Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/exec/totemsrp.c b/exec/totemsrp.c
index 2a0ad569..e92fe06e 100644
--- a/exec/totemsrp.c
+++ b/exec/totemsrp.c
@@ -1,5251 +1,5251 @@
/*
* Copyright (c) 2003-2006 MontaVista Software, Inc.
* Copyright (c) 2006-2018 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The first version of this code was based upon Yair Amir's PhD thesis:
* https://corosync.github.io/corosync/doc/Yair_phd.ps.gz (ch4,5).
*
* The current version of totemsrp implements the Totem protocol specified in:
* https://corosync.github.io/corosync/doc/tocssrp95.ps.gz
*
* The deviations from the above published protocols are:
* - token hold mode where token doesn't rotate on unused ring - reduces cpu
* usage on 1.6ghz xeon from 35% to less then .1 % as measured by top
*/
#include <config.h>
#include <assert.h>
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sched.h>
#include <time.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <sys/uio.h>
#include <limits.h>
#include <qb/qblist.h>
#include <qb/qbdefs.h>
#include <qb/qbutil.h>
#include <qb/qbloop.h>
#include <corosync/swab.h>
#include <corosync/sq.h>
#define LOGSYS_UTILS_ONLY 1
#include <corosync/logsys.h>
#include "totemsrp.h"
#include "totemnet.h"
#include "icmap.h"
#include "totemconfig.h"
#include "cs_queue.h"
#define LOCALHOST_IP inet_addr("127.0.0.1")
#define QUEUE_RTR_ITEMS_SIZE_MAX 16384 /* allow 16384 retransmit items */
#define RETRANS_MESSAGE_QUEUE_SIZE_MAX 16384 /* allow 500 messages to be queued */
#define RECEIVED_MESSAGE_QUEUE_SIZE_MAX 500 /* allow 500 messages to be queued */
#define MAXIOVS 5
#define RETRANSMIT_ENTRIES_MAX 30
#define TOKEN_SIZE_MAX 64000 /* bytes */
#define LEAVE_DUMMY_NODEID 0
/*
* SRP address.
*/
struct srp_addr {
unsigned int nodeid;
};
/*
* Rollover handling:
* SEQNO_START_MSG is the starting sequence number after a new configuration
* This should remain zero, unless testing overflow in which case
* 0x7ffff000 and 0xfffff000 are good starting values.
*
* SEQNO_START_TOKEN is the starting sequence number after a new configuration
* for a token. This should remain zero, unless testing overflow in which
* case 07fffff00 or 0xffffff00 are good starting values.
*/
#define SEQNO_START_MSG 0x0
#define SEQNO_START_TOKEN 0x0
/*
* These can be used ot test different rollover points
* #define SEQNO_START_MSG 0xfffffe00
* #define SEQNO_START_TOKEN 0xfffffe00
*/
/*
* These can be used to test the error recovery algorithms
* #define TEST_DROP_ORF_TOKEN_PERCENTAGE 30
* #define TEST_DROP_COMMIT_TOKEN_PERCENTAGE 30
* #define TEST_DROP_MCAST_PERCENTAGE 50
* #define TEST_RECOVERY_MSG_COUNT 300
*/
/*
* we compare incoming messages to determine if their endian is
* different - if so convert them
*
* do not change
*/
#define ENDIAN_LOCAL 0xff22
enum message_type {
MESSAGE_TYPE_ORF_TOKEN = 0, /* Ordering, Reliability, Flow (ORF) control Token */
MESSAGE_TYPE_MCAST = 1, /* ring ordered multicast message */
MESSAGE_TYPE_MEMB_MERGE_DETECT = 2, /* merge rings if there are available rings */
MESSAGE_TYPE_MEMB_JOIN = 3, /* membership join message */
MESSAGE_TYPE_MEMB_COMMIT_TOKEN = 4, /* membership commit token */
MESSAGE_TYPE_TOKEN_HOLD_CANCEL = 5, /* cancel the holding of the token */
};
enum encapsulation_type {
MESSAGE_ENCAPSULATED = 1,
MESSAGE_NOT_ENCAPSULATED = 2
};
/*
* New membership algorithm local variables
*/
struct consensus_list_item {
struct srp_addr addr;
int set;
};
struct token_callback_instance {
struct qb_list_head list;
int (*callback_fn) (enum totem_callback_token_type type, const void *);
enum totem_callback_token_type callback_type;
int delete;
void *data;
};
struct totemsrp_socket {
int mcast;
int token;
};
struct mcast {
struct totem_message_header header;
struct srp_addr system_from;
unsigned int seq;
int this_seqno;
struct memb_ring_id ring_id;
unsigned int node_id;
int guarantee;
} __attribute__((packed));
struct rtr_item {
struct memb_ring_id ring_id;
unsigned int seq;
}__attribute__((packed));
struct orf_token {
struct totem_message_header header;
unsigned int seq;
unsigned int token_seq;
unsigned int aru;
unsigned int aru_addr;
struct memb_ring_id ring_id;
unsigned int backlog;
unsigned int fcc;
int retrans_flg;
int rtr_list_entries;
struct rtr_item rtr_list[0];
}__attribute__((packed));
struct memb_join {
struct totem_message_header header;
struct srp_addr system_from;
unsigned int proc_list_entries;
unsigned int failed_list_entries;
unsigned long long ring_seq;
unsigned char end_of_memb_join[0];
/*
* These parts of the data structure are dynamic:
* struct srp_addr proc_list[];
* struct srp_addr failed_list[];
*/
} __attribute__((packed));
struct memb_merge_detect {
struct totem_message_header header;
struct srp_addr system_from;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct token_hold_cancel {
struct totem_message_header header;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct memb_commit_token_memb_entry {
struct memb_ring_id ring_id;
unsigned int aru;
unsigned int high_delivered;
unsigned int received_flg;
}__attribute__((packed));
struct memb_commit_token {
struct totem_message_header header;
unsigned int token_seq;
struct memb_ring_id ring_id;
unsigned int retrans_flg;
int memb_index;
int addr_entries;
unsigned char end_of_commit_token[0];
/*
* These parts of the data structure are dynamic:
*
* struct srp_addr addr[PROCESSOR_COUNT_MAX];
* struct memb_commit_token_memb_entry memb_list[PROCESSOR_COUNT_MAX];
*/
}__attribute__((packed));
struct message_item {
struct mcast *mcast;
unsigned int msg_len;
};
struct sort_queue_item {
struct mcast *mcast;
unsigned int msg_len;
};
enum memb_state {
MEMB_STATE_OPERATIONAL = 1,
MEMB_STATE_GATHER = 2,
MEMB_STATE_COMMIT = 3,
MEMB_STATE_RECOVERY = 4
};
struct totemsrp_instance {
int iface_changes;
int failed_to_recv;
/*
* Flow control mcasts and remcasts on last and current orf_token
*/
int fcc_remcast_last;
int fcc_mcast_last;
int fcc_remcast_current;
struct consensus_list_item consensus_list[PROCESSOR_COUNT_MAX];
int consensus_list_entries;
int lowest_active_if;
struct srp_addr my_id;
struct totem_ip_address my_addrs[INTERFACE_MAX];
struct srp_addr my_proc_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_failed_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_new_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_trans_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_deliver_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_left_memb_list[PROCESSOR_COUNT_MAX];
unsigned int my_leave_memb_list[PROCESSOR_COUNT_MAX];
int my_proc_list_entries;
int my_failed_list_entries;
int my_new_memb_entries;
int my_trans_memb_entries;
int my_memb_entries;
int my_deliver_memb_entries;
int my_left_memb_entries;
int my_leave_memb_entries;
struct memb_ring_id my_ring_id;
struct memb_ring_id my_old_ring_id;
int my_aru_count;
int my_merge_detect_timeout_outstanding;
unsigned int my_last_aru;
int my_seq_unchanged;
int my_received_flg;
unsigned int my_high_seq_received;
unsigned int my_install_seq;
int my_rotation_counter;
int my_set_retrans_flg;
int my_retrans_flg_count;
unsigned int my_high_ring_delivered;
int heartbeat_timeout;
/*
* Queues used to order, deliver, and recover messages
*/
struct cs_queue new_message_queue;
struct cs_queue new_message_queue_trans;
struct cs_queue retrans_message_queue;
struct sq regular_sort_queue;
struct sq recovery_sort_queue;
/*
* Received up to and including
*/
unsigned int my_aru;
unsigned int my_high_delivered;
struct qb_list_head token_callback_received_listhead;
struct qb_list_head token_callback_sent_listhead;
char orf_token_retransmit[TOKEN_SIZE_MAX];
int orf_token_retransmit_size;
unsigned int my_token_seq;
/*
* Timers
*/
qb_loop_timer_handle timer_pause_timeout;
qb_loop_timer_handle timer_orf_token_timeout;
qb_loop_timer_handle timer_orf_token_warning;
qb_loop_timer_handle timer_orf_token_retransmit_timeout;
qb_loop_timer_handle timer_orf_token_hold_retransmit_timeout;
qb_loop_timer_handle timer_merge_detect_timeout;
qb_loop_timer_handle memb_timer_state_gather_join_timeout;
qb_loop_timer_handle memb_timer_state_gather_consensus_timeout;
qb_loop_timer_handle memb_timer_state_commit_timeout;
qb_loop_timer_handle timer_heartbeat_timeout;
/*
* Function and data used to log messages
*/
int totemsrp_log_level_security;
int totemsrp_log_level_error;
int totemsrp_log_level_warning;
int totemsrp_log_level_notice;
int totemsrp_log_level_debug;
int totemsrp_log_level_trace;
int totemsrp_subsys_id;
void (*totemsrp_log_printf) (
int level,
int subsys,
const char *function,
const char *file,
int line,
const char *format, ...)__attribute__((format(printf, 6, 7)));;
enum memb_state memb_state;
//TODO struct srp_addr next_memb;
qb_loop_t *totemsrp_poll_handle;
struct totem_ip_address mcast_address;
void (*totemsrp_deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required);
void (*totemsrp_confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
void (*totemsrp_service_ready_fn) (void);
void (*totemsrp_waiting_trans_ack_cb_fn) (
int waiting_trans_ack);
void (*memb_ring_id_create_or_load) (
struct memb_ring_id *memb_ring_id,
unsigned int nodeid);
void (*memb_ring_id_store) (
const struct memb_ring_id *memb_ring_id,
unsigned int nodeid);
int global_seqno;
int my_token_held;
unsigned long long token_ring_id_seq;
unsigned int last_released;
unsigned int set_aru;
int old_ring_state_saved;
int old_ring_state_aru;
unsigned int old_ring_state_high_seq_received;
unsigned int my_last_seq;
struct timeval tv_old;
void *totemnet_context;
struct totem_config *totem_config;
unsigned int use_heartbeat;
unsigned int my_trc;
unsigned int my_pbl;
unsigned int my_cbl;
uint64_t pause_timestamp;
struct memb_commit_token *commit_token;
totemsrp_stats_t stats;
uint32_t orf_token_discard;
uint32_t originated_orf_token;
uint32_t threaded_mode_enabled;
uint32_t waiting_trans_ack;
int flushing;
void * token_recv_event_handle;
void * token_sent_event_handle;
char commit_token_storage[40000];
};
struct message_handlers {
int count;
int (*handler_functions[6]) (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
};
enum gather_state_from {
TOTEMSRP_GSFROM_CONSENSUS_TIMEOUT = 0,
TOTEMSRP_GSFROM_GATHER_MISSING1 = 1,
TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_OPERATIONAL_STATE = 2,
TOTEMSRP_GSFROM_THE_CONSENSUS_TIMEOUT_EXPIRED = 3,
TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_COMMIT_STATE = 4,
TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_RECOVERY_STATE = 5,
TOTEMSRP_GSFROM_FAILED_TO_RECEIVE = 6,
TOTEMSRP_GSFROM_FOREIGN_MESSAGE_IN_OPERATIONAL_STATE = 7,
TOTEMSRP_GSFROM_FOREIGN_MESSAGE_IN_GATHER_STATE = 8,
TOTEMSRP_GSFROM_MERGE_DURING_OPERATIONAL_STATE = 9,
TOTEMSRP_GSFROM_MERGE_DURING_GATHER_STATE = 10,
TOTEMSRP_GSFROM_MERGE_DURING_JOIN = 11,
TOTEMSRP_GSFROM_JOIN_DURING_OPERATIONAL_STATE = 12,
TOTEMSRP_GSFROM_JOIN_DURING_COMMIT_STATE = 13,
TOTEMSRP_GSFROM_JOIN_DURING_RECOVERY = 14,
TOTEMSRP_GSFROM_INTERFACE_CHANGE = 15,
TOTEMSRP_GSFROM_MAX = TOTEMSRP_GSFROM_INTERFACE_CHANGE,
};
const char* gather_state_from_desc [] = {
[TOTEMSRP_GSFROM_CONSENSUS_TIMEOUT] = "consensus timeout",
[TOTEMSRP_GSFROM_GATHER_MISSING1] = "MISSING",
[TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_OPERATIONAL_STATE] = "The token was lost in the OPERATIONAL state.",
[TOTEMSRP_GSFROM_THE_CONSENSUS_TIMEOUT_EXPIRED] = "The consensus timeout expired.",
[TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_COMMIT_STATE] = "The token was lost in the COMMIT state.",
[TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_RECOVERY_STATE] = "The token was lost in the RECOVERY state.",
[TOTEMSRP_GSFROM_FAILED_TO_RECEIVE] = "failed to receive",
[TOTEMSRP_GSFROM_FOREIGN_MESSAGE_IN_OPERATIONAL_STATE] = "foreign message in operational state",
[TOTEMSRP_GSFROM_FOREIGN_MESSAGE_IN_GATHER_STATE] = "foreign message in gather state",
[TOTEMSRP_GSFROM_MERGE_DURING_OPERATIONAL_STATE] = "merge during operational state",
[TOTEMSRP_GSFROM_MERGE_DURING_GATHER_STATE] = "merge during gather state",
[TOTEMSRP_GSFROM_MERGE_DURING_JOIN] = "merge during join",
[TOTEMSRP_GSFROM_JOIN_DURING_OPERATIONAL_STATE] = "join during operational state",
[TOTEMSRP_GSFROM_JOIN_DURING_COMMIT_STATE] = "join during commit state",
[TOTEMSRP_GSFROM_JOIN_DURING_RECOVERY] = "join during recovery",
[TOTEMSRP_GSFROM_INTERFACE_CHANGE] = "interface change",
};
/*
* forward decls
*/
static int message_handler_orf_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_mcast (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_merge_detect (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_join (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_commit_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_token_hold_cancel (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static void totemsrp_instance_initialize (struct totemsrp_instance *instance);
static void srp_addr_to_nodeid (
struct totemsrp_instance *instance,
unsigned int *nodeid_out,
struct srp_addr *srp_addr_in,
unsigned int entries);
static int srp_addr_equal (const struct srp_addr *a, const struct srp_addr *b);
static void memb_leave_message_send (struct totemsrp_instance *instance);
static void token_callbacks_execute (struct totemsrp_instance *instance, enum totem_callback_token_type type);
static void memb_state_gather_enter (struct totemsrp_instance *instance, enum gather_state_from gather_from);
static void messages_deliver_to_app (struct totemsrp_instance *instance, int skip, unsigned int end_point);
static int orf_token_mcast (struct totemsrp_instance *instance, struct orf_token *oken,
int fcc_mcasts_allowed);
static void messages_free (struct totemsrp_instance *instance, unsigned int token_aru);
static void memb_ring_id_set (struct totemsrp_instance *instance,
const struct memb_ring_id *ring_id);
static void target_set_completed (void *context);
static void memb_state_commit_token_update (struct totemsrp_instance *instance);
static void memb_state_commit_token_target_set (struct totemsrp_instance *instance);
