;
static char *rx_buf[PCKT_FRAG_MAX];
static int wait_for_perf_rx = 0;
static char *compresscfg = NULL;
static char *cryptocfg = NULL;
static int machine_output = 0;
static int bench_shutdown_in_progress = 0;
static pthread_mutex_t shutdown_mutex = PTHREAD_MUTEX_INITIALIZER;
#define TEST_PING 0
#define TEST_PING_AND_DATA 1
#define TEST_PERF_BY_SIZE 2
#define TEST_PERF_BY_TIME 3
static int test_type = TEST_PING;
#define TEST_START 2
#define TEST_STOP 4
#define TEST_COMPLETE 6
#define ONE_GIGABYTE 1073741824
static uint64_t perf_by_size_size = 1 * ONE_GIGABYTE;
static uint64_t perf_by_time_secs = 10;
struct node {
int nodeid;
int links;
uint8_t transport[KNET_MAX_LINK];
struct sockaddr_storage address[KNET_MAX_LINK];
};
static void print_help(void)
{
printf("knet_bench usage:\n");
printf(" -h print this help (no really)\n");
printf(" -d enable debug logs (default INFO)\n");
printf(" -c [implementation]:[crypto]:[hashing] crypto configuration. (default disabled)\n");
printf(" Example: -c nss:aes128:sha1\n");
printf(" -z [implementation]:[level]:[threshold] compress configuration. (default disabled)\n");
printf(" Example: -z zlib:5:100\n");
printf(" -p [active|passive|rr] (default: passive)\n");
printf(" -P [UDP|SCTP] (default: UDP) protocol (transport) to use for all links\n");
printf(" -t [nodeid] This nodeid (required)\n");
printf(" -n [nodeid],[proto]/[link1_ip],[link2_..] Other nodes information (at least one required)\n");
printf(" Example: -n 1,192.168.8.1,SCTP/3ffe::8:1,UDP/172...\n");
printf(" can be repeated up to %d and should contain also the localnode info\n", MAX_NODES);
printf(" -b [port] baseport (default: 50000)\n");
printf(" -l enable global listener on 0.0.0.0/:: (default: off, incompatible with -o)\n");
printf(" -o enable baseport offset per nodeid\n");
printf(" -m change PMTUd interval in seconds (default: 60)\n");
printf(" -w dont wait for all nodes to be up before starting the test (default: wait)\n");
printf(" -T [ping|ping_data|perf-by-size|perf-by-time]\n");
printf(" test type (default: ping)\n");
printf(" ping: will wait for all hosts to join the knet network, sleep 5 seconds and quit\n");
printf(" ping_data: will wait for all hosts to join the knet network, sends some data to all nodes and quit\n");
printf(" perf-by-size: will wait for all hosts to join the knet network,\n");
printf(" perform a series of benchmarks by transmitting a known\n");
printf(" size/quantity of packets and measuring the time, then quit\n");
printf(" perf-by-time: will wait for all hosts to join the knet network,\n");
printf(" perform a series of benchmarks by transmitting a known\n");
printf(" size of packets for a given amount of time (10 seconds)\n");
printf(" and measuring the quantity of data transmitted, then quit\n");
printf(" -s nodeid that will generate traffic for benchmarks\n");
printf(" -S [size|seconds] when used in combination with -T perf-by-size it indicates how many GB of traffic to generate for the test. (default: 1GB)\n");
printf(" when used in combination with -T perf-by-time it indicates how many Seconds of traffic to generate for the test. (default: 10 seconds)\n");
printf(" -C repeat the test continously (default: off)\n");
printf(" -X[XX] show stats at the end of the run (default: 1)\n");
printf(" 1: show handle stats, 2: show summary link stats\n");
printf(" 3: show detailed link stats\n");
printf(" -a enable machine parsable output (default: off).\n");
}
static void parse_nodes(char *nodesinfo[MAX_NODES], int onidx, int port, struct node nodes[MAX_NODES], int *thisidx)
{
int i;
char *temp = NULL;
char port_str[10];
memset(port_str, 0, sizeof(port_str));
sprintf(port_str, "%d", port);
for (i = 0; i < onidx; i++) {
nodes[i].nodeid = atoi(strtok(nodesinfo[i], ","));
if ((nodes[i].nodeid < 0) || (nodes[i].nodeid > KNET_MAX_HOST)) {
printf("Invalid nodeid: %d (0 - %d)\n", nodes[i].nodeid, KNET_MAX_HOST);
exit(FAIL);
}
if (thisnodeid == nodes[i].nodeid) {
*thisidx = i;
}
while((temp = strtok(NULL, ","))) {
char *slash = NULL;
uint8_t transport;
if (nodes[i].links == KNET_MAX_LINK) {
printf("Too many links configured. Max %d\n", KNET_MAX_LINK);
exit(FAIL);
}
slash = strstr(temp, "/");
if (slash) {
memset(slash, 0, 1);
transport = knet_get_transport_id_by_name(temp);
if (transport == KNET_MAX_TRANSPORTS) {
printf("Unknown transport: %s\n", temp);
exit(FAIL);
}
nodes[i].transport[nodes[i].links] = transport;
temp = slash + 1;
} else {
nodes[i].transport[nodes[i].links] = KNET_TRANSPORT_UDP;
}
if (knet_strtoaddr(temp, port_str,
&nodes[i].address[nodes[i].links],
sizeof(struct sockaddr_storage)) < 0) {
printf("Unable to convert %s to sockaddress\n", temp);
exit(FAIL);
}
nodes[i].links++;
}
}
if (knet_strtoaddr("0.0.0.0", port_str, &allv4, sizeof(struct sockaddr_storage)) < 0) {
printf("Unable to convert 0.0.0.0 to sockaddress\n");
exit(FAIL);
}
if (knet_strtoaddr("::", port_str, &allv6, sizeof(struct sockaddr_storage)) < 0) {
printf("Unable to convert :: to sockaddress\n");
exit(FAIL);
}
for (i = 1; i < onidx; i++) {
if (nodes[0].links != nodes[i].links) {
printf("knet_bench does not support unbalanced link configuration\n");
exit(FAIL);
}
}
return;
}
static int private_data;
static void sock_notify(void *pvt_data,
int local_datafd,
int8_t local_channel,
uint8_t tx_rx,
int error,
int errorno)
{
printf("[info]: error (%d - %d - %s) from socket: %d\n", error, errorno, strerror(errno), local_datafd);
return;
}
static int ping_dst_host_filter(void *pvt_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_host_id,
int8_t *dst_channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries)
{
if (broadcast_test) {
return 1;
}
if (tx_rx == KNET_NOTIFY_TX) {
memmove(&dst_host_ids[0], outdata, 2);
} else {
dst_host_ids[0] = this_host_id;
}
*dst_host_ids_entries = 1;
return 0;
}
static void setup_knet(int argc, char *argv[])
{
int logfd = 0;
int rv;
char *policystr = NULL, *protostr = NULL;
char *othernodeinfo[MAX_NODES];
struct node nodes[MAX_NODES];
int thisidx = -1;
int onidx = 0;
int debug = KNET_LOG_INFO;
int port = 50000, portoffset = 0;
int thisport = 0, otherport = 0;
int thisnewport = 0, othernewport = 0;
struct sockaddr_in *so_in;
struct sockaddr_in6 *so_in6;
struct sockaddr_storage *src;
int i, link_idx, allnodesup = 0;
int policy = KNET_LINK_POLICY_PASSIVE, policyfound = 0;
int protocol = KNET_TRANSPORT_UDP, protofound = 0;
int wait = 1;
int pmtud_interval = 60;
struct knet_handle_crypto_cfg knet_handle_crypto_cfg;
char *cryptomodel = NULL, *cryptotype = NULL, *cryptohash = NULL;
struct knet_handle_compress_cfg knet_handle_compress_cfg;
memset(nodes, 0, sizeof(nodes));
while ((rv = getopt(argc, argv, "aCT:S:s:ldom:wb:t:n:c:p:X::P:z:h")) != EOF) {
switch(rv) {
case 'h':
print_help();
exit(PASS);
break;
case 'a':
machine_output = 1;
break;
case 'd':
debug = KNET_LOG_DEBUG;
break;
case 'c':
if (cryptocfg) {
printf("Error: -c can only be specified once\n");
exit(FAIL);
}
cryptocfg = optarg;
break;
case 'p':
if (policystr) {
printf("Error: -p can only be specified once\n");
exit(FAIL);
}
policystr = optarg;
if (!strcmp(policystr, "active")) {
policy = KNET_LINK_POLICY_ACTIVE;
policyfound = 1;
}
/*
* we can't use rr because clangs can't compile
* an array of 3 strings, one of which is 2 bytes long
*/
if (!strcmp(policystr, "round-robin")) {
policy = KNET_LINK_POLICY_RR;
policyfound = 1;
}
if (!strcmp(policystr, "passive")) {
policy = KNET_LINK_POLICY_PASSIVE;
policyfound = 1;
}
if (!policyfound) {
printf("Error: invalid policy %s specified. -p accepts active|passive|rr\n", policystr);
exit(FAIL);
}
break;
case 'P':
if (protostr) {
printf("Error: -P can only be specified once\n");
exit(FAIL);
}
protostr = optarg;
if (!strcmp(protostr, "UDP")) {
protocol = KNET_TRANSPORT_UDP;
protofound = 1;
}
if (!strcmp(protostr, "SCTP")) {
protocol = KNET_TRANSPORT_SCTP;
protofound = 1;
}
if (!protofound) {
printf("Error: invalid protocol %s specified. -P accepts udp|sctp\n", policystr);
exit(FAIL);
}
break;
case 't':
if (thisnodeid >= 0) {
printf("Error: -t can only be specified once\n");
exit(FAIL);
}
thisnodeid = atoi(optarg);
if ((thisnodeid < 0) || (thisnodeid > 65536)) {
printf("Error: -t nodeid out of range %d (1 - 65536)\n", thisnodeid);
exit(FAIL);
}
break;
case 'n':
if (onidx == MAX_NODES) {
printf("Error: too many other nodes. Max %d\n", MAX_NODES);
exit(FAIL);
}
othernodeinfo[onidx] = optarg;
onidx++;
break;
case 'b':
port = atoi(optarg);
if ((port < 1) || (port > 65536)) {
printf("Error: port %d out of range (1 - 65536)\n", port);
exit(FAIL);
}
break;
case 'o':
if (globallistener) {
printf("Error: -l cannot be used with -o\n");
exit(FAIL);
}
portoffset = 1;
break;
case 'm':
pmtud_interval = atoi(optarg);
if (pmtud_interval < 1) {
printf("Error: pmtud interval %d out of range (> 0)\n", pmtud_interval);
exit(FAIL);
}
break;
case 'l':
if (portoffset) {
printf("Error: -o cannot be used with -l\n");
exit(FAIL);
}
globallistener = 1;
break;
case 'w':
wait = 0;
break;
case 's':
if (senderid >= 0) {
printf("Error: -s can only be specified once\n");
exit(FAIL);
}
senderid = atoi(optarg);
if ((senderid < 0) || (senderid > 65536)) {
printf("Error: -s nodeid out of range %d (1 - 65536)\n", senderid);
exit(FAIL);
}
break;
case 'T':
if (!strcmp("ping", optarg)) {
test_type = TEST_PING;
}
if (!strcmp("ping_data", optarg)) {
test_type = TEST_PING_AND_DATA;
}
if (!strcmp("perf-by-size", optarg)) {
test_type = TEST_PERF_BY_SIZE;
}
if (!strcmp("perf-by-time", optarg)) {
test_type = TEST_PERF_BY_TIME;
}
break;
case 'S':
perf_by_size_size = (uint64_t)atoi(optarg) * ONE_GIGABYTE;
perf_by_time_secs = (uint64_t)atoi(optarg);
break;
case 'C':
continous = 1;
break;
case 'X':
if (optarg) {
show_stats = atoi(optarg);
} else {
show_stats = 1;
}
break;
case 'z':
if (compresscfg) {
printf("Error: -c can only be specified once\n");
exit(FAIL);
}
compresscfg = optarg;
break;
default:
break;
}
}
if (thisnodeid < 0) {
printf("Who am I?!? missing -t from command line?\n");
exit(FAIL);
}
if (onidx < 1) {
printf("no other nodes configured?!? missing -n from command line\n");
exit(FAIL);
}
parse_nodes(othernodeinfo, onidx, port, nodes, &thisidx);
if (thisidx < 0) {
printf("no config for this node found\n");
exit(FAIL);
}
if (senderid >= 0) {
for (i=0; i < onidx; i++) {
if (senderid == nodes[i].nodeid) {
break;
}
}
if (i == onidx) {
printf("Unable to find senderid in nodelist\n");
exit(FAIL);
}
}
if (((test_type == TEST_PERF_BY_SIZE) || (test_type == TEST_PERF_BY_TIME)) && (senderid < 0)) {
printf("Error: performance test requires -s to be set (for now)\n");
exit(FAIL);
}
logfd = start_logging(stdout);
knet_h = knet_handle_new(thisnodeid, logfd, debug);
if (!knet_h) {
printf("Unable to knet_handle_new: %s\n", strerror(errno));
exit(FAIL);
}
if (cryptocfg) {
memset(&knet_handle_crypto_cfg, 0, sizeof(knet_handle_crypto_cfg));
cryptomodel = strtok(cryptocfg, ":");
cryptotype = strtok(NULL, ":");
cryptohash = strtok(NULL, ":");
if (cryptomodel) {
strncpy(knet_handle_crypto_cfg.crypto_model, cryptomodel, sizeof(knet_handle_crypto_cfg.crypto_model) - 1);
}
if (cryptotype) {
strncpy(knet_handle_crypto_cfg.crypto_cipher_type, cryptotype, sizeof(knet_handle_crypto_cfg.crypto_cipher_type) - 1);
}
if (cryptohash) {
strncpy(knet_handle_crypto_cfg.crypto_hash_type, cryptohash, sizeof(knet_handle_crypto_cfg.crypto_hash_type) - 1);
}
knet_handle_crypto_cfg.private_key_len = KNET_MAX_KEY_LEN;
if (knet_handle_crypto(knet_h, &knet_handle_crypto_cfg)) {
printf("Unable to init crypto\n");
exit(FAIL);
}
}
if (compresscfg) {
memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg));
snprintf(knet_handle_compress_cfg.compress_model, 16, "%s", strtok(compresscfg, ":"));
knet_handle_compress_cfg.compress_level = atoi(strtok(NULL, ":"));
knet_handle_compress_cfg.compress_threshold = atoi(strtok(NULL, ":"));
if (knet_handle_compress(knet_h, &knet_handle_compress_cfg)) {
printf("Unable to configure compress\n");
exit(FAIL);
}
}
if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) {
printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
exit(FAIL);
}
datafd = 0;
channel = -1;
if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) {
printf("knet_handle_add_datafd failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
exit(FAIL);
}
if (knet_handle_pmtud_setfreq(knet_h, pmtud_interval) < 0) {
printf("knet_handle_pmtud_setfreq failed: %s\n", strerror(errno));
knet_handle_free(knet_h);
exit(FAIL);
}
for (i=0; i < onidx; i++) {
if (i == thisidx) {
continue;
}
if (knet_host_add(knet_h, nodes[i].nodeid) < 0) {
printf("knet_host_add failed: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_host_set_policy(knet_h, nodes[i].nodeid, policy) < 0) {
printf("knet_host_set_policy failed: %s\n", strerror(errno));
exit(FAIL);
}
for (link_idx = 0; link_idx < nodes[i].links; link_idx++) {
if (portoffset) {
if (nodes[thisidx].address[link_idx].ss_family == AF_INET) {
so_in = (struct sockaddr_in *)&nodes[thisidx].address[link_idx];
thisport = ntohs(so_in->sin_port);
thisnewport = thisport + nodes[i].nodeid;
so_in->sin_port = (htons(thisnewport));
so_in = (struct sockaddr_in *)&nodes[i].address[link_idx];
otherport = ntohs(so_in->sin_port);
othernewport = otherport + nodes[thisidx].nodeid;
so_in->sin_port = (htons(othernewport));
} else {
so_in6 = (struct sockaddr_in6 *)&nodes[thisidx].address[link_idx];
thisport = ntohs(so_in6->sin6_port);
thisnewport = thisport + nodes[i].nodeid;
so_in6->sin6_port = (htons(thisnewport));
so_in6 = (struct sockaddr_in6 *)&nodes[i].address[link_idx];
otherport = ntohs(so_in6->sin6_port);
othernewport = otherport + nodes[thisidx].nodeid;
so_in6->sin6_port = (htons(othernewport));
}
}
if (!globallistener) {
src = &nodes[thisidx].address[link_idx];
} else {
if (nodes[thisidx].address[link_idx].ss_family == AF_INET) {
src = &allv4;
} else {
src = &allv6;
}
}
/*
* -P overrides per link protocol configuration
*/
if (protofound) {
nodes[i].transport[link_idx] = protocol;
}
if (knet_link_set_config(knet_h, nodes[i].nodeid, link_idx,
nodes[i].transport[link_idx], src,
&nodes[i].address[link_idx], 0) < 0) {
printf("Unable to configure link: %s\n", strerror(errno));
exit(FAIL);
}
if (portoffset) {
if (nodes[thisidx].address[link_idx].ss_family == AF_INET) {
so_in = (struct sockaddr_in *)&nodes[thisidx].address[link_idx];
so_in->sin_port = (htons(thisport));
so_in = (struct sockaddr_in *)&nodes[i].address[link_idx];
so_in->sin_port = (htons(otherport));
} else {
so_in6 = (struct sockaddr_in6 *)&nodes[thisidx].address[link_idx];
