Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/exec/totempg.c b/exec/totempg.c
index 0b467827..05729be2 100644
--- a/exec/totempg.c
+++ b/exec/totempg.c
@@ -1,1534 +1,1532 @@
/*
* Copyright (c) 2003-2005 MontaVista Software, Inc.
* Copyright (c) 2005 OSDL.
* Copyright (c) 2006-2012 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
* Author: Mark Haverkamp (markh@osdl.org)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* FRAGMENTATION AND PACKING ALGORITHM:
*
* Assemble the entire message into one buffer
* if full fragment
* store fragment into lengths list
* for each full fragment
* multicast fragment
* set length and fragment fields of pg mesage
* store remaining multicast into head of fragmentation data and set lens field
*
* If a message exceeds the maximum packet size allowed by the totem
* single ring protocol, the protocol could lose forward progress.
* Statically calculating the allowed data amount doesn't work because
* the amount of data allowed depends on the number of fragments in
* each message. In this implementation, the maximum fragment size
* is dynamically calculated for each fragment added to the message.
* It is possible for a message to be two bytes short of the maximum
* packet size. This occurs when a message or collection of
* messages + the mcast header + the lens are two bytes short of the
* end of the packet. Since another len field consumes two bytes, the
* len field would consume the rest of the packet without room for data.
*
* One optimization would be to forgo the final len field and determine
* it from the size of the udp datagram. Then this condition would no
* longer occur.
*/
/*
* ASSEMBLY AND UNPACKING ALGORITHM:
*
* copy incoming packet into assembly data buffer indexed by current
* location of end of fragment
*
* if not fragmented
* deliver all messages in assembly data buffer
* else
* if msg_count > 1 and fragmented
* deliver all messages except last message in assembly data buffer
* copy last fragmented section to start of assembly data buffer
* else
* if msg_count = 1 and fragmented
* do nothing
*
*/
#include <config.h>
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/uio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
#include <errno.h>
#include <limits.h>
#include <corosync/swab.h>
#include <corosync/list.h>
#include <qb/qbloop.h>
#include <qb/qbipcs.h>
#include <corosync/totem/totempg.h>
#define LOGSYS_UTILS_ONLY 1
#include <corosync/logsys.h>
#include "totemmrp.h"
#include "totemsrp.h"
#define min(a,b) ((a) < (b)) ? a : b
struct totempg_mcast_header {
short version;
short type;
};
#if !(defined(__i386__) || defined(__x86_64__))
/*
* Need align on architectures different then i386 or x86_64
*/
#define TOTEMPG_NEED_ALIGN 1
#endif
/*
* totempg_mcast structure
*
* header: Identify the mcast.
* fragmented: Set if this message continues into next message
* continuation: Set if this message is a continuation from last message
* msg_count Indicates how many packed messages are contained
* in the mcast.
* Also, the size of each packed message and the messages themselves are
* appended to the end of this structure when sent.
*/
struct totempg_mcast {
struct totempg_mcast_header header;
unsigned char fragmented;
unsigned char continuation;
unsigned short msg_count;
/*
* short msg_len[msg_count];
*/
/*
* data for messages
*/
};
/*
* Maximum packet size for totem pg messages
*/
#define TOTEMPG_PACKET_SIZE (totempg_totem_config->net_mtu - \
sizeof (struct totempg_mcast))
/*
* Local variables used for packing small messages
*/
static unsigned short mcast_packed_msg_lens[FRAME_SIZE_MAX];
static int mcast_packed_msg_count = 0;
static int totempg_reserved = 1;
static unsigned int totempg_size_limit;
static totem_queue_level_changed_fn totem_queue_level_changed = NULL;
static uint32_t totempg_threaded_mode = 0;
/*
* Function and data used to log messages
*/
static int totempg_log_level_security;
static int totempg_log_level_error;
static int totempg_log_level_warning;
static int totempg_log_level_notice;
static int totempg_log_level_debug;
static int totempg_subsys_id;
static void (*totempg_log_printf) (
int level,
int subsys,
const char *function,
const char *file,
int line,
const char *format, ...) __attribute__((format(printf, 6, 7)));
struct totem_config *totempg_totem_config;
static totempg_stats_t totempg_stats;
enum throw_away_mode {
THROW_AWAY_INACTIVE,
THROW_AWAY_ACTIVE
};
struct assembly {
unsigned int nodeid;
unsigned char data[MESSAGE_SIZE_MAX];
int index;
unsigned char last_frag_num;
enum throw_away_mode throw_away_mode;
struct list_head list;
};
static void assembly_deref (struct assembly *assembly);
static int callback_token_received_fn (enum totem_callback_token_type type,
const void *data);
DECLARE_LIST_INIT(assembly_list_inuse);
/*
* Free list is used both for transitional and operational assemblies
*/
DECLARE_LIST_INIT(assembly_list_free);
DECLARE_LIST_INIT(assembly_list_inuse_trans);
DECLARE_LIST_INIT(totempg_groups_list);
/*
* Staging buffer for packed messages. Messages are staged in this buffer
* before sending. Multiple messages may fit which cuts down on the
* number of mcasts sent. If a message doesn't completely fit, then
* the mcast header has a fragment bit set that says that there are more
* data to follow. fragment_size is an index into the buffer. It indicates
* the size of message data and where to place new message data.
