Page Menu
Home
ClusterLabs Projects
Search
Configure Global Search
Log In
Files
F1842369
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Flag For Later
Award Token
Size
129 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/daemons/based/based_io.c b/daemons/based/based_io.c
index 7815b38074..6d069ac91d 100644
--- a/daemons/based/based_io.c
+++ b/daemons/based/based_io.c
@@ -1,467 +1,472 @@
/*
* Copyright 2004-2020 the Pacemaker project contributors
*
* The version control history for this file may have further details.
*
* This source code is licensed under the GNU General Public License version 2
* or later (GPLv2+) WITHOUT ANY WARRANTY.
*/
#include <crm_internal.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <dirent.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <crm/crm.h>
#include <crm/cib.h>
#include <crm/common/util.h>
#include <crm/msg_xml.h>
#include <crm/common/xml.h>
#include <crm/cib/internal.h>
#include <crm/cluster.h>
#include <pacemaker-based.h>
crm_trigger_t *cib_writer = NULL;
int write_cib_contents(gpointer p);
static void
cib_rename(const char *old)
{
int new_fd;
char *new = crm_strdup_printf("%s/cib.auto.XXXXXX", cib_root);
umask(S_IWGRP | S_IWOTH | S_IROTH);
new_fd = mkstemp(new);
crm_err("Archiving unusable file %s as %s", old, new);
if ((new_fd < 0) || (rename(old, new) < 0)) {
crm_perror(LOG_ERR, "Couldn't rename %s as %s", old, new);
crm_err("Disabling disk writes and continuing");
cib_writes_enabled = FALSE;
}
if (new_fd > 0) {
close(new_fd);
}
free(new);
}
/*
* It is the callers responsibility to free the output of this function
*/
static xmlNode *
retrieveCib(const char *filename, const char *sigfile)
{
xmlNode *root = NULL;
crm_info("Reading cluster configuration file %s (digest: %s)",
filename, sigfile);
switch (cib_file_read_and_verify(filename, sigfile, &root)) {
case -pcmk_err_cib_corrupt:
crm_warn("Continuing but %s will NOT be used.", filename);
break;
case -pcmk_err_cib_modified:
/* Archive the original files so the contents are not lost */
crm_warn("Continuing but %s will NOT be used.", filename);
cib_rename(filename);
cib_rename(sigfile);
break;
}
return root;
}
/*
* for OSs without support for direntry->d_type, like Solaris
*/
#ifndef DT_UNKNOWN
# define DT_UNKNOWN 0
# define DT_FIFO 1
# define DT_CHR 2
# define DT_DIR 4
# define DT_BLK 6
# define DT_REG 8
# define DT_LNK 10
# define DT_SOCK 12
# define DT_WHT 14
#endif /*DT_UNKNOWN*/
static int cib_archive_filter(const struct dirent * a)
{
int rc = 0;
/* Looking for regular files (d_type = 8) starting with 'cib-' and not ending in .sig */
struct stat s;
char *a_path = crm_strdup_printf("%s/%s", cib_root, a->d_name);
if(stat(a_path, &s) != 0) {
rc = errno;
crm_trace("%s - stat failed: %s (%d)", a->d_name, pcmk_strerror(rc), rc);
rc = 0;
} else if ((s.st_mode & S_IFREG) != S_IFREG) {
unsigned char dtype;
#ifdef HAVE_STRUCT_DIRENT_D_TYPE
dtype = a->d_type;
#else
switch (s.st_mode & S_IFMT) {
case S_IFREG: dtype = DT_REG; break;
case S_IFDIR: dtype = DT_DIR; break;
case S_IFCHR: dtype = DT_CHR; break;
case S_IFBLK: dtype = DT_BLK; break;
case S_IFLNK: dtype = DT_LNK; break;
case S_IFIFO: dtype = DT_FIFO; break;
case S_IFSOCK: dtype = DT_SOCK; break;
default: dtype = DT_UNKNOWN; break;
}
#endif
crm_trace("%s - wrong type (%d)", a->d_name, dtype);
} else if(strstr(a->d_name, "cib-") != a->d_name) {
crm_trace("%s - wrong prefix", a->d_name);
} else if (pcmk__ends_with_ext(a->d_name, ".sig")) {
crm_trace("%s - wrong suffix", a->d_name);
} else {
crm_debug("%s - candidate", a->d_name);
rc = 1;
}
free(a_path);
return rc;
}
static int cib_archive_sort(const struct dirent ** a, const struct dirent **b)
{
/* Order by creation date - most recently created file first */
int rc = 0;
struct stat buf;
time_t a_age = 0;
time_t b_age = 0;
char *a_path = crm_strdup_printf("%s/%s", cib_root, a[0]->d_name);
char *b_path = crm_strdup_printf("%s/%s", cib_root, b[0]->d_name);
if(stat(a_path, &buf) == 0) {
a_age = buf.st_ctime;
}
if(stat(b_path, &buf) == 0) {
b_age = buf.st_ctime;
}
free(a_path);
free(b_path);
if(a_age > b_age) {
rc = 1;
} else if(a_age < b_age) {
rc = -1;
}
crm_trace("%s (%lu) vs. %s (%lu) : %d",
a[0]->d_name, (unsigned long)a_age,
b[0]->d_name, (unsigned long)b_age, rc);
return rc;
}
xmlNode *
readCibXmlFile(const char *dir, const char *file, gboolean discard_status)
{
struct dirent **namelist = NULL;
int lpc = 0;
char *sigfile = NULL;
char *sigfilepath = NULL;
char *filename = NULL;
const char *name = NULL;
const char *value = NULL;
const char *validation = NULL;
const char *use_valgrind = getenv("PCMK_valgrind_enabled");
xmlNode *root = NULL;
xmlNode *status = NULL;
sigfile = crm_strdup_printf("%s.sig", file);
if (pcmk__daemon_can_write(dir, file) == FALSE
|| pcmk__daemon_can_write(dir, sigfile) == FALSE) {
cib_status = -EACCES;
return NULL;
}
filename = crm_strdup_printf("%s/%s", dir, file);
sigfilepath = crm_strdup_printf("%s/%s", dir, sigfile);
free(sigfile);
cib_status = pcmk_ok;
root = retrieveCib(filename, sigfilepath);
free(filename);
free(sigfilepath);
if (root == NULL) {
crm_warn("Primary configuration corrupt or unusable, trying backups in %s", cib_root);
lpc = scandir(cib_root, &namelist, cib_archive_filter, cib_archive_sort);
if (lpc < 0) {
crm_perror(LOG_NOTICE, "scandir(%s) failed", cib_root);
}
}
while (root == NULL && lpc > 1) {
crm_debug("Testing %d candidates", lpc);
lpc--;
filename = crm_strdup_printf("%s/%s", cib_root, namelist[lpc]->d_name);
sigfile = crm_strdup_printf("%s.sig", filename);
crm_info("Reading cluster configuration file %s (digest: %s)",
filename, sigfile);
if (cib_file_read_and_verify(filename, sigfile, &root) < 0) {
crm_warn("Continuing but %s will NOT be used.", filename);
} else {
crm_notice("Continuing with last valid configuration archive: %s", filename);
}
free(namelist[lpc]);
free(filename);
free(sigfile);
}
free(namelist);
if (root == NULL) {
root = createEmptyCib(0);
crm_warn("Continuing with an empty configuration.");
}
if (cib_writes_enabled && use_valgrind &&
(crm_is_true(use_valgrind) || strstr(use_valgrind, "pacemaker-based"))) {
cib_writes_enabled = FALSE;
crm_err("*** Disabling disk writes to avoid confusing Valgrind ***");
}
status = find_xml_node(root, XML_CIB_TAG_STATUS, FALSE);
if (discard_status && status != NULL) {
/* strip out the status section if there is one */
free_xml(status);
status = NULL;
}
if (status == NULL) {
create_xml_node(root, XML_CIB_TAG_STATUS);
}
/* Do this before schema validation happens */
/* fill in some defaults */
name = XML_ATTR_GENERATION_ADMIN;
value = crm_element_value(root, name);
if (value == NULL) {
crm_warn("No value for %s was specified in the configuration.", name);
crm_warn("The recommended course of action is to shutdown,"
" run crm_verify and fix any errors it reports.");
crm_warn("We will default to zero and continue but may get"
" confused about which configuration to use if"
" multiple nodes are powered up at the same time.");
crm_xml_add_int(root, name, 0);
}
name = XML_ATTR_GENERATION;
value = crm_element_value(root, name);
if (value == NULL) {
crm_xml_add_int(root, name, 0);
}
name = XML_ATTR_NUMUPDATES;
value = crm_element_value(root, name);
if (value == NULL) {
crm_xml_add_int(root, name, 0);
}
// Unset (DC should set appropriate value)
xml_remove_prop(root, XML_ATTR_DC_UUID);
if (discard_status) {
crm_log_xml_trace(root, "[on-disk]");
}
validation = crm_element_value(root, XML_ATTR_VALIDATION);
if (validate_xml(root, NULL, TRUE) == FALSE) {
crm_err("CIB does not validate with %s", crm_str(validation));
cib_status = -pcmk_err_schema_validation;
} else if (validation == NULL) {
int version = 0;
update_validation(&root, &version, 0, FALSE, FALSE);
if (version > 0) {
crm_notice("Enabling %s validation on"
" the existing (sane) configuration", get_schema_name(version));
} else {
crm_err("CIB does not validate with any known schema");
cib_status = -pcmk_err_schema_validation;
}
}
return root;
}
gboolean
uninitializeCib(void)
{
xmlNode *tmp_cib = the_cib;
if (tmp_cib == NULL) {
crm_debug("The CIB has already been deallocated.");
return FALSE;
}
the_cib = NULL;
crm_debug("Deallocating the CIB.");
free_xml(tmp_cib);
crm_debug("The CIB has been deallocated.");
return TRUE;
}
/*
* This method will free the old CIB pointer on success and the new one
* on failure.
*/
int
activateCibXml(xmlNode * new_cib, gboolean to_disk, const char *op)
{
if (new_cib) {
xmlNode *saved_cib = the_cib;
CRM_ASSERT(new_cib != saved_cib);
the_cib = new_cib;
free_xml(saved_cib);
if (cib_writes_enabled && cib_status == pcmk_ok && to_disk) {
crm_debug("Triggering CIB write for %s op", op);
mainloop_set_trigger(cib_writer);
}
return pcmk_ok;
}
crm_err("Ignoring invalid CIB");
if (the_cib) {
crm_warn("Reverting to last known CIB");
} else {
crm_crit("Could not write out new CIB and no saved version to revert to");
}
return -ENODATA;
}
static void
cib_diskwrite_complete(mainloop_child_t * p, pid_t pid, int core, int signo, int exitcode)
{
- if (signo) {
- crm_notice("Disk write process terminated with signal %d (pid=%d, core=%d)", signo, pid,
- core);
+ const char *errmsg = "Could not write CIB to disk";
- } else {
- do_crm_log(exitcode == 0 ? LOG_TRACE : LOG_ERR, "Disk write process exited (pid=%d, rc=%d)",
- pid, exitcode);
+ if ((exitcode != 0) && cib_writes_enabled) {
+ cib_writes_enabled = FALSE;
+ errmsg = "Disabling CIB disk writes after failure";
}
- if (exitcode != 0 && cib_writes_enabled) {
- crm_err("Disabling disk writes after write failure");
- cib_writes_enabled = FALSE;
+ if ((signo == 0) && (exitcode == 0)) {
+ crm_trace("Disk write [%d] succeeded", (int) pid);
+
+ } else if (signo == 0) {
+ crm_err("%s: process %d exited %d", errmsg, (int) pid, exitcode);
+
+ } else {
+ crm_err("%s: process %d terminated with signal %d (%s)%s",
+ errmsg, (int) pid, signo, strsignal(signo),
+ (core? " and dumped core" : ""));
}
mainloop_trigger_complete(cib_writer);
}
int
write_cib_contents(gpointer p)
{
int exit_rc = pcmk_ok;
xmlNode *cib_local = NULL;
/* Make a copy of the CIB to write (possibly in a forked child) */
if (p) {
/* Synchronous write out */
cib_local = copy_xml(p);
} else {
int pid = 0;
int bb_state = qb_log_ctl(QB_LOG_BLACKBOX, QB_LOG_CONF_STATE_GET, 0);
/* Turn it off before the fork() to avoid:
* - 2 processes writing to the same shared mem
* - the child needing to disable it
* (which would close it from underneath the parent)
* This way, the shared mem files are already closed
*/
qb_log_ctl(QB_LOG_BLACKBOX, QB_LOG_CONF_ENABLED, QB_FALSE);
pid = fork();
if (pid < 0) {
crm_perror(LOG_ERR, "Disabling disk writes after fork failure");
cib_writes_enabled = FALSE;
return FALSE;
}
if (pid) {
/* Parent */
mainloop_child_add(pid, 0, "disk-writer", NULL, cib_diskwrite_complete);
if (bb_state == QB_LOG_STATE_ENABLED) {
/* Re-enable now that it it safe */
qb_log_ctl(QB_LOG_BLACKBOX, QB_LOG_CONF_ENABLED, QB_TRUE);
}
return -1; /* -1 means 'still work to do' */
}
/* Asynchronous write-out after a fork() */
/* In theory, we can scribble on the_cib here and not affect the parent,
* but let's be safe anyway.
*/
cib_local = copy_xml(the_cib);
}
/* Write the CIB */
exit_rc = cib_file_write_with_digest(cib_local, cib_root, "cib.xml");
/* A nonzero exit code will cause further writes to be disabled */
free_xml(cib_local);
if (p == NULL) {
crm_exit_t exit_code = CRM_EX_OK;
switch (exit_rc) {
case pcmk_ok:
exit_code = CRM_EX_OK;
break;
case pcmk_err_cib_modified:
exit_code = CRM_EX_DIGEST; // Existing CIB doesn't match digest
break;
case pcmk_err_cib_backup: // Existing CIB couldn't be backed up
case pcmk_err_cib_save: // New CIB couldn't be saved
exit_code = CRM_EX_CANTCREAT;
break;
default:
exit_code = CRM_EX_ERROR;
break;
}
/* Use _exit() because exit() could affect the parent adversely */
_exit(exit_code);
}
return exit_rc;
}
diff --git a/daemons/pacemakerd/pcmkd_subdaemons.c b/daemons/pacemakerd/pcmkd_subdaemons.c
index b1aea780f2..9556d7409c 100644
--- a/daemons/pacemakerd/pcmkd_subdaemons.c
+++ b/daemons/pacemakerd/pcmkd_subdaemons.c
@@ -1,840 +1,841 @@
/*
* Copyright 2010-2021 the Pacemaker project contributors
*
* The version control history for this file may have further details.
*
* This source code is licensed under the GNU General Public License version 2
* or later (GPLv2+) WITHOUT ANY WARRANTY.