so_in6->sin6_port = (htons(thisport));
so_in6 = (struct sockaddr_in6 *)&nodes[i].address[link_idx];
so_in6->sin6_port = (htons(otherport));
}
}
if (knet_link_set_enable(knet_h, nodes[i].nodeid, link_idx, 1) < 0) {
printf("knet_link_set_enable failed: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_link_set_ping_timers(knet_h, nodes[i].nodeid, link_idx, 1000, 10000, 2048) < 0) {
printf("knet_link_set_ping_timers failed: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_link_set_pong_count(knet_h, nodes[i].nodeid, link_idx, 2) < 0) {
printf("knet_link_set_pong_count failed: %s\n", strerror(errno));
exit(FAIL);
}
}
}
if (knet_handle_enable_filter(knet_h, NULL, ping_dst_host_filter)) {
printf("Unable to enable dst_host_filter: %s\n", strerror(errno));
exit(FAIL);
}
if (knet_handle_setfwd(knet_h, 1) < 0) {
printf("knet_handle_setfwd failed: %s\n", strerror(errno));
exit(FAIL);
}
if (wait) {
while(!allnodesup) {
allnodesup = 1;
for (i=0; i < onidx; i++) {
if (i == thisidx) {
continue;
}
if (knet_h->host_index[nodes[i].nodeid]->status.reachable != 1) {
printf("[info]: waiting host %d to be reachable\n", nodes[i].nodeid);
allnodesup = 0;
}
}
if (!allnodesup) {
sleep(1);
}
}
sleep(1);
}
}
static void *_rx_thread(void *args)
{
int rx_epoll;
struct epoll_event ev;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
struct sockaddr_storage address[PCKT_FRAG_MAX];
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
struct iovec iov_in[PCKT_FRAG_MAX];
int i, msg_recv;
struct timespec clock_start, clock_end;
unsigned long long time_diff = 0;
uint64_t rx_pkts = 0;
uint64_t rx_bytes = 0;
unsigned int current_pckt_size = 0;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
rx_buf[i] = malloc(KNET_MAX_PACKET_SIZE);
if (!rx_buf[i]) {
printf("RXT: Unable to malloc!\nHALTING RX THREAD!\n");
return NULL;
}
memset(rx_buf[i], 0, KNET_MAX_PACKET_SIZE);
iov_in[i].iov_base = (void *)rx_buf[i];
iov_in[i].iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_name = &address[i];
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[i].msg_hdr.msg_iov = &iov_in[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
rx_epoll = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (rx_epoll < 0) {
printf("RXT: Unable to create epoll!\nHALTING RX THREAD!\n");
return NULL;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = datafd;
if (epoll_ctl(rx_epoll, EPOLL_CTL_ADD, datafd, &ev)) {
printf("RXT: Unable to add datafd to epoll\nHALTING RX THREAD!\n");
return NULL;
}
memset(&clock_start, 0, sizeof(clock_start));
memset(&clock_end, 0, sizeof(clock_start));
while (!bench_shutdown_in_progress) {
if (epoll_wait(rx_epoll, events, KNET_EPOLL_MAX_EVENTS, 1) >= 1) {
msg_recv = _recvmmsg(datafd, &msg[0], PCKT_FRAG_MAX, MSG_DONTWAIT | MSG_NOSIGNAL);
if (msg_recv < 0) {
printf("[info]: RXT: error from recvmmsg: %s\n", strerror(errno));
}
switch(test_type) {
case TEST_PING_AND_DATA:
for (i = 0; i < msg_recv; i++) {
if (msg[i].msg_len == 0) {
printf("[info]: RXT: received 0 bytes message?\n");
}
printf("[info]: received %u bytes message: %s\n", msg[i].msg_len, (char *)msg[i].msg_hdr.msg_iov->iov_base);
}
break;
case TEST_PERF_BY_TIME:
case TEST_PERF_BY_SIZE:
for (i = 0; i < msg_recv; i++) {
if (msg[i].msg_len < 64) {
if (msg[i].msg_len == 0) {
printf("[info]: RXT: received 0 bytes message?\n");
}
if (msg[i].msg_len == TEST_START) {
if (clock_gettime(CLOCK_MONOTONIC, &clock_start) != 0) {
printf("[info]: unable to get start time!\n");
}
}
if (msg[i].msg_len == TEST_STOP) {
double average_rx_mbytes;
double average_rx_pkts;
double time_diff_sec;
if (clock_gettime(CLOCK_MONOTONIC, &clock_end) != 0) {
printf("[info]: unable to get end time!\n");
}
timespec_diff(clock_start, clock_end, &time_diff);
/*
* adjust for sleep(2) between sending the last data and TEST_STOP
*/
time_diff = time_diff - 2000000000llu;
/*
* convert to seconds
*/
time_diff_sec = (double)time_diff / 1000000000llu;
average_rx_mbytes = (double)((rx_bytes / time_diff_sec) / (1024 * 1024));
average_rx_pkts = (double)(rx_pkts / time_diff_sec);
if (!machine_output) {
printf("[perf] execution time: %8.4f secs Average speed: %8.4f MB/sec %8.4f pckts/sec (size: %u total: %" PRIu64 ")\n",
time_diff_sec, average_rx_mbytes, average_rx_pkts, current_pckt_size, rx_pkts);
} else {
printf("[perf],%.4f,%u,%" PRIu64 ",%.4f,%.4f\n", time_diff_sec, current_pckt_size, rx_pkts, average_rx_mbytes, average_rx_pkts);
}
rx_pkts = 0;
rx_bytes = 0;
current_pckt_size = 0;
}
if (msg[i].msg_len == TEST_COMPLETE) {
wait_for_perf_rx = 1;
}
continue;
}
rx_pkts++;
rx_bytes = rx_bytes + msg[i].msg_len;
current_pckt_size = msg[i].msg_len;
}
break;
}
}
}
epoll_ctl(rx_epoll, EPOLL_CTL_DEL, datafd, &ev);
close(rx_epoll);
return NULL;
}
static void setup_data_txrx_common(void)
{
if (!rx_thread) {
if (knet_handle_enable_filter(knet_h, NULL, ping_dst_host_filter)) {
printf("Unable to enable dst_host_filter: %s\n", strerror(errno));
exit(FAIL);
}
printf("[info]: setting up rx thread\n");
if (pthread_create(&rx_thread, 0, _rx_thread, NULL)) {
printf("Unable to start rx thread\n");
exit(FAIL);
}
}
}
static void stop_rx_thread(void)
{
void *retval;
int i;
if (rx_thread) {
printf("[info]: shutting down rx thread\n");
sleep(2);
pthread_cancel(rx_thread);
pthread_join(rx_thread, &retval);
for (i = 0; i < PCKT_FRAG_MAX; i ++) {
free(rx_buf[i]);
}
}
}
static void send_ping_data(void)
{
char buf[65535];
ssize_t len;
memset(&buf, 0, sizeof(buf));
snprintf(buf, sizeof(buf), "Hello world!");
if (compresscfg) {
len = sizeof(buf);
} else {
len = strlen(buf);
}
if (knet_send(knet_h, buf, len, channel) != len) {
printf("[info]: Error sending hello world: %s\n", strerror(errno));
}
sleep(1);
}
static int send_messages(struct knet_mmsghdr *msg, int msgs_to_send)
{
int sent_msgs, prev_sent, progress, total_sent;
total_sent = 0;
sent_msgs = 0;
prev_sent = 0;
progress = 1;
retry:
errno = 0;
- sent_msgs = _sendmmsg(datafd, &msg[0], msgs_to_send, MSG_NOSIGNAL);
+ sent_msgs = _sendmmsg(datafd, 0, &msg[0], msgs_to_send, MSG_NOSIGNAL);
if (sent_msgs < 0) {
if ((errno == EAGAIN) || (errno == EWOULDBLOCK)) {
usleep(KNET_THREADS_TIMERES / 16);
goto retry;
}
printf("[info]: Unable to send messages: %s\n", strerror(errno));
return -1;
}
total_sent = total_sent + sent_msgs;
if ((sent_msgs >= 0) && (sent_msgs < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
msgs_to_send = msgs_to_send - sent_msgs;
prev_sent = prev_sent + sent_msgs;
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
goto retry;
}
if (!progress) {
printf("[info]: Unable to send more messages after retry\n");
}
}
return total_sent;
}
static int setup_send_buffers_common(struct knet_mmsghdr *msg, struct iovec *iov_out, char *tx_buf[])
{
int i;
for (i = 0; i < PCKT_FRAG_MAX; i++) {
tx_buf[i] = malloc(KNET_MAX_PACKET_SIZE);
if (!tx_buf[i]) {
printf("TXT: Unable to malloc!\n");
return -1;
}
memset(tx_buf[i], 0, KNET_MAX_PACKET_SIZE);
iov_out[i].iov_base = (void *)tx_buf[i];
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_iov = &iov_out[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
return 0;
}
static void send_perf_data_by_size(void)
{
char *tx_buf[PCKT_FRAG_MAX];
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
struct iovec iov_out[PCKT_FRAG_MAX];
char ctrl_message[16];
int sent_msgs;
int i;
uint64_t total_pkts_to_tx;
uint64_t packets_to_send;
uint32_t packetsize = 64;
setup_send_buffers_common(msg, iov_out, tx_buf);
while (packetsize <= KNET_MAX_PACKET_SIZE) {
for (i = 0; i < PCKT_FRAG_MAX; i++) {
iov_out[i].iov_len = packetsize;
}
total_pkts_to_tx = perf_by_size_size / packetsize;
printf("[info]: testing with %u packet size. total bytes to transfer: %" PRIu64 " (%" PRIu64 " packets)\n", packetsize, perf_by_size_size, total_pkts_to_tx);
memset(ctrl_message, 0, sizeof(ctrl_message));
knet_send(knet_h, ctrl_message, TEST_START, channel);
while (total_pkts_to_tx > 0) {
if (total_pkts_to_tx >= PCKT_FRAG_MAX) {
packets_to_send = PCKT_FRAG_MAX;
} else {
packets_to_send = total_pkts_to_tx;
}
sent_msgs = send_messages(&msg[0], packets_to_send);
if (sent_msgs < 0) {
printf("Something went wrong, aborting\n");
exit(FAIL);
}
total_pkts_to_tx = total_pkts_to_tx - sent_msgs;
}
sleep(2);
knet_send(knet_h, ctrl_message, TEST_STOP, channel);
if (packetsize == KNET_MAX_PACKET_SIZE) {
break;
}
/*
* Use a multiplier that can always divide properly a GB
* into smaller chunks without worry about boundaries
*/
packetsize *= 4;
if (packetsize > KNET_MAX_PACKET_SIZE) {
packetsize = KNET_MAX_PACKET_SIZE;
}
}
knet_send(knet_h, ctrl_message, TEST_COMPLETE, channel);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
free(tx_buf[i]);
}
}
/* For sorting the node list into order */
static int node_compare(const void *aptr, const void *bptr)
{
uint16_t a,b;
a = *(uint16_t *)aptr;
b = *(uint16_t *)bptr;
return a > b;
}
static void display_stats(int level)
{
struct knet_handle_stats handle_stats;
struct knet_link_status link_status;
struct knet_link_stats total_link_stats;
knet_node_id_t host_list[KNET_MAX_HOST];
uint8_t link_list[KNET_MAX_LINK];
int res;
unsigned int i,j;
size_t num_hosts, num_links;
res = knet_handle_get_stats(knet_h, &handle_stats, sizeof(handle_stats));
if (res) {
perror("[info]: failed to get knet handle stats");
return;
}
if (compresscfg || cryptocfg) {
printf("\n");
printf("[stat]: handle stats\n");
printf("[stat]: ------------\n");
if (compresscfg) {
printf("[stat]: tx_uncompressed_packets: %" PRIu64 "\n", handle_stats.tx_uncompressed_packets);
printf("[stat]: tx_compressed_packets: %" PRIu64 "\n", handle_stats.tx_compressed_packets);
printf("[stat]: tx_compressed_original_bytes: %" PRIu64 "\n", handle_stats.tx_compressed_original_bytes);
printf("[stat]: tx_compressed_size_bytes: %" PRIu64 "\n", handle_stats.tx_compressed_size_bytes );
printf("[stat]: tx_compress_time_ave: %" PRIu64 "\n", handle_stats.tx_compress_time_ave);
printf("[stat]: tx_compress_time_min: %" PRIu64 "\n", handle_stats.tx_compress_time_min);
printf("[stat]: tx_compress_time_max: %" PRIu64 "\n", handle_stats.tx_compress_time_max);
printf("[stat]: rx_compressed_packets: %" PRIu64 "\n", handle_stats.rx_compressed_packets);
printf("[stat]: rx_compressed_original_bytes: %" PRIu64 "\n", handle_stats.rx_compressed_original_bytes);
printf("[stat]: rx_compressed_size_bytes: %" PRIu64 "\n", handle_stats.rx_compressed_size_bytes);
printf("[stat]: rx_compress_time_ave: %" PRIu64 "\n", handle_stats.rx_compress_time_ave);
printf("[stat]: rx_compress_time_min: %" PRIu64 "\n", handle_stats.rx_compress_time_min);
printf("[stat]: rx_compress_time_max: %" PRIu64 "\n", handle_stats.rx_compress_time_max);
printf("\n");
}
if (cryptocfg) {
printf("[stat]: tx_crypt_packets: %" PRIu64 "\n", handle_stats.tx_crypt_packets);
printf("[stat]: tx_crypt_byte_overhead: %" PRIu64 "\n", handle_stats.tx_crypt_byte_overhead);
printf("[stat]: tx_crypt_time_ave: %" PRIu64 "\n", handle_stats.tx_crypt_time_ave);
printf("[stat]: tx_crypt_time_min: %" PRIu64 "\n", handle_stats.tx_crypt_time_min);
printf("[stat]: tx_crypt_time_max: %" PRIu64 "\n", handle_stats.tx_crypt_time_max);
printf("[stat]: rx_crypt_packets: %" PRIu64 "\n", handle_stats.rx_crypt_packets);
printf("[stat]: rx_crypt_time_ave: %" PRIu64 "\n", handle_stats.rx_crypt_time_ave);
printf("[stat]: rx_crypt_time_min: %" PRIu64 "\n", handle_stats.rx_crypt_time_min);
printf("[stat]: rx_crypt_time_max: %" PRIu64 "\n", handle_stats.rx_crypt_time_max);
printf("\n");
}
}
if (level < 2) {
return;
}
memset(&total_link_stats, 0, sizeof(struct knet_link_stats));
res = knet_host_get_host_list(knet_h, host_list, &num_hosts);
if (res) {
perror("[info]: cannot get host list for stats");
return;
}
/* Print in host ID order */
qsort(host_list, num_hosts, sizeof(uint16_t), node_compare);
for (j=0; j<num_hosts; j++) {
res = knet_link_get_link_list(knet_h, host_list[j], link_list, &num_links);
if (res) {
perror("[info]: cannot get link list for stats");
return;
}
for (i=0; i < num_links; i++) {
res = knet_link_get_status(knet_h,
host_list[j],
link_list[i],
&link_status,
sizeof(link_status));
total_link_stats.tx_data_packets += link_status.stats.tx_data_packets;
total_link_stats.rx_data_packets += link_status.stats.rx_data_packets;
total_link_stats.tx_data_bytes += link_status.stats.tx_data_bytes;
total_link_stats.rx_data_bytes += link_status.stats.rx_data_bytes;
total_link_stats.rx_ping_packets += link_status.stats.rx_ping_packets;
total_link_stats.tx_ping_packets += link_status.stats.tx_ping_packets;
total_link_stats.rx_ping_bytes += link_status.stats.rx_ping_bytes;
total_link_stats.tx_ping_bytes += link_status.stats.tx_ping_bytes;
total_link_stats.rx_pong_packets += link_status.stats.rx_pong_packets;
total_link_stats.tx_pong_packets += link_status.stats.tx_pong_packets;
total_link_stats.rx_pong_bytes += link_status.stats.rx_pong_bytes;
total_link_stats.tx_pong_bytes += link_status.stats.tx_pong_bytes;
total_link_stats.rx_pmtu_packets += link_status.stats.rx_pmtu_packets;
total_link_stats.tx_pmtu_packets += link_status.stats.tx_pmtu_packets;
total_link_stats.rx_pmtu_bytes += link_status.stats.rx_pmtu_bytes;
total_link_stats.tx_pmtu_bytes += link_status.stats.tx_pmtu_bytes;
total_link_stats.tx_total_packets += link_status.stats.tx_total_packets;
total_link_stats.rx_total_packets += link_status.stats.rx_total_packets;
total_link_stats.tx_total_bytes += link_status.stats.tx_total_bytes;
total_link_stats.rx_total_bytes += link_status.stats.rx_total_bytes;
total_link_stats.tx_total_errors += link_status.stats.tx_total_errors;
total_link_stats.tx_total_retries += link_status.stats.tx_total_retries;
total_link_stats.tx_pmtu_errors += link_status.stats.tx_pmtu_errors;
total_link_stats.tx_pmtu_retries += link_status.stats.tx_pmtu_retries;
total_link_stats.tx_ping_errors += link_status.stats.tx_ping_errors;
total_link_stats.tx_ping_retries += link_status.stats.tx_ping_retries;
total_link_stats.tx_pong_errors += link_status.stats.tx_pong_errors;
total_link_stats.tx_pong_retries += link_status.stats.tx_pong_retries;
total_link_stats.tx_data_errors += link_status.stats.tx_data_errors;
total_link_stats.tx_data_retries += link_status.stats.tx_data_retries;
total_link_stats.down_count += link_status.stats.down_count;
total_link_stats.up_count += link_status.stats.up_count;
if (level > 2) {
printf("\n");
printf("[stat]: Node %d Link %d\n", host_list[j], link_list[i]);
printf("[stat]: tx_data_packets: %" PRIu64 "\n", link_status.stats.tx_data_packets);