* fragment_contuation indicates whether the first packed message in
* the buffer is a continuation of a previously packed fragment.
*/
static unsigned char *fragmentation_data;
static int fragment_size = 0;
static int fragment_continuation = 0;
static int totempg_waiting_transack = 0;
struct totempg_group_instance {
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required);
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
struct totempg_group *groups;
int groups_cnt;
int32_t q_level;
struct list_head list;
};
static unsigned char next_fragment = 1;
static pthread_mutex_t totempg_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t callback_token_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mcast_msg_mutex = PTHREAD_MUTEX_INITIALIZER;
#define log_printf(level, format, args...) \
do { \
totempg_log_printf(level, \
totempg_subsys_id, \
__FUNCTION__, __FILE__, __LINE__, \
format, ##args); \
} while (0);
static int msg_count_send_ok (int msg_count);
static int byte_count_send_ok (int byte_count);
static void totempg_waiting_trans_ack_cb (int waiting_trans_ack)
{
log_printf(LOG_DEBUG, "waiting_trans_ack changed to %u", waiting_trans_ack);
totempg_waiting_transack = waiting_trans_ack;
}
static struct assembly *assembly_ref (unsigned int nodeid)
{
struct assembly *assembly;
struct list_head *list;
struct list_head *active_assembly_list_inuse;
if (totempg_waiting_transack) {
active_assembly_list_inuse = &assembly_list_inuse_trans;
} else {
active_assembly_list_inuse = &assembly_list_inuse;
}
/*
* Search inuse list for node id and return assembly buffer if found
*/
for (list = active_assembly_list_inuse->next;
list != active_assembly_list_inuse;
list = list->next) {
assembly = list_entry (list, struct assembly, list);
if (nodeid == assembly->nodeid) {
return (assembly);
}
}
/*
* Nothing found in inuse list get one from free list if available
*/
if (list_empty (&assembly_list_free) == 0) {
assembly = list_entry (assembly_list_free.next, struct assembly, list);
list_del (&assembly->list);
list_add (&assembly->list, active_assembly_list_inuse);
assembly->nodeid = nodeid;
assembly->index = 0;
assembly->last_frag_num = 0;
assembly->throw_away_mode = THROW_AWAY_INACTIVE;
return (assembly);
}
/*
* Nothing available in inuse or free list, so allocate a new one
*/
assembly = malloc (sizeof (struct assembly));
/*
* TODO handle memory allocation failure here
*/
assert (assembly);
assembly->nodeid = nodeid;
assembly->data[0] = 0;
assembly->index = 0;
assembly->last_frag_num = 0;
assembly->throw_away_mode = THROW_AWAY_INACTIVE;
list_init (&assembly->list);
list_add (&assembly->list, active_assembly_list_inuse);
return (assembly);
}
static void assembly_deref (struct assembly *assembly)
{
list_del (&assembly->list);
list_add (&assembly->list, &assembly_list_free);
}
static void assembly_deref_from_normal_and_trans (int nodeid)
{
int j;
struct list_head *list, *list_next;
struct list_head *active_assembly_list_inuse;
struct assembly *assembly;
for (j = 0; j < 2; j++) {
if (j == 0) {
active_assembly_list_inuse = &assembly_list_inuse;
} else {
active_assembly_list_inuse = &assembly_list_inuse_trans;
}
for (list = active_assembly_list_inuse->next;
list != active_assembly_list_inuse;
list = list_next) {
list_next = list->next;
assembly = list_entry (list, struct assembly, list);
if (nodeid == assembly->nodeid) {
list_del (&assembly->list);
list_add (&assembly->list, &assembly_list_free);
}
}
}
}
static inline void app_confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id)
{
int i;
struct totempg_group_instance *instance;
struct list_head *list;
/*
* For every leaving processor, add to free list
* This also has the side effect of clearing out the dataset
* In the leaving processor's assembly buffer.