static int memb_state_commit_token_send (struct totemsrp_instance *instance);
static int memb_state_commit_token_send_recovery (struct totemsrp_instance *instance, struct memb_commit_token *memb_commit_token);
static void memb_state_commit_token_create (struct totemsrp_instance *instance);
static int token_hold_cancel_send (struct totemsrp_instance *instance);
static void orf_token_endian_convert (const struct orf_token *in, struct orf_token *out);
static void memb_commit_token_endian_convert (const struct memb_commit_token *in, struct memb_commit_token *out);
static void memb_join_endian_convert (const struct memb_join *in, struct memb_join *out);
static void mcast_endian_convert (const struct mcast *in, struct mcast *out);
static void memb_merge_detect_endian_convert (
const struct memb_merge_detect *in,
struct memb_merge_detect *out);
static struct srp_addr srp_addr_endian_convert (struct srp_addr in);
static void timer_function_orf_token_timeout (void *data);
static void timer_function_orf_token_warning (void *data);
static void timer_function_pause_timeout (void *data);
static void timer_function_heartbeat_timeout (void *data);
static void timer_function_token_retransmit_timeout (void *data);
static void timer_function_token_hold_retransmit_timeout (void *data);
static void timer_function_merge_detect_timeout (void *data);
static void *totemsrp_buffer_alloc (struct totemsrp_instance *instance);
static void totemsrp_buffer_release (struct totemsrp_instance *instance, void *ptr);
static const char* gsfrom_to_msg(enum gather_state_from gsfrom);
int main_deliver_fn (
void *context,
const void *msg,
unsigned int msg_len,
const struct sockaddr_storage *system_from);
int main_iface_change_fn (
void *context,
const struct totem_ip_address *iface_address,
unsigned int iface_no);
struct message_handlers totemsrp_message_handlers = {
6,
{
message_handler_orf_token, /* MESSAGE_TYPE_ORF_TOKEN */
message_handler_mcast, /* MESSAGE_TYPE_MCAST */
message_handler_memb_merge_detect, /* MESSAGE_TYPE_MEMB_MERGE_DETECT */
message_handler_memb_join, /* MESSAGE_TYPE_MEMB_JOIN */
message_handler_memb_commit_token, /* MESSAGE_TYPE_MEMB_COMMIT_TOKEN */
message_handler_token_hold_cancel /* MESSAGE_TYPE_TOKEN_HOLD_CANCEL */
}
};
#define log_printf(level, format, args...) \
do { \
instance->totemsrp_log_printf ( \
level, instance->totemsrp_subsys_id, \
__FUNCTION__, __FILE__, __LINE__, \
format, ##args); \
} while (0);
#define LOGSYS_PERROR(err_num, level, fmt, args...) \
do { \
char _error_str[LOGSYS_MAX_PERROR_MSG_LEN]; \
const char *_error_ptr = qb_strerror_r(err_num, _error_str, sizeof(_error_str)); \
instance->totemsrp_log_printf ( \
level, instance->totemsrp_subsys_id, \
__FUNCTION__, __FILE__, __LINE__, \
fmt ": %s (%d)\n", ##args, _error_ptr, err_num); \
} while(0)
static const char* gsfrom_to_msg(enum gather_state_from gsfrom)
{
if (gsfrom <= TOTEMSRP_GSFROM_MAX) {
return gather_state_from_desc[gsfrom];
}
else {
return "UNKNOWN";
}
}
static void totemsrp_instance_initialize (struct totemsrp_instance *instance)
{
memset (instance, 0, sizeof (struct totemsrp_instance));
qb_list_init (&instance->token_callback_received_listhead);
qb_list_init (&instance->token_callback_sent_listhead);
instance->my_received_flg = 1;
instance->my_token_seq = SEQNO_START_TOKEN - 1;
instance->memb_state = MEMB_STATE_OPERATIONAL;
instance->set_aru = -1;
instance->my_aru = SEQNO_START_MSG;
instance->my_high_seq_received = SEQNO_START_MSG;
instance->my_high_delivered = SEQNO_START_MSG;
instance->orf_token_discard = 0;
instance->originated_orf_token = 0;
instance->commit_token = (struct memb_commit_token *)instance->commit_token_storage;
instance->waiting_trans_ack = 1;
}
static int pause_flush (struct totemsrp_instance *instance)
{
uint64_t now_msec;
uint64_t timestamp_msec;
int res = 0;
now_msec = (qb_util_nano_current_get () / QB_TIME_NS_IN_MSEC);
timestamp_msec = instance->pause_timestamp / QB_TIME_NS_IN_MSEC;
if ((now_msec - timestamp_msec) > (instance->totem_config->token_timeout / 2)) {
log_printf (instance->totemsrp_log_level_notice,
"Process pause detected for %d ms, flushing membership messages.", (unsigned int)(now_msec - timestamp_msec));
/*
* -1 indicates an error from recvmsg
*/
do {
res = totemnet_recv_mcast_empty (instance->totemnet_context);
} while (res == -1);
}
return (res);
}
static int token_event_stats_collector (enum totem_callback_token_type type, const void *void_instance)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)void_instance;
uint64_t time_now;
time_now = (qb_util_nano_current_get() / QB_TIME_NS_IN_MSEC);
if (type == TOTEM_CALLBACK_TOKEN_RECEIVED) {
/* incr latest token the index */
if (instance->stats.latest_token == (TOTEM_TOKEN_STATS_MAX - 1))
instance->stats.latest_token = 0;
else
instance->stats.latest_token++;
if (instance->stats.earliest_token == instance->stats.latest_token) {
/* we have filled up the array, start overwriting */
if (instance->stats.earliest_token == (TOTEM_TOKEN_STATS_MAX - 1))
instance->stats.earliest_token = 0;
else
instance->stats.earliest_token++;
instance->stats.token[instance->stats.earliest_token].rx = 0;
instance->stats.token[instance->stats.earliest_token].tx = 0;
instance->stats.token[instance->stats.earliest_token].backlog_calc = 0;
}
instance->stats.token[instance->stats.latest_token].rx = time_now;
instance->stats.token[instance->stats.latest_token].tx = 0; /* in case we drop the token */
} else {
instance->stats.token[instance->stats.latest_token].tx = time_now;
}
return 0;
}
static void totempg_mtu_changed(void *context, int net_mtu)
{
struct totemsrp_instance *instance = context;
instance->totem_config->net_mtu = net_mtu - 2 * sizeof (struct mcast);
log_printf (instance->totemsrp_log_level_debug,
"Net MTU changed to %d, new value is %d",
net_mtu, instance->totem_config->net_mtu);
}
/*
* Exported interfaces
*/
int totemsrp_initialize (
qb_loop_t *poll_handle,
void **srp_context,
struct totem_config *totem_config,
totempg_stats_t *stats,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id),
void (*waiting_trans_ack_cb_fn) (
int waiting_trans_ack))
{
struct totemsrp_instance *instance;
int res;
instance = malloc (sizeof (struct totemsrp_instance));
if (instance == NULL) {
goto error_exit;
}
totemsrp_instance_initialize (instance);
instance->totemsrp_waiting_trans_ack_cb_fn = waiting_trans_ack_cb_fn;
instance->totemsrp_waiting_trans_ack_cb_fn (1);
stats->srp = &instance->stats;
instance->stats.latest_token = 0;
instance->stats.earliest_token = 0;
instance->totem_config = totem_config;
/*
* Configure logging
*/
instance->totemsrp_log_level_security = totem_config->totem_logging_configuration.log_level_security;
instance->totemsrp_log_level_error = totem_config->totem_logging_configuration.log_level_error;
instance->totemsrp_log_level_warning = totem_config->totem_logging_configuration.log_level_warning;
instance->totemsrp_log_level_notice = totem_config->totem_logging_configuration.log_level_notice;
instance->totemsrp_log_level_debug = totem_config->totem_logging_configuration.log_level_debug;
instance->totemsrp_log_level_trace = totem_config->totem_logging_configuration.log_level_trace;
instance->totemsrp_subsys_id = totem_config->totem_logging_configuration.log_subsys_id;
instance->totemsrp_log_printf = totem_config->totem_logging_configuration.log_printf;
/*
* Configure totem store and load functions
*/
instance->memb_ring_id_create_or_load = totem_config->totem_memb_ring_id_create_or_load;
instance->memb_ring_id_store = totem_config->totem_memb_ring_id_store;
/*
* Initialize local variables for totemsrp
*/
totemip_copy (&instance->mcast_address, &totem_config->interfaces[instance->lowest_active_if].mcast_addr);
/*
* Display totem configuration
*/
log_printf (instance->totemsrp_log_level_debug,
"Token Timeout (%d ms) retransmit timeout (%d ms)",
totem_config->token_timeout, totem_config->token_retransmit_timeout);
if (totem_config->token_warning) {
uint32_t token_warning_ms = totem_config->token_warning * totem_config->token_timeout / 100;
log_printf(instance->totemsrp_log_level_debug,
"Token warning every %d ms (%d%% of Token Timeout)",
token_warning_ms, totem_config->token_warning);
if (token_warning_ms < totem_config->token_retransmit_timeout)
log_printf (LOGSYS_LEVEL_DEBUG,
"The token warning interval (%d ms) is less than the token retransmit timeout (%d ms) "
"which can lead to spurious token warnings. Consider increasing the token_warning parameter.",
token_warning_ms, totem_config->token_retransmit_timeout);
} else {
log_printf(instance->totemsrp_log_level_debug,
"Token warnings disabled");
}
log_printf (instance->totemsrp_log_level_debug,
"token hold (%d ms) retransmits before loss (%d retrans)",
totem_config->token_hold_timeout, totem_config->token_retransmits_before_loss_const);
log_printf (instance->totemsrp_log_level_debug,
"join (%d ms) send_join (%d ms) consensus (%d ms) merge (%d ms)",
totem_config->join_timeout,
totem_config->send_join_timeout,
totem_config->consensus_timeout,
totem_config->merge_timeout);
log_printf (instance->totemsrp_log_level_debug,
"downcheck (%d ms) fail to recv const (%d msgs)",
totem_config->downcheck_timeout, totem_config->fail_to_recv_const);
log_printf (instance->totemsrp_log_level_debug,
"seqno unchanged const (%d rotations) Maximum network MTU %d", totem_config->seqno_unchanged_const, totem_config->net_mtu);
log_printf (instance->totemsrp_log_level_debug,
"window size per rotation (%d messages) maximum messages per rotation (%d messages)",
totem_config->window_size, totem_config->max_messages);
log_printf (instance->totemsrp_log_level_debug,
"missed count const (%d messages)",
totem_config->miss_count_const);
log_printf (instance->totemsrp_log_level_debug,
"send threads (%d threads)", totem_config->threads);
log_printf (instance->totemsrp_log_level_debug,
"heartbeat_failures_allowed (%d)", totem_config->heartbeat_failures_allowed);
log_printf (instance->totemsrp_log_level_debug,
"max_network_delay (%d ms)", totem_config->max_network_delay);
cs_queue_init (&instance->retrans_message_queue, RETRANS_MESSAGE_QUEUE_SIZE_MAX,
sizeof (struct message_item), instance->threaded_mode_enabled);
sq_init (&instance->regular_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
sq_init (&instance->recovery_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
instance->totemsrp_poll_handle = poll_handle;
instance->totemsrp_deliver_fn = deliver_fn;
instance->totemsrp_confchg_fn = confchg_fn;
instance->use_heartbeat = 1;
timer_function_pause_timeout (instance);
if ( totem_config->heartbeat_failures_allowed == 0 ) {
log_printf (instance->totemsrp_log_level_debug,
"HeartBeat is Disabled. To enable set heartbeat_failures_allowed > 0");
instance->use_heartbeat = 0;
}
if (instance->use_heartbeat) {
instance->heartbeat_timeout
= (totem_config->heartbeat_failures_allowed) * totem_config->token_retransmit_timeout
+ totem_config->max_network_delay;
if (instance->heartbeat_timeout >= totem_config->token_timeout) {
log_printf (instance->totemsrp_log_level_debug,
"total heartbeat_timeout (%d ms) is not less than token timeout (%d ms)",
instance->heartbeat_timeout,
totem_config->token_timeout);
log_printf (instance->totemsrp_log_level_debug,
"heartbeat_timeout = heartbeat_failures_allowed * token_retransmit_timeout + max_network_delay");
log_printf (instance->totemsrp_log_level_debug,
"heartbeat timeout should be less than the token timeout. Heartbeat is disabled!!");
instance->use_heartbeat = 0;
}
else {
log_printf (instance->totemsrp_log_level_debug,
"total heartbeat_timeout (%d ms)", instance->heartbeat_timeout);
}
}
res = totemnet_initialize (
poll_handle,
&instance->totemnet_context,
totem_config,
stats->srp,
instance,
main_deliver_fn,
main_iface_change_fn,
totempg_mtu_changed,
target_set_completed);
if (res == -1) {
goto error_exit;
}
instance->my_id.nodeid = instance->totem_config->interfaces[instance->lowest_active_if].boundto.nodeid;
/*
* Must have net_mtu adjusted by totemnet_initialize first
*/
cs_queue_init (&instance->new_message_queue,
MESSAGE_QUEUE_MAX,
sizeof (struct message_item), instance->threaded_mode_enabled);
cs_queue_init (&instance->new_message_queue_trans,
MESSAGE_QUEUE_MAX,
sizeof (struct message_item), instance->threaded_mode_enabled);
totemsrp_callback_token_create (instance,
&instance->token_recv_event_handle,
TOTEM_CALLBACK_TOKEN_RECEIVED,
0,
token_event_stats_collector,
instance);
totemsrp_callback_token_create (instance,
&instance->token_sent_event_handle,
TOTEM_CALLBACK_TOKEN_SENT,
0,
token_event_stats_collector,
instance);
*srp_context = instance;
return (0);
error_exit:
return (-1);
}
void totemsrp_finalize (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
memb_leave_message_send (instance);
totemnet_finalize (instance->totemnet_context);
cs_queue_free (&instance->new_message_queue);
cs_queue_free (&instance->new_message_queue_trans);
cs_queue_free (&instance->retrans_message_queue);
sq_free (&instance->regular_sort_queue);
sq_free (&instance->recovery_sort_queue);
free (instance);
}
int totemsrp_nodestatus_get (
void *srp_context,
unsigned int nodeid,
struct totem_node_status *node_status)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int i;
node_status->version = TOTEM_NODE_STATUS_STRUCTURE_VERSION;
/* Fill in 'reachable' here as the lower level UDP[u] layers don't know */
for (i = 0; i < instance->my_proc_list_entries; i++) {
if (instance->my_proc_list[i].nodeid == nodeid) {
node_status->reachable = 1;
}
}
return totemnet_nodestatus_get(instance->totemnet_context, nodeid, node_status);
}
/*
* Return configured interfaces. interfaces is array of totem_ip addresses allocated by caller,
* with interaces_size number of items. iface_count is final number of interfaces filled by this
* function.
*
* Function returns 0 on success, otherwise if interfaces array is not big enough, -2 is returned,
* and if interface was not found, -1 is returned.