printf("[stat]: rx_data_packets: %" PRIu64 "\n", link_status.stats.rx_data_packets);
printf("[stat]: tx_data_bytes: %" PRIu64 "\n", link_status.stats.tx_data_bytes);
printf("[stat]: rx_data_bytes: %" PRIu64 "\n", link_status.stats.rx_data_bytes);
printf("[stat]: rx_ping_packets: %" PRIu64 "\n", link_status.stats.rx_ping_packets);
printf("[stat]: tx_ping_packets: %" PRIu64 "\n", link_status.stats.tx_ping_packets);
printf("[stat]: rx_ping_bytes: %" PRIu64 "\n", link_status.stats.rx_ping_bytes);
printf("[stat]: tx_ping_bytes: %" PRIu64 "\n", link_status.stats.tx_ping_bytes);
printf("[stat]: rx_pong_packets: %" PRIu64 "\n", link_status.stats.rx_pong_packets);
printf("[stat]: tx_pong_packets: %" PRIu64 "\n", link_status.stats.tx_pong_packets);
printf("[stat]: rx_pong_bytes: %" PRIu64 "\n", link_status.stats.rx_pong_bytes);
printf("[stat]: tx_pong_bytes: %" PRIu64 "\n", link_status.stats.tx_pong_bytes);
printf("[stat]: rx_pmtu_packets: %" PRIu64 "\n", link_status.stats.rx_pmtu_packets);
printf("[stat]: tx_pmtu_packets: %" PRIu64 "\n", link_status.stats.tx_pmtu_packets);
printf("[stat]: rx_pmtu_bytes: %" PRIu64 "\n", link_status.stats.rx_pmtu_bytes);
printf("[stat]: tx_pmtu_bytes: %" PRIu64 "\n", link_status.stats.tx_pmtu_bytes);
printf("[stat]: tx_total_packets: %" PRIu64 "\n", link_status.stats.tx_total_packets);
printf("[stat]: rx_total_packets: %" PRIu64 "\n", link_status.stats.rx_total_packets);
printf("[stat]: tx_total_bytes: %" PRIu64 "\n", link_status.stats.tx_total_bytes);
printf("[stat]: rx_total_bytes: %" PRIu64 "\n", link_status.stats.rx_total_bytes);
printf("[stat]: tx_total_errors: %" PRIu64 "\n", link_status.stats.tx_total_errors);
printf("[stat]: tx_total_retries: %" PRIu64 "\n", link_status.stats.tx_total_retries);
printf("[stat]: tx_pmtu_errors: %" PRIu32 "\n", link_status.stats.tx_pmtu_errors);
printf("[stat]: tx_pmtu_retries: %" PRIu32 "\n", link_status.stats.tx_pmtu_retries);
printf("[stat]: tx_ping_errors: %" PRIu32 "\n", link_status.stats.tx_ping_errors);
printf("[stat]: tx_ping_retries: %" PRIu32 "\n", link_status.stats.tx_ping_retries);
printf("[stat]: tx_pong_errors: %" PRIu32 "\n", link_status.stats.tx_pong_errors);
printf("[stat]: tx_pong_retries: %" PRIu32 "\n", link_status.stats.tx_pong_retries);
printf("[stat]: tx_data_errors: %" PRIu32 "\n", link_status.stats.tx_data_errors);
printf("[stat]: tx_data_retries: %" PRIu32 "\n", link_status.stats.tx_data_retries);
printf("[stat]: latency_min: %" PRIu32 "\n", link_status.stats.latency_min);
printf("[stat]: latency_max: %" PRIu32 "\n", link_status.stats.latency_max);
printf("[stat]: latency_ave: %" PRIu32 "\n", link_status.stats.latency_ave);
printf("[stat]: latency_samples: %" PRIu32 "\n", link_status.stats.latency_samples);
printf("[stat]: down_count: %" PRIu32 "\n", link_status.stats.down_count);
printf("[stat]: up_count: %" PRIu32 "\n", link_status.stats.up_count);
}
}
}
printf("\n");
printf("[stat]: Total link stats\n");
printf("[stat]: ----------------\n");
printf("[stat]: tx_data_packets: %" PRIu64 "\n", total_link_stats.tx_data_packets);
printf("[stat]: rx_data_packets: %" PRIu64 "\n", total_link_stats.rx_data_packets);
printf("[stat]: tx_data_bytes: %" PRIu64 "\n", total_link_stats.tx_data_bytes);
printf("[stat]: rx_data_bytes: %" PRIu64 "\n", total_link_stats.rx_data_bytes);
printf("[stat]: rx_ping_packets: %" PRIu64 "\n", total_link_stats.rx_ping_packets);
printf("[stat]: tx_ping_packets: %" PRIu64 "\n", total_link_stats.tx_ping_packets);
printf("[stat]: rx_ping_bytes: %" PRIu64 "\n", total_link_stats.rx_ping_bytes);
printf("[stat]: tx_ping_bytes: %" PRIu64 "\n", total_link_stats.tx_ping_bytes);
printf("[stat]: rx_pong_packets: %" PRIu64 "\n", total_link_stats.rx_pong_packets);
printf("[stat]: tx_pong_packets: %" PRIu64 "\n", total_link_stats.tx_pong_packets);
printf("[stat]: rx_pong_bytes: %" PRIu64 "\n", total_link_stats.rx_pong_bytes);
printf("[stat]: tx_pong_bytes: %" PRIu64 "\n", total_link_stats.tx_pong_bytes);
printf("[stat]: rx_pmtu_packets: %" PRIu64 "\n", total_link_stats.rx_pmtu_packets);
printf("[stat]: tx_pmtu_packets: %" PRIu64 "\n", total_link_stats.tx_pmtu_packets);
printf("[stat]: rx_pmtu_bytes: %" PRIu64 "\n", total_link_stats.rx_pmtu_bytes);
printf("[stat]: tx_pmtu_bytes: %" PRIu64 "\n", total_link_stats.tx_pmtu_bytes);
printf("[stat]: tx_total_packets: %" PRIu64 "\n", total_link_stats.tx_total_packets);
printf("[stat]: rx_total_packets: %" PRIu64 "\n", total_link_stats.rx_total_packets);
printf("[stat]: tx_total_bytes: %" PRIu64 "\n", total_link_stats.tx_total_bytes);
printf("[stat]: rx_total_bytes: %" PRIu64 "\n", total_link_stats.rx_total_bytes);
printf("[stat]: tx_total_errors: %" PRIu64 "\n", total_link_stats.tx_total_errors);
printf("[stat]: tx_total_retries: %" PRIu64 "\n", total_link_stats.tx_total_retries);
printf("[stat]: tx_pmtu_errors: %" PRIu32 "\n", total_link_stats.tx_pmtu_errors);
printf("[stat]: tx_pmtu_retries: %" PRIu32 "\n", total_link_stats.tx_pmtu_retries);
printf("[stat]: tx_ping_errors: %" PRIu32 "\n", total_link_stats.tx_ping_errors);
printf("[stat]: tx_ping_retries: %" PRIu32 "\n", total_link_stats.tx_ping_retries);
printf("[stat]: tx_pong_errors: %" PRIu32 "\n", total_link_stats.tx_pong_errors);
printf("[stat]: tx_pong_retries: %" PRIu32 "\n", total_link_stats.tx_pong_retries);
printf("[stat]: tx_data_errors: %" PRIu32 "\n", total_link_stats.tx_data_errors);
printf("[stat]: tx_data_retries: %" PRIu32 "\n", total_link_stats.tx_data_retries);
printf("[stat]: down_count: %" PRIu32 "\n", total_link_stats.down_count);
printf("[stat]: up_count: %" PRIu32 "\n", total_link_stats.up_count);
}
static void send_perf_data_by_time(void)
{
char *tx_buf[PCKT_FRAG_MAX];
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
struct iovec iov_out[PCKT_FRAG_MAX];
char ctrl_message[16];
int sent_msgs;
int i;
uint32_t packetsize = 64;
struct timespec clock_start, clock_end;
unsigned long long time_diff = 0;
setup_send_buffers_common(msg, iov_out, tx_buf);
memset(&clock_start, 0, sizeof(clock_start));
memset(&clock_end, 0, sizeof(clock_start));
while (packetsize <= KNET_MAX_PACKET_SIZE) {
for (i = 0; i < PCKT_FRAG_MAX; i++) {
iov_out[i].iov_len = packetsize;
}
printf("[info]: testing with %u bytes packet size for %" PRIu64 " seconds.\n", packetsize, perf_by_time_secs);
memset(ctrl_message, 0, sizeof(ctrl_message));
knet_send(knet_h, ctrl_message, TEST_START, channel);
if (clock_gettime(CLOCK_MONOTONIC, &clock_start) != 0) {
printf("[info]: unable to get start time!\n");
}
time_diff = 0;
while (time_diff < (perf_by_time_secs * 1000000000llu)) {
sent_msgs = send_messages(&msg[0], PCKT_FRAG_MAX);
if (sent_msgs < 0) {
printf("Something went wrong, aborting\n");
exit(FAIL);
}
if (clock_gettime(CLOCK_MONOTONIC, &clock_end) != 0) {
printf("[info]: unable to get end time!\n");
}
timespec_diff(clock_start, clock_end, &time_diff);
}
sleep(2);
knet_send(knet_h, ctrl_message, TEST_STOP, channel);
if (packetsize == KNET_MAX_PACKET_SIZE) {
break;
}
/*
* Use a multiplier that can always divide properly a GB
* into smaller chunks without worry about boundaries
*/
packetsize *= 4;
if (packetsize > KNET_MAX_PACKET_SIZE) {
packetsize = KNET_MAX_PACKET_SIZE;
}
}
knet_send(knet_h, ctrl_message, TEST_COMPLETE, channel);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
free(tx_buf[i]);
}
}
static void cleanup_all(void)
{
if (pthread_mutex_lock(&shutdown_mutex)) {
return;
}
if (bench_shutdown_in_progress) {
pthread_mutex_unlock(&shutdown_mutex);
return;
}
bench_shutdown_in_progress = 1;
pthread_mutex_unlock(&shutdown_mutex);
if (rx_thread) {
stop_rx_thread();
}
knet_handle_stop(knet_h);
}
static void sigint_handler(int signum)
{
printf("[info]: cleaning up... got signal: %d\n", signum);
cleanup_all();
exit(PASS);
}
int main(int argc, char *argv[])
{
if (signal(SIGINT, sigint_handler) == SIG_ERR) {
printf("Unable to configure SIGINT handler\n");
exit(FAIL);
}
setup_knet(argc, argv);
setup_data_txrx_common();
sleep(5);
restart:
switch(test_type) {
default:
case TEST_PING: /* basic ping, no data */
sleep(5);
break;
case TEST_PING_AND_DATA:
send_ping_data();
break;
case TEST_PERF_BY_SIZE:
if (senderid == thisnodeid) {
send_perf_data_by_size();
} else {
printf("[info]: waiting for perf rx thread to finish\n");
while(!wait_for_perf_rx) {
sleep(1);
}
}
break;
case TEST_PERF_BY_TIME:
if (senderid == thisnodeid) {
send_perf_data_by_time();
} else {
printf("[info]: waiting for perf rx thread to finish\n");
while(!wait_for_perf_rx) {
sleep(1);
}
}
break;
}
if (continous) {
goto restart;
}
if (show_stats) {
display_stats(show_stats);
}
cleanup_all();
return PASS;
}
diff --git a/libknet/threads_heartbeat.c b/libknet/threads_heartbeat.c
index 12aaa767..4685ee8f 100644
--- a/libknet/threads_heartbeat.c
+++ b/libknet/threads_heartbeat.c
@@ -1,222 +1,225 @@
/*
* Copyright (C) 2015-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
#include <time.h>
#include "crypto.h"
#include "links.h"
#include "logging.h"
#include "transports.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
static void _link_down(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link)
{
memset(&dst_link->pmtud_last, 0, sizeof(struct timespec));
dst_link->received_pong = 0;
dst_link->status.pong_last.tv_nsec = 0;
dst_link->pong_timeout_backoff = KNET_LINK_PONG_TIMEOUT_BACKOFF;
if (dst_link->status.connected == 1) {
log_info(knet_h, KNET_SUB_LINK, "host: %u link: %u is down",
dst_host->host_id, dst_link->link_id);
_link_updown(knet_h, dst_host->host_id, dst_link->link_id, dst_link->status.enabled, 0);
}
}
static void _handle_check_each(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link, int timed)
{
int err = 0, savederrno = 0;
int len;
ssize_t outlen = KNET_HEADER_PING_SIZE;
struct timespec clock_now, pong_last;
unsigned long long diff_ping;
unsigned char *outbuf = (unsigned char *)knet_h->pingbuf;
if (dst_link->transport_connected == 0) {
_link_down(knet_h, dst_host, dst_link);
return;
}
/* caching last pong to avoid race conditions */
pong_last = dst_link->status.pong_last;
if (clock_gettime(CLOCK_MONOTONIC, &clock_now) != 0) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get monotonic clock");
return;
}
timespec_diff(dst_link->ping_last, clock_now, &diff_ping);
if ((diff_ping >= (dst_link->ping_interval * 1000llu)) || (!timed)) {
memmove(&knet_h->pingbuf->khp_ping_time[0], &clock_now, sizeof(struct timespec));
knet_h->pingbuf->khp_ping_link = dst_link->link_id;
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get seq mutex lock");
return;
}
knet_h->pingbuf->khp_ping_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
knet_h->pingbuf->khp_ping_timed = timed;
if (knet_h->crypto_instance) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)knet_h->pingbuf,
outlen,
knet_h->pingbuf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to crypto ping packet");
return;
}
outbuf = knet_h->pingbuf_crypt;
knet_h->stats_extra.tx_crypt_ping_packets++;
}
retry:
- len = sendto(dst_link->outsock, outbuf, outlen,
- MSG_DONTWAIT | MSG_NOSIGNAL, (struct sockaddr *) &dst_link->dst_addr,
- sizeof(struct sockaddr_storage));
+ if (transport_get_connection_oriented(knet_h, dst_link->transport_type) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
+ len = sendto(dst_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
+ (struct sockaddr *) &dst_link->dst_addr, sizeof(struct sockaddr_storage));
+ } else {
+ len = sendto(dst_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
+ }
savederrno = errno;
dst_link->ping_last = clock_now;
dst_link->status.stats.tx_ping_packets++;
dst_link->status.stats.tx_ping_bytes += outlen;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, dst_link->transport_type, dst_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_HEARTBEAT,
"Unable to send ping (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
dst_link->outsock, savederrno, strerror(savederrno),
dst_link->status.src_ipaddr, dst_link->status.src_port,
dst_link->status.dst_ipaddr, dst_link->status.dst_port);
dst_link->status.stats.tx_ping_errors++;
break;
case 0:
break;
case 1:
dst_link->status.stats.tx_ping_retries++;
goto retry;
break;
}
} else {
dst_link->last_ping_size = outlen;
}
}
timespec_diff(pong_last, clock_now, &diff_ping);
if ((pong_last.tv_nsec) &&
(diff_ping >= (dst_link->pong_timeout_adj * 1000llu))) {
_link_down(knet_h, dst_host, dst_link);
}
}
void _send_pings(knet_handle_t knet_h, int timed)
{
struct knet_host *dst_host;
int link_idx;
if (pthread_mutex_lock(&knet_h->hb_mutex)) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get hb mutex lock");
return;
}
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if ((dst_host->link[link_idx].status.enabled != 1) ||
(dst_host->link[link_idx].transport_type == KNET_TRANSPORT_LOOPBACK ) ||
((dst_host->link[link_idx].dynamic == KNET_LINK_DYNIP) &&
(dst_host->link[link_idx].status.dynconnected != 1)))
continue;
_handle_check_each(knet_h, dst_host, &dst_host->link[link_idx], timed);
}
}
pthread_mutex_unlock(&knet_h->hb_mutex);
}
static void _adjust_pong_timeouts(knet_handle_t knet_h)
{
struct knet_host *dst_host;
struct knet_link *dst_link;
int link_idx;
if (pthread_mutex_lock(&knet_h->backoff_mutex)) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get backoff_mutex");
return;
}
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if ((dst_host->link[link_idx].status.enabled != 1) ||
(dst_host->link[link_idx].transport_type == KNET_TRANSPORT_LOOPBACK ) ||
((dst_host->link[link_idx].dynamic == KNET_LINK_DYNIP) &&
(dst_host->link[link_idx].status.dynconnected != 1)))
continue;
dst_link = &dst_host->link[link_idx];
if (dst_link->pong_timeout_backoff > 1) {
dst_link->pong_timeout_backoff--;
}
dst_link->pong_timeout_adj = (dst_link->pong_timeout * dst_link->pong_timeout_backoff) + (dst_link->status.stats.latency_max * KNET_LINK_PONG_TIMEOUT_LAT_MUL);
}
}
pthread_mutex_unlock(&knet_h->backoff_mutex);
}
void *_handle_heartbt_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
int i = 1;
set_thread_status(knet_h, KNET_THREAD_HB, KNET_THREAD_STARTED);
/* preparing ping buffer */
knet_h->pingbuf->kh_version = KNET_HEADER_VERSION;
knet_h->pingbuf->kh_type = KNET_HEADER_TYPE_PING;
knet_h->pingbuf->kh_node = htons(knet_h->host_id);
while (!shutdown_in_progress(knet_h)) {
usleep(KNET_THREADS_TIMERES);
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_HEARTBEAT, "Unable to get read lock");
continue;
}
/*
* _adjust_pong_timeouts should execute approx once a second.