*/
for (i = 0; i < left_list_entries; i++) {
assembly_deref_from_normal_and_trans (left_list[i]);
}
for (list = totempg_groups_list.next;
list != &totempg_groups_list;
list = list->next) {
instance = list_entry (list, struct totempg_group_instance, list);
if (instance->confchg_fn) {
instance->confchg_fn (
configuration_type,
member_list,
member_list_entries,
left_list,
left_list_entries,
joined_list,
joined_list_entries,
ring_id);
}
}
}
static inline void group_endian_convert (
void *msg,
int msg_len)
{
unsigned short *group_len;
int i;
char *aligned_msg;
#ifdef TOTEMPG_NEED_ALIGN
/*
* Align data structure for not i386 or x86_64
*/
if ((size_t)msg % 4 != 0) {
aligned_msg = alloca(msg_len);
memcpy(aligned_msg, msg, msg_len);
} else {
aligned_msg = msg;
}
#else
aligned_msg = msg;
#endif
group_len = (unsigned short *)aligned_msg;
group_len[0] = swab16(group_len[0]);
for (i = 1; i < group_len[0] + 1; i++) {
group_len[i] = swab16(group_len[i]);
}
if (aligned_msg != msg) {
memcpy(msg, aligned_msg, msg_len);
}
}
static inline int group_matches (
struct iovec *iovec,
unsigned int iov_len,
struct totempg_group *groups_b,
unsigned int group_b_cnt,
unsigned int *adjust_iovec)
{
unsigned short *group_len;
char *group_name;
int i;
int j;
#ifdef TOTEMPG_NEED_ALIGN
struct iovec iovec_aligned = { NULL, 0 };
#endif
assert (iov_len == 1);
#ifdef TOTEMPG_NEED_ALIGN
/*
* Align data structure for not i386 or x86_64
*/
if ((size_t)iovec->iov_base % 4 != 0) {
iovec_aligned.iov_base = alloca(iovec->iov_len);
memcpy(iovec_aligned.iov_base, iovec->iov_base, iovec->iov_len);
iovec_aligned.iov_len = iovec->iov_len;
iovec = &iovec_aligned;
}
#endif
group_len = (unsigned short *)iovec->iov_base;
group_name = ((char *)iovec->iov_base) +
sizeof (unsigned short) * (group_len[0] + 1);
/*
* Calculate amount to adjust the iovec by before delivering to app
*/
*adjust_iovec = sizeof (unsigned short) * (group_len[0] + 1);
for (i = 1; i < group_len[0] + 1; i++) {
*adjust_iovec += group_len[i];
}
/*
* Determine if this message should be delivered to this instance
*/
for (i = 1; i < group_len[0] + 1; i++) {
for (j = 0; j < group_b_cnt; j++) {
if ((group_len[i] == groups_b[j].group_len) &&
(memcmp (groups_b[j].group, group_name, group_len[i]) == 0)) {
return (1);
}
}
group_name += group_len[i];
}
return (0);
}
static inline void app_deliver_fn (
unsigned int nodeid,
void *msg,
unsigned int msg_len,
int endian_conversion_required)
{
struct totempg_group_instance *instance;
struct iovec stripped_iovec;
unsigned int adjust_iovec;
struct iovec *iovec;
struct list_head *list;
struct iovec aligned_iovec = { NULL, 0 };
if (endian_conversion_required) {
group_endian_convert (msg, msg_len);
}
/*
* TODO: segmentation/assembly need to be redesigned to provide aligned access
* in all cases to avoid memory copies on non386 archs. Probably broke backwars
* compatibility
*/
#ifdef TOTEMPG_NEED_ALIGN
/*
* Align data structure for not i386 or x86_64
*/
aligned_iovec.iov_base = alloca(msg_len);
aligned_iovec.iov_len = msg_len;
memcpy(aligned_iovec.iov_base, msg, msg_len);
#else
aligned_iovec.iov_base = msg;
aligned_iovec.iov_len = msg_len;
#endif
iovec = &aligned_iovec;
for (list = totempg_groups_list.next;
list != &totempg_groups_list;
list = list->next) {
instance = list_entry (list, struct totempg_group_instance, list);
if (group_matches (iovec, 1, instance->groups, instance->groups_cnt, &adjust_iovec)) {
stripped_iovec.iov_len = iovec->iov_len - adjust_iovec;
stripped_iovec.iov_base = (char *)iovec->iov_base + adjust_iovec;
#ifdef TOTEMPG_NEED_ALIGN
/*
* Align data structure for not i386 or x86_64
*/
if ((char *)iovec->iov_base + adjust_iovec % 4 != 0) {
/*
* Deal with misalignment
*/
stripped_iovec.iov_base =
alloca (stripped_iovec.iov_len);
memcpy (stripped_iovec.iov_base,
(char *)iovec->iov_base + adjust_iovec,
stripped_iovec.iov_len);
}
#endif
instance->deliver_fn (
nodeid,
stripped_iovec.iov_base,
stripped_iovec.iov_len,
endian_conversion_required);
}
}
}
static void totempg_confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id)
{
// TODO optimize this
app_confchg_fn (configuration_type,
member_list, member_list_entries,
left_list, left_list_entries,
joined_list, joined_list_entries,
ring_id);
}
static void totempg_deliver_fn (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required)
{
struct totempg_mcast *mcast;
unsigned short *msg_lens;
int i;
struct assembly *assembly;
char header[FRAME_SIZE_MAX];
int msg_count;
int continuation;
int start;
const char *data;
int datasize;
struct iovec iov_delv;
assembly = assembly_ref (nodeid);
assert (assembly);
/*
* Assemble the header into one block of data and
* assemble the packet contents into one block of data to simplify delivery
*/
mcast = (struct totempg_mcast *)msg;
if (endian_conversion_required) {
mcast->msg_count = swab16 (mcast->msg_count);
}
msg_count = mcast->msg_count;
datasize = sizeof (struct totempg_mcast) +
msg_count * sizeof (unsigned short);
memcpy (header, msg, datasize);
data = msg;
msg_lens = (unsigned short *) (header + sizeof (struct totempg_mcast));
if (endian_conversion_required) {
for (i = 0; i < mcast->msg_count; i++) {
msg_lens[i] = swab16 (msg_lens[i]);
}
}
memcpy (&assembly->data[assembly->index], &data[datasize],
msg_len - datasize);
/*
* If the last message in the buffer is a fragment, then we
* can't deliver it. We'll first deliver the full messages
* then adjust the assembly buffer so we can add the rest of the
* fragment when it arrives.