*/
#include <crm_internal.h>
#include "pacemakerd.h"
#include <errno.h>
#include <grp.h>
#include <signal.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <crm/cluster.h>
#include <crm/msg_xml.h>
typedef struct pcmk_child_s {
pid_t pid;
int respawn_count;
bool respawn;
const char *name;
const char *uid;
const char *command;
const char *endpoint; /* IPC server name */
bool needs_cluster;
/* Anything below here will be dynamically initialized */
bool needs_retry;
bool active_before_startup;
} pcmk_child_t;
#define PCMK_PROCESS_CHECK_INTERVAL 5
#define SHUTDOWN_ESCALATION_PERIOD 180000 /* 3m */
/* Index into the array below */
#define PCMK_CHILD_CONTROLD 5
static pcmk_child_t pcmk_children[] = {
{
0, 0, true, "pacemaker-based", CRM_DAEMON_USER,
CRM_DAEMON_DIR "/pacemaker-based", PCMK__SERVER_BASED_RO,
true
},
{
0, 0, true, "pacemaker-fenced", NULL,
CRM_DAEMON_DIR "/pacemaker-fenced", "stonith-ng",
true
},
{
0, 0, true, "pacemaker-execd", NULL,
CRM_DAEMON_DIR "/pacemaker-execd", CRM_SYSTEM_LRMD,
false
},
{
0, 0, true, "pacemaker-attrd", CRM_DAEMON_USER,
CRM_DAEMON_DIR "/pacemaker-attrd", T_ATTRD,
true
},
{
0, 0, true, "pacemaker-schedulerd", CRM_DAEMON_USER,
CRM_DAEMON_DIR "/pacemaker-schedulerd", CRM_SYSTEM_PENGINE,
false
},
{
0, 0, true, "pacemaker-controld", CRM_DAEMON_USER,
CRM_DAEMON_DIR "/pacemaker-controld", CRM_SYSTEM_CRMD,
true
},
};
static char *opts_default[] = { NULL, NULL };
static char *opts_vgrind[] = { NULL, NULL, NULL, NULL, NULL };
crm_trigger_t *shutdown_trigger = NULL;
crm_trigger_t *startup_trigger = NULL;
/* When contacted via pacemakerd-api by a client having sbd in
* the name we assume it is sbd-daemon which wants to know
* if pacemakerd shutdown gracefully.
* Thus when everything is shutdown properly pacemakerd
* waits till it has reported the graceful completion of
* shutdown to sbd and just when sbd-client closes the
* connection we can assume that the report has arrived
* properly so that pacemakerd can finally exit.
* Following two variables are used to track that handshake.
*/
unsigned int shutdown_complete_state_reported_to = 0;
gboolean shutdown_complete_state_reported_client_closed = FALSE;
/* state we report when asked via pacemakerd-api status-ping */
const char *pacemakerd_state = XML_PING_ATTR_PACEMAKERDSTATE_INIT;
gboolean running_with_sbd = FALSE; /* local copy */
GMainLoop *mainloop = NULL;
static gboolean fatal_error = FALSE;
static bool global_keep_tracking = false;
static gboolean check_active_before_startup_processes(gpointer user_data);
static int child_liveness(pcmk_child_t *child);
static gboolean escalate_shutdown(gpointer data);
static int start_child(pcmk_child_t * child);
static void pcmk_child_exit(mainloop_child_t * p, pid_t pid, int core, int signo, int exitcode);
static void pcmk_process_exit(pcmk_child_t * child);
static gboolean pcmk_shutdown_worker(gpointer user_data);
static gboolean stop_child(pcmk_child_t * child, int signal);
static bool
pcmkd_cluster_connected(void)
{
#if SUPPORT_COROSYNC
return pcmkd_corosync_connected();
#else
return true;
#endif
}
static gboolean
check_active_before_startup_processes(gpointer user_data)
{
gboolean keep_tracking = FALSE;
for (int i = 0; i < PCMK__NELEM(pcmk_children); i++) {
if (!pcmk_children[i].active_before_startup) {
/* we are already tracking it as a child process. */
continue;
} else {
int rc = child_liveness(&pcmk_children[i]);
switch (rc) {
case pcmk_rc_ok:
break;
case pcmk_rc_ipc_unresponsive:
case pcmk_rc_ipc_pid_only: // This case: it was previously OK
if (pcmk_children[i].respawn) {
crm_err("%s[%lld] terminated%s", pcmk_children[i].name,
(long long) PCMK__SPECIAL_PID_AS_0(pcmk_children[i].pid),
(rc == pcmk_rc_ipc_pid_only)? " as IPC server" : "");
} else {
/* orderly shutdown */
crm_notice("%s[%lld] terminated%s", pcmk_children[i].name,
(long long) PCMK__SPECIAL_PID_AS_0(pcmk_children[i].pid),
(rc == pcmk_rc_ipc_pid_only)? " as IPC server" : "");
}
pcmk_process_exit(&(pcmk_children[i]));
continue;
default:
crm_exit(CRM_EX_FATAL);
break; /* static analysis/noreturn */
}
}
/* at least one of the processes found at startup
* is still going, so keep this recurring timer around */
keep_tracking = TRUE;
}
global_keep_tracking = keep_tracking;
return keep_tracking;
}
static gboolean
escalate_shutdown(gpointer data)
{
pcmk_child_t *child = data;
if (child->pid == PCMK__SPECIAL_PID) {
pcmk_process_exit(child);
} else if (child->pid != 0) {
/* Use SIGSEGV instead of SIGKILL to create a core so we can see what it was up to */
crm_err("Child %s not terminating in a timely manner, forcing", child->name);
stop_child(child, SIGSEGV);
}
return FALSE;
}
static void
pcmk_child_exit(mainloop_child_t * p, pid_t pid, int core, int signo, int exitcode)
{
pcmk_child_t *child = mainloop_child_userdata(p);
const char *name = mainloop_child_name(p);
if (signo) {
do_crm_log(((signo == SIGKILL)? LOG_WARNING : LOG_ERR),
- "%s[%d] terminated with signal %d (core=%d)",
- name, pid, signo, core);
+ "%s[%d] terminated with signal %d (%s)%s",
+ name, pid, signo, strsignal(signo),
+ (core? " and dumped core" : ""));
} else {
switch(exitcode) {
case CRM_EX_OK:
crm_info("%s[%d] exited with status %d (%s)",
name, pid, exitcode, crm_exit_str(exitcode));
break;
case CRM_EX_FATAL:
crm_warn("Shutting cluster down because %s[%d] had fatal failure",
name, pid);
child->respawn = false;
fatal_error = TRUE;
pcmk_shutdown(SIGTERM);
break;
case CRM_EX_PANIC:
crm_emerg("%s[%d] instructed the machine to reset", name, pid);
child->respawn = false;
fatal_error = TRUE;
pcmk__panic(__func__);
pcmk_shutdown(SIGTERM);
break;
default:
crm_err("%s[%d] exited with status %d (%s)",
name, pid, exitcode, crm_exit_str(exitcode));
break;
}
}
pcmk_process_exit(child);
}
static void
pcmk_process_exit(pcmk_child_t * child)
{
child->pid = 0;
child->active_before_startup = false;
child->respawn_count += 1;
if (child->respawn_count > MAX_RESPAWN) {
crm_err("Child respawn count exceeded by %s", child->name);
child->respawn = false;
}
if (shutdown_trigger) {
/* resume step-wise shutdown (returned TRUE yields no parallelizing) */
mainloop_set_trigger(shutdown_trigger);
} else if (!child->respawn) {
/* nothing to do */
} else if (crm_is_true(getenv("PCMK_fail_fast"))) {
crm_err("Rebooting system because of %s", child->name);
pcmk__panic(__func__);
} else if (child_liveness(child) == pcmk_rc_ok) {
crm_warn("One-off suppressing strict respawning of a child process %s,"
" appears alright per %s IPC end-point",
child->name, child->endpoint);
/* need to monitor how it evolves, and start new process if badly */
child->active_before_startup = true;
if (!global_keep_tracking) {
global_keep_tracking = true;
g_timeout_add_seconds(PCMK_PROCESS_CHECK_INTERVAL,
check_active_before_startup_processes, NULL);
}
} else {
if (child->needs_cluster && !pcmkd_cluster_connected()) {
crm_notice("Skipping cluster-based subdaemon %s until cluster returns",
child->name);
child->needs_retry = true;
return;
}
crm_notice("Respawning failed child process: %s", child->name);
start_child(child);
}
}
static gboolean
pcmk_shutdown_worker(gpointer user_data)
{
static int phase = PCMK__NELEM(pcmk_children) - 1;
static time_t next_log = 0;
if (phase == PCMK__NELEM(pcmk_children) - 1) {
crm_notice("Shutting down Pacemaker");
pacemakerd_state = XML_PING_ATTR_PACEMAKERDSTATE_SHUTTINGDOWN;
}
for (; phase >= 0; phase--) {
pcmk_child_t *child = &(pcmk_children[phase]);
if (child->pid != 0) {
time_t now = time(NULL);
if (child->respawn) {
if (child->pid == PCMK__SPECIAL_PID) {
crm_warn("The process behind %s IPC cannot be"
" terminated, so either wait the graceful"
" period of %ld s for its native termination"
" if it vitally depends on some other daemons"
" going down in a controlled way already,"
" or locate and kill the correct %s process"
" on your own; set PCMK_fail_fast=1 to avoid"
" this altogether next time around",
child->name, (long) SHUTDOWN_ESCALATION_PERIOD,
child->command);
}
next_log = now + 30;
child->respawn = false;
stop_child(child, SIGTERM);
if (phase < PCMK_CHILD_CONTROLD) {
g_timeout_add(SHUTDOWN_ESCALATION_PERIOD,
escalate_shutdown, child);
}
} else if (now >= next_log) {
next_log = now + 30;
crm_notice("Still waiting for %s to terminate "
CRM_XS " pid=%lld",
child->name, (long long) child->pid);
}
return TRUE;
}
/* cleanup */
crm_debug("%s confirmed stopped", child->name);
child->pid = 0;
}
crm_notice("Shutdown complete");
pacemakerd_state = XML_PING_ATTR_PACEMAKERDSTATE_SHUTDOWNCOMPLETE;
if (!fatal_error && running_with_sbd &&
pcmk__get_sbd_sync_resource_startup() &&
!shutdown_complete_state_reported_client_closed) {
crm_notice("Waiting for SBD to pick up shutdown-complete-state.");
return TRUE;
}
{
const char *delay = pcmk__env_option(PCMK__ENV_SHUTDOWN_DELAY);
if(delay) {
sync();
pcmk__sleep_ms(crm_get_msec(delay));
}
}
g_main_loop_quit(mainloop);
if (fatal_error) {
crm_notice("Shutting down and staying down after fatal error");
#ifdef SUPPORT_COROSYNC
pcmkd_shutdown_corosync();
#endif
crm_exit(CRM_EX_FATAL);
}
return TRUE;
}
/* TODO once libqb is taught to juggle with IPC end-points carried over as
bare file descriptor (https://github.com/ClusterLabs/libqb/issues/325)
it shall hand over these descriptors here if/once they are successfully
pre-opened in (presumably) child_liveness(), to avoid any remaining
room for races */
// \return Standard Pacemaker return code
static int
start_child(pcmk_child_t * child)
{
uid_t uid = 0;
gid_t gid = 0;
gboolean use_valgrind = FALSE;
gboolean use_callgrind = FALSE;
const char *env_valgrind = getenv("PCMK_valgrind_enabled");
const char *env_callgrind = getenv("PCMK_callgrind_enabled");
child->active_before_startup = false;
if (child->command == NULL) {
crm_info("Nothing to do for child \"%s\"", child->name);
return pcmk_rc_ok;
}
if (env_callgrind != NULL && crm_is_true(env_callgrind)) {
use_callgrind = TRUE;
use_valgrind = TRUE;
} else if (env_callgrind != NULL && strstr(env_callgrind, child->name)) {
use_callgrind = TRUE;
use_valgrind = TRUE;
} else if (env_valgrind != NULL && crm_is_true(env_valgrind)) {
use_valgrind = TRUE;
} else if (env_valgrind != NULL && strstr(env_valgrind, child->name)) {
use_valgrind = TRUE;
}
if (use_valgrind && strlen(VALGRIND_BIN) == 0) {
crm_warn("Cannot enable valgrind for %s:"
" The location of the valgrind binary is unknown", child->name);
use_valgrind = FALSE;
}
if (child->uid) {
if (crm_user_lookup(child->uid, &uid, &gid) < 0) {
crm_err("Invalid user (%s) for %s: not found", child->uid, child->name);
return EACCES;
}
crm_info("Using uid=%u and group=%u for process %s", uid, gid, child->name);
}
child->pid = fork();
CRM_ASSERT(child->pid != -1);
if (child->pid > 0) {
/* parent */
mainloop_child_add(child->pid, 0, child->name, child, pcmk_child_exit);
crm_info("Forked child %lld for process %s%s",
(long long) child->pid, child->name,
use_valgrind ? " (valgrind enabled: " VALGRIND_BIN ")" : "");
return pcmk_rc_ok;
} else {
/* Start a new session */
(void)setsid();
/* Setup the two alternate arg arrays */
opts_vgrind[0] = strdup(VALGRIND_BIN);
if (use_callgrind) {
opts_vgrind[1] = strdup("--tool=callgrind");
opts_vgrind[2] = strdup("--callgrind-out-file=" CRM_STATE_DIR "/callgrind.out.%p");
opts_vgrind[3] = strdup(child->command);
opts_vgrind[4] = NULL;
} else {
opts_vgrind[1] = strdup(child->command);
opts_vgrind[2] = NULL;
opts_vgrind[3] = NULL;
opts_vgrind[4] = NULL;
}
opts_default[0] = strdup(child->command);
if(gid) {
// Whether we need root group access to talk to cluster layer
bool need_root_group = TRUE;
if (is_corosync_cluster()) {
/* Corosync clusters can drop root group access, because we set
* uidgid.gid.${gid}=1 via CMAP, which allows these processes to
* connect to corosync.
*/
need_root_group = FALSE;
}
// Drop root group access if not needed
if (!need_root_group && (setgid(gid) < 0)) {
crm_warn("Could not set group to %d: %s", gid, strerror(errno));
}
/* Initialize supplementary groups to only those always granted to
* the user, plus haclient (so we can access IPC).
*/
if (initgroups(child->uid, gid) < 0) {
crm_err("Cannot initialize groups for %s: %s (%d)", child->uid, pcmk_strerror(errno), errno);
}
}
if (uid && setuid(uid) < 0) {
crm_warn("Could not set user to %s (id %d): %s",
child->uid, uid, strerror(errno));
}
pcmk__close_fds_in_child(true);
pcmk__open_devnull(O_RDONLY); // stdin (fd 0)
pcmk__open_devnull(O_WRONLY); // stdout (fd 1)
pcmk__open_devnull(O_WRONLY); // stderr (fd 2)
if (use_valgrind) {
(void)execvp(VALGRIND_BIN, opts_vgrind);
} else {
(void)execvp(child->command, opts_default);
}
crm_crit("Could not execute %s: %s", child->command, strerror(errno));
crm_exit(CRM_EX_FATAL);
}
return pcmk_rc_ok; /* never reached */
}
/*!
* \internal
* \brief Check the liveness of the child based on IPC name and PID if tracked
*
* \param[inout] child Child tracked data
*
* \return Standard Pacemaker return code
*
* \note Return codes of particular interest include pcmk_rc_ipc_unresponsive
* indicating that no trace of IPC liveness was detected,
* pcmk_rc_ipc_unauthorized indicating that the IPC endpoint is blocked by
* an unauthorized process, and pcmk_rc_ipc_pid_only indicating that
* the child is up by PID but not IPC end-point (possibly starting).
* \note This function doesn't modify any of \p child members but \c pid,
* and is not actively toying with processes as such but invoking
* \c stop_child in one particular case (there's for some reason
* a different authentic holder of the IPC end-point).