*/
if ((i % (1000000 / KNET_THREADS_TIMERES)) == 0) {
_adjust_pong_timeouts(knet_h);
i = 1;
} else {
i++;
}
_send_pings(knet_h, 1);
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_HB, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/threads_pmtud.c b/libknet/threads_pmtud.c
index 442a3465..33bee5ea 100644
--- a/libknet/threads_pmtud.c
+++ b/libknet/threads_pmtud.c
@@ -1,566 +1,569 @@
/*
* Copyright (C) 2015-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include "crypto.h"
#include "links.h"
#include "host.h"
#include "logging.h"
#include "transports.h"
#include "threads_common.h"
#include "threads_pmtud.h"
static int _handle_check_link_pmtud(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link)
{
int err, ret, savederrno, mutex_retry_limit, failsafe, use_kernel_mtu, warn_once;
uint32_t kernel_mtu; /* record kernel_mtu from EMSGSIZE */
size_t onwire_len; /* current packet onwire size */
size_t overhead_len; /* onwire packet overhead (protocol based) */
size_t max_mtu_len; /* max mtu for protocol */
size_t data_len; /* how much data we can send in the packet
* generally would be onwire_len - overhead_len
* needs to be adjusted for crypto
*/
size_t pad_len; /* crypto packet pad size, needs to move into crypto.c callbacks */
ssize_t len; /* len of what we were able to sendto onwire */
struct timespec ts;
unsigned long long pong_timeout_adj_tmp;
unsigned char *outbuf = (unsigned char *)knet_h->pmtudbuf;
warn_once = 0;
mutex_retry_limit = 0;
failsafe = 0;
pad_len = 0;
dst_link->last_bad_mtu = 0;
knet_h->pmtudbuf->khp_pmtud_link = dst_link->link_id;
switch (dst_link->dst_addr.ss_family) {
case AF_INET6:
max_mtu_len = KNET_PMTUD_SIZE_V6;
overhead_len = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead;
dst_link->last_good_mtu = dst_link->last_ping_size + overhead_len;
break;
case AF_INET:
max_mtu_len = KNET_PMTUD_SIZE_V4;
overhead_len = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead;
dst_link->last_good_mtu = dst_link->last_ping_size + overhead_len;
break;
default:
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted, unknown protocol");
return -1;
break;
}
/*
* discovery starts from the top because kernel will
* refuse to send packets > current iface mtu.
* this saves us some time and network bw.
*/
onwire_len = max_mtu_len;
restart:
/*
* prevent a race when interface mtu is changed _exactly_ during
* the discovery process and it's complex to detect. Easier
* to wait the next loop.
* 30 is not an arbitrary value. To bisect from 576 to 128000 doesn't
* take more than 18/19 steps.
*/
if (failsafe == 30) {
log_err(knet_h, KNET_SUB_PMTUD,
"Aborting PMTUD process: Too many attempts. MTU might have changed during discovery.");
return -1;
} else {
failsafe++;
}
data_len = onwire_len - overhead_len;
if (knet_h->crypto_instance) {
if (knet_h->sec_block_size) {
pad_len = knet_h->sec_block_size - (data_len % knet_h->sec_block_size);
if (pad_len == knet_h->sec_block_size) {
pad_len = 0;
}
data_len = data_len + pad_len;
}
data_len = data_len + (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size);
if (knet_h->sec_block_size) {
while (data_len + overhead_len >= max_mtu_len) {
data_len = data_len - knet_h->sec_block_size;
}
}
if (dst_link->last_bad_mtu) {
while (data_len + overhead_len >= dst_link->last_bad_mtu) {
data_len = data_len - (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size);
}
}
if (data_len < (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size) + 1) {
log_debug(knet_h, KNET_SUB_PMTUD, "Aborting PMTUD process: link mtu smaller than crypto header detected (link might have been disconnected)");
return -1;
}
onwire_len = data_len + overhead_len;
knet_h->pmtudbuf->khp_pmtud_size = onwire_len;
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)knet_h->pmtudbuf,
data_len - (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size),
knet_h->pmtudbuf_crypt,
(ssize_t *)&data_len) < 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to crypto pmtud packet");
return -1;
}
outbuf = knet_h->pmtudbuf_crypt;
knet_h->stats_extra.tx_crypt_pmtu_packets++;
} else {
knet_h->pmtudbuf->khp_pmtud_size = onwire_len;
}
/* link has gone down, aborting pmtud */
if (dst_link->status.connected != 1) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected host (%u) link (%u) has been disconnected", dst_host->host_id, dst_link->link_id);
return -1;
}
if (dst_link->transport_connected != 1) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected host (%u) link (%u) has been disconnected", dst_host->host_id, dst_link->link_id);
return -1;
}
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
return -1;
}
if (knet_h->pmtud_abort) {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
errno = EDEADLK;
return -1;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_PMTUD, "Unable to get TX mutex lock: %s", strerror(savederrno));
return -1;
}
retry:
- len = sendto(dst_link->outsock, outbuf, data_len,
- MSG_DONTWAIT | MSG_NOSIGNAL, (struct sockaddr *) &dst_link->dst_addr,
- sizeof(struct sockaddr_storage));
+ if (transport_get_connection_oriented(knet_h, dst_link->transport_type) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
+ len = sendto(dst_link->outsock, outbuf, data_len, MSG_DONTWAIT | MSG_NOSIGNAL,
+ (struct sockaddr *) &dst_link->dst_addr, sizeof(struct sockaddr_storage));
+ } else {
+ len = sendto(dst_link->outsock, outbuf, data_len, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
+ }
savederrno = errno;
/*
* we cannot hold a lock on kmtu_mutex between resetting
* knet_h->kernel_mtu here and below where it's used.
* use_kernel_mtu tells us if the knet_h->kernel_mtu was
* set to 0 and we can trust its value later.
*/
use_kernel_mtu = 0;
if (pthread_mutex_lock(&knet_h->kmtu_mutex) == 0) {
use_kernel_mtu = 1;
knet_h->kernel_mtu = 0;
pthread_mutex_unlock(&knet_h->kmtu_mutex);
}
kernel_mtu = 0;
err = transport_tx_sock_error(knet_h, dst_link->transport_type, dst_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet (sendto): %d %s", savederrno, strerror(savederrno));
pthread_mutex_unlock(&knet_h->tx_mutex);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
dst_link->status.stats.tx_pmtu_errors++;
return -1;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
dst_link->status.stats.tx_pmtu_retries++;
goto retry;
break;
}
pthread_mutex_unlock(&knet_h->tx_mutex);
if (len != (ssize_t )data_len) {
if (savederrno == EMSGSIZE) {
/*
* we cannot hold a lock on kmtu_mutex between resetting
* knet_h->kernel_mtu and here.
* use_kernel_mtu tells us if the knet_h->kernel_mtu was
* set to 0 previously and we can trust its value now.
*/
if (use_kernel_mtu) {
use_kernel_mtu = 0;
if (pthread_mutex_lock(&knet_h->kmtu_mutex) == 0) {
kernel_mtu = knet_h->kernel_mtu;
pthread_mutex_unlock(&knet_h->kmtu_mutex);
}
}
if (kernel_mtu > 0) {
dst_link->last_bad_mtu = kernel_mtu + 1;
} else {
dst_link->last_bad_mtu = onwire_len;
}
} else {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet len: %zu err: %s", onwire_len, strerror(savederrno));
}
} else {
dst_link->last_sent_mtu = onwire_len;
dst_link->last_recv_mtu = 0;
dst_link->status.stats.tx_pmtu_packets++;
dst_link->status.stats.tx_pmtu_bytes += data_len;
if (clock_gettime(CLOCK_REALTIME, &ts) < 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get current time: %s", strerror(errno));
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return -1;
}
/*
* set PMTUd reply timeout to match pong_timeout on a given link
*
* math: internally pong_timeout is expressed in microseconds, while
* the public API exports milliseconds. So careful with the 0's here.
* the loop is necessary because we are grabbing the current time just above
* and add values to it that could overflow into seconds.
*/
if (pthread_mutex_lock(&knet_h->backoff_mutex)) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get backoff_mutex");
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return -1;
}
if (knet_h->crypto_instance) {
/*
* crypto, under pressure, is a royal PITA
*/
pong_timeout_adj_tmp = dst_link->pong_timeout_adj * 2;
} else {
pong_timeout_adj_tmp = dst_link->pong_timeout_adj;
}
ts.tv_sec += pong_timeout_adj_tmp / 1000000;
ts.tv_nsec += (((pong_timeout_adj_tmp) % 1000000) * 1000);
while (ts.tv_nsec > 1000000000) {
ts.tv_sec += 1;
ts.tv_nsec -= 1000000000;
}
pthread_mutex_unlock(&knet_h->backoff_mutex);
knet_h->pmtud_waiting = 1;
ret = pthread_cond_timedwait(&knet_h->pmtud_cond, &knet_h->pmtud_mutex, &ts);
knet_h->pmtud_waiting = 0;
if (knet_h->pmtud_abort) {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
errno = EDEADLK;
return -1;
}
if (shutdown_in_progress(knet_h)) {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted. shutdown in progress");
return -1;
}
if (ret) {
if (ret == ETIMEDOUT) {
if (!warn_once) {
log_warn(knet_h, KNET_SUB_PMTUD,
"possible MTU misconfiguration detected. "
"kernel is reporting MTU: %u bytes for "
"host %u link %u but the other node is "
"not acknowledging packets of this size. ",
dst_link->last_sent_mtu,
dst_host->host_id,
dst_link->link_id);
log_warn(knet_h, KNET_SUB_PMTUD,
"This can be caused by this node interface MTU "
"too big or a network device that does not "
"support or has been misconfigured to manage MTU "
"of this size, or packet loss. knet will continue "
"to run but performances might be affected.");
warn_once = 1;
}
} else {
pthread_mutex_unlock(&knet_h->pmtud_mutex);
if (mutex_retry_limit == 3) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted, unable to get mutex lock");
return -1;
}
mutex_retry_limit++;
goto restart;
}
}
if ((dst_link->last_recv_mtu != onwire_len) || (ret)) {
dst_link->last_bad_mtu = onwire_len;
} else {
int found_mtu = 0;
if (knet_h->sec_block_size) {
if ((onwire_len + knet_h->sec_block_size >= max_mtu_len) ||
((dst_link->last_bad_mtu) && (dst_link->last_bad_mtu <= (onwire_len + knet_h->sec_block_size)))) {
found_mtu = 1;
}
} else {
if ((onwire_len == max_mtu_len) ||
((dst_link->last_bad_mtu) && (dst_link->last_bad_mtu == (onwire_len + 1))) ||
(dst_link->last_bad_mtu == dst_link->last_good_mtu)) {
found_mtu = 1;
}
}
if (found_mtu) {
/*
* account for IP overhead, knet headers and crypto in PMTU calculation
*/
dst_link->status.mtu = onwire_len - dst_link->status.proto_overhead;
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return 0;
}
dst_link->last_good_mtu = onwire_len;
}
}
if (kernel_mtu) {
onwire_len = kernel_mtu;
} else {
onwire_len = (dst_link->last_good_mtu + dst_link->last_bad_mtu) / 2;
}
pthread_mutex_unlock(&knet_h->pmtud_mutex);
goto restart;
}
static int _handle_check_pmtud(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link, unsigned int *min_mtu, int force_run)
{
uint8_t saved_valid_pmtud;
unsigned int saved_pmtud;
struct timespec clock_now;
unsigned long long diff_pmtud, interval;
if (!force_run) {
interval = knet_h->pmtud_interval * 1000000000llu; /* nanoseconds */
if (clock_gettime(CLOCK_MONOTONIC, &clock_now) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get monotonic clock");
return 0;
}
timespec_diff(dst_link->pmtud_last, clock_now, &diff_pmtud);
if (diff_pmtud < interval) {
*min_mtu = dst_link->status.mtu;
return dst_link->has_valid_mtu;
}
}
switch (dst_link->dst_addr.ss_family) {
case AF_INET6:
dst_link->status.proto_overhead = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead + KNET_HEADER_ALL_SIZE + knet_h->sec_header_size;
break;
case AF_INET:
dst_link->status.proto_overhead = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead + KNET_HEADER_ALL_SIZE + knet_h->sec_header_size;
break;
}
saved_pmtud = dst_link->status.mtu;
saved_valid_pmtud = dst_link->has_valid_mtu;
log_debug(knet_h, KNET_SUB_PMTUD, "Starting PMTUD for host: %u link: %u", dst_host->host_id, dst_link->link_id);
errno = 0;
if (_handle_check_link_pmtud(knet_h, dst_host, dst_link) < 0) {
if (errno == EDEADLK) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD for host: %u link: %u has been rescheduled", dst_host->host_id, dst_link->link_id);
dst_link->status.mtu = saved_pmtud;
dst_link->has_valid_mtu = saved_valid_pmtud;
errno = EDEADLK;
return dst_link->has_valid_mtu;
}
dst_link->has_valid_mtu = 0;
} else {
dst_link->has_valid_mtu = 1;
switch (dst_link->dst_addr.ss_family) {
case AF_INET6:
if (((dst_link->status.mtu + dst_link->status.proto_overhead) < KNET_PMTUD_MIN_MTU_V6) ||
((dst_link->status.mtu + dst_link->status.proto_overhead) > KNET_PMTUD_SIZE_V6)) {
log_debug(knet_h, KNET_SUB_PMTUD,
"PMTUD detected an IPv6 MTU out of bound value (%u) for host: %u link: %u.",
dst_link->status.mtu + dst_link->status.proto_overhead, dst_host->host_id, dst_link->link_id);
dst_link->has_valid_mtu = 0;
}
break;
case AF_INET:
if (((dst_link->status.mtu + dst_link->status.proto_overhead) < KNET_PMTUD_MIN_MTU_V4) ||
((dst_link->status.mtu + dst_link->status.proto_overhead) > KNET_PMTUD_SIZE_V4)) {
log_debug(knet_h, KNET_SUB_PMTUD,
"PMTUD detected an IPv4 MTU out of bound value (%u) for host: %u link: %u.",
dst_link->status.mtu + dst_link->status.proto_overhead, dst_host->host_id, dst_link->link_id);
dst_link->has_valid_mtu = 0;
}
break;
}
if (dst_link->has_valid_mtu) {
if ((saved_pmtud) && (saved_pmtud != dst_link->status.mtu)) {
log_info(knet_h, KNET_SUB_PMTUD, "PMTUD link change for host: %u link: %u from %u to %u",
dst_host->host_id, dst_link->link_id, saved_pmtud, dst_link->status.mtu);
}
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD completed for host: %u link: %u current link mtu: %u",
dst_host->host_id, dst_link->link_id, dst_link->status.mtu);
if (dst_link->status.mtu < *min_mtu) {
*min_mtu = dst_link->status.mtu;
}
/*
* set pmtud_last, if we can, after we are done with the PMTUd process
* because it can take a very long time.