*/
msg_count = mcast->fragmented ? mcast->msg_count - 1 : mcast->msg_count;
continuation = mcast->continuation;
iov_delv.iov_base = (void *)&assembly->data[0];
iov_delv.iov_len = assembly->index + msg_lens[0];
/*
* Make sure that if this message is a continuation, that it
* matches the sequence number of the previous fragment.
* Also, if the first packed message is a continuation
* of a previous message, but the assembly buffer
* is empty, then we need to discard it since we can't
* assemble a complete message. Likewise, if this message isn't a
* continuation and the assembly buffer is empty, we have to discard
* the continued message.
*/
start = 0;
if (assembly->throw_away_mode == THROW_AWAY_ACTIVE) {
/* Throw away the first msg block */
if (mcast->fragmented == 0 || mcast->fragmented == 1) {
assembly->throw_away_mode = THROW_AWAY_INACTIVE;
assembly->index += msg_lens[0];
iov_delv.iov_base = (void *)&assembly->data[assembly->index];
iov_delv.iov_len = msg_lens[1];
start = 1;
}
} else
if (assembly->throw_away_mode == THROW_AWAY_INACTIVE) {
if (continuation == assembly->last_frag_num) {
assembly->last_frag_num = mcast->fragmented;
for (i = start; i < msg_count; i++) {
app_deliver_fn(nodeid, iov_delv.iov_base, iov_delv.iov_len,
endian_conversion_required);
assembly->index += msg_lens[i];
iov_delv.iov_base = (void *)&assembly->data[assembly->index];
if (i < (msg_count - 1)) {
iov_delv.iov_len = msg_lens[i + 1];
}
}
} else {
log_printf (LOG_DEBUG, "fragmented continuation %u is not equal to assembly last_frag_num %u",
continuation, assembly->last_frag_num);
assembly->throw_away_mode = THROW_AWAY_ACTIVE;
}
}
if (mcast->fragmented == 0) {
/*
* End of messages, dereference assembly struct
*/
assembly->last_frag_num = 0;
assembly->index = 0;
assembly_deref (assembly);
} else {
/*
* Message is fragmented, keep around assembly list
*/
if (mcast->msg_count > 1) {
memmove (&assembly->data[0],
&assembly->data[assembly->index],
msg_lens[msg_count]);
assembly->index = 0;
}
assembly->index += msg_lens[msg_count];
}
}
/*
* Totem Process Group Abstraction
* depends on poll abstraction, POSIX, IPV4
*/
void *callback_token_received_handle;
int callback_token_received_fn (enum totem_callback_token_type type,
const void *data)
{
struct totempg_mcast mcast;
struct iovec iovecs[3];
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&mcast_msg_mutex);
}
if (mcast_packed_msg_count == 0) {
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
}
return (0);
}
if (totemmrp_avail() == 0) {
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
}
return (0);
}
mcast.header.version = 0;
mcast.header.type = 0;
mcast.fragmented = 0;
/*
* Was the first message in this buffer a continuation of a
* fragmented message?