*/
int totemsrp_ifaces_get (
void *srp_context,
unsigned int nodeid,
unsigned int *interface_id,
struct totem_ip_address *interfaces,
unsigned int interfaces_size,
char ***status,
unsigned int *iface_count)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
struct totem_ip_address *iface_ptr = interfaces;
int res = 0;
int i,n;
int num_ifs = 0;
memset(interfaces, 0, sizeof(struct totem_ip_address) * interfaces_size);
*iface_count = INTERFACE_MAX;
for (i=0; i<INTERFACE_MAX; i++) {
for (n=0; n < instance->totem_config->interfaces[i].member_count; n++) {
if (instance->totem_config->interfaces[i].configured &&
instance->totem_config->interfaces[i].member_list[n].nodeid == nodeid) {
memcpy(iface_ptr, &instance->totem_config->interfaces[i].member_list[n], sizeof(struct totem_ip_address));
interface_id[num_ifs] = i;
iface_ptr++;
if (++num_ifs > interfaces_size) {
res = -2;
break;
}
}
}
}
totemnet_ifaces_get(instance->totemnet_context, status, iface_count);
*iface_count = num_ifs;
return (res);
}
int totemsrp_crypto_set (
void *srp_context,
const char *cipher_type,
const char *hash_type)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res;
res = totemnet_crypto_set(instance->totemnet_context, cipher_type, hash_type);
return (res);
}
unsigned int totemsrp_my_nodeid_get (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
unsigned int res;
res = instance->my_id.nodeid;
return (res);
}
int totemsrp_my_family_get (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res;
res = instance->totem_config->interfaces[instance->lowest_active_if].boundto.family;
return (res);
}
/*
* Set operations for use by the membership algorithm
*/
static int srp_addr_equal (const struct srp_addr *a, const struct srp_addr *b)
{
if (a->nodeid == b->nodeid) {
return 1;
}
return 0;
}
static void srp_addr_to_nodeid (
struct totemsrp_instance *instance,
unsigned int *nodeid_out,
struct srp_addr *srp_addr_in,
unsigned int entries)
{
unsigned int i;
for (i = 0; i < entries; i++) {
nodeid_out[i] = srp_addr_in[i].nodeid;
}
}
static struct srp_addr srp_addr_endian_convert (struct srp_addr in)
{
struct srp_addr res;
res.nodeid = swab32 (in.nodeid);
return (res);
}
static void memb_consensus_reset (struct totemsrp_instance *instance)
{
instance->consensus_list_entries = 0;
}
static void memb_set_subtract (
struct srp_addr *out_list, int *out_list_entries,
struct srp_addr *one_list, int one_list_entries,
struct srp_addr *two_list, int two_list_entries)
{
int found = 0;
int i;
int j;
*out_list_entries = 0;
for (i = 0; i < one_list_entries; i++) {
for (j = 0; j < two_list_entries; j++) {
if (srp_addr_equal (&one_list[i], &two_list[j])) {
found = 1;
break;
}
}
if (found == 0) {
out_list[*out_list_entries] = one_list[i];
*out_list_entries = *out_list_entries + 1;
}
found = 0;
}
}
/*
* Set consensus for a specific processor
*/
static void memb_consensus_set (
struct totemsrp_instance *instance,
const struct srp_addr *addr)
{
int found = 0;
int i;
for (i = 0; i < instance->consensus_list_entries; i++) {
if (srp_addr_equal(addr, &instance->consensus_list[i].addr)) {
found = 1;
break; /* found entry */
}
}
instance->consensus_list[i].addr = *addr;
instance->consensus_list[i].set = 1;
if (found == 0) {
instance->consensus_list_entries++;
}
return;
}
/*
* Is consensus set for a specific processor
*/
static int memb_consensus_isset (
struct totemsrp_instance *instance,
const struct srp_addr *addr)
{
int i;
for (i = 0; i < instance->consensus_list_entries; i++) {
if (srp_addr_equal (addr, &instance->consensus_list[i].addr)) {
return (instance->consensus_list[i].set);
}
}
return (0);
}
/*
* Is consensus agreed upon based upon consensus database
*/
static int memb_consensus_agreed (
struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int agreed = 1;
int i;
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
for (i = 0; i < token_memb_entries; i++) {
if (memb_consensus_isset (instance, &token_memb[i]) == 0) {
agreed = 0;
break;
}
}
if (agreed && instance->failed_to_recv == 1) {
/*
* Both nodes agreed on our failure. We don't care how many proc list items left because we
* will create single ring anyway.
*/
return (agreed);
}
assert (token_memb_entries >= 1);
return (agreed);
}
static void memb_consensus_notset (
struct totemsrp_instance *instance,
struct srp_addr *no_consensus_list,
int *no_consensus_list_entries,
struct srp_addr *comparison_list,
int comparison_list_entries)
{
int i;
*no_consensus_list_entries = 0;
for (i = 0; i < instance->my_proc_list_entries; i++) {
if (memb_consensus_isset (instance, &instance->my_proc_list[i]) == 0) {
no_consensus_list[*no_consensus_list_entries] = instance->my_proc_list[i];
*no_consensus_list_entries = *no_consensus_list_entries + 1;
}
}
}
/*
* Is set1 equal to set2 Entries can be in different orders
*/
static int memb_set_equal (
struct srp_addr *set1, int set1_entries,
struct srp_addr *set2, int set2_entries)
{
int i;
int j;
int found = 0;
if (set1_entries != set2_entries) {
return (0);
}
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (srp_addr_equal (&set1[j], &set2[i])) {
found = 1;
break;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* Is subset fully contained in fullset
*/
static int memb_set_subset (
const struct srp_addr *subset, int subset_entries,
const struct srp_addr *fullset, int fullset_entries)
{
int i;
int j;
int found = 0;
if (subset_entries > fullset_entries) {
return (0);
}
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < fullset_entries; j++) {
if (srp_addr_equal (&subset[i], &fullset[j])) {
found = 1;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* merge subset into fullset taking care not to add duplicates
*/
static void memb_set_merge (
const struct srp_addr *subset, int subset_entries,
struct srp_addr *fullset, int *fullset_entries)
{
int found = 0;
int i;
int j;
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < *fullset_entries; j++) {
if (srp_addr_equal (&fullset[j], &subset[i])) {
found = 1;
break;
}
}
if (found == 0) {
fullset[*fullset_entries] = subset[i];
*fullset_entries = *fullset_entries + 1;
}
found = 0;
}
return;
}
static void memb_set_and_with_ring_id (
struct srp_addr *set1,
struct memb_ring_id *set1_ring_ids,
int set1_entries,
struct srp_addr *set2,
int set2_entries,
struct memb_ring_id *old_ring_id,
struct srp_addr *and,
int *and_entries)
{
int i;
int j;
int found = 0;
*and_entries = 0;
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (srp_addr_equal (&set1[j], &set2[i])) {
if (memcmp (&set1_ring_ids[j], old_ring_id, sizeof (struct memb_ring_id)) == 0) {
found = 1;
}
break;
}
}
if (found) {
and[*and_entries] = set1[j];
*and_entries = *and_entries + 1;
}
found = 0;
}
return;
}
static void memb_set_log(
struct totemsrp_instance *instance,
int level,
const char *string,
struct srp_addr *list,
int list_entries)
{
char int_buf[32];
char list_str[512];
int i;
memset(list_str, 0, sizeof(list_str));
for (i = 0; i < list_entries; i++) {
if (i == 0) {
snprintf(int_buf, sizeof(int_buf), CS_PRI_NODE_ID, list[i].nodeid);
} else {
snprintf(int_buf, sizeof(int_buf), "," CS_PRI_NODE_ID, list[i].nodeid);
}
if (strlen(list_str) + strlen(int_buf) >= sizeof(list_str)) {
break ;
}
strcat(list_str, int_buf);
}
log_printf(level, "List '%s' contains %d entries: %s", string, list_entries, list_str);
}
static void my_leave_memb_clear(
struct totemsrp_instance *instance)
{
memset(instance->my_leave_memb_list, 0, sizeof(instance->my_leave_memb_list));
instance->my_leave_memb_entries = 0;
}
static unsigned int my_leave_memb_match(
struct totemsrp_instance *instance,
unsigned int nodeid)
{
int i;
unsigned int ret = 0;
for (i = 0; i < instance->my_leave_memb_entries; i++){
if (instance->my_leave_memb_list[i] == nodeid){
ret = nodeid;
break;
}
}
return ret;
}
static void my_leave_memb_set(
struct totemsrp_instance *instance,
unsigned int nodeid)
{
int i, found = 0;
for (i = 0; i < instance->my_leave_memb_entries; i++){
if (instance->my_leave_memb_list[i] == nodeid){
found = 1;
break;
}
}
if (found == 1) {
return;
}
if (instance->my_leave_memb_entries < (PROCESSOR_COUNT_MAX - 1)) {
instance->my_leave_memb_list[instance->my_leave_memb_entries] = nodeid;
instance->my_leave_memb_entries++;
} else {
log_printf (instance->totemsrp_log_level_warning,
"Cannot set LEAVE nodeid=" CS_PRI_NODE_ID, nodeid);
}
}
static void *totemsrp_buffer_alloc (struct totemsrp_instance *instance)
{
assert (instance != NULL);
return totemnet_buffer_alloc (instance->totemnet_context);
}
static void totemsrp_buffer_release (struct totemsrp_instance *instance, void *ptr)
{
assert (instance != NULL);
totemnet_buffer_release (instance->totemnet_context, ptr);
}
static void reset_token_retransmit_timeout (struct totemsrp_instance *instance)
{
int32_t res;
qb_loop_timer_del (instance->totemsrp_poll_handle,
instance->timer_orf_token_retransmit_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->token_retransmit_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
timer_function_token_retransmit_timeout,
&instance->timer_orf_token_retransmit_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "reset_token_retransmit_timeout - qb_loop_timer_add error : %d", res);
}
}
static void start_merge_detect_timeout (struct totemsrp_instance *instance)
{
int32_t res;
if (instance->my_merge_detect_timeout_outstanding == 0) {
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->merge_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
timer_function_merge_detect_timeout,
&instance->timer_merge_detect_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "start_merge_detect_timeout - qb_loop_timer_add error : %d", res);
}
instance->my_merge_detect_timeout_outstanding = 1;
}
}
static void cancel_merge_detect_timeout (struct totemsrp_instance *instance)
{
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_merge_detect_timeout);
instance->my_merge_detect_timeout_outstanding = 0;
}
/*
* ring_state_* is used to save and restore the sort queue
* state when a recovery operation fails (and enters gather)
*/
static void old_ring_state_save (struct totemsrp_instance *instance)
{
if (instance->old_ring_state_saved == 0) {
instance->old_ring_state_saved = 1;
memcpy (&instance->my_old_ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
instance->old_ring_state_aru = instance->my_aru;
instance->old_ring_state_high_seq_received = instance->my_high_seq_received;
log_printf (instance->totemsrp_log_level_debug,
"Saving state aru %x high seq received %x",
instance->my_aru, instance->my_high_seq_received);
}
}
static void old_ring_state_restore (struct totemsrp_instance *instance)
{
instance->my_aru = instance->old_ring_state_aru;
instance->my_high_seq_received = instance->old_ring_state_high_seq_received;
log_printf (instance->totemsrp_log_level_debug,
"Restoring instance->my_aru %x my high seq received %x",
instance->my_aru, instance->my_high_seq_received);
}
static void old_ring_state_reset (struct totemsrp_instance *instance)
{
log_printf (instance->totemsrp_log_level_debug,
"Resetting old ring state");
instance->old_ring_state_saved = 0;
}
static void reset_pause_timeout (struct totemsrp_instance *instance)
{
int32_t res;
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_pause_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->token_timeout * QB_TIME_NS_IN_MSEC / 5,
(void *)instance,
timer_function_pause_timeout,
&instance->timer_pause_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "reset_pause_timeout - qb_loop_timer_add error : %d", res);
}
}
static void reset_token_warning (struct totemsrp_instance *instance) {
int32_t res;
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_orf_token_warning);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->token_warning * instance->totem_config->token_timeout / 100 * QB_TIME_NS_IN_MSEC,
(void *)instance,
timer_function_orf_token_warning,
&instance->timer_orf_token_warning);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "reset_token_warning - qb_loop_timer_add error : %d", res);
}
}
static void reset_token_timeout (struct totemsrp_instance *instance) {
int32_t res;
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_orf_token_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->token_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
timer_function_orf_token_timeout,
&instance->timer_orf_token_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "reset_token_timeout - qb_loop_timer_add error : %d", res);
}
if (instance->totem_config->token_warning)
reset_token_warning(instance);
}
static void reset_heartbeat_timeout (struct totemsrp_instance *instance) {
int32_t res;
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_heartbeat_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->heartbeat_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
timer_function_heartbeat_timeout,
&instance->timer_heartbeat_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "reset_heartbeat_timeout - qb_loop_timer_add error : %d", res);
}
}
static void cancel_token_warning (struct totemsrp_instance *instance) {
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_orf_token_warning);
}
static void cancel_token_timeout (struct totemsrp_instance *instance) {
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_orf_token_timeout);
if (instance->totem_config->token_warning)
cancel_token_warning(instance);
}
static void cancel_heartbeat_timeout (struct totemsrp_instance *instance) {
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_heartbeat_timeout);
}
static void cancel_token_retransmit_timeout (struct totemsrp_instance *instance)
{
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->timer_orf_token_retransmit_timeout);
}
static void start_token_hold_retransmit_timeout (struct totemsrp_instance *instance)
{
int32_t res;
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->token_hold_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
timer_function_token_hold_retransmit_timeout,
&instance->timer_orf_token_hold_retransmit_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "start_token_hold_retransmit_timeout - qb_loop_timer_add error : %d", res);
}
}
static void cancel_token_hold_retransmit_timeout (struct totemsrp_instance *instance)
{
qb_loop_timer_del (instance->totemsrp_poll_handle,
instance->timer_orf_token_hold_retransmit_timeout);
}
static void memb_state_consensus_timeout_expired (
struct totemsrp_instance *instance)
{
struct srp_addr no_consensus_list[PROCESSOR_COUNT_MAX];
int no_consensus_list_entries;
instance->stats.consensus_timeouts++;
if (memb_consensus_agreed (instance)) {
memb_consensus_reset (instance);
memb_consensus_set (instance, &instance->my_id);
reset_token_timeout (instance); // REVIEWED
} else {
memb_consensus_notset (
instance,
no_consensus_list,
&no_consensus_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries);
memb_set_merge (no_consensus_list, no_consensus_list_entries,
instance->my_failed_list, &instance->my_failed_list_entries);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_CONSENSUS_TIMEOUT);
}
}
static void memb_join_message_send (struct totemsrp_instance *instance);
static void memb_merge_detect_transmit (struct totemsrp_instance *instance);
/*
* Timers used for various states of the membership algorithm
*/
static void timer_function_pause_timeout (void *data)
{
struct totemsrp_instance *instance = data;
instance->pause_timestamp = qb_util_nano_current_get ();
reset_pause_timeout (instance);
}
static void memb_recovery_state_token_loss (struct totemsrp_instance *instance)
{
old_ring_state_restore (instance);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_RECOVERY_STATE);
instance->stats.recovery_token_lost++;
}
static void timer_function_orf_token_warning (void *data)
{
struct totemsrp_instance *instance = data;
uint64_t tv_diff;
/* need to protect against the case where token_warning is set to 0 dynamically */
if (instance->totem_config->token_warning) {
tv_diff = qb_util_nano_current_get () / QB_TIME_NS_IN_MSEC -
instance->stats.token[instance->stats.latest_token].rx;
log_printf (instance->totemsrp_log_level_notice,
- "Token has not been received in %d ms ", (unsigned int) tv_diff);
+ "Token has not been received in %"PRIu64" ms", tv_diff);
reset_token_warning(instance);
} else {
cancel_token_warning(instance);
}
}
static void timer_function_orf_token_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the OPERATIONAL state.");
log_printf (instance->totemsrp_log_level_notice,
"A processor failed, forming new configuration:"
" token timed out (%ums), waiting %ums for consensus.",
instance->totem_config->token_timeout,
instance->totem_config->consensus_timeout);
totemnet_iface_check (instance->totemnet_context);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_OPERATIONAL_STATE);
instance->stats.operational_token_lost++;
break;
case MEMB_STATE_GATHER:
log_printf (instance->totemsrp_log_level_debug,
"The consensus timeout expired (%ums).",
instance->totem_config->consensus_timeout);
memb_state_consensus_timeout_expired (instance);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_THE_CONSENSUS_TIMEOUT_EXPIRED);
instance->stats.gather_token_lost++;
break;
case MEMB_STATE_COMMIT:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the COMMIT state.");
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_THE_TOKEN_WAS_LOST_IN_THE_COMMIT_STATE);
instance->stats.commit_token_lost++;
break;
case MEMB_STATE_RECOVERY:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the RECOVERY state.");
memb_recovery_state_token_loss (instance);
instance->orf_token_discard = 1;
break;
}
}
static void timer_function_heartbeat_timeout (void *data)
{
struct totemsrp_instance *instance = data;
log_printf (instance->totemsrp_log_level_debug,
"HeartBeat Timer expired Invoking token loss mechanism in state %d ", instance->memb_state);
timer_function_orf_token_timeout(data);
}
static void memb_timer_function_state_gather (void *data)
{
struct totemsrp_instance *instance = data;
int32_t res;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
assert (0); /* this should never happen */
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
memb_join_message_send (instance);
/*
* Restart the join timeout
`*/
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->join_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
memb_timer_function_state_gather,
&instance->memb_timer_state_gather_join_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "memb_timer_function_state_gather - qb_loop_timer_add error : %d", res);
}
break;
}
}
static void memb_timer_function_gather_consensus_timeout (void *data)
{
struct totemsrp_instance *instance = data;
memb_state_consensus_timeout_expired (instance);
}
static void deliver_messages_from_recovery_to_regular (struct totemsrp_instance *instance)
{
unsigned int i;
struct sort_queue_item *recovery_message_item;
struct sort_queue_item regular_message_item;
unsigned int range = 0;
int res;
void *ptr;
struct mcast *mcast;
log_printf (instance->totemsrp_log_level_debug,
"recovery to regular %x-%x", SEQNO_START_MSG + 1, instance->my_aru);
range = instance->my_aru - SEQNO_START_MSG;
/*
* Move messages from recovery to regular sort queue
*/
// todo should i be initialized to 0 or 1 ?