*/
dst_link->pmtud_last = clock_now;
if (!clock_gettime(CLOCK_MONOTONIC, &clock_now)) {
dst_link->pmtud_last = clock_now;
}
}
}
if (saved_valid_pmtud != dst_link->has_valid_mtu) {
_host_dstcache_update_sync(knet_h, dst_host);
}
return dst_link->has_valid_mtu;
}
void *_handle_pmtud_link_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct knet_host *dst_host;
struct knet_link *dst_link;
int link_idx;
unsigned int min_mtu, have_mtu;
unsigned int lower_mtu;
int link_has_mtu;
int force_run = 0;
set_thread_status(knet_h, KNET_THREAD_PMTUD, KNET_THREAD_STARTED);
knet_h->data_mtu = KNET_PMTUD_MIN_MTU_V4 - KNET_HEADER_ALL_SIZE - knet_h->sec_header_size;
/* preparing pmtu buffer */
knet_h->pmtudbuf->kh_version = KNET_HEADER_VERSION;
knet_h->pmtudbuf->kh_type = KNET_HEADER_TYPE_PMTUD;
knet_h->pmtudbuf->kh_node = htons(knet_h->host_id);
while (!shutdown_in_progress(knet_h)) {
usleep(KNET_THREADS_TIMERES);
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
continue;
}
knet_h->pmtud_abort = 0;
knet_h->pmtud_running = 1;
force_run = knet_h->pmtud_forcerun;
knet_h->pmtud_forcerun = 0;
pthread_mutex_unlock(&knet_h->pmtud_mutex);
if (force_run) {
log_debug(knet_h, KNET_SUB_PMTUD, "PMTUd request to rerun has been received");
}
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get read lock");
continue;
}
lower_mtu = KNET_PMTUD_SIZE_V4;
min_mtu = KNET_PMTUD_SIZE_V4 - KNET_HEADER_ALL_SIZE - knet_h->sec_header_size;
have_mtu = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
dst_link = &dst_host->link[link_idx];
if ((dst_link->status.enabled != 1) ||
(dst_link->status.connected != 1) ||
(dst_host->link[link_idx].transport_type == KNET_TRANSPORT_LOOPBACK) ||
(!dst_link->last_ping_size) ||
((dst_link->dynamic == KNET_LINK_DYNIP) &&
(dst_link->status.dynconnected != 1)))
continue;
link_has_mtu = _handle_check_pmtud(knet_h, dst_host, dst_link, &min_mtu, force_run);
if (errno == EDEADLK) {
goto out_unlock;
}
if (link_has_mtu) {
have_mtu = 1;
if (min_mtu < lower_mtu) {
lower_mtu = min_mtu;
}
}
}
}
if (have_mtu) {
if (knet_h->data_mtu != lower_mtu) {
knet_h->data_mtu = lower_mtu;
log_info(knet_h, KNET_SUB_PMTUD, "Global data MTU changed to: %u", knet_h->data_mtu);
if (knet_h->pmtud_notify_fn) {
knet_h->pmtud_notify_fn(knet_h->pmtud_notify_fn_private_data,
knet_h->data_mtu);
}
}
}
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock");
} else {
knet_h->pmtud_running = 0;
pthread_mutex_unlock(&knet_h->pmtud_mutex);
}
}
set_thread_status(knet_h, KNET_THREAD_PMTUD, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/threads_rx.c b/libknet/threads_rx.c
index d2767e17..4877b729 100644
--- a/libknet/threads_rx.c
+++ b/libknet/threads_rx.c
@@ -1,851 +1,857 @@
/*
* Copyright (C) 2012-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/uio.h>
#include <pthread.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "links.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_rx.h"
#include "netutils.h"
/*
* RECV
*/
/*
* return 1 if a > b
* return -1 if b > a
* return 0 if they are equal
*/
static inline int timecmp(struct timespec a, struct timespec b)
{
if (a.tv_sec != b.tv_sec) {
if (a.tv_sec > b.tv_sec) {
return 1;
} else {
return -1;
}
} else {
if (a.tv_nsec > b.tv_nsec) {
return 1;
} else if (a.tv_nsec < b.tv_nsec) {
return -1;
} else {
return 0;
}
}
}
/*
* this functions needs to return an index (0 to 7)
* to a knet_host_defrag_buf. (-1 on errors)
*/
static int find_pckt_defrag_buf(knet_handle_t knet_h, struct knet_header *inbuf)
{
struct knet_host *src_host = knet_h->host_index[inbuf->kh_node];
int i, oldest;
/*
* check if there is a buffer already in use handling the same seq_num
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (src_host->defrag_buf[i].in_use) {
if (src_host->defrag_buf[i].pckt_seq == inbuf->khp_data_seq_num) {
return i;
}
}
}
/*
* If there is no buffer that's handling the current seq_num
* either it's new or it's been reclaimed already.
* check if it's been reclaimed/seen before using the defrag circular
* buffer. If the pckt has been seen before, the buffer expired (ETIME)
* and there is no point to try to defrag it again.
*/
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 1, 0)) {
errno = ETIME;
return -1;
}
/*
* register the pckt as seen
*/
_seq_num_set(src_host, inbuf->khp_data_seq_num, 1);
/*
* see if there is a free buffer
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (!src_host->defrag_buf[i].in_use) {
return i;
}
}
/*
* at this point, there are no free buffers, the pckt is new
* and we need to reclaim a buffer, and we will take the one
* with the oldest timestamp. It's as good as any.
*/
oldest = 0;
for (i = 0; i < KNET_MAX_LINK; i++) {
if (timecmp(src_host->defrag_buf[i].last_update, src_host->defrag_buf[oldest].last_update) < 0) {
oldest = i;
}
}
src_host->defrag_buf[oldest].in_use = 0;
return oldest;
}
static int pckt_defrag(knet_handle_t knet_h, struct knet_header *inbuf, ssize_t *len)
{
struct knet_host_defrag_buf *defrag_buf;
int defrag_buf_idx;
defrag_buf_idx = find_pckt_defrag_buf(knet_h, inbuf);
if (defrag_buf_idx < 0) {
if (errno == ETIME) {
log_debug(knet_h, KNET_SUB_RX, "Defrag buffer expired");
}
return 1;
}
defrag_buf = &knet_h->host_index[inbuf->kh_node]->defrag_buf[defrag_buf_idx];
/*
* if the buf is not is use, then make sure it's clean
*/
if (!defrag_buf->in_use) {
memset(defrag_buf, 0, sizeof(struct knet_host_defrag_buf));
defrag_buf->in_use = 1;
defrag_buf->pckt_seq = inbuf->khp_data_seq_num;
}
/*
* update timestamp on the buffer
*/
clock_gettime(CLOCK_MONOTONIC, &defrag_buf->last_update);
/*
* check if we already received this fragment
*/
if (defrag_buf->frag_map[inbuf->khp_data_frag_seq]) {
/*
* if we have received this fragment and we didn't clear the buffer
* it means that we don't have all fragments yet
*/
return 1;
}
/*
* we need to handle the last packet with gloves due to its different size
*/
if (inbuf->khp_data_frag_seq == inbuf->khp_data_frag_num) {
defrag_buf->last_frag_size = *len;
/*
* in the event when the last packet arrives first,
* we still don't know the offset vs the other fragments (based on MTU),
* so we store the fragment at the end of the buffer where it's safe
* and take a copy of the len so that we can restore its offset later.
* remember we can't use the local MTU for this calculation because pMTU
* can be asymettric between the same hosts.
*/
if (!defrag_buf->frag_size) {
defrag_buf->last_first = 1;
memmove(defrag_buf->buf + (KNET_MAX_PACKET_SIZE - *len),
inbuf->khp_data_userdata,
*len);
}
} else {
defrag_buf->frag_size = *len;
}
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_seq - 1) * defrag_buf->frag_size),
inbuf->khp_data_userdata, *len);
defrag_buf->frag_recv++;
defrag_buf->frag_map[inbuf->khp_data_frag_seq] = 1;
/*
* check if we received all the fragments
*/
if (defrag_buf->frag_recv == inbuf->khp_data_frag_num) {
/*
* special case the last pckt
*/
if (defrag_buf->last_first) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size),
defrag_buf->buf + (KNET_MAX_PACKET_SIZE - defrag_buf->last_frag_size),
defrag_buf->last_frag_size);
}
/*
* recalculate packet lenght
*/
*len = ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size) + defrag_buf->last_frag_size;
/*
* copy the pckt back in the user data
*/
memmove(inbuf->khp_data_userdata, defrag_buf->buf, *len);
/*
* free this buffer
*/
defrag_buf->in_use = 0;
return 0;
}
return 1;
}
static void _parse_recv_from_links(knet_handle_t knet_h, int sockfd, const struct knet_mmsghdr *msg)
{
int err = 0, savederrno = 0;
ssize_t outlen;
struct knet_host *src_host;
struct knet_link *src_link;
unsigned long long latency_last;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
int was_decrypted = 0;
uint64_t crypt_time = 0;
struct timespec recvtime;
struct knet_header *inbuf = msg->msg_hdr.msg_iov->iov_base;
unsigned char *outbuf = (unsigned char *)msg->msg_hdr.msg_iov->iov_base;
ssize_t len = msg->msg_len;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[1];
int8_t channel;
struct sockaddr_storage pckt_src;
seq_num_t recv_seq_num;
int wipe_bufs = 0;
if (knet_h->crypto_instance) {
struct timespec start_time;
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_authenticate_and_decrypt(knet_h,
(unsigned char *)inbuf,
len,
knet_h->recv_from_links_buf_decrypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to decrypt/auth packet");
return;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &crypt_time);
if (crypt_time < knet_h->stats.rx_crypt_time_min) {
knet_h->stats.rx_crypt_time_min = crypt_time;
}
if (crypt_time > knet_h->stats.rx_crypt_time_max) {
knet_h->stats.rx_crypt_time_max = crypt_time;
}
len = outlen;
inbuf = (struct knet_header *)knet_h->recv_from_links_buf_decrypt;
was_decrypted++;
}
if (len < (ssize_t)(KNET_HEADER_SIZE + 1)) {
log_debug(knet_h, KNET_SUB_RX, "Packet is too short: %ld", (long)len);
return;
}
if (inbuf->kh_version != KNET_HEADER_VERSION) {
log_debug(knet_h, KNET_SUB_RX, "Packet version does not match");
return;
}
inbuf->kh_node = ntohs(inbuf->kh_node);
src_host = knet_h->host_index[inbuf->kh_node];
if (src_host == NULL) { /* host not found */
log_debug(knet_h, KNET_SUB_RX, "Unable to find source host for this packet");
return;
}
src_link = NULL;
src_link = src_host->link +
(inbuf->khp_ping_link % KNET_MAX_LINK);
if ((inbuf->kh_type & KNET_HEADER_TYPE_PMSK) != 0) {
if (src_link->dynamic == KNET_LINK_DYNIP) {
/*
* cpyaddrport will only copy address and port of the incoming
* packet and strip extra bits such as flow and scopeid
*/
cpyaddrport(&pckt_src, msg->msg_hdr.msg_name);
if (cmpaddr(&src_link->dst_addr, sockaddr_len(&src_link->dst_addr),
&pckt_src, sockaddr_len(&pckt_src)) != 0) {
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u appears to have changed ip address",
src_host->host_id, src_link->link_id);
memmove(&src_link->dst_addr, &pckt_src, sizeof(struct sockaddr_storage));
if (knet_addrtostr(&src_link->dst_addr, sockaddr_len(msg->msg_hdr.msg_name),
src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN,
src_link->status.dst_port, KNET_MAX_PORT_LEN) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to resolve ???");
snprintf(src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN - 1, "Unknown!!!");
snprintf(src_link->status.dst_port, KNET_MAX_PORT_LEN - 1, "??");
} else {
log_info(knet_h, KNET_SUB_RX,
"host: %u link: %u new connection established from: %s %s",
src_host->host_id, src_link->link_id,
src_link->status.dst_ipaddr, src_link->status.dst_port);
}
}
/*
* transport has already accepted the connection here
* otherwise we would not be receiving packets
*/
transport_link_dyn_connect(knet_h, sockfd, src_link);
}
}
switch (inbuf->kh_type) {
case KNET_HEADER_TYPE_HOST_INFO:
case KNET_HEADER_TYPE_DATA:
/*
* TODO: should we accept data even if we can't reply to the other node?
* how would that work with SCTP and guaranteed delivery?