*/
mcast.continuation = fragment_continuation;
fragment_continuation = 0;
mcast.msg_count = mcast_packed_msg_count;
iovecs[0].iov_base = (void *)&mcast;
iovecs[0].iov_len = sizeof (struct totempg_mcast);
iovecs[1].iov_base = (void *)mcast_packed_msg_lens;
iovecs[1].iov_len = mcast_packed_msg_count * sizeof (unsigned short);
iovecs[2].iov_base = (void *)&fragmentation_data[0];
iovecs[2].iov_len = fragment_size;
(void)totemmrp_mcast (iovecs, 3, 0);
mcast_packed_msg_count = 0;
fragment_size = 0;
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
}
return (0);
}
/*
* Initialize the totem process group abstraction
*/
int totempg_initialize (
qb_loop_t *poll_handle,
struct totem_config *totem_config)
{
int res;
totempg_totem_config = totem_config;
totempg_log_level_security = totem_config->totem_logging_configuration.log_level_security;
totempg_log_level_error = totem_config->totem_logging_configuration.log_level_error;
totempg_log_level_warning = totem_config->totem_logging_configuration.log_level_warning;
totempg_log_level_notice = totem_config->totem_logging_configuration.log_level_notice;
totempg_log_level_debug = totem_config->totem_logging_configuration.log_level_debug;
totempg_log_printf = totem_config->totem_logging_configuration.log_printf;
totempg_subsys_id = totem_config->totem_logging_configuration.log_subsys_id;
fragmentation_data = malloc (TOTEMPG_PACKET_SIZE);
if (fragmentation_data == 0) {
return (-1);
}
totemsrp_net_mtu_adjust (totem_config);
res = totemmrp_initialize (
poll_handle,
totem_config,
&totempg_stats,
totempg_deliver_fn,
totempg_confchg_fn,
totempg_waiting_trans_ack_cb);
totemmrp_callback_token_create (
&callback_token_received_handle,
TOTEM_CALLBACK_TOKEN_RECEIVED,
0,
callback_token_received_fn,
0);
totempg_size_limit = (totemmrp_avail() - 1) *
(totempg_totem_config->net_mtu -
sizeof (struct totempg_mcast) - 16);
list_init (&totempg_groups_list);
return (res);
}
void totempg_finalize (void)
{
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
totemmrp_finalize ();
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
}
/*
* Multicast a message
*/
static int mcast_msg (
struct iovec *iovec_in,
unsigned int iov_len,
int guarantee)
{
int res = 0;
struct totempg_mcast mcast;
struct iovec iovecs[3];
struct iovec iovec[64];
int i;
int dest, src;
int max_packet_size = 0;
int copy_len = 0;
int copy_base = 0;
int total_size = 0;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&mcast_msg_mutex);
}
totemmrp_event_signal (TOTEM_EVENT_NEW_MSG, 1);
/*
* Remove zero length iovectors from the list
*/
assert (iov_len < 64);
for (dest = 0, src = 0; src < iov_len; src++) {
if (iovec_in[src].iov_len) {
memcpy (&iovec[dest++], &iovec_in[src],
sizeof (struct iovec));
}
}
iov_len = dest;
max_packet_size = TOTEMPG_PACKET_SIZE -
(sizeof (unsigned short) * (mcast_packed_msg_count + 1));
mcast_packed_msg_lens[mcast_packed_msg_count] = 0;
/*
* Check if we would overwrite new message queue
*/
for (i = 0; i < iov_len; i++) {
total_size += iovec[i].iov_len;
}
if (byte_count_send_ok (total_size + sizeof(unsigned short) *
(mcast_packed_msg_count)) == 0) {
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
}
return(-1);
}
mcast.header.version = 0;
for (i = 0; i < iov_len; ) {
mcast.fragmented = 0;
mcast.continuation = fragment_continuation;
copy_len = iovec[i].iov_len - copy_base;
/*
* If it all fits with room left over, copy it in.
* We need to leave at least sizeof(short) + 1 bytes in the
* fragment_buffer on exit so that max_packet_size + fragment_size
* doesn't exceed the size of the fragment_buffer on the next call.
*/
if ((copy_len + fragment_size) <
(max_packet_size - sizeof (unsigned short))) {
memcpy (&fragmentation_data[fragment_size],
(char *)iovec[i].iov_base + copy_base, copy_len);
fragment_size += copy_len;
mcast_packed_msg_lens[mcast_packed_msg_count] += copy_len;
next_fragment = 1;
copy_len = 0;
copy_base = 0;
i++;
continue;
/*
* If it just fits or is too big, then send out what fits.
*/
} else {
unsigned char *data_ptr;
copy_len = min(copy_len, max_packet_size - fragment_size);
if( copy_len == max_packet_size )
data_ptr = (unsigned char *)iovec[i].iov_base + copy_base;
else {
data_ptr = fragmentation_data;
- memcpy (&fragmentation_data[fragment_size],
- (unsigned char *)iovec[i].iov_base + copy_base, copy_len);
}
memcpy (&fragmentation_data[fragment_size],
(unsigned char *)iovec[i].iov_base + copy_base, copy_len);
mcast_packed_msg_lens[mcast_packed_msg_count] += copy_len;
/*
* if we're not on the last iovec or the iovec is too large to
* fit, then indicate a fragment. This also means that the next
* message will have the continuation of this one.