for (i = 1; i <= range; i++) {
res = sq_item_get (&instance->recovery_sort_queue,
i + SEQNO_START_MSG, &ptr);
if (res != 0) {
continue;
}
recovery_message_item = ptr;
/*
* Convert recovery message into regular message
*/
mcast = recovery_message_item->mcast;
if (mcast->header.encapsulated == MESSAGE_ENCAPSULATED) {
/*
* Message is a recovery message encapsulated
* in a new ring message
*/
regular_message_item.mcast =
(struct mcast *)(((char *)recovery_message_item->mcast) + sizeof (struct mcast));
regular_message_item.msg_len =
recovery_message_item->msg_len - sizeof (struct mcast);
mcast = regular_message_item.mcast;
} else {
/*
* TODO this case shouldn't happen
*/
continue;
}
log_printf (instance->totemsrp_log_level_debug,
"comparing if ring id is for this processors old ring seqno " CS_PRI_RING_ID_SEQ,
(uint64_t)mcast->seq);
/*
* Only add this message to the regular sort
* queue if it was originated with the same ring
* id as the previous ring
*/
if (memcmp (&instance->my_old_ring_id, &mcast->ring_id,
sizeof (struct memb_ring_id)) == 0) {
res = sq_item_inuse (&instance->regular_sort_queue, mcast->seq);
if (res == 0) {
sq_item_add (&instance->regular_sort_queue,
&regular_message_item, mcast->seq);
if (sq_lt_compare (instance->old_ring_state_high_seq_received, mcast->seq)) {
instance->old_ring_state_high_seq_received = mcast->seq;
}
}
} else {
log_printf (instance->totemsrp_log_level_debug,
"-not adding msg with seq no " CS_PRI_RING_ID_SEQ, (uint64_t)mcast->seq);
}
}
}
/*
* Change states in the state machine of the membership algorithm
*/
static void memb_state_operational_enter (struct totemsrp_instance *instance)
{
struct srp_addr joined_list[PROCESSOR_COUNT_MAX];
int joined_list_entries = 0;
unsigned int aru_save;
unsigned int joined_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int trans_memb_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int new_memb_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int left_list[PROCESSOR_COUNT_MAX];
unsigned int i;
unsigned int res;
char left_node_msg[1024];
char joined_node_msg[1024];
char failed_node_msg[1024];
instance->originated_orf_token = 0;
memb_consensus_reset (instance);
old_ring_state_reset (instance);
deliver_messages_from_recovery_to_regular (instance);
log_printf (instance->totemsrp_log_level_trace,
"Delivering to app %x to %x",
instance->my_high_delivered + 1, instance->old_ring_state_high_seq_received);
aru_save = instance->my_aru;
instance->my_aru = instance->old_ring_state_aru;
messages_deliver_to_app (instance, 0, instance->old_ring_state_high_seq_received);
/*
* Calculate joined and left list
*/
memb_set_subtract (instance->my_left_memb_list,
&instance->my_left_memb_entries,
instance->my_memb_list, instance->my_memb_entries,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
memb_set_subtract (joined_list, &joined_list_entries,
instance->my_new_memb_list, instance->my_new_memb_entries,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
/*
* Install new membership
*/
instance->my_memb_entries = instance->my_new_memb_entries;
memcpy (&instance->my_memb_list, instance->my_new_memb_list,
sizeof (struct srp_addr) * instance->my_memb_entries);
instance->last_released = 0;
instance->my_set_retrans_flg = 0;
/*
* Deliver transitional configuration to application
*/
srp_addr_to_nodeid (instance, left_list, instance->my_left_memb_list,
instance->my_left_memb_entries);
srp_addr_to_nodeid (instance, trans_memb_list_totemip,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
instance->totemsrp_confchg_fn (TOTEM_CONFIGURATION_TRANSITIONAL,
trans_memb_list_totemip, instance->my_trans_memb_entries,
left_list, instance->my_left_memb_entries,
0, 0, &instance->my_ring_id);
/*
* Switch new totemsrp messages queue. Messages sent from now on are stored
* in different queue so synchronization messages are delivered first. Totempg
* buffers will be switched later.
*/
instance->waiting_trans_ack = 1;
// TODO we need to filter to ensure we only deliver those
// messages which are part of instance->my_deliver_memb
messages_deliver_to_app (instance, 1, instance->old_ring_state_high_seq_received);
/*
* Switch totempg buffers. This used to be right after
* instance->waiting_trans_ack = 1;
* line. This was causing problem, because there may be not yet
* processed parts of messages in totempg buffers.
* So when buffers were switched and recovered messages
* got delivered it was not possible to assemble them.
*/
instance->totemsrp_waiting_trans_ack_cb_fn (1);
instance->my_aru = aru_save;
/*
* Deliver regular configuration to application
*/
srp_addr_to_nodeid (instance, new_memb_list_totemip,
instance->my_new_memb_list, instance->my_new_memb_entries);
srp_addr_to_nodeid (instance, joined_list_totemip, joined_list,
joined_list_entries);
instance->totemsrp_confchg_fn (TOTEM_CONFIGURATION_REGULAR,
new_memb_list_totemip, instance->my_new_memb_entries,
0, 0,
joined_list_totemip, joined_list_entries, &instance->my_ring_id);
/*
* The recovery sort queue now becomes the regular
* sort queue. It is necessary to copy the state
* into the regular sort queue.
*/
sq_copy (&instance->regular_sort_queue, &instance->recovery_sort_queue);
instance->my_last_aru = SEQNO_START_MSG;
/* When making my_proc_list smaller, ensure that the
* now non-used entries are zero-ed out. There are some suspect
* assert's that assume that there is always 2 entries in the list.
* These fail when my_proc_list is reduced to 1 entry (and the
* valid [0] entry is the same as the 'unused' [1] entry).
*/
memset(instance->my_proc_list, 0,
sizeof (struct srp_addr) * instance->my_proc_list_entries);
instance->my_proc_list_entries = instance->my_new_memb_entries;
memcpy (instance->my_proc_list, instance->my_new_memb_list,
sizeof (struct srp_addr) * instance->my_memb_entries);
instance->my_failed_list_entries = 0;
/*
* TODO Not exactly to spec
*
* At the entry to this function all messages without a gap are
* deliered.
*
* This code throw away messages from the last gap in the sort queue
* to my_high_seq_received
*
* What should really happen is we should deliver all messages up to
* a gap, then delier the transitional configuration, then deliver
* the messages between the first gap and my_high_seq_received, then
* deliver a regular configuration, then deliver the regular
* configuration
*
* Unfortunately totempg doesn't appear to like this operating mode
* which needs more inspection
*/
i = instance->my_high_seq_received + 1;
do {
void *ptr;
i -= 1;
res = sq_item_get (&instance->regular_sort_queue, i, &ptr);
if (i == 0) {
break;
}
} while (res);
instance->my_high_delivered = i;
for (i = 0; i <= instance->my_high_delivered; i++) {
void *ptr;
res = sq_item_get (&instance->regular_sort_queue, i, &ptr);
if (res == 0) {
struct sort_queue_item *regular_message;
regular_message = ptr;
free (regular_message->mcast);
}
}
sq_items_release (&instance->regular_sort_queue, instance->my_high_delivered);
instance->last_released = instance->my_high_delivered;
if (joined_list_entries) {
int sptr = 0;
sptr += snprintf(joined_node_msg, sizeof(joined_node_msg)-sptr, " joined:");
for (i=0; i< joined_list_entries; i++) {
sptr += snprintf(joined_node_msg+sptr, sizeof(joined_node_msg)-sptr, " " CS_PRI_NODE_ID, joined_list_totemip[i]);
}
}
else {
joined_node_msg[0] = '\0';
}
if (instance->my_left_memb_entries) {
int sptr = 0;
int sptr2 = 0;
sptr += snprintf(left_node_msg, sizeof(left_node_msg)-sptr, " left:");
for (i=0; i< instance->my_left_memb_entries; i++) {
sptr += snprintf(left_node_msg+sptr, sizeof(left_node_msg)-sptr, " " CS_PRI_NODE_ID, left_list[i]);
}
for (i=0; i< instance->my_left_memb_entries; i++) {
if (my_leave_memb_match(instance, left_list[i]) == 0) {
if (sptr2 == 0) {
sptr2 += snprintf(failed_node_msg, sizeof(failed_node_msg)-sptr2, " failed:");
}
sptr2 += snprintf(failed_node_msg+sptr2, sizeof(left_node_msg)-sptr2, " " CS_PRI_NODE_ID, left_list[i]);
}
}
if (sptr2 == 0) {
failed_node_msg[0] = '\0';
}
}
else {
left_node_msg[0] = '\0';
failed_node_msg[0] = '\0';
}
my_leave_memb_clear(instance);
log_printf (instance->totemsrp_log_level_debug,
"entering OPERATIONAL state.");
log_printf (instance->totemsrp_log_level_notice,
"A new membership (" CS_PRI_RING_ID ") was formed. Members%s%s",
instance->my_ring_id.rep,
(uint64_t)instance->my_ring_id.seq,
joined_node_msg,
left_node_msg);
if (strlen(failed_node_msg)) {
log_printf (instance->totemsrp_log_level_notice,
"Failed to receive the leave message.%s",
failed_node_msg);
}
instance->memb_state = MEMB_STATE_OPERATIONAL;
instance->stats.operational_entered++;
instance->stats.continuous_gather = 0;
instance->my_received_flg = 1;
reset_pause_timeout (instance);
/*
* Save ring id information from this configuration to determine
* which processors are transitioning from old regular configuration
* in to new regular configuration on the next configuration change
*/
memcpy (&instance->my_old_ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
return;
}
static void memb_state_gather_enter (
struct totemsrp_instance *instance,
enum gather_state_from gather_from)
{
int32_t res;
instance->orf_token_discard = 1;
instance->originated_orf_token = 0;
memb_set_merge (
&instance->my_id, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_join_message_send (instance);
/*
* Restart the join timeout
*/
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->join_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
memb_timer_function_state_gather,
&instance->memb_timer_state_gather_join_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "memb_state_gather_enter - qb_loop_timer_add error(1) : %d", res);
}
/*
* Restart the consensus timeout
*/
qb_loop_timer_del (instance->totemsrp_poll_handle,
instance->memb_timer_state_gather_consensus_timeout);
res = qb_loop_timer_add (instance->totemsrp_poll_handle,
QB_LOOP_MED,
instance->totem_config->consensus_timeout*QB_TIME_NS_IN_MSEC,
(void *)instance,
memb_timer_function_gather_consensus_timeout,
&instance->memb_timer_state_gather_consensus_timeout);
if (res != 0) {
log_printf(instance->totemsrp_log_level_error, "memb_state_gather_enter - qb_loop_timer_add error(2) : %d", res);
}
/*
* Cancel the token loss and token retransmission timeouts
*/
cancel_token_retransmit_timeout (instance); // REVIEWED
cancel_token_timeout (instance); // REVIEWED
cancel_merge_detect_timeout (instance);
memb_consensus_reset (instance);
memb_consensus_set (instance, &instance->my_id);
log_printf (instance->totemsrp_log_level_debug,
"entering GATHER state from %d(%s).",
gather_from, gsfrom_to_msg(gather_from));
instance->memb_state = MEMB_STATE_GATHER;
instance->stats.gather_entered++;
if (gather_from == TOTEMSRP_GSFROM_THE_CONSENSUS_TIMEOUT_EXPIRED) {
/*
* State 3 means gather, so we are continuously gathering.