*/
static int
child_liveness(pcmk_child_t *child)
{
uid_t cl_uid = 0;
gid_t cl_gid = 0;
const uid_t root_uid = 0;
const gid_t root_gid = 0;
const uid_t *ref_uid;
const gid_t *ref_gid;
int rc = pcmk_rc_ipc_unresponsive;
pid_t ipc_pid = 0;
if (child->endpoint == NULL
&& (child->pid <= 0 || child->pid == PCMK__SPECIAL_PID)) {
crm_err("Cannot track child %s for missing both API end-point and PID",
child->name);
rc = EINVAL; // Misuse of function when child is not trackable
} else if (child->endpoint != NULL) {
int legacy_rc = pcmk_ok;
if (child->uid == NULL) {
ref_uid = &root_uid;
ref_gid = &root_gid;
} else {
ref_uid = &cl_uid;
ref_gid = &cl_gid;
legacy_rc = pcmk_daemon_user(&cl_uid, &cl_gid);
}
if (legacy_rc < 0) {
rc = pcmk_legacy2rc(legacy_rc);
crm_err("Could not find user and group IDs for user %s: %s "
CRM_XS " rc=%d", CRM_DAEMON_USER, pcmk_rc_str(rc), rc);
} else {
rc = pcmk__ipc_is_authentic_process_active(child->endpoint,
*ref_uid, *ref_gid,
&ipc_pid);
if ((rc == pcmk_rc_ok) || (rc == pcmk_rc_ipc_unresponsive)) {
if (child->pid <= 0) {
/* If rc is pcmk_rc_ok, ipc_pid is nonzero and this
* initializes a new child. If rc is
* pcmk_rc_ipc_unresponsive, ipc_pid is zero, and we will
* investigate further.
*/
child->pid = ipc_pid;
} else if ((ipc_pid != 0) && (child->pid != ipc_pid)) {
/* An unexpected (but authorized) process is responding to
* IPC. Investigate further.
*/
rc = pcmk_rc_ipc_unresponsive;
}
}
}
}
if (rc == pcmk_rc_ipc_unresponsive) {
/* If we get here, a child without IPC is being tracked, no IPC liveness
* has been detected, or IPC liveness has been detected with an
* unexpected (but authorized) process. This is safe on FreeBSD since
* the only change possible from a proper child's PID into "special" PID
* of 1 behind more loosely related process.
*/
int ret = pcmk__pid_active(child->pid, child->name);
if (ipc_pid && ((ret != pcmk_rc_ok)
|| ipc_pid == PCMK__SPECIAL_PID
|| (pcmk__pid_active(ipc_pid,
child->name) == pcmk_rc_ok))) {
/* An unexpected (but authorized) process was detected at the IPC
* endpoint, and either it is active, or the child we're tracking is
* not.
*/
if (ret == pcmk_rc_ok) {
/* The child we're tracking is active. Kill it, and adopt the
* detected process. This assumes that our children don't fork
* (thus getting a different PID owning the IPC), but rather the
* tracking got out of sync because of some means external to
* Pacemaker, and adopting the detected process is better than
* killing it and possibly having to spawn a new child.
*/
/* not possessing IPC, afterall (what about corosync CPG?) */
stop_child(child, SIGKILL);
}
rc = pcmk_rc_ok;
child->pid = ipc_pid;
} else if (ret == pcmk_rc_ok) {
// Our tracked child's PID was found active, but not its IPC
rc = pcmk_rc_ipc_pid_only;
} else if ((child->pid == 0) && (ret == EINVAL)) {
// FreeBSD can return EINVAL
rc = pcmk_rc_ipc_unresponsive;
} else {
switch (ret) {
case EACCES:
rc = pcmk_rc_ipc_unauthorized;
break;
case ESRCH:
rc = pcmk_rc_ipc_unresponsive;
break;
default:
rc = ret;
break;
}
}
}
return rc;
}
/*!
* \internal
* \brief Initial one-off check of the pre-existing "child" processes
*
* With "child" process, we mean the subdaemon that defines an API end-point
* (all of them do as of the comment) -- the possible complement is skipped
* as it is deemed it has no such shared resources to cause conflicts about,
* hence it can presumably be started anew without hesitation.
* If that won't hold true in the future, the concept of a shared resource
* will have to be generalized beyond the API end-point.
*
* For boundary cases that the "child" is still starting (IPC end-point is yet
* to be witnessed), or more rarely (practically FreeBSD only), when there's
* a pre-existing "untrackable" authentic process, we give the situation some
* time to possibly unfold in the right direction, meaning that said socket
* will appear or the unattainable process will disappear per the observable
* IPC, respectively.
*
* \return Standard Pacemaker return code
*
* \note Since this gets run at the very start, \c respawn_count fields
* for particular children get temporarily overloaded with "rounds
* of waiting" tracking, restored once we are about to finish with
* success (i.e. returning value >=0) and will remain unrestored
* otherwise. One way to suppress liveness detection logic for
* particular child is to set the said value to a negative number.
*/
#define WAIT_TRIES 4 /* together with interleaved sleeps, worst case ~ 1s */
int
find_and_track_existing_processes(void)
{
bool tracking = false;
bool wait_in_progress;
int rc;
size_t i, rounds;
for (rounds = 1; rounds <= WAIT_TRIES; rounds++) {
wait_in_progress = false;
for (i = 0; i < PCMK__NELEM(pcmk_children); i++) {
if ((pcmk_children[i].endpoint == NULL)
|| (pcmk_children[i].respawn_count < 0)) {
continue;
}
rc = child_liveness(&pcmk_children[i]);
if (rc == pcmk_rc_ipc_unresponsive) {
/* As a speculation, don't give up if there are more rounds to
* come for other reasons, but don't artificially wait just
* because of this, since we would preferably start ASAP.
*/
continue;
}
pcmk_children[i].respawn_count = rounds;
switch (rc) {
case pcmk_rc_ok:
if (pcmk_children[i].pid == PCMK__SPECIAL_PID) {
if (crm_is_true(getenv("PCMK_fail_fast"))) {
crm_crit("Cannot reliably track pre-existing"
" authentic process behind %s IPC on this"
" platform and PCMK_fail_fast requested",
pcmk_children[i].endpoint);
return EOPNOTSUPP;
} else if (pcmk_children[i].respawn_count == WAIT_TRIES) {
crm_notice("Assuming pre-existing authentic, though"
" on this platform untrackable, process"
" behind %s IPC is stable (was in %d"
" previous samples) so rather than"
" bailing out (PCMK_fail_fast not"
" requested), we just switch to a less"
" optimal IPC liveness monitoring"
" (not very suitable for heavy load)",
pcmk_children[i].name, WAIT_TRIES - 1);
crm_warn("The process behind %s IPC cannot be"
" terminated, so the overall shutdown"
" will get delayed implicitly (%ld s),"
" which serves as a graceful period for"
" its native termination if it vitally"
" depends on some other daemons going"
" down in a controlled way already",
pcmk_children[i].name,
(long) SHUTDOWN_ESCALATION_PERIOD);
} else {
wait_in_progress = true;
crm_warn("Cannot reliably track pre-existing"
" authentic process behind %s IPC on this"
" platform, can still disappear in %d"
" attempt(s)", pcmk_children[i].endpoint,
WAIT_TRIES - pcmk_children[i].respawn_count);
continue;
}
}
crm_notice("Tracking existing %s process (pid=%lld)",
pcmk_children[i].name,
(long long) PCMK__SPECIAL_PID_AS_0(
pcmk_children[i].pid));
pcmk_children[i].respawn_count = -1; /* 0~keep watching */
pcmk_children[i].active_before_startup = true;
tracking = true;
break;
case pcmk_rc_ipc_pid_only:
if (pcmk_children[i].respawn_count == WAIT_TRIES) {
crm_crit("%s IPC end-point for existing authentic"
" process %lld did not (re)appear",
pcmk_children[i].endpoint,
(long long) PCMK__SPECIAL_PID_AS_0(
pcmk_children[i].pid));
return rc;
}
wait_in_progress = true;
crm_warn("Cannot find %s IPC end-point for existing"
" authentic process %lld, can still (re)appear"
" in %d attempts (?)",
pcmk_children[i].endpoint,
(long long) PCMK__SPECIAL_PID_AS_0(
pcmk_children[i].pid),
WAIT_TRIES - pcmk_children[i].respawn_count);
continue;
default:
crm_crit("Checked liveness of %s: %s " CRM_XS " rc=%d",
pcmk_children[i].name, pcmk_rc_str(rc), rc);
return rc;
}
}
if (!wait_in_progress) {
break;
}
pcmk__sleep_ms(250); // Wait a bit for changes to possibly happen
}
for (i = 0; i < PCMK__NELEM(pcmk_children); i++) {
pcmk_children[i].respawn_count = 0; /* restore pristine state */
}
if (tracking) {
g_timeout_add_seconds(PCMK_PROCESS_CHECK_INTERVAL,
check_active_before_startup_processes, NULL);
}
return pcmk_rc_ok;
}
gboolean
init_children_processes(void *user_data)
{
/* start any children that have not been detected */
for (int i = 0; i < PCMK__NELEM(pcmk_children); i++) {
if (pcmk_children[i].pid != 0) {
/* we are already tracking it */
continue;
}
start_child(&(pcmk_children[i]));
}
/* From this point on, any daemons being started will be due to
* respawning rather than node start.
*
* This may be useful for the daemons to know
*/
setenv("PCMK_respawned", "true", 1);
pacemakerd_state = XML_PING_ATTR_PACEMAKERDSTATE_RUNNING;
return TRUE;
}
void
pcmk_shutdown(int nsig)
{
if (shutdown_trigger == NULL) {
shutdown_trigger = mainloop_add_trigger(G_PRIORITY_HIGH, pcmk_shutdown_worker, NULL);
}
mainloop_set_trigger(shutdown_trigger);
}
void
restart_cluster_subdaemons(void)
{
for (int i = 0; i < PCMK__NELEM(pcmk_children); i++) {
if (!pcmk_children[i].needs_retry || pcmk_children[i].pid != 0) {
continue;
}
crm_notice("Respawning cluster-based subdaemon: %s", pcmk_children[i].name);
if (start_child(&pcmk_children[i])) {
pcmk_children[i].needs_retry = false;
}
}
}
static gboolean
stop_child(pcmk_child_t * child, int signal)
{
if (signal == 0) {
signal = SIGTERM;
}
/* why to skip PID of 1?
- FreeBSD ~ how untrackable process behind IPC is masqueraded as
- elsewhere: how "init" task is designated; in particular, in systemd
arrangement of socket-based activation, this is pretty real */
if (child->command == NULL || child->pid == PCMK__SPECIAL_PID) {
crm_debug("Nothing to do for child \"%s\" (process %lld)",
child->name, (long long) PCMK__SPECIAL_PID_AS_0(child->pid));
return TRUE;
}
if (child->pid <= 0) {
crm_trace("Client %s not running", child->name);
return TRUE;
}
errno = 0;
if (kill(child->pid, signal) == 0) {
crm_notice("Stopping %s "CRM_XS" sent signal %d to process %lld",
child->name, signal, (long long) child->pid);
} else {
crm_err("Could not stop %s (process %lld) with signal %d: %s",
child->name, (long long) child->pid, signal, strerror(errno));
}
return TRUE;
}
diff --git a/lib/common/mainloop.c b/lib/common/mainloop.c
index 9a2b16bc67..fc3e2cb576 100644
--- a/lib/common/mainloop.c
+++ b/lib/common/mainloop.c
@@ -1,1502 +1,1502 @@
/*
* Copyright 2004-2021 the Pacemaker project contributors
*
* The version control history for this file may have further details.
*
* This source code is licensed under the GNU Lesser General Public License
* version 2.1 or later (LGPLv2.1+) WITHOUT ANY WARRANTY.
*/
#include <crm_internal.h>
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include <sys/wait.h>
#include <crm/crm.h>
#include <crm/common/xml.h>
#include <crm/common/mainloop.h>
#include <crm/common/ipc_internal.h>
#include <qb/qbarray.h>
struct mainloop_child_s {
pid_t pid;
char *desc;
unsigned timerid;
gboolean timeout;
void *privatedata;
enum mainloop_child_flags flags;
/* Called when a process dies */
void (*callback) (mainloop_child_t * p, pid_t pid, int core, int signo, int exitcode);
};
struct trigger_s {
GSource source;
gboolean running;
gboolean trigger;
void *user_data;
guint id;
};
struct mainloop_timer_s {
guint id;
guint period_ms;
bool repeat;
char *name;
GSourceFunc cb;
void *userdata;
};
static gboolean
crm_trigger_prepare(GSource * source, gint * timeout)
{
crm_trigger_t *trig = (crm_trigger_t *) source;
/* cluster-glue's FD and IPC related sources make use of
* g_source_add_poll() but do not set a timeout in their prepare
* functions
*
* This means mainloop's poll() will block until an event for one
* of these sources occurs - any /other/ type of source, such as
* this one or g_idle_*, that doesn't use g_source_add_poll() is
* S-O-L and won't be processed until there is something fd-based
* happens.
*
* Luckily the timeout we can set here affects all sources and
* puts an upper limit on how long poll() can take.
*
* So unconditionally set a small-ish timeout, not too small that
* we're in constant motion, which will act as an upper bound on
* how long the signal handling might be delayed for.
*/
*timeout = 500; /* Timeout in ms */
return trig->trigger;
}
static gboolean
crm_trigger_check(GSource * source)
{
crm_trigger_t *trig = (crm_trigger_t *) source;
return trig->trigger;
}
/*!
* \internal
* \brief GSource dispatch function for crm_trigger_t
*
* \param[in] source crm_trigger_t being dispatched
* \param[in] callback Callback passed at source creation
* \param[in] userdata User data passed at source creation
*
* \return G_SOURCE_REMOVE to remove source, G_SOURCE_CONTINUE to keep it
*/
static gboolean
crm_trigger_dispatch(GSource * source, GSourceFunc callback, gpointer userdata)
{
gboolean rc = G_SOURCE_CONTINUE;
crm_trigger_t *trig = (crm_trigger_t *) source;
if (trig->running) {
/* Wait until the existing job is complete before starting the next one */
return G_SOURCE_CONTINUE;
}
trig->trigger = FALSE;
if (callback) {
int callback_rc = callback(trig->user_data);
if (callback_rc < 0) {
crm_trace("Trigger handler %p not yet complete", trig);
trig->running = TRUE;
} else if (callback_rc == 0) {
rc = G_SOURCE_REMOVE;
}
}
return rc;
}
static void
crm_trigger_finalize(GSource * source)
{
crm_trace("Trigger %p destroyed", source);
}
static GSourceFuncs crm_trigger_funcs = {
crm_trigger_prepare,
crm_trigger_check,
crm_trigger_dispatch,
crm_trigger_finalize,
};
static crm_trigger_t *
mainloop_setup_trigger(GSource * source, int priority, int (*dispatch) (gpointer user_data),
gpointer userdata)
{
crm_trigger_t *trigger = NULL;
trigger = (crm_trigger_t *) source;
trigger->id = 0;
trigger->trigger = FALSE;
trigger->user_data = userdata;
if (dispatch) {
g_source_set_callback(source, dispatch, trigger, NULL);
}
g_source_set_priority(source, priority);
g_source_set_can_recurse(source, FALSE);
trigger->id = g_source_attach(source, NULL);
return trigger;
}
void
mainloop_trigger_complete(crm_trigger_t * trig)
{
crm_trace("Trigger handler %p complete", trig);
trig->running = FALSE;
}
/*!