*/
if (!src_host->status.reachable) {
log_debug(knet_h, KNET_SUB_RX, "Source host %u not reachable yet", src_host->host_id);
//return;
}
inbuf->khp_data_seq_num = ntohs(inbuf->khp_data_seq_num);
channel = inbuf->khp_data_channel;
src_host->got_data = 1;
if (src_link) {
src_link->status.stats.rx_data_packets++;
src_link->status.stats.rx_data_bytes += len;
}
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
if (src_host->link_handler_policy != KNET_LINK_POLICY_ACTIVE) {
log_debug(knet_h, KNET_SUB_RX, "Packet has already been delivered");
}
return;
}
if (inbuf->khp_data_frag_num > 1) {
/*
* len as received from the socket also includes extra stuff
* that the defrag code doesn't care about. So strip it
* here and readd only for repadding once we are done
* defragging
*/
len = len - KNET_HEADER_DATA_SIZE;
if (pckt_defrag(knet_h, inbuf, &len)) {
return;
}
len = len + KNET_HEADER_DATA_SIZE;
}
if (inbuf->khp_data_compress) {
ssize_t decmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = decompress(knet_h, inbuf->khp_data_compress,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
knet_h->recv_from_links_buf_decompress,
&decmp_outlen);
if (!err) {
/* Collect stats */
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &compress_time);
if (compress_time < knet_h->stats.rx_compress_time_min) {
knet_h->stats.rx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.rx_compress_time_max) {
knet_h->stats.rx_compress_time_max = compress_time;
}
knet_h->stats.rx_compress_time_ave =
(knet_h->stats.rx_compress_time_ave * knet_h->stats.rx_compressed_packets +
compress_time) / (knet_h->stats.rx_compressed_packets+1);
knet_h->stats.rx_compressed_packets++;
knet_h->stats.rx_compressed_original_bytes += decmp_outlen;
knet_h->stats.rx_compressed_size_bytes += len - KNET_HEADER_SIZE;
memmove(inbuf->khp_data_userdata, knet_h->recv_from_links_buf_decompress, decmp_outlen);
len = decmp_outlen + KNET_HEADER_DATA_SIZE;
} else {
log_warn(knet_h, KNET_SUB_COMPRESS, "Unable to decompress packet (%d): %s",
err, strerror(errno));
return;
}
}
if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
if (knet_h->enabled != 1) /* data forward is disabled */
break;
/* Only update the crypto overhead for data packets. Mainly to be
consistent with TX */
knet_h->stats.rx_crypt_time_ave =
(knet_h->stats.rx_crypt_time_ave * knet_h->stats.rx_crypt_packets +
crypt_time) / (knet_h->stats.rx_crypt_packets+1);
knet_h->stats.rx_crypt_packets++;
if (knet_h->dst_host_filter_fn) {
size_t host_idx;
int found = 0;
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
KNET_NOTIFY_RX,
knet_h->host_id,
inbuf->kh_node,
&channel,
dst_host_ids,
&dst_host_ids_entries);
if (bcast < 0) {
log_debug(knet_h, KNET_SUB_RX, "Error from dst_host_filter_fn: %d", bcast);
return;
}
if ((!bcast) && (!dst_host_ids_entries)) {
log_debug(knet_h, KNET_SUB_RX, "Message is unicast but no dst_host_ids_entries");
return;
}
/* check if we are dst for this packet */
if (!bcast) {
if (dst_host_ids_entries > KNET_MAX_HOST) {
log_debug(knet_h, KNET_SUB_RX, "dst_host_filter_fn returned too many destinations");
return;
}
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
if (dst_host_ids[host_idx] == knet_h->host_id) {
found = 1;
break;
}
}
if (!found) {
log_debug(knet_h, KNET_SUB_RX, "Packet is not for us");
return;
}
}
}
}
if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
if (!knet_h->sockfd[channel].in_use) {
log_debug(knet_h, KNET_SUB_RX,
"received packet for channel %d but there is no local sock connected",
channel);
return;
}
memset(iov_out, 0, sizeof(iov_out));
iov_out[0].iov_base = (void *) inbuf->khp_data_userdata;
iov_out[0].iov_len = len - KNET_HEADER_DATA_SIZE;
outlen = writev(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], iov_out, 1);
if (outlen <= 0) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_RX,
outlen,
errno);
return;
}
if ((size_t)outlen == iov_out[0].iov_len) {
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
}
} else { /* HOSTINFO */
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
bcast = 0;
knet_hostinfo->khi_dst_node_id = ntohs(knet_hostinfo->khi_dst_node_id);
}
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
return;
}
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
switch(knet_hostinfo->khi_type) {
case KNET_HOSTINFO_TYPE_LINK_UP_DOWN:
break;
case KNET_HOSTINFO_TYPE_LINK_TABLE:
break;
default:
log_warn(knet_h, KNET_SUB_RX, "Receiving unknown host info message from host %u", src_host->host_id);
break;
}
}
break;
case KNET_HEADER_TYPE_PING:
outlen = KNET_HEADER_PING_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PONG;
inbuf->kh_node = htons(knet_h->host_id);
recv_seq_num = ntohs(inbuf->khp_ping_seq_num);
src_link->status.stats.rx_ping_packets++;
src_link->status.stats.rx_ping_bytes += len;
wipe_bufs = 0;
if (!inbuf->khp_ping_timed) {
/*
* we might be receiving this message from all links, but we want
* to process it only the first time
*/
if (recv_seq_num != src_host->untimed_rx_seq_num) {
/*
* cache the untimed seq num
*/
src_host->untimed_rx_seq_num = recv_seq_num;
/*
* if the host has received data in between
* untimed ping, then we don't need to wipe the bufs
*/
if (src_host->got_data) {
src_host->got_data = 0;
wipe_bufs = 0;
} else {
wipe_bufs = 1;
}
}
_seq_num_lookup(src_host, recv_seq_num, 0, wipe_bufs);
} else {
/*
* pings always arrives in bursts over all the link
* catch the first of them to cache the seq num and
* avoid duplicate processing
*/
if (recv_seq_num != src_host->timed_rx_seq_num) {
src_host->timed_rx_seq_num = recv_seq_num;
if (recv_seq_num == 0) {
_seq_num_lookup(src_host, recv_seq_num, 0, 1);
}
}
}
if (knet_h->crypto_instance) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt pong packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
knet_h->stats_extra.tx_crypt_pong_packets++;
}
retry_pong:
- len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
- (struct sockaddr *) &src_link->dst_addr,
- sizeof(struct sockaddr_storage));
+ if (transport_get_connection_oriented(knet_h, src_link->transport_type) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
+ len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
+ (struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
+ } else {
+ len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
+ }
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport_type, src_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send pong reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pong_errors++;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pong_retries++;
goto retry_pong;
break;
}
}
src_link->status.stats.tx_pong_packets++;
src_link->status.stats.tx_pong_bytes += outlen;
break;
case KNET_HEADER_TYPE_PONG:
src_link->status.stats.rx_pong_packets++;
src_link->status.stats.rx_pong_bytes += len;
clock_gettime(CLOCK_MONOTONIC, &src_link->status.pong_last);
memmove(&recvtime, &inbuf->khp_ping_time[0], sizeof(struct timespec));
timespec_diff(recvtime,
src_link->status.pong_last, &latency_last);
src_link->status.latency =
((src_link->status.latency * src_link->latency_exp) +
((latency_last / 1000llu) *
(src_link->latency_fix - src_link->latency_exp))) /
src_link->latency_fix;
if (src_link->status.latency < src_link->pong_timeout_adj) {
if (!src_link->status.connected) {
if (src_link->received_pong >= src_link->pong_count) {
log_info(knet_h, KNET_SUB_RX, "host: %u link: %u is up",
src_host->host_id, src_link->link_id);
_link_updown(knet_h, src_host->host_id, src_link->link_id, src_link->status.enabled, 1);
} else {
src_link->received_pong++;
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u received pong: %u",
src_host->host_id, src_link->link_id, src_link->received_pong);
}
}
}
/* Calculate latency stats */
if (src_link->status.latency > src_link->status.stats.latency_max) {
src_link->status.stats.latency_max = src_link->status.latency;
}
if (src_link->status.latency < src_link->status.stats.latency_min) {
src_link->status.stats.latency_min = src_link->status.latency;
}
src_link->status.stats.latency_ave =
(src_link->status.stats.latency_ave * src_link->status.stats.latency_samples +
src_link->status.latency) / (src_link->status.stats.latency_samples+1);
src_link->status.stats.latency_samples++;
break;
case KNET_HEADER_TYPE_PMTUD:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
outlen = KNET_HEADER_PMTUD_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PMTUD_REPLY;
inbuf->kh_node = htons(knet_h->host_id);
if (knet_h->crypto_instance) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt PMTUd reply packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
knet_h->stats_extra.tx_crypt_pmtu_reply_packets++;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_RX, "Unable to get TX mutex lock: %s", strerror(savederrno));
goto out_pmtud;
}
retry_pmtud:
- len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
- (struct sockaddr *) &src_link->dst_addr,
- sizeof(struct sockaddr_storage));
+ if (transport_get_connection_oriented(knet_h, src_link->transport_type) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
+ len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
+ (struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
+ } else {
+ len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
+ }
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport_type, src_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send PMTUd reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pmtu_errors++;
break;
case 0: /* ignore error and continue */
src_link->status.stats.tx_pmtu_errors++;
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pmtu_retries++;
goto retry_pmtud;
break;
}
}
pthread_mutex_unlock(&knet_h->tx_mutex);
out_pmtud:
break;
case KNET_HEADER_TYPE_PMTUD_REPLY:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get mutex lock");
break;
}
src_link->last_recv_mtu = inbuf->khp_pmtud_size;
pthread_cond_signal(&knet_h->pmtud_cond);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
break;
default:
return;
}
}
static void _handle_recv_from_links(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
int err, savederrno;
int i, msg_recv, transport;
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get global read lock");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
/*
* this is normal if a fd got an event and before we grab the read lock
* and the link is removed by another thread
*/
goto exit_unlock;
}
transport = knet_h->knet_transport_fd_tracker[sockfd].transport;
/*
* reset msg_namelen to buffer size because after recvmmsg
* each msg_namelen will contain sizeof sockaddr_in or sockaddr_in6
*/
for (i = 0; i < PCKT_RX_BUFS; i++) {
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
}
msg_recv = _recvmmsg(sockfd, &msg[0], PCKT_RX_BUFS, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
/*
* WARNING: man page for recvmmsg is wrong. Kernel implementation here:
* recvmmsg can return:
* -1 on error
* 0 if the previous run of recvmmsg recorded an error on the socket
* N number of messages (see exception below).
*
* If there is an error from recvmsg after receiving a frame or more, the recvmmsg
* loop is interrupted, error recorded in the socket (getsockopt(SO_ERROR) and
* it will be visibile in the next run.
*
* Need to be careful how we handle errors at this stage.
*
* error messages need to be handled on a per transport/protocol base
* at this point we have different layers of error handling
* - msg_recv < 0 -> error from this run
* msg_recv = 0 -> error from previous run and error on socket needs to be cleared
* - per-transport message data
* example: msg[i].msg_hdr.msg_flags & MSG_NOTIFICATION or msg_len for SCTP == EOF,
* but for UDP it is perfectly legal to receive a 0 bytes message.. go figure
* - NOTE: on SCTP MSG_NOTIFICATION we get msg_recv == PCKT_FRAG_MAX messages and no
* errno set. That means the error api needs to be able to abort the loop below.
*/
if (msg_recv <= 0) {
transport_rx_sock_error(knet_h, transport, sockfd, msg_recv, savederrno);
goto exit_unlock;
}
for (i = 0; i < msg_recv; i++) {
err = transport_rx_is_data(knet_h, transport, sockfd, &msg[i]);
/*
* TODO: make this section silent once we are confident
* all protocols packet handlers are good
*/
switch(err) {
case -1: /* on error */
log_debug(knet_h, KNET_SUB_RX, "Transport reported error parsing packet");
goto exit_unlock;
break;
case 0: /* packet is not data and we should continue the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, continue");
break;
case 1: /* packet is not data and we should STOP the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, stop");
goto exit_unlock;
break;
case 2: /* packet is data and should be parsed as such */
_parse_recv_from_links(knet_h, sockfd, &msg[i]);
break;
}
}
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
void *_handle_recv_from_links_thread(void *data)
{
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
struct sockaddr_storage address[PCKT_RX_BUFS];
struct knet_mmsghdr msg[PCKT_RX_BUFS];
struct iovec iov_in[PCKT_RX_BUFS];
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STARTED);
memset(&msg, 0, sizeof(msg));
for (i = 0; i < PCKT_RX_BUFS; i++) {
iov_in[i].iov_base = (void *)knet_h->recv_from_links_buf[i];
iov_in[i].iov_len = KNET_DATABUFSIZE;
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_name = &address[i];
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[i].msg_hdr.msg_iov = &iov_in[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->recv_from_links_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
for (i = 0; i < nev; i++) {
_handle_recv_from_links(knet_h, events[i].data.fd, msg);
}
}
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/threads_tx.c b/libknet/threads_tx.c
index 1048bf60..da986140 100644
--- a/libknet/threads_tx.c
+++ b/libknet/threads_tx.c
@@ -1,748 +1,749 @@
/*
* Copyright (C) 2012-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <math.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_tx.h"
#include "netutils.h"
/*
* SEND
*/
static int _dispatch_to_links(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_mmsghdr *msg, int msgs_to_send)
{
int link_idx, msg_idx, sent_msgs, prev_sent, progress;
int err = 0, savederrno = 0;
unsigned int i;
struct knet_mmsghdr *cur;
struct knet_link *cur_link;
for (link_idx = 0; link_idx < dst_host->active_link_entries; link_idx++) {
sent_msgs = 0;
prev_sent = 0;
progress = 1;
cur_link = &dst_host->link[dst_host->active_links[link_idx]];
if (cur_link->transport_type == KNET_TRANSPORT_LOOPBACK) {
continue;
}
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_name = &cur_link->dst_addr;
/* Cast for Linux/BSD compatibility */
for (i=0; i<(unsigned int)msg[msg_idx].msg_hdr.msg_iovlen; i++) {
cur_link->status.stats.tx_data_bytes += msg[msg_idx].msg_hdr.msg_iov[i].iov_len;
}
cur_link->status.stats.tx_data_packets++;
msg_idx++;
}
retry:
cur = &msg[prev_sent];
sent_msgs = _sendmmsg(dst_host->link[dst_host->active_links[link_idx]].outsock,
+ transport_get_connection_oriented(knet_h, dst_host->link[dst_host->active_links[link_idx]].transport_type),
&cur[0], msgs_to_send - prev_sent, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
err = transport_tx_sock_error(knet_h, dst_host->link[dst_host->active_links[link_idx]].transport_type, dst_host->link[dst_host->active_links[link_idx]].outsock, sent_msgs, savederrno);
switch(err) {
case -1: /* unrecoverable error */
cur_link->status.stats.tx_data_errors++;
goto out_unlock;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
cur_link->status.stats.tx_data_retries++;
goto retry;
break;
}
prev_sent = prev_sent + sent_msgs;
if ((sent_msgs >= 0) && (prev_sent < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TX, "Unable to send all (%d/%d) data packets to host %s (%u) link %s:%s (%u)",
sent_msgs, msg_idx,
dst_host->name, dst_host->host_id,
dst_host->link[dst_host->active_links[link_idx]].status.dst_ipaddr,
dst_host->link[dst_host->active_links[link_idx]].status.dst_port,
dst_host->link[dst_host->active_links[link_idx]].link_id);
#endif
goto retry;
}
if (!progress) {
savederrno = EAGAIN;
err = -1;
goto out_unlock;
}
}
if ((dst_host->link_handler_policy == KNET_LINK_POLICY_RR) &&
(dst_host->active_link_entries > 1)) {
uint8_t cur_link_id = dst_host->active_links[0];
memmove(&dst_host->active_links[0], &dst_host->active_links[1], KNET_MAX_LINK - 1);
dst_host->active_links[dst_host->active_link_entries - 1] = cur_link_id;
break;
}
}
out_unlock:
errno = savederrno;
return err;
}
static int _parse_recv_from_sock(knet_handle_t knet_h, size_t inlen, int8_t channel, int is_sync)
{
size_t outlen, frag_len;
struct knet_host *dst_host;
knet_node_id_t dst_host_ids_temp[KNET_MAX_HOST];
size_t dst_host_ids_entries_temp = 0;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[PCKT_FRAG_MAX][2];
int iovcnt_out = 2;
uint8_t frag_idx;
unsigned int temp_data_mtu;
size_t host_idx;
int send_mcast = 0;
struct knet_header *inbuf;
int savederrno = 0;
int err = 0;
seq_num_t tx_seq_num;
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
int msgs_to_send, msg_idx;
unsigned int i;
int j;
int send_local = 0;
int data_compressed = 0;
size_t uncrypted_frag_size;
inbuf = knet_h->recv_from_sock_buf;
if ((knet_h->enabled != 1) &&
(inbuf->kh_type != KNET_HEADER_TYPE_HOST_INFO)) { /* data forward is disabled */
log_debug(knet_h, KNET_SUB_TX, "Received data packet but forwarding is disabled");
savederrno = ECANCELED;
err = -1;
goto out_unlock;
}
/*
* move this into a separate function to expand on
* extra switching rules
*/
switch(inbuf->kh_type) {
case KNET_HEADER_TYPE_DATA:
if (knet_h->dst_host_filter_fn) {
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
inlen,
KNET_NOTIFY_TX,
knet_h->host_id,
knet_h->host_id,
&channel,
dst_host_ids_temp,
&dst_host_ids_entries_temp);
if (bcast < 0) {
log_debug(knet_h, KNET_SUB_TX, "Error from dst_host_filter_fn: %d", bcast);
savederrno = EFAULT;
err = -1;
goto out_unlock;
}
if ((!bcast) && (!dst_host_ids_entries_temp)) {
log_debug(knet_h, KNET_SUB_TX, "Message is unicast but no dst_host_ids_entries");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
if ((!bcast) &&
(dst_host_ids_entries_temp > KNET_MAX_HOST)) {
log_debug(knet_h, KNET_SUB_TX, "dst_host_filter_fn returned too many destinations");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
}
/* Send to localhost if appropriate and enabled */
if (knet_h->has_loop_link) {
send_local = 0;
if (bcast) {
send_local = 1;
} else {
for (i=0; i< dst_host_ids_entries_temp; i++) {
if (dst_host_ids_temp[i] == knet_h->host_id) {
send_local = 1;
}
}
}
if (send_local) {
const unsigned char *buf = inbuf->khp_data_userdata;
ssize_t buflen = inlen;
struct knet_link *local_link;
local_link = knet_h->host_index[knet_h->host_id]->link;
local_retry:
err = write(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], buf, buflen);
if (err < 0) {
log_err(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local failed. error=%s\n", strerror(errno));
local_link->status.stats.tx_data_errors++;
}
if (err > 0 && err < buflen) {
log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %zu\n", err, inlen);
local_link->status.stats.tx_data_retries++;
buf += err;
buflen -= err;
usleep(KNET_THREADS_TIMERES / 16);
goto local_retry;
}
if (err == buflen) {
local_link->status.stats.tx_data_packets++;
local_link->status.stats.tx_data_bytes += inlen;
}
}
}
break;
case KNET_HEADER_TYPE_HOST_INFO:
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
bcast = 0;
dst_host_ids_temp[0] = knet_hostinfo->khi_dst_node_id;
dst_host_ids_entries_temp = 1;
knet_hostinfo->khi_dst_node_id = htons(knet_hostinfo->khi_dst_node_id);
}
break;
default:
log_warn(knet_h, KNET_SUB_TX, "Receiving unknown messages from socket");
savederrno = ENOMSG;
err = -1;
goto out_unlock;
break;
}
if (is_sync) {
if ((bcast) ||
((!bcast) && (dst_host_ids_entries_temp > 1))) {
log_debug(knet_h, KNET_SUB_TX, "knet_send_sync is only supported with unicast packets for one destination");
savederrno = E2BIG;
err = -1;
goto out_unlock;
}
}
/*
* check destinations hosts before spending time
* in fragmenting/encrypting packets to save
* time processing data for unreachable hosts.