*/
instance->stats.continuous_gather++;
}
return;
}
static void timer_function_token_retransmit_timeout (void *data);
static void target_set_completed (
void *context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
memb_state_commit_token_send (instance);
}
static void memb_state_commit_enter (
struct totemsrp_instance *instance)
{
old_ring_state_save (instance);
memb_state_commit_token_update (instance);
memb_state_commit_token_target_set (instance);
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
instance->memb_timer_state_gather_join_timeout = 0;
qb_loop_timer_del (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_consensus_timeout);
instance->memb_timer_state_gather_consensus_timeout = 0;
memb_ring_id_set (instance, &instance->commit_token->ring_id);
instance->memb_ring_id_store (&instance->my_ring_id, instance->my_id.nodeid);
instance->token_ring_id_seq = instance->my_ring_id.seq;
log_printf (instance->totemsrp_log_level_debug,
"entering COMMIT state.");
instance->memb_state = MEMB_STATE_COMMIT;
reset_token_retransmit_timeout (instance); // REVIEWED
reset_token_timeout (instance); // REVIEWED
instance->stats.commit_entered++;
instance->stats.continuous_gather = 0;
/*
* reset all flow control variables since we are starting a new ring
*/
instance->my_trc = 0;
instance->my_pbl = 0;
instance->my_cbl = 0;
/*
* commit token sent after callback that token target has been set
*/
}
static void memb_state_recovery_enter (
struct totemsrp_instance *instance,
struct memb_commit_token *commit_token)
{
int i;
int local_received_flg = 1;
unsigned int low_ring_aru;
unsigned int range = 0;
unsigned int messages_originated = 0;
const struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
struct memb_ring_id my_new_memb_ring_id_list[PROCESSOR_COUNT_MAX];
addr = (const struct srp_addr *)commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + commit_token->addr_entries);
log_printf (instance->totemsrp_log_level_debug,
"entering RECOVERY state.");
instance->orf_token_discard = 0;
instance->my_high_ring_delivered = 0;
sq_reinit (&instance->recovery_sort_queue, SEQNO_START_MSG);
cs_queue_reinit (&instance->retrans_message_queue);
low_ring_aru = instance->old_ring_state_high_seq_received;
memb_state_commit_token_send_recovery (instance, commit_token);
instance->my_token_seq = SEQNO_START_TOKEN - 1;
/*
* Build regular configuration
*/
totemnet_processor_count_set (
instance->totemnet_context,
commit_token->addr_entries);
/*
* Build transitional configuration
*/
for (i = 0; i < instance->my_new_memb_entries; i++) {
memcpy (&my_new_memb_ring_id_list[i],
&memb_list[i].ring_id,
sizeof (struct memb_ring_id));
}
memb_set_and_with_ring_id (
instance->my_new_memb_list,
my_new_memb_ring_id_list,
instance->my_new_memb_entries,
instance->my_memb_list,
instance->my_memb_entries,
&instance->my_old_ring_id,
instance->my_trans_memb_list,
&instance->my_trans_memb_entries);
for (i = 0; i < instance->my_trans_memb_entries; i++) {
log_printf (instance->totemsrp_log_level_debug,
"TRANS [%d] member " CS_PRI_NODE_ID ":", i, instance->my_trans_memb_list[i].nodeid);
}
for (i = 0; i < instance->my_new_memb_entries; i++) {
log_printf (instance->totemsrp_log_level_debug,
"position [%d] member " CS_PRI_NODE_ID ":", i, addr[i].nodeid);
log_printf (instance->totemsrp_log_level_debug,
"previous ringid (" CS_PRI_RING_ID ")",
memb_list[i].ring_id.rep, (uint64_t)memb_list[i].ring_id.seq);
log_printf (instance->totemsrp_log_level_debug,
"aru %x high delivered %x received flag %d",
memb_list[i].aru,
memb_list[i].high_delivered,
memb_list[i].received_flg);
// assert (totemip_print (&memb_list[i].ring_id.rep) != 0);
}
/*
* Determine if any received flag is false
*/
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&instance->my_new_memb_list[i], 1,
instance->my_trans_memb_list, instance->my_trans_memb_entries) &&
memb_list[i].received_flg == 0) {
instance->my_deliver_memb_entries = instance->my_trans_memb_entries;
memcpy (instance->my_deliver_memb_list, instance->my_trans_memb_list,
sizeof (struct srp_addr) * instance->my_trans_memb_entries);
local_received_flg = 0;
break;
}
}
if (local_received_flg == 1) {
goto no_originate;
} /* Else originate messages if we should */
/*
* Calculate my_low_ring_aru, instance->my_high_ring_delivered for the transitional membership
*/
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&instance->my_new_memb_list[i], 1,
instance->my_deliver_memb_list,
instance->my_deliver_memb_entries) &&
memcmp (&instance->my_old_ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (memb_list[i].aru, low_ring_aru)) {
low_ring_aru = memb_list[i].aru;
}
if (sq_lt_compare (instance->my_high_ring_delivered, memb_list[i].high_delivered)) {
instance->my_high_ring_delivered = memb_list[i].high_delivered;
}
}
}
/*
* Copy all old ring messages to instance->retrans_message_queue
*/
range = instance->old_ring_state_high_seq_received - low_ring_aru;
if (range == 0) {
/*
* No messages to copy
*/
goto no_originate;
}
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
log_printf (instance->totemsrp_log_level_debug,
"copying all old ring messages from %x-%x.",
low_ring_aru + 1, instance->old_ring_state_high_seq_received);
for (i = 1; i <= range; i++) {
struct sort_queue_item *sort_queue_item;
struct message_item message_item;
void *ptr;
int res;
res = sq_item_get (&instance->regular_sort_queue,
low_ring_aru + i, &ptr);
if (res != 0) {
continue;
}
sort_queue_item = ptr;
messages_originated++;
memset (&message_item, 0, sizeof (struct message_item));
// TODO LEAK
message_item.mcast = totemsrp_buffer_alloc (instance);
assert (message_item.mcast);
memset(message_item.mcast, 0, sizeof (struct mcast));
message_item.mcast->header.magic = TOTEM_MH_MAGIC;
message_item.mcast->header.version = TOTEM_MH_VERSION;
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
message_item.mcast->system_from = instance->my_id;
message_item.mcast->header.encapsulated = MESSAGE_ENCAPSULATED;
message_item.mcast->header.nodeid = instance->my_id.nodeid;
assert (message_item.mcast->header.nodeid);
memcpy (&message_item.mcast->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
message_item.msg_len = sort_queue_item->msg_len + sizeof (struct mcast);
memcpy (((char *)message_item.mcast) + sizeof (struct mcast),
sort_queue_item->mcast,
sort_queue_item->msg_len);
cs_queue_item_add (&instance->retrans_message_queue, &message_item);
}
log_printf (instance->totemsrp_log_level_debug,
"Originated %d messages in RECOVERY.", messages_originated);
goto originated;
no_originate:
log_printf (instance->totemsrp_log_level_debug,
"Did not need to originate any messages in recovery.");
originated:
instance->my_aru = SEQNO_START_MSG;
instance->my_aru_count = 0;
instance->my_seq_unchanged = 0;
instance->my_high_seq_received = SEQNO_START_MSG;
instance->my_install_seq = SEQNO_START_MSG;
instance->last_released = SEQNO_START_MSG;
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
instance->memb_state = MEMB_STATE_RECOVERY;
instance->stats.recovery_entered++;
instance->stats.continuous_gather = 0;
return;
}
void totemsrp_event_signal (void *srp_context, enum totem_event_type type, int value)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
token_hold_cancel_send (instance);
return;
}
int totemsrp_mcast (
void *srp_context,
struct iovec *iovec,
unsigned int iov_len,
int guarantee)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int i;
struct message_item message_item;
char *addr;
unsigned int addr_idx;
struct cs_queue *queue_use;
if (instance->waiting_trans_ack) {
queue_use = &instance->new_message_queue_trans;
} else {
queue_use = &instance->new_message_queue;
}
if (cs_queue_is_full (queue_use)) {
log_printf (instance->totemsrp_log_level_debug, "queue full");
return (-1);
}
memset (&message_item, 0, sizeof (struct message_item));
/*
* Allocate pending item
*/
message_item.mcast = totemsrp_buffer_alloc (instance);
if (message_item.mcast == 0) {
goto error_mcast;
}
/*
* Set mcast header
*/
memset(message_item.mcast, 0, sizeof (struct mcast));
message_item.mcast->header.magic = TOTEM_MH_MAGIC;
message_item.mcast->header.version = TOTEM_MH_VERSION;
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
message_item.mcast->header.encapsulated = MESSAGE_NOT_ENCAPSULATED;
message_item.mcast->header.nodeid = instance->my_id.nodeid;
assert (message_item.mcast->header.nodeid);
message_item.mcast->guarantee = guarantee;
message_item.mcast->system_from = instance->my_id;
addr = (char *)message_item.mcast;
addr_idx = sizeof (struct mcast);
for (i = 0; i < iov_len; i++) {
memcpy (&addr[addr_idx], iovec[i].iov_base, iovec[i].iov_len);
addr_idx += iovec[i].iov_len;
}
message_item.msg_len = addr_idx;
log_printf (instance->totemsrp_log_level_trace, "mcasted message added to pending queue");
instance->stats.mcast_tx++;
cs_queue_item_add (queue_use, &message_item);
return (0);
error_mcast:
return (-1);
}
/*
* Determine if there is room to queue a new message
*/
int totemsrp_avail (void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int avail;
struct cs_queue *queue_use;
if (instance->waiting_trans_ack) {
queue_use = &instance->new_message_queue_trans;
} else {
queue_use = &instance->new_message_queue;
}
cs_queue_avail (queue_use, &avail);
return (avail);
}
/*
* ORF Token Management
*/
/*
* Recast message to mcast group if it is available
*/
static int orf_token_remcast (
struct totemsrp_instance *instance,
int seq)
{
struct sort_queue_item *sort_queue_item;
int res;
void *ptr;
struct sq *sort_queue;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
res = sq_in_range (sort_queue, seq);
if (res == 0) {
log_printf (instance->totemsrp_log_level_debug, "sq not in range");
return (-1);
}
/*
* Get RTR item at seq, if not available, return
*/
res = sq_item_get (sort_queue, seq, &ptr);
if (res != 0) {
return -1;
}
sort_queue_item = ptr;
totemnet_mcast_noflush_send (
instance->totemnet_context,
sort_queue_item->mcast,
sort_queue_item->msg_len);
return (0);
}
/*
* Free all freeable messages from ring
*/
static void messages_free (
struct totemsrp_instance *instance,
unsigned int token_aru)
{
struct sort_queue_item *regular_message;
unsigned int i;
int res;
int log_release = 0;
unsigned int release_to;
unsigned int range = 0;
release_to = token_aru;
if (sq_lt_compare (instance->my_last_aru, release_to)) {
release_to = instance->my_last_aru;
}
if (sq_lt_compare (instance->my_high_delivered, release_to)) {
release_to = instance->my_high_delivered;
}
/*
* Ensure we dont try release before an already released point
*/
if (sq_lt_compare (release_to, instance->last_released)) {
return;
}
range = release_to - instance->last_released;
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
/*
* Release retransmit list items if group aru indicates they are transmitted
*/
for (i = 1; i <= range; i++) {
void *ptr;
res = sq_item_get (&instance->regular_sort_queue,
instance->last_released + i, &ptr);
if (res == 0) {
regular_message = ptr;
totemsrp_buffer_release (instance, regular_message->mcast);
}
sq_items_release (&instance->regular_sort_queue,
instance->last_released + i);
log_release = 1;
}
instance->last_released += range;
if (log_release) {
log_printf (instance->totemsrp_log_level_trace,
"releasing messages up to and including %x", release_to);
}
}
static void update_aru (
struct totemsrp_instance *instance)
{
unsigned int i;
int res;
struct sq *sort_queue;
unsigned int range;
unsigned int my_aru_saved = 0;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
range = instance->my_high_seq_received - instance->my_aru;
my_aru_saved = instance->my_aru;
for (i = 1; i <= range; i++) {
void *ptr;
res = sq_item_get (sort_queue, my_aru_saved + i, &ptr);
/*
* If hole, stop updating aru
*/
if (res != 0) {
break;
}
}
instance->my_aru += i - 1;
}
/*
* Multicasts pending messages onto the ring (requires orf_token possession)
*/
static int orf_token_mcast (
struct totemsrp_instance *instance,
struct orf_token *token,
int fcc_mcasts_allowed)
{
struct message_item *message_item = 0;
struct cs_queue *mcast_queue;
struct sq *sort_queue;
struct sort_queue_item sort_queue_item;
struct mcast *mcast;
unsigned int fcc_mcast_current;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
mcast_queue = &instance->retrans_message_queue;
sort_queue = &instance->recovery_sort_queue;
reset_token_retransmit_timeout (instance); // REVIEWED
} else {
if (instance->waiting_trans_ack) {
mcast_queue = &instance->new_message_queue_trans;
} else {
mcast_queue = &instance->new_message_queue;
}
sort_queue = &instance->regular_sort_queue;
}
for (fcc_mcast_current = 0; fcc_mcast_current < fcc_mcasts_allowed; fcc_mcast_current++) {
if (cs_queue_is_empty (mcast_queue)) {
break;
}
message_item = (struct message_item *)cs_queue_item_get (mcast_queue);
message_item->mcast->seq = ++token->seq;
message_item->mcast->this_seqno = instance->global_seqno++;
/*
* Build IO vector
*/
memset (&sort_queue_item, 0, sizeof (struct sort_queue_item));
sort_queue_item.mcast = message_item->mcast;
sort_queue_item.msg_len = message_item->msg_len;
mcast = sort_queue_item.mcast;
memcpy (&mcast->ring_id, &instance->my_ring_id, sizeof (struct memb_ring_id));
/*
* Add message to retransmit queue
*/
sq_item_add (sort_queue, &sort_queue_item, message_item->mcast->seq);
totemnet_mcast_noflush_send (
instance->totemnet_context,
message_item->mcast,
message_item->msg_len);
/*
* Delete item from pending queue
*/
cs_queue_item_remove (mcast_queue);
/*
* If messages mcasted, deliver any new messages to totempg
*/
instance->my_high_seq_received = token->seq;
}
update_aru (instance);
/*
* Return 1 if more messages are available for single node clusters
*/
return (fcc_mcast_current);
}
/*
* Remulticasts messages in orf_token's retransmit list (requires orf_token)
* Modify's orf_token's rtr to include retransmits required by this process
*/
static int orf_token_rtr (
struct totemsrp_instance *instance,
struct orf_token *orf_token,
unsigned int *fcc_allowed)
{
unsigned int res;
unsigned int i, j;
unsigned int found;
struct sq *sort_queue;
struct rtr_item *rtr_list;
unsigned int range = 0;
char retransmit_msg[1024];
char value[64];
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
rtr_list = &orf_token->rtr_list[0];
strcpy (retransmit_msg, "Retransmit List: ");
if (orf_token->rtr_list_entries) {
log_printf (instance->totemsrp_log_level_debug,
"Retransmit List %d", orf_token->rtr_list_entries);
for (i = 0; i < orf_token->rtr_list_entries; i++) {
sprintf (value, "%x ", rtr_list[i].seq);
strcat (retransmit_msg, value);
}
strcat (retransmit_msg, "");
log_printf (instance->totemsrp_log_level_notice,
"%s", retransmit_msg);
}
/*
* Retransmit messages on orf_token's RTR list from RTR queue
*/
for (instance->fcc_remcast_current = 0, i = 0;
instance->fcc_remcast_current < *fcc_allowed && i < orf_token->rtr_list_entries;) {
/*
* If this retransmit request isn't from this configuration,
* try next rtr entry
*/
if (memcmp (&rtr_list[i].ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
i += 1;
continue;
}
res = orf_token_remcast (instance, rtr_list[i].seq);
if (res == 0) {
/*
* Multicasted message, so no need to copy to new retransmit list
*/
orf_token->rtr_list_entries -= 1;
assert (orf_token->rtr_list_entries >= 0);
memmove (&rtr_list[i], &rtr_list[i + 1],
sizeof (struct rtr_item) * (orf_token->rtr_list_entries - i));
instance->stats.mcast_retx++;
instance->fcc_remcast_current++;
} else {
i += 1;
}
}
*fcc_allowed = *fcc_allowed - instance->fcc_remcast_current;
/*
* Add messages to retransmit to RTR list
* but only retry if there is room in the retransmit list
*/
range = orf_token->seq - instance->my_aru;
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
for (i = 1; (orf_token->rtr_list_entries < RETRANSMIT_ENTRIES_MAX) &&
(i <= range); i++) {
/*
* Ensure message is within the sort queue range
*/
res = sq_in_range (sort_queue, instance->my_aru + i);
if (res == 0) {
break;
}
/*
* Find if a message is missing from this processor
*/
res = sq_item_inuse (sort_queue, instance->my_aru + i);
if (res == 0) {
/*
* Determine how many times we have missed receiving
* this sequence number. sq_item_miss_count increments
* a counter for the sequence number. The miss count
* will be returned and compared. This allows time for
* delayed multicast messages to be received before
* declaring the message is missing and requesting a
* retransmit.