* \brief Create a trigger to be used as a mainloop source
*
* \param[in] priority Relative priority of source (lower number is higher priority)
* \param[in] dispatch Trigger dispatch function (should return 0 to remove the
* trigger from the mainloop, -1 if the trigger should be
* kept but the job is still running and not complete, and
* 1 if the trigger should be kept and the job is complete)
*
* \return Newly allocated mainloop source for trigger
*/
crm_trigger_t *
mainloop_add_trigger(int priority, int (*dispatch) (gpointer user_data), gpointer userdata)
{
GSource *source = NULL;
CRM_ASSERT(sizeof(crm_trigger_t) > sizeof(GSource));
source = g_source_new(&crm_trigger_funcs, sizeof(crm_trigger_t));
CRM_ASSERT(source != NULL);
return mainloop_setup_trigger(source, priority, dispatch, userdata);
}
void
mainloop_set_trigger(crm_trigger_t * source)
{
if(source) {
source->trigger = TRUE;
}
}
gboolean
mainloop_destroy_trigger(crm_trigger_t * source)
{
GSource *gs = NULL;
if(source == NULL) {
return TRUE;
}
gs = (GSource *)source;
g_source_destroy(gs); /* Remove from mainloop, ref_count-- */
g_source_unref(gs); /* The caller no longer carries a reference to source
*
* At this point the source should be free'd,
* unless we're currently processing said
* source, in which case mainloop holds an
* additional reference and it will be free'd
* once our processing completes
*/
return TRUE;
}
// Define a custom glib source for signal handling
// Data structure for custom glib source
typedef struct signal_s {
crm_trigger_t trigger; // trigger that invoked source (must be first)
void (*handler) (int sig); // signal handler
int signal; // signal that was received
} crm_signal_t;
// Table to associate signal handlers with signal numbers
static crm_signal_t *crm_signals[NSIG];
/*!
* \internal
* \brief Dispatch an event from custom glib source for signals
*
* Given an signal event, clear the event trigger and call any registered
* signal handler.
*
* \param[in] source glib source that triggered this dispatch
* \param[in] callback (ignored)
* \param[in] userdata (ignored)
*/
static gboolean
crm_signal_dispatch(GSource * source, GSourceFunc callback, gpointer userdata)
{
crm_signal_t *sig = (crm_signal_t *) source;
if(sig->signal != SIGCHLD) {
crm_notice("Caught '%s' signal "CRM_XS" %d (%s handler)",
strsignal(sig->signal), sig->signal,
(sig->handler? "invoking" : "no"));
}
sig->trigger.trigger = FALSE;
if (sig->handler) {
sig->handler(sig->signal);
}
return TRUE;
}
/*!
* \internal
* \brief Handle a signal by setting a trigger for signal source
*
* \param[in] sig Signal number that was received
*
* \note This is the true signal handler for the mainloop signal source, and
* must be async-safe.
*/
static void
mainloop_signal_handler(int sig)
{
if (sig > 0 && sig < NSIG && crm_signals[sig] != NULL) {
mainloop_set_trigger((crm_trigger_t *) crm_signals[sig]);
}
}
// Functions implementing our custom glib source for signal handling
static GSourceFuncs crm_signal_funcs = {
crm_trigger_prepare,
crm_trigger_check,
crm_signal_dispatch,
crm_trigger_finalize,
};
/*!
* \internal
* \brief Set a true signal handler
*
* signal()-like interface to sigaction()
*
* \param[in] sig Signal number to register handler for
* \param[in] dispatch Signal handler
*
* \return The previous value of the signal handler, or SIG_ERR on error
* \note The dispatch function must be async-safe.
*/
sighandler_t
crm_signal_handler(int sig, sighandler_t dispatch)
{
sigset_t mask;
struct sigaction sa;
struct sigaction old;
if (sigemptyset(&mask) < 0) {
crm_err("Could not set handler for signal %d: %s",
sig, pcmk_strerror(errno));
return SIG_ERR;
}
memset(&sa, 0, sizeof(struct sigaction));
sa.sa_handler = dispatch;
sa.sa_flags = SA_RESTART;
sa.sa_mask = mask;
if (sigaction(sig, &sa, &old) < 0) {
crm_err("Could not set handler for signal %d: %s",
sig, pcmk_strerror(errno));
return SIG_ERR;
}
return old.sa_handler;
}
static void
mainloop_destroy_signal_entry(int sig)
{
crm_signal_t *tmp = crm_signals[sig];
crm_signals[sig] = NULL;
crm_trace("Destroying signal %d", sig);
mainloop_destroy_trigger((crm_trigger_t *) tmp);
}
/*!
* \internal
* \brief Add a signal handler to a mainloop
*
* \param[in] sig Signal number to handle
* \param[in] dispatch Signal handler function
*
* \note The true signal handler merely sets a mainloop trigger to call this
* dispatch function via the mainloop. Therefore, the dispatch function
* does not need to be async-safe.
*/
gboolean
mainloop_add_signal(int sig, void (*dispatch) (int sig))
{
GSource *source = NULL;
int priority = G_PRIORITY_HIGH - 1;
if (sig == SIGTERM) {
/* TERM is higher priority than other signals,
* signals are higher priority than other ipc.
* Yes, minus: smaller is "higher"
*/
priority--;
}
if (sig >= NSIG || sig < 0) {
crm_err("Signal %d is out of range", sig);
return FALSE;
} else if (crm_signals[sig] != NULL && crm_signals[sig]->handler == dispatch) {
crm_trace("Signal handler for %d is already installed", sig);
return TRUE;
} else if (crm_signals[sig] != NULL) {
crm_err("Different signal handler for %d is already installed", sig);
return FALSE;
}
CRM_ASSERT(sizeof(crm_signal_t) > sizeof(GSource));
source = g_source_new(&crm_signal_funcs, sizeof(crm_signal_t));
crm_signals[sig] = (crm_signal_t *) mainloop_setup_trigger(source, priority, NULL, NULL);
CRM_ASSERT(crm_signals[sig] != NULL);
crm_signals[sig]->handler = dispatch;
crm_signals[sig]->signal = sig;
if (crm_signal_handler(sig, mainloop_signal_handler) == SIG_ERR) {
mainloop_destroy_signal_entry(sig);
return FALSE;
}
#if 0
/* If we want signals to interrupt mainloop's poll(), instead of waiting for
* the timeout, then we should call siginterrupt() below
*
* For now, just enforce a low timeout
*/
if (siginterrupt(sig, 1) < 0) {
crm_perror(LOG_INFO, "Could not enable system call interruptions for signal %d", sig);
}
#endif
return TRUE;
}
gboolean
mainloop_destroy_signal(int sig)
{
if (sig >= NSIG || sig < 0) {
crm_err("Signal %d is out of range", sig);
return FALSE;
} else if (crm_signal_handler(sig, NULL) == SIG_ERR) {
crm_perror(LOG_ERR, "Could not uninstall signal handler for signal %d", sig);
return FALSE;
} else if (crm_signals[sig] == NULL) {
return TRUE;
}
mainloop_destroy_signal_entry(sig);
return TRUE;
}
static qb_array_t *gio_map = NULL;
void
mainloop_cleanup(void)
{
if (gio_map) {
qb_array_free(gio_map);
}
for (int sig = 0; sig < NSIG; ++sig) {
mainloop_destroy_signal_entry(sig);
}
}
/*
* libqb...
*/
struct gio_to_qb_poll {
int32_t is_used;
guint source;
int32_t events;
void *data;
qb_ipcs_dispatch_fn_t fn;
enum qb_loop_priority p;
};
static gboolean
gio_read_socket(GIOChannel * gio, GIOCondition condition, gpointer data)
{
struct gio_to_qb_poll *adaptor = (struct gio_to_qb_poll *)data;
gint fd = g_io_channel_unix_get_fd(gio);
crm_trace("%p.%d %d", data, fd, condition);
/* if this assert get's hit, then there is a race condition between
* when we destroy a fd and when mainloop actually gives it up */
CRM_ASSERT(adaptor->is_used > 0);
return (adaptor->fn(fd, condition, adaptor->data) == 0);
}
static void
gio_poll_destroy(gpointer data)
{
struct gio_to_qb_poll *adaptor = (struct gio_to_qb_poll *)data;
adaptor->is_used--;
CRM_ASSERT(adaptor->is_used >= 0);
if (adaptor->is_used == 0) {
crm_trace("Marking adaptor %p unused", adaptor);
adaptor->source = 0;
}
}
/*!
* \internal
* \brief Convert libqb's poll priority into GLib's one
*
* \param[in] prio libqb's poll priority (#QB_LOOP_MED assumed as fallback)
*
* \return best matching GLib's priority
*/
static gint
conv_prio_libqb2glib(enum qb_loop_priority prio)
{
gint ret = G_PRIORITY_DEFAULT;
switch (prio) {
case QB_LOOP_LOW:
ret = G_PRIORITY_LOW;
break;
case QB_LOOP_HIGH:
ret = G_PRIORITY_HIGH;
break;
default:
crm_trace("Invalid libqb's loop priority %d, assuming QB_LOOP_MED",
prio);
/* fall-through */
case QB_LOOP_MED:
break;
}
return ret;
}
/*!
* \internal
* \brief Convert libqb's poll priority to rate limiting spec
*
* \param[in] prio libqb's poll priority (#QB_LOOP_MED assumed as fallback)
*
* \return best matching rate limiting spec
*/
static enum qb_ipcs_rate_limit
conv_libqb_prio2ratelimit(enum qb_loop_priority prio)
{
/* this is an inversion of what libqb's qb_ipcs_request_rate_limit does */
enum qb_ipcs_rate_limit ret = QB_IPCS_RATE_NORMAL;
switch (prio) {
case QB_LOOP_LOW:
ret = QB_IPCS_RATE_SLOW;
break;
case QB_LOOP_HIGH:
ret = QB_IPCS_RATE_FAST;
break;
default:
crm_trace("Invalid libqb's loop priority %d, assuming QB_LOOP_MED",
prio);
/* fall-through */
case QB_LOOP_MED:
break;
}
return ret;
}
static int32_t
gio_poll_dispatch_update(enum qb_loop_priority p, int32_t fd, int32_t evts,
void *data, qb_ipcs_dispatch_fn_t fn, int32_t add)
{
struct gio_to_qb_poll *adaptor;
GIOChannel *channel;
int32_t res = 0;
res = qb_array_index(gio_map, fd, (void **)&adaptor);
if (res < 0) {
crm_err("Array lookup failed for fd=%d: %d", fd, res);
return res;
}
crm_trace("Adding fd=%d to mainloop as adaptor %p", fd, adaptor);
if (add && adaptor->source) {
crm_err("Adaptor for descriptor %d is still in-use", fd);
return -EEXIST;
}
if (!add && !adaptor->is_used) {
crm_err("Adaptor for descriptor %d is not in-use", fd);
return -ENOENT;
}
/* channel is created with ref_count = 1 */
channel = g_io_channel_unix_new(fd);
if (!channel) {
crm_err("No memory left to add fd=%d", fd);
return -ENOMEM;
}
if (adaptor->source) {
g_source_remove(adaptor->source);
adaptor->source = 0;
}
/* Because unlike the poll() API, glib doesn't tell us about HUPs by default */
evts |= (G_IO_HUP | G_IO_NVAL | G_IO_ERR);
adaptor->fn = fn;
adaptor->events = evts;
adaptor->data = data;
adaptor->p = p;
adaptor->is_used++;
adaptor->source =
g_io_add_watch_full(channel, conv_prio_libqb2glib(p), evts,
gio_read_socket, adaptor, gio_poll_destroy);
/* Now that mainloop now holds a reference to channel,
* thanks to g_io_add_watch_full(), drop ours from g_io_channel_unix_new().
*
* This means that channel will be free'd by:
* g_main_context_dispatch()
* -> g_source_destroy_internal()
* -> g_source_callback_unref()
* shortly after gio_poll_destroy() completes
*/
g_io_channel_unref(channel);
crm_trace("Added to mainloop with gsource id=%d", adaptor->source);
if (adaptor->source > 0) {
return 0;
}
return -EINVAL;
}
static int32_t
gio_poll_dispatch_add(enum qb_loop_priority p, int32_t fd, int32_t evts,
void *data, qb_ipcs_dispatch_fn_t fn)
{
return gio_poll_dispatch_update(p, fd, evts, data, fn, QB_TRUE);
}
static int32_t
gio_poll_dispatch_mod(enum qb_loop_priority p, int32_t fd, int32_t evts,
void *data, qb_ipcs_dispatch_fn_t fn)
{
return gio_poll_dispatch_update(p, fd, evts, data, fn, QB_FALSE);
}
static int32_t
gio_poll_dispatch_del(int32_t fd)
{
struct gio_to_qb_poll *adaptor;
crm_trace("Looking for fd=%d", fd);
if (qb_array_index(gio_map, fd, (void **)&adaptor) == 0) {
if (adaptor->source) {
g_source_remove(adaptor->source);
adaptor->source = 0;
}
}
return 0;
}
struct qb_ipcs_poll_handlers gio_poll_funcs = {
.job_add = NULL,
.dispatch_add = gio_poll_dispatch_add,
.dispatch_mod = gio_poll_dispatch_mod,
.dispatch_del = gio_poll_dispatch_del,
};
static enum qb_ipc_type
pick_ipc_type(enum qb_ipc_type requested)
{
const char *env = getenv("PCMK_ipc_type");
if (env && strcmp("shared-mem", env) == 0) {
return QB_IPC_SHM;
} else if (env && strcmp("socket", env) == 0) {
return QB_IPC_SOCKET;
} else if (env && strcmp("posix", env) == 0) {
return QB_IPC_POSIX_MQ;
} else if (env && strcmp("sysv", env) == 0) {
return QB_IPC_SYSV_MQ;
} else if (requested == QB_IPC_NATIVE) {
/* We prefer shared memory because the server never blocks on
* send. If part of a message fits into the socket, libqb
* needs to block until the remainder can be sent also.
* Otherwise the client will wait forever for the remaining
* bytes.
*/
return QB_IPC_SHM;
}
return requested;
}
qb_ipcs_service_t *
mainloop_add_ipc_server(const char *name, enum qb_ipc_type type,
struct qb_ipcs_service_handlers *callbacks)
{
return mainloop_add_ipc_server_with_prio(name, type, callbacks, QB_LOOP_MED);
}
qb_ipcs_service_t *
mainloop_add_ipc_server_with_prio(const char *name, enum qb_ipc_type type,
struct qb_ipcs_service_handlers *callbacks,
enum qb_loop_priority prio)
{
int rc = 0;
qb_ipcs_service_t *server = NULL;
if (gio_map == NULL) {
gio_map = qb_array_create_2(64, sizeof(struct gio_to_qb_poll), 1);
}
server = qb_ipcs_create(name, 0, pick_ipc_type(type), callbacks);
if (server == NULL) {
crm_err("Could not create %s IPC server: %s (%d)", name, pcmk_strerror(rc), rc);
return NULL;
}
if (prio != QB_LOOP_MED) {
qb_ipcs_request_rate_limit(server, conv_libqb_prio2ratelimit(prio));
}
/* All clients should use at least ipc_buffer_max as their buffer size */
qb_ipcs_enforce_buffer_size(server, crm_ipc_default_buffer_size());
qb_ipcs_poll_handlers_set(server, &gio_poll_funcs);
rc = qb_ipcs_run(server);
if (rc < 0) {
crm_err("Could not start %s IPC server: %s (%d)", name, pcmk_strerror(rc), rc);
return NULL;
}
return server;
}
void
mainloop_del_ipc_server(qb_ipcs_service_t * server)
{
if (server) {
qb_ipcs_destroy(server);
}
}
struct mainloop_io_s {
char *name;
void *userdata;
int fd;
guint source;
crm_ipc_t *ipc;
GIOChannel *channel;
int (*dispatch_fn_ipc) (const char *buffer, ssize_t length, gpointer userdata);
int (*dispatch_fn_io) (gpointer userdata);
void (*destroy_fn) (gpointer userdata);
};
/*!