*/
if ((i < (iov_len - 1)) ||
((copy_base + copy_len) < iovec[i].iov_len)) {
if (!next_fragment) {
next_fragment++;
}
fragment_continuation = next_fragment;
mcast.fragmented = next_fragment++;
assert(fragment_continuation != 0);
assert(mcast.fragmented != 0);
} else {
fragment_continuation = 0;
}
/*
* assemble the message and send it
*/
mcast.msg_count = ++mcast_packed_msg_count;
iovecs[0].iov_base = (void *)&mcast;
iovecs[0].iov_len = sizeof(struct totempg_mcast);
iovecs[1].iov_base = (void *)mcast_packed_msg_lens;
iovecs[1].iov_len = mcast_packed_msg_count *
sizeof(unsigned short);
iovecs[2].iov_base = (void *)data_ptr;
iovecs[2].iov_len = max_packet_size;
assert (totemmrp_avail() > 0);
res = totemmrp_mcast (iovecs, 3, guarantee);
if (res == -1) {
goto error_exit;
}
/*
* Recalculate counts and indexes for the next.
*/
mcast_packed_msg_lens[0] = 0;
mcast_packed_msg_count = 0;
fragment_size = 0;
max_packet_size = TOTEMPG_PACKET_SIZE - (sizeof(unsigned short));
/*
* If the iovec all fit, go to the next iovec
*/
if ((copy_base + copy_len) == iovec[i].iov_len) {
copy_len = 0;
copy_base = 0;
i++;
/*
* Continue with the rest of the current iovec.
*/
} else {
copy_base += copy_len;
}
}
}
/*
* Bump only if we added message data. This may be zero if
* the last buffer just fit into the fragmentation_data buffer
* and we were at the last iovec.
*/
if (mcast_packed_msg_lens[mcast_packed_msg_count]) {
mcast_packed_msg_count++;
}
error_exit:
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
}
return (res);
}
/*
* Determine if a message of msg_size could be queued
*/
static int msg_count_send_ok (
int msg_count)
{
int avail = 0;
avail = totemmrp_avail ();
totempg_stats.msg_queue_avail = avail;
return ((avail - totempg_reserved) > msg_count);
}
static int byte_count_send_ok (
int byte_count)
{
unsigned int msg_count = 0;
int avail = 0;
avail = totemmrp_avail ();
msg_count = (byte_count / (totempg_totem_config->net_mtu - sizeof (struct totempg_mcast) - 16)) + 1;
return (avail >= msg_count);
}
static int send_reserve (
int msg_size)
{
unsigned int msg_count = 0;
msg_count = (msg_size / (totempg_totem_config->net_mtu - sizeof (struct totempg_mcast) - 16)) + 1;
totempg_reserved += msg_count;
totempg_stats.msg_reserved = totempg_reserved;
return (msg_count);
}
static void send_release (
int msg_count)
{
totempg_reserved -= msg_count;
totempg_stats.msg_reserved = totempg_reserved;
}
#ifndef HAVE_SMALL_MEMORY_FOOTPRINT
#undef MESSAGE_QUEUE_MAX
#define MESSAGE_QUEUE_MAX ((4 * MESSAGE_SIZE_MAX) / totempg_totem_config->net_mtu)
#endif /* HAVE_SMALL_MEMORY_FOOTPRINT */
static uint32_t q_level_precent_used(void)
{
return (100 - (((totemmrp_avail() - totempg_reserved) * 100) / MESSAGE_QUEUE_MAX));
}
int totempg_callback_token_create (
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data)
{
unsigned int res;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&callback_token_mutex);
}
res = totemmrp_callback_token_create (handle_out, type, delete,
callback_fn, data);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&callback_token_mutex);
}
return (res);
}
void totempg_callback_token_destroy (
void *handle_out)
{
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&callback_token_mutex);
}
totemmrp_callback_token_destroy (handle_out);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&callback_token_mutex);
}
}
/*
* vi: set autoindent tabstop=4 shiftwidth=4 :
*/
int totempg_groups_initialize (
void **totempg_groups_instance,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id))
{
struct totempg_group_instance *instance;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
instance = malloc (sizeof (struct totempg_group_instance));
if (instance == NULL) {
goto error_exit;
}
instance->deliver_fn = deliver_fn;
instance->confchg_fn = confchg_fn;
instance->groups = 0;
instance->groups_cnt = 0;
instance->q_level = QB_LOOP_MED;
list_init (&instance->list);
list_add (&instance->list, &totempg_groups_list);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
*totempg_groups_instance = instance;
return (0);
error_exit:
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
return (-1);
}
int totempg_groups_join (