*/
res = sq_item_miss_count (sort_queue, instance->my_aru + i);
if (res < instance->totem_config->miss_count_const) {
continue;
}
/*
* Determine if missing message is already in retransmit list
*/
found = 0;
for (j = 0; j < orf_token->rtr_list_entries; j++) {
if (instance->my_aru + i == rtr_list[j].seq) {
found = 1;
}
}
if (found == 0) {
/*
* Missing message not found in current retransmit list so add it
*/
memcpy (&rtr_list[orf_token->rtr_list_entries].ring_id,
&instance->my_ring_id, sizeof (struct memb_ring_id));
rtr_list[orf_token->rtr_list_entries].seq = instance->my_aru + i;
orf_token->rtr_list_entries++;
}
}
}
return (instance->fcc_remcast_current);
}
static void token_retransmit (struct totemsrp_instance *instance)
{
totemnet_token_send (instance->totemnet_context,
instance->orf_token_retransmit,
instance->orf_token_retransmit_size);
}
/*
* Retransmit the regular token if no mcast or token has
* been received in retransmit token period retransmit
* the token to the next processor
*/
static void timer_function_token_retransmit_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit (instance);
reset_token_retransmit_timeout (instance); // REVIEWED
break;
}
}
static void timer_function_token_hold_retransmit_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
break;
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit (instance);
break;
}
}
static void timer_function_merge_detect_timeout(void *data)
{
struct totemsrp_instance *instance = data;
instance->my_merge_detect_timeout_outstanding = 0;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
if (instance->my_ring_id.rep == instance->my_id.nodeid) {
memb_merge_detect_transmit (instance);
}
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
case MEMB_STATE_RECOVERY:
break;
}
}
/*
* Send orf_token to next member (requires orf_token)
*/
static int token_send (
struct totemsrp_instance *instance,
struct orf_token *orf_token,
int forward_token)
{
int res = 0;
unsigned int orf_token_size;
orf_token_size = sizeof (struct orf_token) +
(orf_token->rtr_list_entries * sizeof (struct rtr_item));
orf_token->header.nodeid = instance->my_id.nodeid;
memcpy (instance->orf_token_retransmit, orf_token, orf_token_size);
instance->orf_token_retransmit_size = orf_token_size;
assert (orf_token->header.nodeid);
if (forward_token == 0) {
return (0);
}
totemnet_token_send (instance->totemnet_context,
orf_token,
orf_token_size);
return (res);
}
static int token_hold_cancel_send (struct totemsrp_instance *instance)
{
struct token_hold_cancel token_hold_cancel;
/*
* Only cancel if the token is currently held
*/
if (instance->my_token_held == 0) {
return (0);
}
instance->my_token_held = 0;
/*
* Build message
*/
token_hold_cancel.header.magic = TOTEM_MH_MAGIC;
token_hold_cancel.header.version = TOTEM_MH_VERSION;
token_hold_cancel.header.type = MESSAGE_TYPE_TOKEN_HOLD_CANCEL;
token_hold_cancel.header.encapsulated = 0;
token_hold_cancel.header.nodeid = instance->my_id.nodeid;
memcpy (&token_hold_cancel.ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
assert (token_hold_cancel.header.nodeid);
instance->stats.token_hold_cancel_tx++;
totemnet_mcast_flush_send (instance->totemnet_context, &token_hold_cancel,
sizeof (struct token_hold_cancel));
return (0);
}
static int orf_token_send_initial (struct totemsrp_instance *instance)
{
struct orf_token orf_token;
int res;
orf_token.header.magic = TOTEM_MH_MAGIC;
orf_token.header.version = TOTEM_MH_VERSION;
orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN;
orf_token.header.encapsulated = 0;
orf_token.header.nodeid = instance->my_id.nodeid;
assert (orf_token.header.nodeid);
orf_token.seq = SEQNO_START_MSG;
orf_token.token_seq = SEQNO_START_TOKEN;
orf_token.retrans_flg = 1;
instance->my_set_retrans_flg = 1;
instance->stats.orf_token_tx++;
if (cs_queue_is_empty (&instance->retrans_message_queue) == 1) {
orf_token.retrans_flg = 0;
instance->my_set_retrans_flg = 0;
} else {
orf_token.retrans_flg = 1;
instance->my_set_retrans_flg = 1;
}
orf_token.aru = 0;
orf_token.aru = SEQNO_START_MSG - 1;
orf_token.aru_addr = instance->my_id.nodeid;
memcpy (&orf_token.ring_id, &instance->my_ring_id, sizeof (struct memb_ring_id));
orf_token.fcc = 0;
orf_token.backlog = 0;
orf_token.rtr_list_entries = 0;
res = token_send (instance, &orf_token, 1);
return (res);
}
static void memb_state_commit_token_update (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int high_aru;
unsigned int i;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
memcpy (instance->my_new_memb_list, addr,
sizeof (struct srp_addr) * instance->commit_token->addr_entries);
instance->my_new_memb_entries = instance->commit_token->addr_entries;
memcpy (&memb_list[instance->commit_token->memb_index].ring_id,
&instance->my_old_ring_id, sizeof (struct memb_ring_id));
memb_list[instance->commit_token->memb_index].aru = instance->old_ring_state_aru;
/*
* TODO high delivered is really instance->my_aru, but with safe this
* could change?
*/
instance->my_received_flg =
(instance->my_aru == instance->my_high_seq_received);
memb_list[instance->commit_token->memb_index].received_flg = instance->my_received_flg;
memb_list[instance->commit_token->memb_index].high_delivered = instance->my_high_delivered;
/*
* find high aru up to current memb_index for all matching ring ids
* if any ring id matching memb_index has aru less then high aru set
* received flag for that entry to false
*/
high_aru = memb_list[instance->commit_token->memb_index].aru;
for (i = 0; i <= instance->commit_token->memb_index; i++) {
if (memcmp (&memb_list[instance->commit_token->memb_index].ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (high_aru, memb_list[i].aru)) {
high_aru = memb_list[i].aru;
}
}
}
for (i = 0; i <= instance->commit_token->memb_index; i++) {
if (memcmp (&memb_list[instance->commit_token->memb_index].ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (memb_list[i].aru, high_aru)) {
memb_list[i].received_flg = 0;
if (i == instance->commit_token->memb_index) {
instance->my_received_flg = 0;
}
}
}
}
instance->commit_token->header.nodeid = instance->my_id.nodeid;
instance->commit_token->memb_index += 1;
assert (instance->commit_token->memb_index <= instance->commit_token->addr_entries);
assert (instance->commit_token->header.nodeid);
}
static void memb_state_commit_token_target_set (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
/* Totemnet just looks at the node id */
totemnet_token_target_set (
instance->totemnet_context,
addr[instance->commit_token->memb_index %
instance->commit_token->addr_entries].nodeid);
}
static int memb_state_commit_token_send_recovery (
struct totemsrp_instance *instance,
struct memb_commit_token *commit_token)
{
unsigned int commit_token_size;
commit_token->token_seq++;
commit_token->header.nodeid = instance->my_id.nodeid;
commit_token_size = sizeof (struct memb_commit_token) +
((sizeof (struct srp_addr) +
sizeof (struct memb_commit_token_memb_entry)) * commit_token->addr_entries);
/*
* Make a copy for retransmission if necessary
*/
memcpy (instance->orf_token_retransmit, commit_token, commit_token_size);
instance->orf_token_retransmit_size = commit_token_size;
instance->stats.memb_commit_token_tx++;
totemnet_token_send (instance->totemnet_context,
commit_token,
commit_token_size);
/*
* Request retransmission of the commit token in case it is lost
*/
reset_token_retransmit_timeout (instance);
return (0);
}
static int memb_state_commit_token_send (
struct totemsrp_instance *instance)
{
unsigned int commit_token_size;
instance->commit_token->token_seq++;
instance->commit_token->header.nodeid = instance->my_id.nodeid;
commit_token_size = sizeof (struct memb_commit_token) +
((sizeof (struct srp_addr) +
sizeof (struct memb_commit_token_memb_entry)) * instance->commit_token->addr_entries);
/*
* Make a copy for retransmission if necessary
*/
memcpy (instance->orf_token_retransmit, instance->commit_token, commit_token_size);
instance->orf_token_retransmit_size = commit_token_size;
instance->stats.memb_commit_token_tx++;
totemnet_token_send (instance->totemnet_context,
instance->commit_token,
commit_token_size);
/*
* Request retransmission of the commit token in case it is lost
*/
reset_token_retransmit_timeout (instance);
return (0);
}
static int memb_lowest_in_config (struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int i;
unsigned int lowest_nodeid;
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
/*
* find representative by searching for smallest identifier
*/
assert(token_memb_entries > 0);
lowest_nodeid = token_memb[0].nodeid;
for (i = 1; i < token_memb_entries; i++) {
if (lowest_nodeid > token_memb[i].nodeid) {
lowest_nodeid = token_memb[i].nodeid;
}
}
return (lowest_nodeid == instance->my_id.nodeid);
}
static int srp_addr_compare (const void *a, const void *b)
{
const struct srp_addr *srp_a = (const struct srp_addr *)a;
const struct srp_addr *srp_b = (const struct srp_addr *)b;
if (srp_a->nodeid < srp_b->nodeid) {
return -1;
} else if (srp_a->nodeid > srp_b->nodeid) {
return 1;
} else {
return 0;
}
}
static void memb_state_commit_token_create (
struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
int token_memb_entries = 0;
log_printf (instance->totemsrp_log_level_debug,
"Creating commit token because I am the rep.");
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
memset (instance->commit_token, 0, sizeof (struct memb_commit_token));
instance->commit_token->header.magic = TOTEM_MH_MAGIC;
instance->commit_token->header.version = TOTEM_MH_VERSION;
instance->commit_token->header.type = MESSAGE_TYPE_MEMB_COMMIT_TOKEN;
instance->commit_token->header.encapsulated = 0;
instance->commit_token->header.nodeid = instance->my_id.nodeid;
assert (instance->commit_token->header.nodeid);
instance->commit_token->ring_id.rep = instance->my_id.nodeid;
instance->commit_token->ring_id.seq = instance->token_ring_id_seq + 4;
/*
* This qsort is necessary to ensure the commit token traverses
* the ring in the proper order
*/
qsort (token_memb, token_memb_entries, sizeof (struct srp_addr),
srp_addr_compare);
instance->commit_token->memb_index = 0;
instance->commit_token->addr_entries = token_memb_entries;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
memcpy (addr, token_memb,
token_memb_entries * sizeof (struct srp_addr));
memset (memb_list, 0,
sizeof (struct memb_commit_token_memb_entry) * token_memb_entries);
}
static void memb_join_message_send (struct totemsrp_instance *instance)
{
char memb_join_data[40000];
struct memb_join *memb_join = (struct memb_join *)memb_join_data;
char *addr;
unsigned int addr_idx;
size_t msg_len;
memb_join->header.magic = TOTEM_MH_MAGIC;
memb_join->header.version = TOTEM_MH_VERSION;
memb_join->header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join->header.encapsulated = 0;
memb_join->header.nodeid = instance->my_id.nodeid;
assert (memb_join->header.nodeid);
msg_len = sizeof(struct memb_join) +
((instance->my_proc_list_entries + instance->my_failed_list_entries) * sizeof(struct srp_addr));
if (msg_len > sizeof(memb_join_data)) {
log_printf (instance->totemsrp_log_level_error,
"memb_join_message too long. Ignoring message.");
return ;
}
memb_join->ring_seq = instance->my_ring_id.seq;
memb_join->proc_list_entries = instance->my_proc_list_entries;
memb_join->failed_list_entries = instance->my_failed_list_entries;
memb_join->system_from = instance->my_id;
/*
* This mess adds the joined and failed processor lists into the join
* message
*/
addr = (char *)memb_join;
addr_idx = sizeof (struct memb_join);
memcpy (&addr[addr_idx],
instance->my_proc_list,
instance->my_proc_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_proc_list_entries *
sizeof (struct srp_addr);
memcpy (&addr[addr_idx],
instance->my_failed_list,
instance->my_failed_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_failed_list_entries *
sizeof (struct srp_addr);
if (instance->totem_config->send_join_timeout) {
usleep (random() % (instance->totem_config->send_join_timeout * 1000));
}
instance->stats.memb_join_tx++;
totemnet_mcast_flush_send (
instance->totemnet_context,
memb_join,
addr_idx);
}
static void memb_leave_message_send (struct totemsrp_instance *instance)
{
char memb_join_data[40000];
struct memb_join *memb_join = (struct memb_join *)memb_join_data;
char *addr;
unsigned int addr_idx;
int active_memb_entries;
struct srp_addr active_memb[PROCESSOR_COUNT_MAX];
size_t msg_len;
log_printf (instance->totemsrp_log_level_debug,
"sending join/leave message");
/*
* add us to the failed list, and remove us from
* the members list
*/
memb_set_merge(
&instance->my_id, 1,
instance->my_failed_list, &instance->my_failed_list_entries);
memb_set_subtract (active_memb, &active_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
&instance->my_id, 1);
msg_len = sizeof(struct memb_join) +
((active_memb_entries + instance->my_failed_list_entries) * sizeof(struct srp_addr));
if (msg_len > sizeof(memb_join_data)) {
log_printf (instance->totemsrp_log_level_error,
"memb_leave message too long. Ignoring message.");
return ;
}
memb_join->header.magic = TOTEM_MH_MAGIC;
memb_join->header.version = TOTEM_MH_VERSION;
memb_join->header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join->header.encapsulated = 0;
memb_join->header.nodeid = LEAVE_DUMMY_NODEID;
memb_join->ring_seq = instance->my_ring_id.seq;
memb_join->proc_list_entries = active_memb_entries;
memb_join->failed_list_entries = instance->my_failed_list_entries;
memb_join->system_from = instance->my_id;
// TODO: CC Maybe use the actual join send routine.