* \internal
* \brief I/O watch callback function (GIOFunc)
*
* \param[in] gio I/O channel being watched
* \param[in] condition I/O condition satisfied
* \param[in] data User data passed when source was created
*
* \return G_SOURCE_REMOVE to remove source, G_SOURCE_CONTINUE to keep it
*/
static gboolean
mainloop_gio_callback(GIOChannel * gio, GIOCondition condition, gpointer data)
{
gboolean rc = G_SOURCE_CONTINUE;
mainloop_io_t *client = data;
CRM_ASSERT(client->fd == g_io_channel_unix_get_fd(gio));
if (condition & G_IO_IN) {
if (client->ipc) {
long read_rc = 0L;
int max = 10;
do {
read_rc = crm_ipc_read(client->ipc);
if (read_rc <= 0) {
crm_trace("Could not read IPC message from %s: %s (%ld)",
client->name, pcmk_strerror(read_rc), read_rc);
} else if (client->dispatch_fn_ipc) {
const char *buffer = crm_ipc_buffer(client->ipc);
crm_trace("New %ld-byte IPC message from %s "
"after I/O condition %d",
read_rc, client->name, (int) condition);
if (client->dispatch_fn_ipc(buffer, read_rc, client->userdata) < 0) {
crm_trace("Connection to %s no longer required", client->name);
rc = G_SOURCE_REMOVE;
}
}
} while ((rc == G_SOURCE_CONTINUE) && (read_rc > 0) && --max > 0);
} else {
crm_trace("New I/O event for %s after I/O condition %d",
client->name, (int) condition);
if (client->dispatch_fn_io) {
if (client->dispatch_fn_io(client->userdata) < 0) {
crm_trace("Connection to %s no longer required", client->name);
rc = G_SOURCE_REMOVE;
}
}
}
}
if (client->ipc && crm_ipc_connected(client->ipc) == FALSE) {
crm_err("Connection to %s closed " CRM_XS "client=%p condition=%d",
client->name, client, condition);
rc = G_SOURCE_REMOVE;
} else if (condition & (G_IO_HUP | G_IO_NVAL | G_IO_ERR)) {
crm_trace("The connection %s[%p] has been closed (I/O condition=%d)",
client->name, client, condition);
rc = G_SOURCE_REMOVE;
} else if ((condition & G_IO_IN) == 0) {
/*
#define GLIB_SYSDEF_POLLIN =1
#define GLIB_SYSDEF_POLLPRI =2
#define GLIB_SYSDEF_POLLOUT =4
#define GLIB_SYSDEF_POLLERR =8
#define GLIB_SYSDEF_POLLHUP =16
#define GLIB_SYSDEF_POLLNVAL =32
typedef enum
{
G_IO_IN GLIB_SYSDEF_POLLIN,
G_IO_OUT GLIB_SYSDEF_POLLOUT,
G_IO_PRI GLIB_SYSDEF_POLLPRI,
G_IO_ERR GLIB_SYSDEF_POLLERR,
G_IO_HUP GLIB_SYSDEF_POLLHUP,
G_IO_NVAL GLIB_SYSDEF_POLLNVAL
} GIOCondition;
A bitwise combination representing a condition to watch for on an event source.
G_IO_IN There is data to read.
G_IO_OUT Data can be written (without blocking).
G_IO_PRI There is urgent data to read.
G_IO_ERR Error condition.
G_IO_HUP Hung up (the connection has been broken, usually for pipes and sockets).
G_IO_NVAL Invalid request. The file descriptor is not open.
*/
crm_err("Strange condition: %d", condition);
}
/* G_SOURCE_REMOVE results in mainloop_gio_destroy() being called
* just before the source is removed from mainloop
*/
return rc;
}
static void
mainloop_gio_destroy(gpointer c)
{
mainloop_io_t *client = c;
char *c_name = strdup(client->name);
/* client->source is valid but about to be destroyed (ref_count == 0) in gmain.c
* client->channel will still have ref_count > 0... should be == 1
*/
crm_trace("Destroying client %s[%p]", c_name, c);
if (client->ipc) {
crm_ipc_close(client->ipc);
}
if (client->destroy_fn) {
void (*destroy_fn) (gpointer userdata) = client->destroy_fn;
client->destroy_fn = NULL;
destroy_fn(client->userdata);
}
if (client->ipc) {
crm_ipc_t *ipc = client->ipc;
client->ipc = NULL;
crm_ipc_destroy(ipc);
}
crm_trace("Destroyed client %s[%p]", c_name, c);
free(client->name); client->name = NULL;
free(client);
free(c_name);
}
/*!
* \brief Connect to IPC and add it as a main loop source
*
* \param[in] ipc IPC connection to add
* \param[in] priority Event source priority to use for connection
* \param[in] userdata Data to register with callbacks
* \param[in] callbacks Dispatch and destroy callbacks for connection
* \param[out] source Newly allocated event source
*
* \return Standard Pacemaker return code
*
* \note On failure, the caller is still responsible for ipc. On success, the
* caller should call mainloop_del_ipc_client() when source is no longer
* needed, which will lead to the disconnection of the IPC later in the
* main loop if it is connected. However the IPC disconnects,
* mainloop_gio_destroy() will free ipc and source after calling the
* destroy callback.
*/
int
pcmk__add_mainloop_ipc(crm_ipc_t *ipc, int priority, void *userdata,
struct ipc_client_callbacks *callbacks,
mainloop_io_t **source)
{
CRM_CHECK((ipc != NULL) && (callbacks != NULL), return EINVAL);
if (!crm_ipc_connect(ipc)) {
int rc = errno;
crm_debug("Connection to %s failed: %d", crm_ipc_name(ipc), errno);
return rc;
}
*source = mainloop_add_fd(crm_ipc_name(ipc), priority, crm_ipc_get_fd(ipc),
userdata, NULL);
if (*source == NULL) {
int rc = errno;
crm_ipc_close(ipc);
return rc;
}
(*source)->ipc = ipc;
(*source)->destroy_fn = callbacks->destroy;
(*source)->dispatch_fn_ipc = callbacks->dispatch;
return pcmk_rc_ok;
}
/*!
* \brief Get period for mainloop timer
*
* \param[in] timer Timer
*
* \return Period in ms
*/
guint
pcmk__mainloop_timer_get_period(mainloop_timer_t *timer)
{
if (timer) {
return timer->period_ms;
}
return 0;
}
mainloop_io_t *
mainloop_add_ipc_client(const char *name, int priority, size_t max_size,
void *userdata, struct ipc_client_callbacks *callbacks)
{
crm_ipc_t *ipc = crm_ipc_new(name, max_size);
mainloop_io_t *source = NULL;
int rc = pcmk__add_mainloop_ipc(ipc, priority, userdata, callbacks,
&source);
if (rc != pcmk_rc_ok) {
if (crm_log_level == LOG_STDOUT) {
fprintf(stderr, "Connection to %s failed: %s",
name, pcmk_rc_str(rc));
}
crm_ipc_destroy(ipc);
if (rc > 0) {
errno = rc;
} else {
errno = ENOTCONN;
}
return NULL;
}
return source;
}
void
mainloop_del_ipc_client(mainloop_io_t * client)
{
mainloop_del_fd(client);
}
crm_ipc_t *
mainloop_get_ipc_client(mainloop_io_t * client)
{
if (client) {
return client->ipc;
}
return NULL;
}
mainloop_io_t *
mainloop_add_fd(const char *name, int priority, int fd, void *userdata,
struct mainloop_fd_callbacks * callbacks)
{
mainloop_io_t *client = NULL;
if (fd >= 0) {
client = calloc(1, sizeof(mainloop_io_t));
if (client == NULL) {
return NULL;
}
client->name = strdup(name);
client->userdata = userdata;
if (callbacks) {
client->destroy_fn = callbacks->destroy;
client->dispatch_fn_io = callbacks->dispatch;
}
client->fd = fd;
client->channel = g_io_channel_unix_new(fd);
client->source =
g_io_add_watch_full(client->channel, priority,
(G_IO_IN | G_IO_HUP | G_IO_NVAL | G_IO_ERR), mainloop_gio_callback,
client, mainloop_gio_destroy);
/* Now that mainloop now holds a reference to channel,
* thanks to g_io_add_watch_full(), drop ours from g_io_channel_unix_new().
*
* This means that channel will be free'd by:
* g_main_context_dispatch() or g_source_remove()
* -> g_source_destroy_internal()
* -> g_source_callback_unref()
* shortly after mainloop_gio_destroy() completes
*/
g_io_channel_unref(client->channel);
crm_trace("Added connection %d for %s[%p].%d", client->source, client->name, client, fd);
} else {
errno = EINVAL;
}
return client;
}
void
mainloop_del_fd(mainloop_io_t * client)
{
if (client != NULL) {
crm_trace("Removing client %s[%p]", client->name, client);
if (client->source) {
/* Results in mainloop_gio_destroy() being called just
* before the source is removed from mainloop
*/
g_source_remove(client->source);
}
}
}
static GList *child_list = NULL;
pid_t
mainloop_child_pid(mainloop_child_t * child)
{
return child->pid;
}
const char *
mainloop_child_name(mainloop_child_t * child)
{
return child->desc;
}
int
mainloop_child_timeout(mainloop_child_t * child)
{
return child->timeout;
}
void *
mainloop_child_userdata(mainloop_child_t * child)
{
return child->privatedata;
}
void
mainloop_clear_child_userdata(mainloop_child_t * child)
{
child->privatedata = NULL;
}
/* good function name */
static void
child_free(mainloop_child_t *child)
{
if (child->timerid != 0) {
crm_trace("Removing timer %d", child->timerid);
g_source_remove(child->timerid);
child->timerid = 0;
}
free(child->desc);
free(child);
}
/* terrible function name */
static int
child_kill_helper(mainloop_child_t *child)
{
int rc;
if (child->flags & mainloop_leave_pid_group) {
crm_debug("Kill pid %d only. leave group intact.", child->pid);
rc = kill(child->pid, SIGKILL);
} else {
crm_debug("Kill pid %d's group", child->pid);
rc = kill(-child->pid, SIGKILL);
}
if (rc < 0) {
if (errno != ESRCH) {
crm_perror(LOG_ERR, "kill(%d, KILL) failed", child->pid);
}
return -errno;
}
return 0;
}
static gboolean
child_timeout_callback(gpointer p)
{
mainloop_child_t *child = p;
int rc = 0;
child->timerid = 0;
if (child->timeout) {
- crm_crit("%s process (PID %d) will not die!", child->desc, (int)child->pid);
+ crm_warn("%s process (PID %d) will not die!", child->desc, (int)child->pid);
return FALSE;
}
rc = child_kill_helper(child);
if (rc == -ESRCH) {
/* Nothing left to do. pid doesn't exist */
return FALSE;
}
child->timeout = TRUE;
- crm_warn("%s process (PID %d) timed out", child->desc, (int)child->pid);
+ crm_debug("%s process (PID %d) timed out", child->desc, (int)child->pid);
child->timerid = g_timeout_add(5000, child_timeout_callback, child);
return FALSE;
}
static bool
child_waitpid(mainloop_child_t *child, int flags)
{
int rc = 0;
int core = 0;
int signo = 0;
int status = 0;
int exitcode = 0;
bool callback_needed = true;
rc = waitpid(child->pid, &status, flags);
if (rc == 0) { // WNOHANG in flags, and child status is not available
crm_trace("Child process %d (%s) still active",
child->pid, child->desc);
callback_needed = false;
} else if (rc != child->pid) {
/* According to POSIX, possible conditions:
* - child->pid was non-positive (process group or any child),
* and rc is specific child
* - errno ECHILD (pid does not exist or is not child)
* - errno EINVAL (invalid flags)
* - errno EINTR (caller interrupted by signal)
*
* @TODO Handle these cases more specifically.
*/
signo = SIGCHLD;
exitcode = 1;
crm_notice("Wait for child process %d (%s) interrupted: %s",
child->pid, child->desc, pcmk_strerror(errno));
} else if (WIFEXITED(status)) {
exitcode = WEXITSTATUS(status);
crm_trace("Child process %d (%s) exited with status %d",
child->pid, child->desc, exitcode);
} else if (WIFSIGNALED(status)) {
signo = WTERMSIG(status);
crm_trace("Child process %d (%s) exited with signal %d (%s)",
child->pid, child->desc, signo, strsignal(signo));
#ifdef WCOREDUMP // AIX, SunOS, maybe others
} else if (WCOREDUMP(status)) {
core = 1;
crm_err("Child process %d (%s) dumped core",
child->pid, child->desc);
#endif
} else { // flags must contain WUNTRACED and/or WCONTINUED to reach this
crm_trace("Child process %d (%s) stopped or continued",
child->pid, child->desc);
callback_needed = false;
}
if (callback_needed && child->callback) {
child->callback(child, child->pid, core, signo, exitcode);
}
return callback_needed;
}
static void
child_death_dispatch(int signal)
{
for (GList *iter = child_list; iter; ) {
GList *saved = iter;
mainloop_child_t *child = iter->data;
iter = iter->next;
if (child_waitpid(child, WNOHANG)) {
crm_trace("Removing completed process %d from child list",
child->pid);
child_list = g_list_remove_link(child_list, saved);
g_list_free(saved);
child_free(child);
}
}
}
static gboolean
child_signal_init(gpointer p)
{
crm_trace("Installed SIGCHLD handler");
/* Do NOT use g_child_watch_add() and friends, they rely on pthreads */
mainloop_add_signal(SIGCHLD, child_death_dispatch);
/* In case they terminated before the signal handler was installed */
child_death_dispatch(SIGCHLD);
return FALSE;
}
gboolean
mainloop_child_kill(pid_t pid)
{
GList *iter;
mainloop_child_t *child = NULL;
mainloop_child_t *match = NULL;
/* It is impossible to block SIGKILL, this allows us to
* call waitpid without WNOHANG flag.*/
int waitflags = 0, rc = 0;
for (iter = child_list; iter != NULL && match == NULL; iter = iter->next) {
child = iter->data;
if (pid == child->pid) {
match = child;
}
}
if (match == NULL) {
return FALSE;
}
rc = child_kill_helper(match);
if(rc == -ESRCH) {
/* It's gone, but hasn't shown up in waitpid() yet. Wait until we get
* SIGCHLD and let handler clean it up as normal (so we get the correct
* return code/status). The blocking alternative would be to call
* child_waitpid(match, 0).
*/
crm_trace("Waiting for signal that child process %d completed",
match->pid);
return TRUE;
} else if(rc != 0) {
/* If KILL for some other reason set the WNOHANG flag since we
* can't be certain what happened.
*/
waitflags = WNOHANG;
}
if (!child_waitpid(match, waitflags)) {
/* not much we can do if this occurs */
return FALSE;
}
child_list = g_list_remove(child_list, match);
child_free(match);
return TRUE;
}
/* Create/Log a new tracked process
* To track a process group, use -pid
*
* @TODO Using a non-positive pid (i.e. any child, or process group) would
* likely not be useful since we will free the child after the first
* completed process.