void *totempg_groups_instance,
const struct totempg_group *groups,
size_t group_cnt)
{
struct totempg_group_instance *instance = (struct totempg_group_instance *)totempg_groups_instance;
struct totempg_group *new_groups;
unsigned int res = 0;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
new_groups = realloc (instance->groups,
sizeof (struct totempg_group) *
(instance->groups_cnt + group_cnt));
if (new_groups == 0) {
res = ENOMEM;
goto error_exit;
}
memcpy (&new_groups[instance->groups_cnt],
groups, group_cnt * sizeof (struct totempg_group));
instance->groups = new_groups;
instance->groups_cnt += group_cnt;
error_exit:
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
return (res);
}
int totempg_groups_leave (
void *totempg_groups_instance,
const struct totempg_group *groups,
size_t group_cnt)
{
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
return (0);
}
#define MAX_IOVECS_FROM_APP 32
#define MAX_GROUPS_PER_MSG 32
int totempg_groups_mcast_joined (
void *totempg_groups_instance,
const struct iovec *iovec,
unsigned int iov_len,
int guarantee)
{
struct totempg_group_instance *instance = (struct totempg_group_instance *)totempg_groups_instance;
unsigned short group_len[MAX_GROUPS_PER_MSG + 1];
struct iovec iovec_mcast[MAX_GROUPS_PER_MSG + 1 + MAX_IOVECS_FROM_APP];
int i;
unsigned int res;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
/*
* Build group_len structure and the iovec_mcast structure
*/
group_len[0] = instance->groups_cnt;
for (i = 0; i < instance->groups_cnt; i++) {
group_len[i + 1] = instance->groups[i].group_len;
iovec_mcast[i + 1].iov_len = instance->groups[i].group_len;
iovec_mcast[i + 1].iov_base = (void *) instance->groups[i].group;
}
iovec_mcast[0].iov_len = (instance->groups_cnt + 1) * sizeof (unsigned short);
iovec_mcast[0].iov_base = group_len;
for (i = 0; i < iov_len; i++) {
iovec_mcast[i + instance->groups_cnt + 1].iov_len = iovec[i].iov_len;
iovec_mcast[i + instance->groups_cnt + 1].iov_base = iovec[i].iov_base;
}
res = mcast_msg (iovec_mcast, iov_len + instance->groups_cnt + 1, guarantee);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
return (res);
}
static void check_q_level(
void *totempg_groups_instance)
{
struct totempg_group_instance *instance = (struct totempg_group_instance *)totempg_groups_instance;
int32_t old_level = instance->q_level;
int32_t percent_used = q_level_precent_used();
if (percent_used >= 75 && instance->q_level != TOTEM_Q_LEVEL_CRITICAL) {
instance->q_level = TOTEM_Q_LEVEL_CRITICAL;
} else if (percent_used < 30 && instance->q_level != TOTEM_Q_LEVEL_LOW) {
instance->q_level = TOTEM_Q_LEVEL_LOW;
} else if (percent_used > 40 && percent_used < 50 && instance->q_level != TOTEM_Q_LEVEL_GOOD) {
instance->q_level = TOTEM_Q_LEVEL_GOOD;
} else if (percent_used > 60 && percent_used < 70 && instance->q_level != TOTEM_Q_LEVEL_HIGH) {
instance->q_level = TOTEM_Q_LEVEL_HIGH;
}
if (totem_queue_level_changed && old_level != instance->q_level) {
totem_queue_level_changed(instance->q_level);
}
}
void totempg_check_q_level(
void *totempg_groups_instance)
{
struct totempg_group_instance *instance = (struct totempg_group_instance *)totempg_groups_instance;
check_q_level(instance);
}
int totempg_groups_joined_reserve (
void *totempg_groups_instance,
const struct iovec *iovec,
unsigned int iov_len)
{
struct totempg_group_instance *instance = (struct totempg_group_instance *)totempg_groups_instance;
unsigned int size = 0;
unsigned int i;
unsigned int reserved = 0;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
pthread_mutex_lock (&mcast_msg_mutex);
}
for (i = 0; i < instance->groups_cnt; i++) {
size += instance->groups[i].group_len;
}
for (i = 0; i < iov_len; i++) {
size += iovec[i].iov_len;
}
if (size >= totempg_size_limit) {
reserved = -1;
goto error_exit;
}
if (byte_count_send_ok (size)) {
reserved = send_reserve (size);
} else {
reserved = 0;
}
error_exit:
check_q_level(instance);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
pthread_mutex_unlock (&totempg_mutex);
}
return (reserved);
}
int totempg_groups_joined_release (int msg_count)
{
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
pthread_mutex_lock (&mcast_msg_mutex);
}