/*
* This mess adds the joined and failed processor lists into the join
* message
*/
addr = (char *)memb_join;
addr_idx = sizeof (struct memb_join);
memcpy (&addr[addr_idx],
active_memb,
active_memb_entries *
sizeof (struct srp_addr));
addr_idx +=
active_memb_entries *
sizeof (struct srp_addr);
memcpy (&addr[addr_idx],
instance->my_failed_list,
instance->my_failed_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_failed_list_entries *
sizeof (struct srp_addr);
if (instance->totem_config->send_join_timeout) {
usleep (random() % (instance->totem_config->send_join_timeout * 1000));
}
instance->stats.memb_join_tx++;
totemnet_mcast_flush_send (
instance->totemnet_context,
memb_join,
addr_idx);
}
static void memb_merge_detect_transmit (struct totemsrp_instance *instance)
{
struct memb_merge_detect memb_merge_detect;
memb_merge_detect.header.magic = TOTEM_MH_MAGIC;
memb_merge_detect.header.version = TOTEM_MH_VERSION;
memb_merge_detect.header.type = MESSAGE_TYPE_MEMB_MERGE_DETECT;
memb_merge_detect.header.encapsulated = 0;
memb_merge_detect.header.nodeid = instance->my_id.nodeid;
memb_merge_detect.system_from = instance->my_id;
memcpy (&memb_merge_detect.ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
assert (memb_merge_detect.header.nodeid);
instance->stats.memb_merge_detect_tx++;
totemnet_mcast_flush_send (instance->totemnet_context,
&memb_merge_detect,
sizeof (struct memb_merge_detect));
}
static void memb_ring_id_set (
struct totemsrp_instance *instance,
const struct memb_ring_id *ring_id)
{
memcpy (&instance->my_ring_id, ring_id, sizeof (struct memb_ring_id));
}
int totemsrp_callback_token_create (
void *srp_context,
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
struct token_callback_instance *callback_handle;
token_hold_cancel_send (instance);
callback_handle = malloc (sizeof (struct token_callback_instance));
if (callback_handle == 0) {
return (-1);
}
*handle_out = (void *)callback_handle;
qb_list_init (&callback_handle->list);
callback_handle->callback_fn = callback_fn;
callback_handle->data = (void *) data;
callback_handle->callback_type = type;
callback_handle->delete = delete;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
qb_list_add (&callback_handle->list, &instance->token_callback_received_listhead);
break;
case TOTEM_CALLBACK_TOKEN_SENT:
qb_list_add (&callback_handle->list, &instance->token_callback_sent_listhead);
break;
}
return (0);
}
void totemsrp_callback_token_destroy (void *srp_context, void **handle_out)
{
struct token_callback_instance *h;
if (*handle_out) {
h = (struct token_callback_instance *)*handle_out;
qb_list_del (&h->list);
free (h);
h = NULL;
*handle_out = 0;
}
}
static void token_callbacks_execute (
struct totemsrp_instance *instance,
enum totem_callback_token_type type)
{
struct qb_list_head *list, *tmp_iter;
struct qb_list_head *callback_listhead = 0;
struct token_callback_instance *token_callback_instance;
int res;
int del;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
callback_listhead = &instance->token_callback_received_listhead;
break;
case TOTEM_CALLBACK_TOKEN_SENT:
callback_listhead = &instance->token_callback_sent_listhead;
break;
default:
assert (0);
}
qb_list_for_each_safe(list, tmp_iter, callback_listhead) {
token_callback_instance = qb_list_entry (list, struct token_callback_instance, list);
del = token_callback_instance->delete;
if (del == 1) {
qb_list_del (list);
}
res = token_callback_instance->callback_fn (
token_callback_instance->callback_type,
token_callback_instance->data);
/*
* This callback failed to execute, try it again on the next token
*/
if (res == -1 && del == 1) {
qb_list_add (list, callback_listhead);
} else if (del) {
free (token_callback_instance);
}
}
}
/*
* Flow control functions
*/
static unsigned int backlog_get (struct totemsrp_instance *instance)
{
unsigned int backlog = 0;
struct cs_queue *queue_use = NULL;
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
if (instance->waiting_trans_ack) {
queue_use = &instance->new_message_queue_trans;
} else {
queue_use = &instance->new_message_queue;
}
} else
if (instance->memb_state == MEMB_STATE_RECOVERY) {
queue_use = &instance->retrans_message_queue;
}
if (queue_use != NULL) {
backlog = cs_queue_used (queue_use);
}
instance->stats.token[instance->stats.latest_token].backlog_calc = backlog;
return (backlog);
}
static int fcc_calculate (
struct totemsrp_instance *instance,
struct orf_token *token)
{
unsigned int transmits_allowed;
unsigned int backlog_calc;
transmits_allowed = instance->totem_config->max_messages;
if (transmits_allowed > instance->totem_config->window_size - token->fcc) {
transmits_allowed = instance->totem_config->window_size - token->fcc;
}
instance->my_cbl = backlog_get (instance);
/*
* Only do backlog calculation if there is a backlog otherwise
* we would result in div by zero
*/
if (token->backlog + instance->my_cbl - instance->my_pbl) {
backlog_calc = (instance->totem_config->window_size * instance->my_pbl) /
(token->backlog + instance->my_cbl - instance->my_pbl);
if (backlog_calc > 0 && transmits_allowed > backlog_calc) {
transmits_allowed = backlog_calc;
}
}
return (transmits_allowed);
}
/*
* don't overflow the RTR sort queue
*/
static void fcc_rtr_limit (
struct totemsrp_instance *instance,
struct orf_token *token,
unsigned int *transmits_allowed)
{
int check = QUEUE_RTR_ITEMS_SIZE_MAX;
check -= (*transmits_allowed + instance->totem_config->window_size);
assert (check >= 0);
if (sq_lt_compare (instance->last_released +
QUEUE_RTR_ITEMS_SIZE_MAX - *transmits_allowed -
instance->totem_config->window_size,
token->seq)) {
*transmits_allowed = 0;
}
}
static void fcc_token_update (
struct totemsrp_instance *instance,
struct orf_token *token,
unsigned int msgs_transmitted)
{
token->fcc += msgs_transmitted - instance->my_trc;
token->backlog += instance->my_cbl - instance->my_pbl;
instance->my_trc = msgs_transmitted;
instance->my_pbl = instance->my_cbl;
}
/*
* Sanity checkers
*/
static int check_orf_token_sanity(
const struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
int rtr_entries;
const struct orf_token *token = (const struct orf_token *)msg;
size_t required_len;
if (msg_len < sizeof(struct orf_token)) {
log_printf (instance->totemsrp_log_level_security,
"Received orf_token message is too short... ignoring.");
return (-1);
}
if (endian_conversion_needed) {
rtr_entries = swab32(token->rtr_list_entries);
} else {
rtr_entries = token->rtr_list_entries;
}
required_len = sizeof(struct orf_token) + rtr_entries * sizeof(struct rtr_item);
if (msg_len < required_len) {
log_printf (instance->totemsrp_log_level_security,
"Received orf_token message is too short... ignoring.");
return (-1);
}
return (0);
}
static int check_mcast_sanity(
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
if (msg_len < sizeof(struct mcast)) {
log_printf (instance->totemsrp_log_level_security,
"Received mcast message is too short... ignoring.");
return (-1);
}
return (0);
}
static int check_memb_merge_detect_sanity(
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
if (msg_len < sizeof(struct memb_merge_detect)) {
log_printf (instance->totemsrp_log_level_security,
"Received memb_merge_detect message is too short... ignoring.");
return (-1);
}
return (0);
}
static int check_memb_join_sanity(
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct memb_join *mj_msg = (const struct memb_join *)msg;
unsigned int proc_list_entries;
unsigned int failed_list_entries;
size_t required_len;
if (msg_len < sizeof(struct memb_join)) {
log_printf (instance->totemsrp_log_level_security,
"Received memb_join message is too short... ignoring.");
return (-1);
}
proc_list_entries = mj_msg->proc_list_entries;
failed_list_entries = mj_msg->failed_list_entries;
if (endian_conversion_needed) {
proc_list_entries = swab32(proc_list_entries);
failed_list_entries = swab32(failed_list_entries);
}
required_len = sizeof(struct memb_join) + ((proc_list_entries + failed_list_entries) * sizeof(struct srp_addr));
if (msg_len < required_len) {
log_printf (instance->totemsrp_log_level_security,
"Received memb_join message is too short... ignoring.");
return (-1);
}
return (0);
}
static int check_memb_commit_token_sanity(
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct memb_commit_token *mct_msg = (const struct memb_commit_token *)msg;
unsigned int addr_entries;
size_t required_len;
if (msg_len < sizeof(struct memb_commit_token)) {
log_printf (instance->totemsrp_log_level_security,
"Received memb_commit_token message is too short... ignoring.");
return (0);
}
addr_entries= mct_msg->addr_entries;
if (endian_conversion_needed) {
addr_entries = swab32(addr_entries);
}
required_len = sizeof(struct memb_commit_token) +
(addr_entries * (sizeof(struct srp_addr) + sizeof(struct memb_commit_token_memb_entry)));
if (msg_len < required_len) {
log_printf (instance->totemsrp_log_level_security,
"Received memb_commit_token message is too short... ignoring.");
return (-1);
}
return (0);
}
static int check_token_hold_cancel_sanity(
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
if (msg_len < sizeof(struct token_hold_cancel)) {
log_printf (instance->totemsrp_log_level_security,
"Received token_hold_cancel message is too short... ignoring.");
return (-1);
}
return (0);
}
/*
* Message Handlers
*/
unsigned long long int tv_old;
/*
* message handler called when TOKEN message type received
*/
static int message_handler_orf_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
char token_storage[1500];
char token_convert[1500];
struct orf_token *token = NULL;
int forward_token;
unsigned int transmits_allowed;
unsigned int mcasted_retransmit;
unsigned int mcasted_regular;
unsigned int last_aru;
#ifdef GIVEINFO
unsigned long long tv_current;
unsigned long long tv_diff;
tv_current = qb_util_nano_current_get ();
tv_diff = tv_current - tv_old;
tv_old = tv_current;
log_printf (instance->totemsrp_log_level_debug,
"Time since last token %0.4f ms", ((float)tv_diff) / 1000000.0);
#endif
if (check_orf_token_sanity(instance, msg, msg_len, endian_conversion_needed) == -1) {
return (0);
}
if (instance->orf_token_discard) {
return (0);
}
#ifdef TEST_DROP_ORF_TOKEN_PERCENTAGE
if (random()%100 < TEST_DROP_ORF_TOKEN_PERCENTAGE) {
return (0);
}
#endif
if (endian_conversion_needed) {
orf_token_endian_convert ((struct orf_token *)msg,
(struct orf_token *)token_convert);
msg = (struct orf_token *)token_convert;
}
/*
* Make copy of token and retransmit list in case we have
* to flush incoming messages from the kernel queue
*/
token = (struct orf_token *)token_storage;
memcpy (token, msg, sizeof (struct orf_token));
memcpy (&token->rtr_list[0], (char *)msg + sizeof (struct orf_token),
sizeof (struct rtr_item) * RETRANSMIT_ENTRIES_MAX);
/*
* Handle merge detection timeout
*/
if (token->seq == instance->my_last_seq) {
start_merge_detect_timeout (instance);
instance->my_seq_unchanged += 1;
} else {
cancel_merge_detect_timeout (instance);
cancel_token_hold_retransmit_timeout (instance);
instance->my_seq_unchanged = 0;
}
instance->my_last_seq = token->seq;
#ifdef TEST_RECOVERY_MSG_COUNT
if (instance->memb_state == MEMB_STATE_OPERATIONAL && token->seq > TEST_RECOVERY_MSG_COUNT) {
return (0);
}
#endif
instance->flushing = 1;
totemnet_recv_flush (instance->totemnet_context);
instance->flushing = 0;
/*
* Determine if we should hold (in reality drop) the token
*/
instance->my_token_held = 0;
if (instance->my_ring_id.rep == instance->my_id.nodeid &&
instance->my_seq_unchanged > instance->totem_config->seqno_unchanged_const) {
instance->my_token_held = 1;
} else {
if (instance->my_ring_id.rep != instance->my_id.nodeid &&
instance->my_seq_unchanged >= instance->totem_config->seqno_unchanged_const) {
instance->my_token_held = 1;
}
}
/*
* Hold onto token when there is no activity on ring and
* this processor is the ring rep
*/
forward_token = 1;
if (instance->my_ring_id.rep == instance->my_id.nodeid) {
if (instance->my_token_held) {
forward_token = 0;
}
}
switch (instance->memb_state) {
case MEMB_STATE_COMMIT:
/* Discard token */
break;
case MEMB_STATE_OPERATIONAL:
messages_free (instance, token->aru);
/*
* Do NOT add break, this case should also execute code in gather case.
*/
case MEMB_STATE_GATHER:
/*
* DO NOT add break, we use different free mechanism in recovery state
*/
case MEMB_STATE_RECOVERY:
/*
* Discard tokens from another configuration
*/
if (memcmp (&token->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0); /* discard token */
}
/*
* Discard retransmitted tokens
*/
if (sq_lte_compare (token->token_seq, instance->my_token_seq)) {
return (0); /* discard token */
}
/*
* Token is valid so trigger callbacks
*/
token_callbacks_execute (instance, TOTEM_CALLBACK_TOKEN_RECEIVED);
last_aru = instance->my_last_aru;
instance->my_last_aru = token->aru;
transmits_allowed = fcc_calculate (instance, token);
mcasted_retransmit = orf_token_rtr (instance, token, &transmits_allowed);
if (instance->totem_config->cancel_token_hold_on_retransmit &&
instance->my_token_held == 1 &&
(token->rtr_list_entries > 0 || mcasted_retransmit > 0)) {
instance->my_token_held = 0;
forward_token = 1;
}
fcc_rtr_limit (instance, token, &transmits_allowed);
mcasted_regular = orf_token_mcast (instance, token, transmits_allowed);
/*
if (mcasted_regular) {
printf ("mcasted regular %d\n", mcasted_regular);
printf ("token seq %d\n", token->seq);
}
*/
fcc_token_update (instance, token, mcasted_retransmit +
mcasted_regular);
if (sq_lt_compare (instance->my_aru, token->aru) ||
instance->my_id.nodeid == token->aru_addr ||
token->aru_addr == 0) {
token->aru = instance->my_aru;
if (token->aru == token->seq) {
token->aru_addr = 0;
} else {
token->aru_addr = instance->my_id.nodeid;
}
}
if (token->aru == last_aru && token->aru_addr != 0) {
instance->my_aru_count += 1;
} else {
instance->my_aru_count = 0;
}
/*
* We really don't follow specification there. In specification, OTHER nodes
* detect failure of one node (based on aru_count) and my_id IS NEVER added
* to failed list (so node never mark itself as failed)
*/
if (instance->my_aru_count > instance->totem_config->fail_to_recv_const &&
token->aru_addr == instance->my_id.nodeid) {
log_printf (instance->totemsrp_log_level_error,
"FAILED TO RECEIVE");
instance->failed_to_recv = 1;
memb_set_merge (&instance->my_id, 1,
instance->my_failed_list,
&instance->my_failed_list_entries);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_FAILED_TO_RECEIVE);
} else {
instance->my_token_seq = token->token_seq;
token->token_seq += 1;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
/*
* instance->my_aru == instance->my_high_seq_received means this processor
* has recovered all messages it can recover
* (ie: its retrans queue is empty)
*/
if (cs_queue_is_empty (&instance->retrans_message_queue) == 0) {
if (token->retrans_flg == 0) {
token->retrans_flg = 1;
instance->my_set_retrans_flg = 1;
}
} else
if (token->retrans_flg == 1 && instance->my_set_retrans_flg) {
token->retrans_flg = 0;
instance->my_set_retrans_flg = 0;
}
log_printf (instance->totemsrp_log_level_debug,
"token retrans flag is %d my set retrans flag%d retrans queue empty %d count %d, aru %x",
token->retrans_flg, instance->my_set_retrans_flg,
cs_queue_is_empty (&instance->retrans_message_queue),
instance->my_retrans_flg_count, token->aru);
if (token->retrans_flg == 0) {
instance->my_retrans_flg_count += 1;
} else {
instance->my_retrans_flg_count = 0;
}
if (instance->my_retrans_flg_count == 2) {
instance->my_install_seq = token->seq;
}
log_printf (instance->totemsrp_log_level_debug,
"install seq %x aru %x high seq received %x",
instance->my_install_seq, instance->my_aru, instance->my_high_seq_received);
if (instance->my_retrans_flg_count >= 2 &&
instance->my_received_flg == 0 &&
sq_lte_compare (instance->my_install_seq, instance->my_aru)) {
instance->my_received_flg = 1;
instance->my_deliver_memb_entries = instance->my_trans_memb_entries;
memcpy (instance->my_deliver_memb_list, instance->my_trans_memb_list,
sizeof (struct totem_ip_address) * instance->my_trans_memb_entries);
}
if (instance->my_retrans_flg_count >= 3 &&
sq_lte_compare (instance->my_install_seq, token->aru)) {
instance->my_rotation_counter += 1;
} else {
instance->my_rotation_counter = 0;
}
if (instance->my_rotation_counter == 2) {
log_printf (instance->totemsrp_log_level_debug,
"retrans flag count %x token aru %x install seq %x aru %x %x",
instance->my_retrans_flg_count, token->aru, instance->my_install_seq,
instance->my_aru, token->seq);
memb_state_operational_enter (instance);
instance->my_rotation_counter = 0;
instance->my_retrans_flg_count = 0;
}
}
totemnet_send_flush (instance->totemnet_context);
token_send (instance, token, forward_token);
#ifdef GIVEINFO
tv_current = qb_util_nano_current_get ();
tv_diff = tv_current - tv_old;
tv_old = tv_current;
log_printf (instance->totemsrp_log_level_debug,
"I held %0.4f ms",
((float)tv_diff) / 1000000.0);
#endif
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (instance, 0,
instance->my_high_seq_received);
}
/*
* Deliver messages after token has been transmitted
* to improve performance
*/
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