*/
void
mainloop_child_add_with_flags(pid_t pid, int timeout, const char *desc, void *privatedata, enum mainloop_child_flags flags,
void (*callback) (mainloop_child_t * p, pid_t pid, int core, int signo, int exitcode))
{
static bool need_init = TRUE;
mainloop_child_t *child = g_new(mainloop_child_t, 1);
child->pid = pid;
child->timerid = 0;
child->timeout = FALSE;
child->privatedata = privatedata;
child->callback = callback;
child->flags = flags;
if(desc) {
child->desc = strdup(desc);
}
if (timeout) {
child->timerid = g_timeout_add(timeout, child_timeout_callback, child);
}
child_list = g_list_append(child_list, child);
if(need_init) {
need_init = FALSE;
/* SIGCHLD processing has to be invoked from mainloop.
* We do not want it to be possible to both add a child pid
* to mainloop, and have the pid's exit callback invoked within
* the same callstack. */
g_timeout_add(1, child_signal_init, NULL);
}
}
void
mainloop_child_add(pid_t pid, int timeout, const char *desc, void *privatedata,
void (*callback) (mainloop_child_t * p, pid_t pid, int core, int signo, int exitcode))
{
mainloop_child_add_with_flags(pid, timeout, desc, privatedata, 0, callback);
}
static gboolean
mainloop_timer_cb(gpointer user_data)
{
int id = 0;
bool repeat = FALSE;
struct mainloop_timer_s *t = user_data;
CRM_ASSERT(t != NULL);
id = t->id;
t->id = 0; /* Ensure it's unset during callbacks so that
* mainloop_timer_running() works as expected
*/
if(t->cb) {
crm_trace("Invoking callbacks for timer %s", t->name);
repeat = t->repeat;
if(t->cb(t->userdata) == FALSE) {
crm_trace("Timer %s complete", t->name);
repeat = FALSE;
}
}
if(repeat) {
/* Restore if repeating */
t->id = id;
}
return repeat;
}
bool
mainloop_timer_running(mainloop_timer_t *t)
{
if(t && t->id != 0) {
return TRUE;
}
return FALSE;
}
void
mainloop_timer_start(mainloop_timer_t *t)
{
mainloop_timer_stop(t);
if(t && t->period_ms > 0) {
crm_trace("Starting timer %s", t->name);
t->id = g_timeout_add(t->period_ms, mainloop_timer_cb, t);
}
}
void
mainloop_timer_stop(mainloop_timer_t *t)
{
if(t && t->id != 0) {
crm_trace("Stopping timer %s", t->name);
g_source_remove(t->id);
t->id = 0;
}
}
guint
mainloop_timer_set_period(mainloop_timer_t *t, guint period_ms)
{
guint last = 0;
if(t) {
last = t->period_ms;
t->period_ms = period_ms;
}
if(t && t->id != 0 && last != t->period_ms) {
mainloop_timer_start(t);
}
return last;
}
mainloop_timer_t *
mainloop_timer_add(const char *name, guint period_ms, bool repeat, GSourceFunc cb, void *userdata)
{
mainloop_timer_t *t = calloc(1, sizeof(mainloop_timer_t));
if(t) {
if(name) {
t->name = crm_strdup_printf("%s-%u-%d", name, period_ms, repeat);
} else {
t->name = crm_strdup_printf("%p-%u-%d", t, period_ms, repeat);
}
t->id = 0;
t->period_ms = period_ms;
t->repeat = repeat;
t->cb = cb;
t->userdata = userdata;
crm_trace("Created timer %s with %p %p", t->name, userdata, t->userdata);
}
return t;
}
void
mainloop_timer_del(mainloop_timer_t *t)
{
if(t) {
crm_trace("Destroying timer %s", t->name);
mainloop_timer_stop(t);
free(t->name);
free(t);
}
}
/*
* Helpers to make sure certain events aren't lost at shutdown
*/
static gboolean
drain_timeout_cb(gpointer user_data)
{
bool *timeout_popped = (bool*) user_data;
*timeout_popped = TRUE;
return FALSE;
}
/*!
* \brief Drain some remaining main loop events then quit it
*
* \param[in] mloop Main loop to drain and quit
* \param[in] n Drain up to this many pending events
*/
void
pcmk_quit_main_loop(GMainLoop *mloop, unsigned int n)
{
if ((mloop != NULL) && g_main_loop_is_running(mloop)) {
GMainContext *ctx = g_main_loop_get_context(mloop);
/* Drain up to n events in case some memory clean-up is pending
* (helpful to reduce noise in valgrind output).
*/
for (int i = 0; (i < n) && g_main_context_pending(ctx); ++i) {
g_main_context_dispatch(ctx);
}
g_main_loop_quit(mloop);
}
}
/*!
* \brief Process main loop events while a certain condition is met
*
* \param[in] mloop Main loop to process
* \param[in] timer_ms Don't process longer than this amount of time
* \param[in] check Function that returns TRUE if events should be processed
*
* \note This function is intended to be called at shutdown if certain important
* events should not be missed. The caller would likely quit the main loop
* or exit after calling this function. The check() function will be
* passed the remaining timeout in milliseconds.
*/
void
pcmk_drain_main_loop(GMainLoop *mloop, guint timer_ms, bool (*check)(guint))
{
bool timeout_popped = FALSE;
guint timer = 0;
GMainContext *ctx = NULL;
CRM_CHECK(mloop && check, return);
ctx = g_main_loop_get_context(mloop);
if (ctx) {
time_t start_time = time(NULL);
timer = g_timeout_add(timer_ms, drain_timeout_cb, &timeout_popped);
while (!timeout_popped
&& check(timer_ms - (time(NULL) - start_time) * 1000)) {
g_main_context_iteration(ctx, TRUE);
}
}
if (!timeout_popped && (timer > 0)) {
g_source_remove(timer);
}
}
// Deprecated functions kept only for backward API compatibility
// LCOV_EXCL_START
#include <crm/common/mainloop_compat.h>
gboolean
crm_signal(int sig, void (*dispatch) (int sig))
{
return crm_signal_handler(sig, dispatch) != SIG_ERR;
}
// LCOV_EXCL_STOP
// End deprecated API
diff --git a/lib/services/services_linux.c b/lib/services/services_linux.c
index d02aaca84d..75860a13a8 100644
--- a/lib/services/services_linux.c
+++ b/lib/services/services_linux.c
@@ -1,1341 +1,1341 @@
/*
* Copyright 2010-2021 the Pacemaker project contributors
*
* The version control history for this file may have further details.
*
* This source code is licensed under the GNU Lesser General Public License
* version 2.1 or later (LGPLv2.1+) WITHOUT ANY WARRANTY.
*/
#include <crm_internal.h>
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>
#include <dirent.h>
#include <grp.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "crm/crm.h"
#include "crm/common/mainloop.h"
#include "crm/services.h"
#include "crm/services_internal.h"
#include "services_private.h"
static void close_pipe(int fildes[]);
/* We have two alternative ways of handling SIGCHLD when synchronously waiting
* for spawned processes to complete. Both rely on polling a file descriptor to
* discover SIGCHLD events.
*
* If sys/signalfd.h is available (e.g. on Linux), we call signalfd() to
* generate the file descriptor. Otherwise, we use the "self-pipe trick"
* (opening a pipe and writing a byte to it when SIGCHLD is received).
*/
#ifdef HAVE_SYS_SIGNALFD_H
// signalfd() implementation
#include <sys/signalfd.h>
// Everything needed to manage SIGCHLD handling
struct sigchld_data_s {
sigset_t mask; // Signals to block now (including SIGCHLD)
sigset_t old_mask; // Previous set of blocked signals
};
// Initialize SIGCHLD data and prepare for use
static bool
sigchld_setup(struct sigchld_data_s *data)
{
sigemptyset(&(data->mask));
sigaddset(&(data->mask), SIGCHLD);
sigemptyset(&(data->old_mask));
// Block SIGCHLD (saving previous set of blocked signals to restore later)
if (sigprocmask(SIG_BLOCK, &(data->mask), &(data->old_mask)) < 0) {
crm_err("Wait for child process completion failed: %s "
CRM_XS " source=sigprocmask", pcmk_strerror(errno));
return false;
}
return true;
}
// Get a file descriptor suitable for polling for SIGCHLD events
static int
sigchld_open(struct sigchld_data_s *data)
{
int fd;
CRM_CHECK(data != NULL, return -1);
fd = signalfd(-1, &(data->mask), SFD_NONBLOCK);
if (fd < 0) {
crm_err("Wait for child process completion failed: %s "
CRM_XS " source=signalfd", pcmk_strerror(errno));
}
return fd;
}
// Close a file descriptor returned by sigchld_open()
static void
sigchld_close(int fd)
{
if (fd > 0) {
close(fd);
}
}
// Return true if SIGCHLD was received from polled fd
static bool
sigchld_received(int fd)
{
struct signalfd_siginfo fdsi;
ssize_t s;
if (fd < 0) {
return false;
}
s = read(fd, &fdsi, sizeof(struct signalfd_siginfo));
if (s != sizeof(struct signalfd_siginfo)) {
crm_err("Wait for child process completion failed: %s "
CRM_XS " source=read", pcmk_strerror(errno));
} else if (fdsi.ssi_signo == SIGCHLD) {
return true;
}
return false;
}
// Do anything needed after done waiting for SIGCHLD
static void
sigchld_cleanup(struct sigchld_data_s *data)
{
// Restore the original set of blocked signals
if ((sigismember(&(data->old_mask), SIGCHLD) == 0)
&& (sigprocmask(SIG_UNBLOCK, &(data->mask), NULL) < 0)) {
crm_warn("Could not clean up after child process completion: %s",
pcmk_strerror(errno));
}
}
#else // HAVE_SYS_SIGNALFD_H not defined
// Self-pipe implementation (see above for function descriptions)
struct sigchld_data_s {
int pipe_fd[2]; // Pipe file descriptors
struct sigaction sa; // Signal handling info (with SIGCHLD)
struct sigaction old_sa; // Previous signal handling info
};
// We need a global to use in the signal handler
volatile struct sigchld_data_s *last_sigchld_data = NULL;
static void
sigchld_handler()
{
// We received a SIGCHLD, so trigger pipe polling
if ((last_sigchld_data != NULL)
&& (last_sigchld_data->pipe_fd[1] >= 0)
&& (write(last_sigchld_data->pipe_fd[1], "", 1) == -1)) {
crm_err("Wait for child process completion failed: %s "
CRM_XS " source=write", pcmk_strerror(errno));
}
}
static bool
sigchld_setup(struct sigchld_data_s *data)
{
int rc;
data->pipe_fd[0] = data->pipe_fd[1] = -1;
if (pipe(data->pipe_fd) == -1) {
crm_err("Wait for child process completion failed: %s "
CRM_XS " source=pipe", pcmk_strerror(errno));
return false;
}
rc = pcmk__set_nonblocking(data->pipe_fd[0]);
if (rc != pcmk_rc_ok) {
crm_warn("Could not set pipe input non-blocking: %s " CRM_XS " rc=%d",
pcmk_rc_str(rc), rc);
}
rc = pcmk__set_nonblocking(data->pipe_fd[1]);
if (rc != pcmk_rc_ok) {
crm_warn("Could not set pipe output non-blocking: %s " CRM_XS " rc=%d",
pcmk_rc_str(rc), rc);
}
// Set SIGCHLD handler
data->sa.sa_handler = sigchld_handler;
data->sa.sa_flags = 0;
sigemptyset(&(data->sa.sa_mask));
if (sigaction(SIGCHLD, &(data->sa), &(data->old_sa)) < 0) {
crm_err("Wait for child process completion failed: %s "
CRM_XS " source=sigaction", pcmk_strerror(errno));
}
// Remember data for use in signal handler
last_sigchld_data = data;
return true;
}
static int
sigchld_open(struct sigchld_data_s *data)
{
CRM_CHECK(data != NULL, return -1);
return data->pipe_fd[0];
}
static void
sigchld_close(int fd)
{
// Pipe will be closed in sigchld_cleanup()
return;
}
static bool
sigchld_received(int fd)
{
char ch;
if (fd < 0) {
return false;
}
// Clear out the self-pipe
while (read(fd, &ch, 1) == 1) /*omit*/;
return true;
}
static void
sigchld_cleanup(struct sigchld_data_s *data)
{
// Restore the previous SIGCHLD handler
if (sigaction(SIGCHLD, &(data->old_sa), NULL) < 0) {
crm_warn("Could not clean up after child process completion: %s",
pcmk_strerror(errno));
}
close_pipe(data->pipe_fd);
}
#endif
/*!
* \internal
* \brief Close the two file descriptors of a pipe
*
* \param[in] fildes Array of file descriptors opened by pipe()
*/
static void
close_pipe(int fildes[])
{
if (fildes[0] >= 0) {
close(fildes[0]);
fildes[0] = -1;
}
if (fildes[1] >= 0) {
close(fildes[1]);
fildes[1] = -1;
}
}
static gboolean
svc_read_output(int fd, svc_action_t * op, bool is_stderr)
{
char *data = NULL;
int rc = 0, len = 0;
char buf[500];
static const size_t buf_read_len = sizeof(buf) - 1;
if (fd < 0) {
crm_trace("No fd for %s", op->id);
return FALSE;
}
if (is_stderr && op->stderr_data) {
len = strlen(op->stderr_data);
data = op->stderr_data;
crm_trace("Reading %s stderr into offset %d", op->id, len);
} else if (is_stderr == FALSE && op->stdout_data) {
len = strlen(op->stdout_data);
data = op->stdout_data;
crm_trace("Reading %s stdout into offset %d", op->id, len);
} else {
crm_trace("Reading %s %s into offset %d", op->id, is_stderr?"stderr":"stdout", len);
}
do {
rc = read(fd, buf, buf_read_len);
if (rc > 0) {
buf[rc] = 0;
crm_trace("Got %d chars: %.80s", rc, buf);
data = pcmk__realloc(data, len + rc + 1);
len += sprintf(data + len, "%s", buf);
} else if (errno != EINTR) {
/* error or EOF
* Cleanup happens in pipe_done()
*/
rc = FALSE;
break;
}
} while (rc == buf_read_len || rc < 0);
if (is_stderr) {
op->stderr_data = data;
} else {
op->stdout_data = data;
}
return rc;
}
static int
dispatch_stdout(gpointer userdata)
{
svc_action_t *op = (svc_action_t *) userdata;
return svc_read_output(op->opaque->stdout_fd, op, FALSE);
}
static int
dispatch_stderr(gpointer userdata)
{
svc_action_t *op = (svc_action_t *) userdata;
return svc_read_output(op->opaque->stderr_fd, op, TRUE);
}
static void
pipe_out_done(gpointer user_data)
{
svc_action_t *op = (svc_action_t *) user_data;
crm_trace("%p", op);
op->opaque->stdout_gsource = NULL;
if (op->opaque->stdout_fd > STDOUT_FILENO) {
close(op->opaque->stdout_fd);
}
op->opaque->stdout_fd = -1;
}
static void
pipe_err_done(gpointer user_data)
{
svc_action_t *op = (svc_action_t *) user_data;
op->opaque->stderr_gsource = NULL;
if (op->opaque->stderr_fd > STDERR_FILENO) {
close(op->opaque->stderr_fd);
}
op->opaque->stderr_fd = -1;
}
static struct mainloop_fd_callbacks stdout_callbacks = {
.dispatch = dispatch_stdout,
.destroy = pipe_out_done,
};
static struct mainloop_fd_callbacks stderr_callbacks = {
.dispatch = dispatch_stderr,
.destroy = pipe_err_done,
};
static void
set_ocf_env(const char *key, const char *value, gpointer user_data)
{
if (setenv(key, value, 1) != 0) {
crm_perror(LOG_ERR, "setenv failed for key:%s and value:%s", key, value);
}
}
static void
set_ocf_env_with_prefix(gpointer key, gpointer value, gpointer user_data)
{
char buffer[500];
snprintf(buffer, sizeof(buffer), strcmp(key, "OCF_CHECK_LEVEL") != 0 ? "OCF_RESKEY_%s" : "%s", (char *)key);
set_ocf_env(buffer, value, user_data);
}
static void
set_alert_env(gpointer key, gpointer value, gpointer user_data)
{
int rc;
if (value != NULL) {
rc = setenv(key, value, 1);
} else {
rc = unsetenv(key);
}
if (rc < 0) {
crm_perror(LOG_ERR, "setenv %s=%s",
(char*)key, (value? (char*)value : ""));
} else {
crm_trace("setenv %s=%s", (char*)key, (value? (char*)value : ""));
}
}
/*!