* for unicast, also remap the destination data
* to skip unreachable hosts.
*/
if (!bcast) {
dst_host_ids_entries = 0;
for (host_idx = 0; host_idx < dst_host_ids_entries_temp; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids_temp[host_idx]];
if (!dst_host) {
continue;
}
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
dst_host_ids[dst_host_ids_entries] = dst_host_ids_temp[host_idx];
dst_host_ids_entries++;
}
}
if (!dst_host_ids_entries) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
} else {
send_mcast = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
send_mcast = 1;
break;
}
}
if (!send_mcast) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
}
if (!knet_h->data_mtu) {
/*
* using MIN_MTU_V4 for data mtu is not completely accurate but safe enough
*/
log_debug(knet_h, KNET_SUB_TX,
"Received data packet but data MTU is still unknown."
" Packet might not be delivered."
" Assuming minimum IPv4 MTU (%d)",
KNET_PMTUD_MIN_MTU_V4);
temp_data_mtu = KNET_PMTUD_MIN_MTU_V4;
} else {
/*
* take a copy of the mtu to avoid value changing under
* our feet while we are sending a fragmented pckt
*/
temp_data_mtu = knet_h->data_mtu;
}
/*
* compress data
*/
if ((knet_h->compress_model > 0) && (inlen > knet_h->compress_threshold)) {
size_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = compress(knet_h,
(const unsigned char *)inbuf->khp_data_userdata, inlen,
knet_h->send_to_links_buf_compress, (ssize_t *)&cmp_outlen);
if (err < 0) {
log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(errno));
} else {
/* Collect stats */
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &compress_time);
if (compress_time < knet_h->stats.tx_compress_time_min) {
knet_h->stats.tx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.tx_compress_time_max) {
knet_h->stats.tx_compress_time_max = compress_time;
}
knet_h->stats.tx_compress_time_ave =
(unsigned long long)(knet_h->stats.tx_compress_time_ave * knet_h->stats.tx_compressed_packets +
compress_time) / (knet_h->stats.tx_compressed_packets+1);
knet_h->stats.tx_compressed_packets++;
knet_h->stats.tx_compressed_original_bytes += inlen;
knet_h->stats.tx_compressed_size_bytes += cmp_outlen;
if (cmp_outlen < inlen) {
memmove(inbuf->khp_data_userdata, knet_h->send_to_links_buf_compress, cmp_outlen);
inlen = cmp_outlen;
data_compressed = 1;
}
}
}
if (knet_h->compress_model > 0 && !data_compressed) {
knet_h->stats.tx_uncompressed_packets++;
}
/*
* prepare the outgoing buffers
*/
frag_len = inlen;
frag_idx = 0;
inbuf->khp_data_bcast = bcast;
inbuf->khp_data_frag_num = ceil((float)inlen / temp_data_mtu);
inbuf->khp_data_channel = channel;
if (data_compressed) {
inbuf->khp_data_compress = knet_h->compress_model;
} else {
inbuf->khp_data_compress = 0;
}
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get seq mutex lock");
goto out_unlock;
}
knet_h->tx_seq_num++;
/*
* force seq_num 0 to detect a node that has crashed and rejoining
* the knet instance. seq_num 0 will clear the buffers in the RX
* thread
*/
if (knet_h->tx_seq_num == 0) {
knet_h->tx_seq_num++;
}
/*
* cache the value in locked context
*/
tx_seq_num = knet_h->tx_seq_num;
inbuf->khp_data_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
/*
* forcefully broadcast a ping to all nodes every SEQ_MAX / 8
* pckts.
* this solves 2 problems:
* 1) on TX socket overloads we generate extra pings to keep links alive
* 2) in 3+ nodes setup, where all the traffic is flowing between node 1 and 2,
* node 3+ will be able to keep in sync on the TX seq_num even without
* receiving traffic or pings in betweens. This avoids issues with
* rollover of the circular buffer
*/
if (tx_seq_num % (SEQ_MAX / 8) == 0) {
_send_pings(knet_h, 0);
}
if (inbuf->khp_data_frag_num > 1) {
while (frag_idx < inbuf->khp_data_frag_num) {
/*
* set the iov_base
*/
iov_out[frag_idx][0].iov_base = (void *)knet_h->send_to_links_buf[frag_idx];
iov_out[frag_idx][0].iov_len = KNET_HEADER_DATA_SIZE;
iov_out[frag_idx][1].iov_base = inbuf->khp_data_userdata + (temp_data_mtu * frag_idx);
/*
* set the len
*/
if (frag_len > temp_data_mtu) {
iov_out[frag_idx][1].iov_len = temp_data_mtu;
} else {
iov_out[frag_idx][1].iov_len = frag_len;
}
/*
* copy the frag info on all buffers
*/
knet_h->send_to_links_buf[frag_idx]->kh_type = inbuf->kh_type;
knet_h->send_to_links_buf[frag_idx]->khp_data_seq_num = inbuf->khp_data_seq_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_frag_num = inbuf->khp_data_frag_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_bcast = inbuf->khp_data_bcast;
knet_h->send_to_links_buf[frag_idx]->khp_data_channel = inbuf->khp_data_channel;
knet_h->send_to_links_buf[frag_idx]->khp_data_compress = inbuf->khp_data_compress;
frag_len = frag_len - temp_data_mtu;
frag_idx++;
}
iovcnt_out = 2;
} else {
iov_out[frag_idx][0].iov_base = (void *)inbuf;
iov_out[frag_idx][0].iov_len = frag_len + KNET_HEADER_DATA_SIZE;
iovcnt_out = 1;
}
if (knet_h->crypto_instance) {
struct timespec start_time;
struct timespec end_time;
uint64_t crypt_time;
frag_idx = 0;
while (frag_idx < inbuf->khp_data_frag_num) {
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_encrypt_and_signv(
knet_h,
iov_out[frag_idx], iovcnt_out,
knet_h->send_to_links_buf_crypt[frag_idx],
(ssize_t *)&outlen) < 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to encrypt packet");
savederrno = ECHILD;
err = -1;
goto out_unlock;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &crypt_time);
if (crypt_time < knet_h->stats.tx_crypt_time_min) {
knet_h->stats.tx_crypt_time_min = crypt_time;
}
if (crypt_time > knet_h->stats.tx_crypt_time_max) {
knet_h->stats.tx_crypt_time_max = crypt_time;
}
knet_h->stats.tx_crypt_time_ave =
(knet_h->stats.tx_crypt_time_ave * knet_h->stats.tx_crypt_packets +
crypt_time) / (knet_h->stats.tx_crypt_packets+1);
uncrypted_frag_size = 0;
for (j=0; j < iovcnt_out; j++) {
uncrypted_frag_size += iov_out[frag_idx][j].iov_len;
}
knet_h->stats.tx_crypt_byte_overhead += (outlen - uncrypted_frag_size);
knet_h->stats.tx_crypt_packets++;
iov_out[frag_idx][0].iov_base = knet_h->send_to_links_buf_crypt[frag_idx];
iov_out[frag_idx][0].iov_len = outlen;
frag_idx++;
}
iovcnt_out = 1;
}
memset(&msg, 0, sizeof(msg));
msgs_to_send = inbuf->khp_data_frag_num;
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[msg_idx].msg_hdr.msg_iov = &iov_out[msg_idx][0];
msg[msg_idx].msg_hdr.msg_iovlen = iovcnt_out;
msg_idx++;
}
if (!bcast) {
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids[host_idx]];
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
} else {
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (dst_host->status.reachable) {
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
}
}
out_unlock:
errno = savederrno;
return err;
}
int knet_send_sync(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get TX mutex lock: %s",
strerror(savederrno));
err = -1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = KNET_HEADER_TYPE_DATA;
memmove(knet_h->recv_from_sock_buf->khp_data_userdata, buff, buff_len);
err = _parse_recv_from_sock(knet_h, buff_len, channel, 1);
savederrno = errno;
pthread_mutex_unlock(&knet_h->tx_mutex);
out:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}
static void _handle_send_to_links(knet_handle_t knet_h, struct msghdr *msg, int sockfd, int8_t channel, int type)
{
ssize_t inlen = 0;
int savederrno = 0, docallback = 0;
if ((channel >= 0) &&
(channel < KNET_DATAFD_MAX) &&
(!knet_h->sockfd[channel].is_socket)) {
inlen = readv(sockfd, msg->msg_iov, 1);
} else {
inlen = recvmsg(sockfd, msg, MSG_DONTWAIT | MSG_NOSIGNAL);
}
if (inlen == 0) {
savederrno = 0;
docallback = 1;
} else if (inlen < 0) {
struct epoll_event ev;
savederrno = errno;
docallback = 1;
memset(&ev, 0, sizeof(struct epoll_event));
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s",
knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
} else {
knet_h->sockfd[channel].has_error = 1;
}
} else {
knet_h->recv_from_sock_buf->kh_type = type;
_parse_recv_from_sock(knet_h, inlen, channel, 0);
}
if (docallback) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_TX,
inlen,
savederrno);
}
}
void *_handle_send_to_links_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
int i, nev, type;
int8_t channel;
struct iovec iov_in;
struct msghdr msg;
struct sockaddr_storage address;
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_STARTED);
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)knet_h->recv_from_sock_buf->khp_data_userdata;
iov_in.iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = &address;
msg.msg_namelen = sizeof(struct sockaddr_storage);
msg.msg_iov = &iov_in;
msg.msg_iovlen = 1;
knet_h->recv_from_sock_buf->kh_version = KNET_HEADER_VERSION;
knet_h->recv_from_sock_buf->khp_data_frag_seq = 0;
knet_h->recv_from_sock_buf->kh_node = htons(knet_h->host_id);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
knet_h->send_to_links_buf[i]->kh_version = KNET_HEADER_VERSION;
knet_h->send_to_links_buf[i]->khp_data_frag_seq = i + 1;
knet_h->send_to_links_buf[i]->kh_node = htons(knet_h->host_id);
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->send_to_links_epollfd, events, KNET_EPOLL_MAX_EVENTS + 1, KNET_THREADS_TIMERES / 1000);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get read lock");
continue;
}
for (i = 0; i < nev; i++) {
if (events[i].data.fd == knet_h->hostsockfd[0]) {
type = KNET_HEADER_TYPE_HOST_INFO;
channel = -1;
} else {
type = KNET_HEADER_TYPE_DATA;
for (channel = 0; channel < KNET_DATAFD_MAX; channel++) {
if ((knet_h->sockfd[channel].in_use) &&
(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) {
break;
}
}
if (channel >= KNET_DATAFD_MAX) {
log_debug(knet_h, KNET_SUB_TX, "No available channels");
continue; /* channel not found */
}
}
if (pthread_mutex_lock(&knet_h->tx_mutex) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get mutex lock");
continue;
}
_handle_send_to_links(knet_h, &msg, events[i].data.fd, channel, type);
pthread_mutex_unlock(&knet_h->tx_mutex);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_TX, KNET_THREAD_STOPPED);
return NULL;
}
diff --git a/libknet/transport_common.c b/libknet/transport_common.c
index 6df50027..cd344932 100644
--- a/libknet/transport_common.c
+++ b/libknet/transport_common.c
@@ -1,439 +1,443 @@
/*
* Copyright (C) 2016-2018 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "libknet.h"
#include "compat.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "common.h"
#include "transport_common.h"
/*
* reuse Jan Friesse's compat layer as wrapper to drop usage of sendmmsg
*
* TODO: kill those wrappers once we work on packet delivery guarantees
*/
int _recvmmsg(int sockfd, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags)
{
int savederrno = 0, err = 0;
unsigned int i;
for (i = 0; i < vlen; i++) {
err = recvmsg(sockfd, &msgvec[i].msg_hdr, flags);
savederrno = errno;
if (err >= 0) {
msgvec[i].msg_len = err;
} else {
if ((i > 0) &&
((errno == EAGAIN) || (errno == EWOULDBLOCK))) {
savederrno = 0;
}
break;
}
}
errno = savederrno;
return ((i > 0) ? (int)i : err);
}
-int _sendmmsg(int sockfd, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags)
+int _sendmmsg(int sockfd, int connection_oriented, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags)
{
int savederrno = 0, err = 0;
unsigned int i;
for (i = 0; i < vlen; i++) {
+ if (connection_oriented == TRANSPORT_PROTO_IS_CONNECTION_ORIENTED) {
+ msgvec[i].msg_hdr.msg_name = NULL;
+ msgvec[i].msg_hdr.msg_namelen = 0;
+ }
err = sendmsg(sockfd, &msgvec[i].msg_hdr, flags);
savederrno = errno;
if (err < 0) {
break;
}
}
errno = savederrno;
return ((i > 0) ? (int)i : err);
}
/* Assume neither of these constants can ever be zero */
#ifndef SO_RCVBUFFORCE
#define SO_RCVBUFFORCE 0
#endif
#ifndef SO_SNDBUFFORCE
#define SO_SNDBUFFORCE 0
#endif
static int _configure_sockbuf(knet_handle_t knet_h, int sock, int option, int force, int target)
{
int savederrno = 0;
int new_value;
socklen_t value_len = sizeof new_value;
if (setsockopt(sock, SOL_SOCKET, option, &target, sizeof target) != 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSPORT,
"Error setting socket buffer via option %d to value %d: %s\n",
option, target, strerror(savederrno));
errno = savederrno;
return -1;
}
if (getsockopt(sock, SOL_SOCKET, option, &new_value, &value_len) != 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSPORT,
"Error getting socket buffer via option %d: %s\n",
option, strerror(savederrno));
errno = savederrno;
return -1;
}
if (value_len != sizeof new_value) {
log_err(knet_h, KNET_SUB_TRANSPORT,
"Socket option %d returned unexpected size %u\n",
option, value_len);
errno = ERANGE;
return -1;
}
if (target <= new_value) {
return 0;
}
if (!force || !(knet_h->flags & KNET_HANDLE_FLAG_PRIVILEGED)) {
log_err(knet_h, KNET_SUB_TRANSPORT,
"Failed to set socket buffer via option %d to value %d: capped at %d",
option, target, new_value);
if (!(knet_h->flags & KNET_HANDLE_FLAG_PRIVILEGED)) {
log_err(knet_h, KNET_SUB_TRANSPORT,
"Continuing regardless, as the handle is not privileged."