send_release (msg_count);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&mcast_msg_mutex);
pthread_mutex_unlock (&totempg_mutex);
}
return 0;
}
int totempg_groups_mcast_groups (
void *totempg_groups_instance,
int guarantee,
const struct totempg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len)
{
unsigned short group_len[MAX_GROUPS_PER_MSG + 1];
struct iovec iovec_mcast[MAX_GROUPS_PER_MSG + 1 + MAX_IOVECS_FROM_APP];
int i;
unsigned int res;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
/*
* Build group_len structure and the iovec_mcast structure
*/
group_len[0] = groups_cnt;
for (i = 0; i < groups_cnt; i++) {
group_len[i + 1] = groups[i].group_len;
iovec_mcast[i + 1].iov_len = groups[i].group_len;
iovec_mcast[i + 1].iov_base = (void *) groups[i].group;
}
iovec_mcast[0].iov_len = (groups_cnt + 1) * sizeof (unsigned short);
iovec_mcast[0].iov_base = group_len;
for (i = 0; i < iov_len; i++) {
iovec_mcast[i + groups_cnt + 1].iov_len = iovec[i].iov_len;
iovec_mcast[i + groups_cnt + 1].iov_base = iovec[i].iov_base;
}
res = mcast_msg (iovec_mcast, iov_len + groups_cnt + 1, guarantee);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
return (res);
}
/*
* Returns -1 if error, 0 if can't send, 1 if can send the message
*/
int totempg_groups_send_ok_groups (
void *totempg_groups_instance,
const struct totempg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len)
{
unsigned int size = 0;
unsigned int i;
unsigned int res;
if (totempg_threaded_mode == 1) {
pthread_mutex_lock (&totempg_mutex);
}
for (i = 0; i < groups_cnt; i++) {
size += groups[i].group_len;
}
for (i = 0; i < iov_len; i++) {
size += iovec[i].iov_len;
}
res = msg_count_send_ok (size);
if (totempg_threaded_mode == 1) {
pthread_mutex_unlock (&totempg_mutex);
}
return (res);
}
int totempg_ifaces_get (
unsigned int nodeid,
struct totem_ip_address *interfaces,
unsigned int interfaces_size,
char ***status,
unsigned int *iface_count)
{
int res;
res = totemmrp_ifaces_get (
nodeid,
interfaces,
interfaces_size,
status,
iface_count);
return (res);
}
void totempg_event_signal (enum totem_event_type type, int value)
{
totemmrp_event_signal (type, value);
}
void* totempg_get_stats (void)
{
return &totempg_stats;
}
int totempg_crypto_set (
const char *cipher_type,
const char *hash_type)
{
int res;
res = totemmrp_crypto_set (cipher_type, hash_type);
return (res);
}
int totempg_ring_reenable (void)
{
int res;
res = totemmrp_ring_reenable ();
return (res);
}
#define ONE_IFACE_LEN 63
const char *totempg_ifaces_print (unsigned int nodeid)
{
static char iface_string[256 * INTERFACE_MAX];
char one_iface[ONE_IFACE_LEN+1];
struct totem_ip_address interfaces[INTERFACE_MAX];
char **status;
unsigned int iface_count;
unsigned int i;
int res;
iface_string[0] = '\0';
res = totempg_ifaces_get (nodeid, interfaces, INTERFACE_MAX, &status, &iface_count);
if (res == -1) {
return ("no interface found for nodeid");
}
res = totempg_ifaces_get (nodeid, interfaces, INTERFACE_MAX, &status, &iface_count);
for (i = 0; i < iface_count; i++) {
snprintf (one_iface, ONE_IFACE_LEN,
"r(%d) ip(%s) ",
i, totemip_print (&interfaces[i]));
strcat (iface_string, one_iface);
}
return (iface_string);
}
unsigned int totempg_my_nodeid_get (void)
{
return (totemmrp_my_nodeid_get());
}
int totempg_my_family_get (void)
{
return (totemmrp_my_family_get());
}
extern void totempg_service_ready_register (
void (*totem_service_ready) (void))
{
totemmrp_service_ready_register (totem_service_ready);
}
void totempg_queue_level_register_callback (totem_queue_level_changed_fn fn)
{
totem_queue_level_changed = fn;
}
extern int totempg_member_add (
const struct totem_ip_address *member,
int ring_no)
{
return totemmrp_member_add (member, ring_no);
}
extern int totempg_member_remove (
const struct totem_ip_address *member,
int ring_no)
{
return totemmrp_member_remove (member, ring_no);
}
void totempg_threaded_mode_enable (void)
{
totempg_threaded_mode = 1;
totemmrp_threaded_mode_enable ();
}
void totempg_trans_ack (void)
{
totemmrp_trans_ack ();
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Nov 23, 3:27 AM (38 m, 30 s)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1018114
Default Alt Text
(40 KB)

Event Timeline