* \internal
* \brief Add environment variables suitable for an action
*
* \param[in] op Action to use
*/
static void
add_action_env_vars(const svc_action_t *op)
{
void (*env_setter)(gpointer, gpointer, gpointer) = NULL;
if (op->agent == NULL) {
env_setter = set_alert_env; /* we deal with alert handler */
} else if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_OCF, pcmk__str_casei)) {
env_setter = set_ocf_env_with_prefix;
}
if (env_setter != NULL && op->params != NULL) {
g_hash_table_foreach(op->params, env_setter, NULL);
}
if (env_setter == NULL || env_setter == set_alert_env) {
return;
}
set_ocf_env("OCF_RA_VERSION_MAJOR", PCMK_OCF_MAJOR_VERSION, NULL);
set_ocf_env("OCF_RA_VERSION_MINOR", PCMK_OCF_MINOR_VERSION, NULL);
set_ocf_env("OCF_ROOT", OCF_ROOT_DIR, NULL);
set_ocf_env("OCF_EXIT_REASON_PREFIX", PCMK_OCF_REASON_PREFIX, NULL);
if (op->rsc) {
set_ocf_env("OCF_RESOURCE_INSTANCE", op->rsc, NULL);
}
if (op->agent != NULL) {
set_ocf_env("OCF_RESOURCE_TYPE", op->agent, NULL);
}
/* Notes: this is not added to specification yet. Sept 10,2004 */
if (op->provider != NULL) {
set_ocf_env("OCF_RESOURCE_PROVIDER", op->provider, NULL);
}
}
static void
pipe_in_single_parameter(gpointer key, gpointer value, gpointer user_data)
{
svc_action_t *op = user_data;
char *buffer = crm_strdup_printf("%s=%s\n", (char *)key, (char *) value);
int ret, total = 0, len = strlen(buffer);
do {
errno = 0;
ret = write(op->opaque->stdin_fd, buffer + total, len - total);
if (ret > 0) {
total += ret;
}
} while ((errno == EINTR) && (total < len));
free(buffer);
}
/*!
* \internal
* \brief Pipe parameters in via stdin for action
*
* \param[in] op Action to use
*/
static void
pipe_in_action_stdin_parameters(const svc_action_t *op)
{
crm_debug("sending args");
if (op->params) {
g_hash_table_foreach(op->params, pipe_in_single_parameter, (gpointer) op);
}
}
gboolean
recurring_action_timer(gpointer data)
{
svc_action_t *op = data;
crm_debug("Scheduling another invocation of %s", op->id);
/* Clean out the old result */
free(op->stdout_data);
op->stdout_data = NULL;
free(op->stderr_data);
op->stderr_data = NULL;
op->opaque->repeat_timer = 0;
services_action_async(op, NULL);
return FALSE;
}
/*!
* \internal
* \brief Finalize handling of an asynchronous operation
*
* Given a completed asynchronous operation, cancel or reschedule it as
* appropriate if recurring, call its callback if registered, stop tracking it,
* and clean it up.
*
* \param[in,out] op Operation to finalize
*
* \return Standard Pacemaker return code
* \retval EINVAL Caller supplied NULL or invalid \p op
* \retval EBUSY Uncanceled recurring action has only been cleaned up
* \retval pcmk_rc_ok Action has been freed
*
* \note If the return value is not pcmk_rc_ok, the caller is responsible for
* freeing the action.
*/
int
services__finalize_async_op(svc_action_t *op)
{
CRM_CHECK((op != NULL) && !(op->synchronous), return EINVAL);
if (op->interval_ms != 0) {
// Recurring operations must be either cancelled or rescheduled
if (op->cancel) {
services__set_cancelled(op);
cancel_recurring_action(op);
} else {
op->opaque->repeat_timer = g_timeout_add(op->interval_ms,
recurring_action_timer,
(void *) op);
}
}
if (op->opaque->callback != NULL) {
op->opaque->callback(op);
}
// Stop tracking the operation (as in-flight or blocked)
op->pid = 0;
services_untrack_op(op);
if ((op->interval_ms != 0) && !(op->cancel)) {
// Do not free recurring actions (they will get freed when cancelled)
services_action_cleanup(op);
return EBUSY;
}
services_action_free(op);
return pcmk_rc_ok;
}
static void
close_op_input(svc_action_t *op)
{
if (op->opaque->stdin_fd >= 0) {
close(op->opaque->stdin_fd);
}
}
static void
finish_op_output(svc_action_t *op, bool is_stderr)
{
mainloop_io_t **source;
int fd;
if (is_stderr) {
source = &(op->opaque->stderr_gsource);
fd = op->opaque->stderr_fd;
} else {
source = &(op->opaque->stdout_gsource);
fd = op->opaque->stdout_fd;
}
if (op->synchronous || *source) {
crm_trace("Finish reading %s[%d] %s",
op->id, op->pid, (is_stderr? "stdout" : "stderr"));
svc_read_output(fd, op, is_stderr);
if (op->synchronous) {
close(fd);
} else {
mainloop_del_fd(*source);
*source = NULL;
}
}
}
// Log an operation's stdout and stderr
static void
log_op_output(svc_action_t *op)
{
char *prefix = crm_strdup_printf("%s[%d] error output", op->id, op->pid);
crm_log_output(LOG_NOTICE, prefix, op->stderr_data);
strcpy(prefix + strlen(prefix) - strlen("error output"), "output");
crm_log_output(LOG_DEBUG, prefix, op->stdout_data);
free(prefix);
}
// Truncate exit reasons at this many characters
#define EXIT_REASON_MAX_LEN 128
static void
parse_exit_reason_from_stderr(svc_action_t *op)
{
const char *reason_start = NULL;
const char *reason_end = NULL;
const int prefix_len = strlen(PCMK_OCF_REASON_PREFIX);
if ((op->stderr_data == NULL) ||
// Only OCF agents have exit reasons in stderr
!pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_OCF, pcmk__str_none)) {
return;
}
// Find the last occurrence of the magic string indicating an exit reason
for (const char *cur = strstr(op->stderr_data, PCMK_OCF_REASON_PREFIX);
cur != NULL; cur = strstr(cur, PCMK_OCF_REASON_PREFIX)) {
cur += prefix_len; // Skip over magic string
reason_start = cur;
}
if ((reason_start == NULL) || (reason_start[0] == '\n')
|| (reason_start[0] == '\0')) {
return; // No or empty exit reason
}
// Exit reason goes to end of line (or end of output)
reason_end = strchr(reason_start, '\n');
if (reason_end == NULL) {
reason_end = reason_start + strlen(reason_start);
}
// Limit size of exit reason to something reasonable
if (reason_end > (reason_start + EXIT_REASON_MAX_LEN)) {
reason_end = reason_start + EXIT_REASON_MAX_LEN;
}
free(op->opaque->exit_reason);
op->opaque->exit_reason = strndup(reason_start, reason_end - reason_start);
}
/*!
* \internal
* \brief Process the completion of an asynchronous child process
*
* \param[in] p Child process that completed
* \param[in] pid Process ID of child
* \param[in] core (unused)
* \param[in] signo Signal that interrupted child, if any
* \param[in] exitcode Exit status of child process
*/
static void
async_action_complete(mainloop_child_t *p, pid_t pid, int core, int signo,
int exitcode)
{
svc_action_t *op = mainloop_child_userdata(p);
mainloop_clear_child_userdata(p);
CRM_CHECK(op->pid == pid,
services__set_result(op, services__generic_error(op),
PCMK_EXEC_ERROR, "Bug in mainloop handling");
return);
/* Depending on the priority the mainloop gives the stdout and stderr
* file descriptors, this function could be called before everything has
* been read from them, so force a final read now.
*/
finish_op_output(op, true);
finish_op_output(op, false);
close_op_input(op);
if (signo == 0) {
crm_debug("%s[%d] exited with status %d", op->id, op->pid, exitcode);
services__set_result(op, exitcode, PCMK_EXEC_DONE, NULL);
log_op_output(op);
parse_exit_reason_from_stderr(op);
} else if (mainloop_child_timeout(p)) {
crm_warn("%s[%d] timed out after %dms", op->id, op->pid, op->timeout);
services__set_result(op, services__generic_error(op), PCMK_EXEC_TIMEOUT,
"Process did not exit within specified timeout");
} else if (op->cancel) {
/* If an in-flight recurring operation was killed because it was
* cancelled, don't treat that as a failure.
*/
- crm_info("%s[%d] terminated with signal: %s " CRM_XS " (%d)",
- op->id, op->pid, strsignal(signo), signo);
+ crm_info("%s[%d] terminated with signal %d (%s)",
+ op->id, op->pid, signo, strsignal(signo));
services__set_result(op, PCMK_OCF_OK, PCMK_EXEC_CANCELLED, NULL);
} else {
- crm_warn("%s[%d] terminated with signal: %s " CRM_XS " (%d)",
- op->id, op->pid, strsignal(signo), signo);
+ crm_warn("%s[%d] terminated with signal %d (%s)",
+ op->id, op->pid, signo, strsignal(signo));
services__set_result(op, PCMK_OCF_UNKNOWN_ERROR, PCMK_EXEC_ERROR,
"Process interrupted by signal");
}
services__finalize_async_op(op);
}
/*!
* \internal
* \brief Return agent standard's exit status for "generic error"
*
* When returning an internal error for an action, a value that is appropriate
* to the action's agent standard must be used. This function returns a value
* appropriate for errors in general.
*
* \param[in] op Action that error is for
*
* \return Exit status appropriate to agent standard
* \note Actions without a standard will get PCMK_OCF_UNKNOWN_ERROR.
*/
int
services__generic_error(svc_action_t *op)
{
if ((op == NULL) || (op->standard == NULL)) {
return PCMK_OCF_UNKNOWN_ERROR;
}
if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_LSB, pcmk__str_casei)
&& pcmk__str_eq(op->action, "status", pcmk__str_casei)) {
return PCMK_LSB_STATUS_UNKNOWN;
}
#if SUPPORT_NAGIOS
if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_NAGIOS, pcmk__str_casei)) {
return NAGIOS_STATE_UNKNOWN;
}
#endif
return PCMK_OCF_UNKNOWN_ERROR;
}
/*!
* \internal
* \brief Return agent standard's exit status for "not installed"
*
* When returning an internal error for an action, a value that is appropriate
* to the action's agent standard must be used. This function returns a value
* appropriate for "not installed" errors.
*
* \param[in] op Action that error is for
*
* \return Exit status appropriate to agent standard
* \note Actions without a standard will get PCMK_OCF_UNKNOWN_ERROR.
*/
int
services__not_installed_error(svc_action_t *op)
{
if ((op == NULL) || (op->standard == NULL)) {
return PCMK_OCF_UNKNOWN_ERROR;
}
if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_LSB, pcmk__str_casei)
&& pcmk__str_eq(op->action, "status", pcmk__str_casei)) {
return PCMK_LSB_STATUS_NOT_INSTALLED;
}
#if SUPPORT_NAGIOS
if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_NAGIOS, pcmk__str_casei)) {
return NAGIOS_STATE_UNKNOWN;
}
#endif
return PCMK_OCF_NOT_INSTALLED;
}
/*!
* \internal
* \brief Return agent standard's exit status for "insufficient privileges"
*
* When returning an internal error for an action, a value that is appropriate
* to the action's agent standard must be used. This function returns a value
* appropriate for "insufficient privileges" errors.
*
* \param[in] op Action that error is for
*
* \return Exit status appropriate to agent standard
* \note Actions without a standard will get PCMK_OCF_UNKNOWN_ERROR.
*/
int
services__authorization_error(svc_action_t *op)
{
if ((op == NULL) || (op->standard == NULL)) {
return PCMK_OCF_UNKNOWN_ERROR;
}
if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_LSB, pcmk__str_casei)
&& pcmk__str_eq(op->action, "status", pcmk__str_casei)) {
return PCMK_LSB_STATUS_INSUFFICIENT_PRIV;
}
#if SUPPORT_NAGIOS
if (pcmk__str_eq(op->standard, PCMK_RESOURCE_CLASS_NAGIOS, pcmk__str_casei)) {
return NAGIOS_INSUFFICIENT_PRIV;
}
#endif
return PCMK_OCF_INSUFFICIENT_PRIV;
}
/*!
* \internal
* \brief Set operation rc and status per errno from stat(), fork() or execvp()
*
* \param[in,out] op Operation to set rc and status for
* \param[in] error Value of errno after system call
*
* \return void
*/
void
services__handle_exec_error(svc_action_t * op, int error)
{
switch (error) { /* see execve(2), stat(2) and fork(2) */
case ENOENT: /* No such file or directory */
case EISDIR: /* Is a directory */
case ENOTDIR: /* Path component is not a directory */
case EINVAL: /* Invalid executable format */
case ENOEXEC: /* Invalid executable format */
services__set_result(op, services__not_installed_error(op),
PCMK_EXEC_NOT_INSTALLED, pcmk_rc_str(error));
break;
case EACCES: /* permission denied (various errors) */
case EPERM: /* permission denied (various errors) */
services__set_result(op, services__authorization_error(op),
PCMK_EXEC_ERROR, pcmk_rc_str(error));
break;
default:
services__set_result(op, services__generic_error(op),
PCMK_EXEC_ERROR, pcmk_rc_str(error));
}
}
static void
action_launch_child(svc_action_t *op)
{
/* SIGPIPE is ignored (which is different from signal blocking) by the gnutls library.
* Depending on the libqb version in use, libqb may set SIGPIPE to be ignored as well.
* We do not want this to be inherited by the child process. By resetting this the signal
* to the default behavior, we avoid some potential odd problems that occur during OCF
* scripts when SIGPIPE is ignored by the environment. */
signal(SIGPIPE, SIG_DFL);
#if defined(HAVE_SCHED_SETSCHEDULER)
if (sched_getscheduler(0) != SCHED_OTHER) {
struct sched_param sp;
memset(&sp, 0, sizeof(sp));
sp.sched_priority = 0;
if (sched_setscheduler(0, SCHED_OTHER, &sp) == -1) {
crm_perror(LOG_ERR, "Could not reset scheduling policy to SCHED_OTHER for %s", op->id);
}
}
#endif
if (setpriority(PRIO_PROCESS, 0, 0) == -1) {
crm_perror(LOG_ERR, "Could not reset process priority to 0 for %s", op->id);
}
/* Man: The call setpgrp() is equivalent to setpgid(0,0)
* _and_ compiles on BSD variants too
* need to investigate if it works the same too.