" Expect poor performance!");
return 0;
} else {
errno = ENAMETOOLONG;
return -1;
}
}
if (setsockopt(sock, SOL_SOCKET, force, &target, sizeof target) < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSPORT,
"Failed to set socket buffer via force option %d: %s",
force, strerror(savederrno));
if (savederrno == EPERM) {
errno = ENAMETOOLONG;
} else {
errno = savederrno;
}
return -1;
}
return 0;
}
int _configure_common_socket(knet_handle_t knet_h, int sock, uint64_t flags, const char *type)
{
int err = 0, savederrno = 0;
int value;
if (_fdset_cloexec(sock)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s CLOEXEC socket opts: %s",
type, strerror(savederrno));
goto exit_error;
}
if (_fdset_nonblock(sock)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s NONBLOCK socket opts: %s",
type, strerror(savederrno));
goto exit_error;
}
if (_configure_sockbuf(knet_h, sock, SO_RCVBUF, SO_RCVBUFFORCE, KNET_RING_RCVBUFF)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s receive buffer: %s",
type, strerror(savederrno));
goto exit_error;
}
if (_configure_sockbuf(knet_h, sock, SO_SNDBUF, SO_SNDBUFFORCE, KNET_RING_RCVBUFF)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s send buffer: %s",
type, strerror(savederrno));
goto exit_error;
}
if (flags & KNET_LINK_FLAG_TRAFFICHIPRIO) {
#ifdef KNET_LINUX
#ifdef SO_PRIORITY
value = 6; /* TC_PRIO_INTERACTIVE */
if (setsockopt(sock, SOL_SOCKET, SO_PRIORITY, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s priority: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "TC_PRIO_INTERACTIVE enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "TC_PRIO_INTERACTIVE not available in this build/platform");
#endif
#endif
#if defined(IP_TOS) && defined(IPTOS_LOWDELAY)
value = IPTOS_LOWDELAY;
if (setsockopt(sock, IPPROTO_IP, IP_TOS, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s priority: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPTOS_LOWDELAY enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPTOS_LOWDELAY not available in this build/platform");
#endif
}
exit_error:
errno = savederrno;
return err;
}
int _configure_transport_socket(knet_handle_t knet_h, int sock, struct sockaddr_storage *address, uint64_t flags, const char *type)
{
int err = 0, savederrno = 0;
int value;
if (_configure_common_socket(knet_h, sock, flags, type) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
#ifdef KNET_LINUX
#ifdef IP_FREEBIND
value = 1;
if (setsockopt(sock, SOL_IP, IP_FREEBIND, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set FREEBIND on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "FREEBIND enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "FREEBIND not available in this build/platform");
#endif
#endif
#ifdef KNET_BSD
#ifdef IP_BINDANY /* BSD */
value = 1;
if (setsockopt(sock, IPPROTO_IP, IP_BINDANY, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set BINDANY on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "BINDANY enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "BINDANY not available in this build/platform");
#endif
#endif
if (address->ss_family == AF_INET6) {
value = 1;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY,
&value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s IPv6 only: %s",
type, strerror(savederrno));
goto exit_error;
}
#ifdef KNET_LINUX
#ifdef IPV6_MTU_DISCOVER
value = IPV6_PMTUDISC_PROBE;
if (setsockopt(sock, SOL_IPV6, IPV6_MTU_DISCOVER, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set PMTUDISC on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_MTU_DISCOVER enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_MTU_DISCOVER not available in this build/platform");
#endif
#endif
#ifdef IPV6_DONTFRAG
value = 1;
if (setsockopt(sock, IPPROTO_IPV6, IPV6_DONTFRAG, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set DONTFRAG on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_DONTFRAG enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "IPV6_DONTFRAG not available in this build/platform");
#endif
} else {
#ifdef KNET_LINUX
#ifdef IP_MTU_DISCOVER
value = IP_PMTUDISC_PROBE;
if (setsockopt(sock, SOL_IP, IP_MTU_DISCOVER, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set PMTUDISC on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "PMTUDISC enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "PMTUDISC not available in this build/platform");
#endif
#endif
#ifdef KNET_BSD
#ifdef IP_DONTFRAG
value = 1;
if (setsockopt(sock, IPPROTO_IP, IP_DONTFRAG, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set DONTFRAG on %s socket: %s",
type, strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSPORT, "DONTFRAG enabled on socket: %i", sock);
#else
log_debug(knet_h, KNET_SUB_TRANSPORT, "DONTFRAG not available in this build/platform");
#endif
#endif
}
value = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set %s reuseaddr: %s",
type, strerror(savederrno));
goto exit_error;
}
exit_error:
errno = savederrno;
return err;
}
int _init_socketpair(knet_handle_t knet_h, int *sock)
{
int err = 0, savederrno = 0;
int i;
if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sock) != 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize socketpair: %s",
strerror(savederrno));
goto exit_fail;
}
for (i = 0; i < 2; i++) {
if (_configure_common_socket(knet_h, sock[i], 0, "local socketpair") < 0) {
savederrno = errno;
err = -1;
goto exit_fail;
}
}
exit_fail:
errno = savederrno;
return err;
}
void _close_socketpair(knet_handle_t knet_h, int *sock)
{
int i;
for (i = 0; i < 2; i++) {
if (sock[i]) {
close(sock[i]);
sock[i] = 0;
}
}
}
/*
* must be called with global read lock
*
* return -1 on error
* return 0 if fd is invalid
* return 1 if fd is valid
*/
int _is_valid_fd(knet_handle_t knet_h, int sockfd)
{
int ret = 0;
if (sockfd < 0) {
errno = EINVAL;
return -1;
}
if (sockfd > KNET_MAX_FDS) {
errno = EINVAL;
return -1;
}
if (knet_h->knet_transport_fd_tracker[sockfd].transport >= KNET_MAX_TRANSPORTS) {
ret = 0;
} else {
ret = 1;
}
return ret;
}
/*
* must be called with global write lock
*/
int _set_fd_tracker(knet_handle_t knet_h, int sockfd, uint8_t transport, uint8_t data_type, void *data)
{
if (sockfd < 0) {
errno = EINVAL;
return -1;
}
if (sockfd > KNET_MAX_FDS) {
errno = EINVAL;
return -1;
}
knet_h->knet_transport_fd_tracker[sockfd].transport = transport;
knet_h->knet_transport_fd_tracker[sockfd].data_type = data_type;
knet_h->knet_transport_fd_tracker[sockfd].data = data;
return 0;
}
diff --git a/libknet/transport_common.h b/libknet/transport_common.h
index 61af9bb4..295d2b26 100644
--- a/libknet/transport_common.h
+++ b/libknet/transport_common.h
@@ -1,24 +1,24 @@
/*
* Copyright (C) 2016-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __KNET_TRANSPORT_COMMON_H__
#define __KNET_TRANSPORT_COMMON_H__
int _configure_common_socket(knet_handle_t knet_h, int sock, uint64_t flags, const char *type);
int _configure_transport_socket(knet_handle_t knet_h, int sock, struct sockaddr_storage *address, uint64_t flags, const char *type);
int _init_socketpair(knet_handle_t knet_h, int *sock);
void _close_socketpair(knet_handle_t knet_h, int *sock);
int _set_fd_tracker(knet_handle_t knet_h, int sockfd, uint8_t transport, uint8_t data_type, void *data);
int _is_valid_fd(knet_handle_t knet_h, int sockfd);
-int _sendmmsg(int sockfd, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags);
+int _sendmmsg(int sockfd, int connection_oriented, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags);
int _recvmmsg(int sockfd, struct knet_mmsghdr *msgvec, unsigned int vlen, unsigned int flags);
#endif
diff --git a/libknet/transports.c b/libknet/transports.c
index b685212f..b8713700 100644
--- a/libknet/transports.c
+++ b/libknet/transports.c
@@ -1,272 +1,277 @@
/*
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include "libknet.h"
#include "compat.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "common.h"
#include "transports.h"
#include "transport_loopback.h"
#include "transport_udp.h"
#include "transport_sctp.h"
#include "threads_common.h"
-#define empty_module 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL },
+#define empty_module 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL },
static knet_transport_ops_t transport_modules_cmd[KNET_MAX_TRANSPORTS] = {
- { "LOOPBACK", KNET_TRANSPORT_LOOPBACK, 1, KNET_PMTUD_LOOPBACK_OVERHEAD, loopback_transport_init, loopback_transport_free, loopback_transport_link_set_config, loopback_transport_link_clear_config, loopback_transport_link_dyn_connect, loopback_transport_rx_sock_error, loopback_transport_tx_sock_error, loopback_transport_rx_is_data },
- { "UDP", KNET_TRANSPORT_UDP, 1, KNET_PMTUD_UDP_OVERHEAD, udp_transport_init, udp_transport_free, udp_transport_link_set_config, udp_transport_link_clear_config, udp_transport_link_dyn_connect, udp_transport_rx_sock_error, udp_transport_tx_sock_error, udp_transport_rx_is_data },
+ { "LOOPBACK", KNET_TRANSPORT_LOOPBACK, 1, TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED, KNET_PMTUD_LOOPBACK_OVERHEAD, loopback_transport_init, loopback_transport_free, loopback_transport_link_set_config, loopback_transport_link_clear_config, loopback_transport_link_dyn_connect, loopback_transport_rx_sock_error, loopback_transport_tx_sock_error, loopback_transport_rx_is_data },
+ { "UDP", KNET_TRANSPORT_UDP, 1, TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED, KNET_PMTUD_UDP_OVERHEAD, udp_transport_init, udp_transport_free, udp_transport_link_set_config, udp_transport_link_clear_config, udp_transport_link_dyn_connect, udp_transport_rx_sock_error, udp_transport_tx_sock_error, udp_transport_rx_is_data },
{ "SCTP", KNET_TRANSPORT_SCTP,
#ifdef HAVE_NETINET_SCTP_H
- 1, KNET_PMTUD_SCTP_OVERHEAD, sctp_transport_init, sctp_transport_free, sctp_transport_link_set_config, sctp_transport_link_clear_config, sctp_transport_link_dyn_connect, sctp_transport_rx_sock_error, sctp_transport_tx_sock_error, sctp_transport_rx_is_data },
+ 1, TRANSPORT_PROTO_IS_CONNECTION_ORIENTED, KNET_PMTUD_SCTP_OVERHEAD, sctp_transport_init, sctp_transport_free, sctp_transport_link_set_config, sctp_transport_link_clear_config, sctp_transport_link_dyn_connect, sctp_transport_rx_sock_error, sctp_transport_tx_sock_error, sctp_transport_rx_is_data },
#else
empty_module
#endif
{ NULL, KNET_MAX_TRANSPORTS, empty_module
};
/*
* transport wrappers
*/
int start_all_transports(knet_handle_t knet_h)
{
int idx = 0, savederrno = 0, err = 0;
while (transport_modules_cmd[idx].transport_name != NULL) {
if (transport_modules_cmd[idx].built_in) {
if (transport_modules_cmd[idx].transport_init(knet_h) < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE,
"Failed to allocate transport handle for %s: %s",
transport_modules_cmd[idx].transport_name,
strerror(savederrno));
err = -1;
goto out;
}
}
idx++;
}
out:
errno = savederrno;
return err;
}
void stop_all_transports(knet_handle_t knet_h)
{
int idx = 0;
while (transport_modules_cmd[idx].transport_name != NULL) {
if (transport_modules_cmd[idx].built_in) {
transport_modules_cmd[idx].transport_free(knet_h);
}
idx++;
}
}
int transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link, uint8_t transport)
{
if (!transport_modules_cmd[transport].built_in) {
errno = EINVAL;
return -1;
}
kn_link->transport_connected = 0;
kn_link->transport_type = transport;
kn_link->proto_overhead = transport_modules_cmd[transport].transport_mtu_overhead;
return transport_modules_cmd[transport].transport_link_set_config(knet_h, kn_link);
}
int transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
return transport_modules_cmd[kn_link->transport_type].transport_link_clear_config(knet_h, kn_link);
}
int transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link)
{
return transport_modules_cmd[kn_link->transport_type].transport_link_dyn_connect(knet_h, sockfd, kn_link);
}
int transport_rx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno)
{
return transport_modules_cmd[transport].transport_rx_sock_error(knet_h, sockfd, recv_err, recv_errno);
}
int transport_tx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno)
{
return transport_modules_cmd[transport].transport_tx_sock_error(knet_h, sockfd, recv_err, recv_errno);
}
int transport_rx_is_data(knet_handle_t knet_h, uint8_t transport, int sockfd, struct knet_mmsghdr *msg)
{
return transport_modules_cmd[transport].transport_rx_is_data(knet_h, sockfd, msg);
}
+int transport_get_connection_oriented(knet_handle_t knet_h, uint8_t transport)
+{
+ return transport_modules_cmd[transport].transport_is_connection_oriented;
+}
+
/*
* public api
*/
int knet_get_transport_list(struct knet_transport_info *transport_list,
size_t *transport_list_entries)
{
int err = 0;
int idx = 0;
int outidx = 0;
if (!transport_list_entries) {
errno = EINVAL;
return -1;
}
while (transport_modules_cmd[idx].transport_name != NULL) {
if (transport_modules_cmd[idx].built_in) {
if (transport_list) {
transport_list[outidx].name = transport_modules_cmd[idx].transport_name;
transport_list[outidx].id = transport_modules_cmd[idx].transport_id;
}
outidx++;
}
idx++;
}
*transport_list_entries = outidx;
if (!err)
errno = 0;
return err;
}
const char *knet_get_transport_name_by_id(uint8_t transport)
{
int savederrno = 0;
const char *name = NULL;
if (transport == KNET_MAX_TRANSPORTS) {
errno = EINVAL;
return name;
}
if ((transport_modules_cmd[transport].transport_name) &&
(transport_modules_cmd[transport].built_in)) {
name = transport_modules_cmd[transport].transport_name;
} else {
savederrno = ENOENT;
}
errno = name ? 0 : savederrno;
return name;
}
uint8_t knet_get_transport_id_by_name(const char *name)
{
int savederrno = 0;
uint8_t err = KNET_MAX_TRANSPORTS;
int i, found;
if (!name) {
errno = EINVAL;
return err;
}
i = 0;
found = 0;
while (transport_modules_cmd[i].transport_name != NULL) {
if (transport_modules_cmd[i].built_in) {
if (!strcmp(transport_modules_cmd[i].transport_name, name)) {
err = transport_modules_cmd[i].transport_id;
found = 1;
break;
}
}
i++;
}
if (!found) {
savederrno = EINVAL;
}
errno = err == KNET_MAX_TRANSPORTS ? savederrno : 0;
return err;
}
int knet_handle_set_transport_reconnect_interval(knet_handle_t knet_h, uint32_t msecs)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!msecs) {
errno = EINVAL;
return -1;
}
if (msecs < 1000) {
log_warn(knet_h, KNET_SUB_HANDLE, "reconnect internval below 1 sec (%u msecs) might be too aggressive", msecs);
}
if (msecs > 60000) {
log_warn(knet_h, KNET_SUB_HANDLE, "reconnect internval above 1 minute (%u msecs) could cause long delays in network convergiance", msecs);
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->reconnect_int = msecs;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_get_transport_reconnect_interval(knet_handle_t knet_h, uint32_t *msecs)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!msecs) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
*msecs = knet_h->reconnect_int;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
diff --git a/libknet/transports.h b/libknet/transports.h
index 0419451d..ec1158b5 100644
--- a/libknet/transports.h
+++ b/libknet/transports.h
@@ -1,22 +1,23 @@
/*
* Copyright (C) 2016-2018 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __KNET_TRANSPORTS_H__
#define __KNET_TRANSPORTS_H__
int start_all_transports(knet_handle_t knet_h);
void stop_all_transports(knet_handle_t knet_h);
int transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link, uint8_t transport);
int transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link);
int transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link);
int transport_rx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno);
int transport_tx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno);
int transport_rx_is_data(knet_handle_t knet_h, uint8_t transport, int sockfd, struct knet_mmsghdr *msg);
+int transport_get_connection_oriented(knet_handle_t knet_h, uint8_t transport);
#endif

File Metadata

Mime Type
text/x-diff
Expires
Mon, Feb 24, 3:40 PM (1 h, 42 m ago)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1464305
Default Alt Text
(166 KB)

Event Timeline