*/
setpgid(0, 0);
pcmk__close_fds_in_child(false);
#if SUPPORT_CIBSECRETS
if (pcmk__substitute_secrets(op->rsc, op->params) != pcmk_rc_ok) {
/* replacing secrets failed! */
if (pcmk__str_eq(op->action, "stop", pcmk__str_casei)) {
/* don't fail on stop! */
crm_info("proceeding with the stop operation for %s", op->rsc);
} else {
crm_err("failed to get secrets for %s, "
"considering resource not configured", op->rsc);
_exit(PCMK_OCF_NOT_CONFIGURED);
}
}
#endif
add_action_env_vars(op);
/* Become the desired user */
if (op->opaque->uid && (geteuid() == 0)) {
// If requested, set effective group
if (op->opaque->gid && (setgid(op->opaque->gid) < 0)) {
crm_perror(LOG_ERR, "Could not set child group to %d", op->opaque->gid);
_exit(PCMK_OCF_NOT_CONFIGURED);
}
// Erase supplementary group list
// (We could do initgroups() if we kept a copy of the username)
if (setgroups(0, NULL) < 0) {
crm_perror(LOG_ERR, "Could not set child groups");
_exit(PCMK_OCF_NOT_CONFIGURED);
}
// Set effective user
if (setuid(op->opaque->uid) < 0) {
crm_perror(LOG_ERR, "setting user to %d", op->opaque->uid);
_exit(PCMK_OCF_NOT_CONFIGURED);
}
}
/* execute the RA */
execvp(op->opaque->exec, op->opaque->args);
/* Most cases should have been already handled by stat() */
services__handle_exec_error(op, errno);
_exit(op->rc);
}
/*!
* \internal
* \brief Wait for synchronous action to complete, and set its result
*
* \param[in] op Action to wait for
* \param[in] data Child signal data
*/
static void
wait_for_sync_result(svc_action_t *op, struct sigchld_data_s *data)
{
int status = 0;
int timeout = op->timeout;
time_t start = time(NULL);
struct pollfd fds[3];
int wait_rc = 0;
const char *wait_reason = NULL;
fds[0].fd = op->opaque->stdout_fd;
fds[0].events = POLLIN;
fds[0].revents = 0;
fds[1].fd = op->opaque->stderr_fd;
fds[1].events = POLLIN;
fds[1].revents = 0;
fds[2].fd = sigchld_open(data);
fds[2].events = POLLIN;
fds[2].revents = 0;
crm_trace("Waiting for %s[%d]", op->id, op->pid);
do {
int poll_rc = poll(fds, 3, timeout);
wait_reason = NULL;
if (poll_rc > 0) {
if (fds[0].revents & POLLIN) {
svc_read_output(op->opaque->stdout_fd, op, FALSE);
}
if (fds[1].revents & POLLIN) {
svc_read_output(op->opaque->stderr_fd, op, TRUE);
}
if ((fds[2].revents & POLLIN) && sigchld_received(fds[2].fd)) {
wait_rc = waitpid(op->pid, &status, WNOHANG);
if ((wait_rc > 0) || ((wait_rc < 0) && (errno == ECHILD))) {
// Child process exited or doesn't exist
break;
} else if (wait_rc < 0) {
wait_reason = pcmk_rc_str(errno);
crm_warn("Wait for completion of %s[%d] failed: %s "
CRM_XS " source=waitpid",
op->id, op->pid, wait_reason);
wait_rc = 0; // Act as if process is still running
}
}
} else if (poll_rc == 0) {
// Poll timed out with no descriptors ready
timeout = 0;
break;
} else if ((poll_rc < 0) && (errno != EINTR)) {
wait_reason = pcmk_rc_str(errno);
crm_err("Wait for completion of %s[%d] failed: %s "
CRM_XS " source=poll", op->id, op->pid, wait_reason);
break;
}
timeout = op->timeout - (time(NULL) - start) * 1000;
} while ((op->timeout < 0 || timeout > 0));
crm_trace("Stopped waiting for %s[%d]", op->id, op->pid);
finish_op_output(op, true);
finish_op_output(op, false);
close_op_input(op);
sigchld_close(fds[2].fd);
if (wait_rc <= 0) {
if ((op->timeout > 0) && (timeout <= 0)) {
services__set_result(op, services__generic_error(op),
PCMK_EXEC_TIMEOUT,
"Process did not exit within specified timeout");
crm_warn("%s[%d] timed out after %dms",
op->id, op->pid, op->timeout);
} else {
services__set_result(op, services__generic_error(op),
PCMK_EXEC_ERROR, wait_reason);
}
/* If only child hasn't been successfully waited for, yet.
This is to limit killing wrong target a bit more. */
if ((wait_rc == 0) && (waitpid(op->pid, &status, WNOHANG) == 0)) {
if (kill(op->pid, SIGKILL)) {
crm_warn("Could not kill rogue child %s[%d]: %s",
op->id, op->pid, pcmk_strerror(errno));
}
/* Safe to skip WNOHANG here as we sent non-ignorable signal. */
while ((waitpid(op->pid, &status, 0) == (pid_t) -1)
&& (errno == EINTR)) {
/* keep waiting */;
}
}
} else if (WIFEXITED(status)) {
services__set_result(op, WEXITSTATUS(status), PCMK_EXEC_DONE, NULL);
parse_exit_reason_from_stderr(op);
crm_info("%s[%d] exited with status %d", op->id, op->pid, op->rc);
} else if (WIFSIGNALED(status)) {
int signo = WTERMSIG(status);
services__set_result(op, services__generic_error(op), PCMK_EXEC_ERROR,
"Process interrupted by signal");
- crm_err("%s[%d] terminated with signal: %s " CRM_XS " (%d)",
- op->id, op->pid, strsignal(signo), signo);
+ crm_err("%s[%d] terminated with signal %d (%s)",
+ op->id, op->pid, signo, strsignal(signo));
#ifdef WCOREDUMP
if (WCOREDUMP(status)) {
crm_warn("%s[%d] dumped core", op->id, op->pid);
}
#endif
} else {
// Shouldn't be possible to get here
services__set_result(op, services__generic_error(op), PCMK_EXEC_ERROR,
"Unable to wait for child to complete");
}
}
/*!
* \internal
* \brief Execute an action whose standard uses executable files
*
* \param[in] op Action to execute
*
* \return Standard Pacemaker return value
* \retval EBUSY Recurring operation could not be initiated
* \retval pcmk_rc_error Synchronous action failed
* \retval pcmk_rc_ok Synchronous action succeeded, or asynchronous action
* should not be freed (because it already was or is
* pending)
*
* \note If the return value for an asynchronous action is not pcmk_rc_ok, the
* caller is responsible for freeing the action.
*/
int
services__execute_file(svc_action_t *op)
{
int stdout_fd[2];
int stderr_fd[2];
int stdin_fd[2] = {-1, -1};
int rc;
struct stat st;
struct sigchld_data_s data;
// Catch common failure conditions early
if (stat(op->opaque->exec, &st) != 0) {
rc = errno;
crm_warn("Cannot execute '%s': %s " CRM_XS " stat rc=%d",
op->opaque->exec, pcmk_strerror(rc), rc);
services__handle_exec_error(op, rc);
goto done;
}
if (pipe(stdout_fd) < 0) {
rc = errno;
crm_err("Cannot execute '%s': %s " CRM_XS " pipe(stdout) rc=%d",
op->opaque->exec, pcmk_strerror(rc), rc);
services__handle_exec_error(op, rc);
goto done;
}
if (pipe(stderr_fd) < 0) {
rc = errno;
close_pipe(stdout_fd);
crm_err("Cannot execute '%s': %s " CRM_XS " pipe(stderr) rc=%d",
op->opaque->exec, pcmk_strerror(rc), rc);
services__handle_exec_error(op, rc);
goto done;
}
if (pcmk_is_set(pcmk_get_ra_caps(op->standard), pcmk_ra_cap_stdin)) {
if (pipe(stdin_fd) < 0) {
rc = errno;
close_pipe(stdout_fd);
close_pipe(stderr_fd);
crm_err("Cannot execute '%s': %s " CRM_XS " pipe(stdin) rc=%d",
op->opaque->exec, pcmk_strerror(rc), rc);
services__handle_exec_error(op, rc);
goto done;
}
}
if (op->synchronous && !sigchld_setup(&data)) {
close_pipe(stdin_fd);
close_pipe(stdout_fd);
close_pipe(stderr_fd);
sigchld_cleanup(&data);
services__set_result(op, services__generic_error(op), PCMK_EXEC_ERROR,
"Could not manage signals for child process");
goto done;
}
op->pid = fork();
switch (op->pid) {
case -1:
rc = errno;
close_pipe(stdin_fd);
close_pipe(stdout_fd);
close_pipe(stderr_fd);
crm_err("Cannot execute '%s': %s " CRM_XS " fork rc=%d",
op->opaque->exec, pcmk_strerror(rc), rc);
services__handle_exec_error(op, rc);
if (op->synchronous) {
sigchld_cleanup(&data);
}
goto done;
break;
case 0: /* Child */
close(stdout_fd[0]);
close(stderr_fd[0]);
if (stdin_fd[1] >= 0) {
close(stdin_fd[1]);
}
if (STDOUT_FILENO != stdout_fd[1]) {
if (dup2(stdout_fd[1], STDOUT_FILENO) != STDOUT_FILENO) {
crm_warn("Can't redirect output from '%s': %s "
CRM_XS " errno=%d",
op->opaque->exec, pcmk_strerror(errno), errno);
}
close(stdout_fd[1]);
}
if (STDERR_FILENO != stderr_fd[1]) {
if (dup2(stderr_fd[1], STDERR_FILENO) != STDERR_FILENO) {
crm_warn("Can't redirect error output from '%s': %s "
CRM_XS " errno=%d",
op->opaque->exec, pcmk_strerror(errno), errno);
}
close(stderr_fd[1]);
}
if ((stdin_fd[0] >= 0) &&
(STDIN_FILENO != stdin_fd[0])) {
if (dup2(stdin_fd[0], STDIN_FILENO) != STDIN_FILENO) {
crm_warn("Can't redirect input to '%s': %s "
CRM_XS " errno=%d",
op->opaque->exec, pcmk_strerror(errno), errno);
}
close(stdin_fd[0]);
}
if (op->synchronous) {
sigchld_cleanup(&data);
}
action_launch_child(op);
CRM_ASSERT(0); /* action_launch_child is effectively noreturn */
}
/* Only the parent reaches here */
close(stdout_fd[1]);
close(stderr_fd[1]);
if (stdin_fd[0] >= 0) {
close(stdin_fd[0]);
}
op->opaque->stdout_fd = stdout_fd[0];
rc = pcmk__set_nonblocking(op->opaque->stdout_fd);
if (rc != pcmk_rc_ok) {
crm_warn("Could not set '%s' output non-blocking: %s "
CRM_XS " rc=%d",
op->opaque->exec, pcmk_rc_str(rc), rc);
}
op->opaque->stderr_fd = stderr_fd[0];
rc = pcmk__set_nonblocking(op->opaque->stderr_fd);
if (rc != pcmk_rc_ok) {
crm_warn("Could not set '%s' error output non-blocking: %s "
CRM_XS " rc=%d",
op->opaque->exec, pcmk_rc_str(rc), rc);
}
op->opaque->stdin_fd = stdin_fd[1];
if (op->opaque->stdin_fd >= 0) {
// using buffer behind non-blocking-fd here - that could be improved
// as long as no other standard uses stdin_fd assume stonith
rc = pcmk__set_nonblocking(op->opaque->stdin_fd);
if (rc != pcmk_rc_ok) {
crm_warn("Could not set '%s' input non-blocking: %s "
CRM_XS " fd=%d,rc=%d", op->opaque->exec,
pcmk_rc_str(rc), op->opaque->stdin_fd, rc);
}
pipe_in_action_stdin_parameters(op);
// as long as we are handling parameters directly in here just close
close(op->opaque->stdin_fd);
op->opaque->stdin_fd = -1;
}
// after fds are setup properly and before we plug anything into mainloop
if (op->opaque->fork_callback) {
op->opaque->fork_callback(op);
}
if (op->synchronous) {
wait_for_sync_result(op, &data);
sigchld_cleanup(&data);
goto done;
}
crm_trace("Waiting async for '%s'[%d]", op->opaque->exec, op->pid);
mainloop_child_add_with_flags(op->pid, op->timeout, op->id, op,
pcmk_is_set(op->flags, SVC_ACTION_LEAVE_GROUP)? mainloop_leave_pid_group : 0,
async_action_complete);
op->opaque->stdout_gsource = mainloop_add_fd(op->id,
G_PRIORITY_LOW,
op->opaque->stdout_fd, op,
&stdout_callbacks);
op->opaque->stderr_gsource = mainloop_add_fd(op->id,
G_PRIORITY_LOW,
op->opaque->stderr_fd, op,
&stderr_callbacks);
services_add_inflight_op(op);
return pcmk_rc_ok;
done:
if (op->synchronous) {
return (op->rc == PCMK_OCF_OK)? pcmk_rc_ok : pcmk_rc_error;
} else {
return services__finalize_async_op(op);
}
}
GList *
services_os_get_single_directory_list(const char *root, gboolean files, gboolean executable)
{
GList *list = NULL;
struct dirent **namelist;
int entries = 0, lpc = 0;
char buffer[PATH_MAX];
entries = scandir(root, &namelist, NULL, alphasort);
if (entries <= 0) {
return list;
}
for (lpc = 0; lpc < entries; lpc++) {
struct stat sb;
if ('.' == namelist[lpc]->d_name[0]) {
free(namelist[lpc]);
continue;
}
snprintf(buffer, sizeof(buffer), "%s/%s", root, namelist[lpc]->d_name);
if (stat(buffer, &sb)) {
continue;
}
if (S_ISDIR(sb.st_mode)) {
if (files) {
free(namelist[lpc]);
continue;
}
} else if (S_ISREG(sb.st_mode)) {
if (files == FALSE) {
free(namelist[lpc]);
continue;
} else if (executable
&& (sb.st_mode & S_IXUSR) == 0
&& (sb.st_mode & S_IXGRP) == 0 && (sb.st_mode & S_IXOTH) == 0) {
free(namelist[lpc]);
continue;
}
}
list = g_list_append(list, strdup(namelist[lpc]->d_name));
free(namelist[lpc]);
}
free(namelist);
return list;
}
GList *
services_os_get_directory_list(const char *root, gboolean files, gboolean executable)
{
GList *result = NULL;
char *dirs = strdup(root);
char *dir = NULL;
if (pcmk__str_empty(dirs)) {
free(dirs);
return result;
}
for (dir = strtok(dirs, ":"); dir != NULL; dir = strtok(NULL, ":")) {
GList *tmp = services_os_get_single_directory_list(dir, files, executable);
if (tmp) {
result = g_list_concat(result, tmp);
}
}
free(dirs);
return result;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Nov 23, 4:24 PM (16 h, 46 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1018889
Default Alt Text
(129 KB)
Attached To
Mode
rP Pacemaker
Attached
Detach File
Event Timeline
Log In to Comment