if (instance->my_id.nodeid == instance->my_ring_id.rep &&
instance->my_token_held == 1) {
start_token_hold_retransmit_timeout (instance);
}
token_callbacks_execute (instance, TOTEM_CALLBACK_TOKEN_SENT);
}
break;
}
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0);
}
static void messages_deliver_to_app (
struct totemsrp_instance *instance,
int skip,
unsigned int end_point)
{
struct sort_queue_item *sort_queue_item_p;
unsigned int i;
int res;
struct mcast *mcast_in;
struct mcast mcast_header;
unsigned int range = 0;
int endian_conversion_required;
unsigned int my_high_delivered_stored = 0;
struct srp_addr aligned_system_from;
range = end_point - instance->my_high_delivered;
if (range) {
log_printf (instance->totemsrp_log_level_trace,
"Delivering %x to %x", instance->my_high_delivered,
end_point);
}
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
my_high_delivered_stored = instance->my_high_delivered;
/*
* Deliver messages in order from rtr queue to pending delivery queue
*/
for (i = 1; i <= range; i++) {
void *ptr = 0;
/*
* If out of range of sort queue, stop assembly
*/
res = sq_in_range (&instance->regular_sort_queue,
my_high_delivered_stored + i);
if (res == 0) {
break;
}
res = sq_item_get (&instance->regular_sort_queue,
my_high_delivered_stored + i, &ptr);
/*
* If hole, stop assembly
*/
if (res != 0 && skip == 0) {
break;
}
instance->my_high_delivered = my_high_delivered_stored + i;
if (res != 0) {
continue;
}
sort_queue_item_p = ptr;
mcast_in = sort_queue_item_p->mcast;
assert (mcast_in != (struct mcast *)0xdeadbeef);
endian_conversion_required = 0;
if (mcast_in->header.magic != TOTEM_MH_MAGIC) {
endian_conversion_required = 1;
mcast_endian_convert (mcast_in, &mcast_header);
} else {
memcpy (&mcast_header, mcast_in, sizeof (struct mcast));
}
aligned_system_from = mcast_header.system_from;
/*
* Skip messages not originated in instance->my_deliver_memb
*/
if (skip &&
memb_set_subset (&aligned_system_from,
1,
instance->my_deliver_memb_list,
instance->my_deliver_memb_entries) == 0) {
instance->my_high_delivered = my_high_delivered_stored + i;
continue;
}
/*
* Message found
*/
log_printf (instance->totemsrp_log_level_trace,
"Delivering MCAST message with seq %x to pending delivery queue",
mcast_header.seq);
/*
* Message is locally originated multicast
*/
instance->totemsrp_deliver_fn (
mcast_header.header.nodeid,
((char *)sort_queue_item_p->mcast) + sizeof (struct mcast),
sort_queue_item_p->msg_len - sizeof (struct mcast),
endian_conversion_required);
}
}
/*
* recv message handler called when MCAST message type received
*/
static int message_handler_mcast (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct sort_queue_item sort_queue_item;
struct sq *sort_queue;
struct mcast mcast_header;
struct srp_addr aligned_system_from;
if (check_mcast_sanity(instance, msg, msg_len, endian_conversion_needed) == -1) {
return (0);
}
if (endian_conversion_needed) {
mcast_endian_convert (msg, &mcast_header);
} else {
memcpy (&mcast_header, msg, sizeof (struct mcast));
}
if (mcast_header.header.encapsulated == MESSAGE_ENCAPSULATED) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
assert (msg_len <= FRAME_SIZE_MAX);
#ifdef TEST_DROP_MCAST_PERCENTAGE
if (random()%100 < TEST_DROP_MCAST_PERCENTAGE) {
return (0);
}
#endif
/*
* If the message is foreign execute the switch below
*/
if (memcmp (&instance->my_ring_id, &mcast_header.ring_id,
sizeof (struct memb_ring_id)) != 0) {
aligned_system_from = mcast_header.system_from;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (
&aligned_system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_FOREIGN_MESSAGE_IN_OPERATIONAL_STATE);
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (
&aligned_system_from,
1,
instance->my_proc_list,
instance->my_proc_list_entries)) {
memb_set_merge (&aligned_system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_FOREIGN_MESSAGE_IN_GATHER_STATE);
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* discard message */
instance->stats.rx_msg_dropped++;
break;
case MEMB_STATE_RECOVERY:
/* discard message */
instance->stats.rx_msg_dropped++;
break;
}
return (0);
}
log_printf (instance->totemsrp_log_level_trace,
"Received ringid (" CS_PRI_RING_ID ") seq %x",
mcast_header.ring_id.rep,
(uint64_t)mcast_header.ring_id.seq,
mcast_header.seq);
/*
* Add mcast message to rtr queue if not already in rtr queue
* otherwise free io vectors
*/
if (msg_len > 0 && msg_len <= FRAME_SIZE_MAX &&
sq_in_range (sort_queue, mcast_header.seq) &&
sq_item_inuse (sort_queue, mcast_header.seq) == 0) {
/*
* Allocate new multicast memory block
*/
// TODO LEAK
sort_queue_item.mcast = totemsrp_buffer_alloc (instance);
if (sort_queue_item.mcast == NULL) {
return (-1); /* error here is corrected by the algorithm */
}
memcpy (sort_queue_item.mcast, msg, msg_len);
sort_queue_item.msg_len = msg_len;
if (sq_lt_compare (instance->my_high_seq_received,
mcast_header.seq)) {
instance->my_high_seq_received = mcast_header.seq;
}
sq_item_add (sort_queue, &sort_queue_item, mcast_header.seq);
}
update_aru (instance);
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (instance, 0, instance->my_high_seq_received);
}
/* TODO remove from retrans message queue for old ring in recovery state */
return (0);
}
static int message_handler_memb_merge_detect (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct memb_merge_detect memb_merge_detect;
struct srp_addr aligned_system_from;
if (check_memb_merge_detect_sanity(instance, msg, msg_len, endian_conversion_needed) == -1) {
return (0);
}
if (endian_conversion_needed) {
memb_merge_detect_endian_convert (msg, &memb_merge_detect);
} else {
memcpy (&memb_merge_detect, msg,
sizeof (struct memb_merge_detect));
}
/*
* do nothing if this is a merge detect from this configuration
*/
if (memcmp (&instance->my_ring_id, &memb_merge_detect.ring_id,
sizeof (struct memb_ring_id)) == 0) {
return (0);
}
aligned_system_from = memb_merge_detect.system_from;
/*
* Execute merge operation
*/
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (&aligned_system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_MERGE_DURING_OPERATIONAL_STATE);
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (
&aligned_system_from,
1,
instance->my_proc_list,
instance->my_proc_list_entries)) {
memb_set_merge (&aligned_system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_MERGE_DURING_GATHER_STATE);
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* do nothing in commit */
break;
case MEMB_STATE_RECOVERY:
/* do nothing in recovery */
break;
}
return (0);
}
static void memb_join_process (
struct totemsrp_instance *instance,
const struct memb_join *memb_join)
{
struct srp_addr *proc_list;
struct srp_addr *failed_list;
int gather_entered = 0;
int fail_minus_memb_entries = 0;
struct srp_addr fail_minus_memb[PROCESSOR_COUNT_MAX];
struct srp_addr aligned_system_from;
proc_list = (struct srp_addr *)memb_join->end_of_memb_join;
failed_list = proc_list + memb_join->proc_list_entries;
aligned_system_from = memb_join->system_from;
log_printf(instance->totemsrp_log_level_trace, "memb_join_process");
memb_set_log(instance, instance->totemsrp_log_level_trace,
"proclist", proc_list, memb_join->proc_list_entries);
memb_set_log(instance, instance->totemsrp_log_level_trace,
"faillist", failed_list, memb_join->failed_list_entries);
memb_set_log(instance, instance->totemsrp_log_level_trace,
"my_proclist", instance->my_proc_list, instance->my_proc_list_entries);
memb_set_log(instance, instance->totemsrp_log_level_trace,
"my_faillist", instance->my_failed_list, instance->my_failed_list_entries);
if (memb_join->header.type == MESSAGE_TYPE_MEMB_JOIN) {
if (instance->flushing) {
if (memb_join->header.nodeid == LEAVE_DUMMY_NODEID) {
log_printf (instance->totemsrp_log_level_warning,
"Discarding LEAVE message during flush, nodeid=" CS_PRI_NODE_ID,
memb_join->failed_list_entries > 0 ? failed_list[memb_join->failed_list_entries - 1 ].nodeid : LEAVE_DUMMY_NODEID);
if (memb_join->failed_list_entries > 0) {
my_leave_memb_set(instance, failed_list[memb_join->failed_list_entries - 1 ].nodeid);
}
} else {
log_printf (instance->totemsrp_log_level_warning,
"Discarding JOIN message during flush, nodeid=" CS_PRI_NODE_ID, memb_join->header.nodeid);
}
return;
} else {
if (memb_join->header.nodeid == LEAVE_DUMMY_NODEID) {
log_printf (instance->totemsrp_log_level_debug,
"Received LEAVE message from " CS_PRI_NODE_ID, memb_join->failed_list_entries > 0 ? failed_list[memb_join->failed_list_entries - 1 ].nodeid : LEAVE_DUMMY_NODEID);
if (memb_join->failed_list_entries > 0) {
my_leave_memb_set(instance, failed_list[memb_join->failed_list_entries - 1 ].nodeid);
}
}
}
}
if (memb_set_equal (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries) &&
memb_set_equal (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list,
instance->my_failed_list_entries)) {
if (memb_join->header.nodeid != LEAVE_DUMMY_NODEID) {
memb_consensus_set (instance, &aligned_system_from);
}
if (memb_consensus_agreed (instance) && instance->failed_to_recv == 1) {
instance->failed_to_recv = 0;
instance->my_proc_list[0] = instance->my_id;
instance->my_proc_list_entries = 1;
instance->my_failed_list_entries = 0;
memb_state_commit_token_create (instance);
memb_state_commit_enter (instance);
return;
}
if (memb_consensus_agreed (instance) &&
memb_lowest_in_config (instance)) {
memb_state_commit_token_create (instance);
memb_state_commit_enter (instance);
} else {
goto out;
}
} else
if (memb_set_subset (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries) &&
memb_set_subset (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list,
instance->my_failed_list_entries)) {
goto out;
} else
if (memb_set_subset (&aligned_system_from, 1,
instance->my_failed_list, instance->my_failed_list_entries)) {
goto out;
} else {
memb_set_merge (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list, &instance->my_proc_list_entries);
if (memb_set_subset (
&instance->my_id, 1,
failed_list, memb_join->failed_list_entries)) {
memb_set_merge (
&aligned_system_from, 1,
instance->my_failed_list, &instance->my_failed_list_entries);
} else {
if (memb_set_subset (
&aligned_system_from, 1,
instance->my_memb_list,
instance->my_memb_entries)) {
if (memb_set_subset (
&aligned_system_from, 1,
instance->my_failed_list,
instance->my_failed_list_entries) == 0) {
memb_set_merge (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list, &instance->my_failed_list_entries);
} else {
memb_set_subtract (fail_minus_memb,
&fail_minus_memb_entries,
failed_list,
memb_join->failed_list_entries,
instance->my_memb_list,
instance->my_memb_entries);
memb_set_merge (fail_minus_memb,
fail_minus_memb_entries,
instance->my_failed_list,
&instance->my_failed_list_entries);
}
}
}
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_MERGE_DURING_JOIN);
gather_entered = 1;
}
out:
if (gather_entered == 0 &&
instance->memb_state == MEMB_STATE_OPERATIONAL) {
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_JOIN_DURING_OPERATIONAL_STATE);
}
}
static void memb_join_endian_convert (const struct memb_join *in, struct memb_join *out)
{
int i;
struct srp_addr *in_proc_list;
struct srp_addr *in_failed_list;
struct srp_addr *out_proc_list;
struct srp_addr *out_failed_list;
out->header.magic = TOTEM_MH_MAGIC;
out->header.version = TOTEM_MH_VERSION;
out->header.type = in->header.type;
out->header.nodeid = swab32 (in->header.nodeid);
out->system_from = srp_addr_endian_convert(in->system_from);
out->proc_list_entries = swab32 (in->proc_list_entries);
out->failed_list_entries = swab32 (in->failed_list_entries);
out->ring_seq = swab64 (in->ring_seq);
in_proc_list = (struct srp_addr *)in->end_of_memb_join;
in_failed_list = in_proc_list + out->proc_list_entries;
out_proc_list = (struct srp_addr *)out->end_of_memb_join;
out_failed_list = out_proc_list + out->proc_list_entries;
for (i = 0; i < out->proc_list_entries; i++) {
out_proc_list[i] = srp_addr_endian_convert (in_proc_list[i]);
}
for (i = 0; i < out->failed_list_entries; i++) {
out_failed_list[i] = srp_addr_endian_convert (in_failed_list[i]);
}
}
static void memb_commit_token_endian_convert (const struct memb_commit_token *in, struct memb_commit_token *out)
{
int i;
struct srp_addr *in_addr = (struct srp_addr *)in->end_of_commit_token;
struct srp_addr *out_addr = (struct srp_addr *)out->end_of_commit_token;
struct memb_commit_token_memb_entry *in_memb_list;
struct memb_commit_token_memb_entry *out_memb_list;
out->header.magic = TOTEM_MH_MAGIC;
out->header.version = TOTEM_MH_VERSION;
out->header.type = in->header.type;
out->header.nodeid = swab32 (in->header.nodeid);
out->token_seq = swab32 (in->token_seq);
out->ring_id.rep = swab32(in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->retrans_flg = swab32 (in->retrans_flg);
out->memb_index = swab32 (in->memb_index);
out->addr_entries = swab32 (in->addr_entries);
in_memb_list = (struct memb_commit_token_memb_entry *)(in_addr + out->addr_entries);
out_memb_list = (struct memb_commit_token_memb_entry *)(out_addr + out->addr_entries);
for (i = 0; i < out->addr_entries; i++) {
out_addr[i] = srp_addr_endian_convert (in_addr[i]);
/*
* Only convert the memb entry if it has been set
*/
if (in_memb_list[i].ring_id.rep != 0) {
out_memb_list[i].ring_id.rep = swab32(in_memb_list[i].ring_id.rep);
out_memb_list[i].ring_id.seq =
swab64 (in_memb_list[i].ring_id.seq);
out_memb_list[i].aru = swab32 (in_memb_list[i].aru);
out_memb_list[i].high_delivered = swab32 (in_memb_list[i].high_delivered);
out_memb_list[i].received_flg = swab32 (in_memb_list[i].received_flg);
}
}
}
static void orf_token_endian_convert (const struct orf_token *in, struct orf_token *out)
{
int i;
out->header.magic = TOTEM_MH_MAGIC;
out->header.version = TOTEM_MH_VERSION;
out->header.type = in->header.type;
out->header.nodeid = swab32 (in->header.nodeid);
out->seq = swab32 (in->seq);
out->token_seq = swab32 (in->token_seq);
out->aru = swab32 (in->aru);
out->ring_id.rep = swab32(in->ring_id.rep);
out->aru_addr = swab32(in->aru_addr);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->fcc = swab32 (in->fcc);
out->backlog = swab32 (in->backlog);
out->retrans_flg = swab32 (in->retrans_flg);
out->rtr_list_entries = swab32 (in->rtr_list_entries);
for (i = 0; i < out->rtr_list_entries; i++) {
out->rtr_list[i].ring_id.rep = swab32(in->rtr_list[i].ring_id.rep);
out->rtr_list[i].ring_id.seq = swab64 (in->rtr_list[i].ring_id.seq);
out->rtr_list[i].seq = swab32 (in->rtr_list[i].seq);
}
}
static void mcast_endian_convert (const struct mcast *in, struct mcast *out)
{
out->header.magic = TOTEM_MH_MAGIC;
out->header.version = TOTEM_MH_VERSION;
out->header.type = in->header.type;
out->header.nodeid = swab32 (in->header.nodeid);
out->header.encapsulated = in->header.encapsulated;
out->seq = swab32 (in->seq);
out->this_seqno = swab32 (in->this_seqno);
out->ring_id.rep = swab32(in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->node_id = swab32 (in->node_id);
out->guarantee = swab32 (in->guarantee);
out->system_from = srp_addr_endian_convert(in->system_from);
}
static void memb_merge_detect_endian_convert (
const struct memb_merge_detect *in,
struct memb_merge_detect *out)
{
out->header.magic = TOTEM_MH_MAGIC;
out->header.version = TOTEM_MH_VERSION;
out->header.type = in->header.type;
out->header.nodeid = swab32 (in->header.nodeid);
out->ring_id.rep = swab32(in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->system_from = srp_addr_endian_convert (in->system_from);
}
static int ignore_join_under_operational (
struct totemsrp_instance *instance,
const struct memb_join *memb_join)
{
struct srp_addr *proc_list;
struct srp_addr *failed_list;
unsigned long long ring_seq;
struct srp_addr aligned_system_from;
proc_list = (struct srp_addr *)memb_join->end_of_memb_join;
failed_list = proc_list + memb_join->proc_list_entries;
ring_seq = memb_join->ring_seq;
aligned_system_from = memb_join->system_from;
if (memb_set_subset (&instance->my_id, 1,
failed_list, memb_join->failed_list_entries)) {
return (1);
}
/*
* In operational state, my_proc_list is exactly the same as
* my_memb_list.
*/
if ((memb_set_subset (&aligned_system_from, 1,
instance->my_memb_list, instance->my_memb_entries)) &&
(ring_seq < instance->my_ring_id.seq)) {
return (1);
}
return (0);
}
static int message_handler_memb_join (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct memb_join *memb_join;
struct memb_join *memb_join_convert = alloca (msg_len);
struct srp_addr aligned_system_from;
if (check_memb_join_sanity(instance, msg, msg_len, endian_conversion_needed) == -1) {
return (0);
}
if (endian_conversion_needed) {
memb_join = memb_join_convert;
memb_join_endian_convert (msg, memb_join_convert);
} else {
memb_join = msg;
}
aligned_system_from = memb_join->system_from;
/*
* If the process paused because it wasn't scheduled in a timely
* fashion, flush the join messages because they may be queued
* entries
*/
if (pause_flush (instance)) {
return (0);
}
if (instance->token_ring_id_seq < memb_join->ring_seq) {
instance->token_ring_id_seq = memb_join->ring_seq;
}
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
if (!ignore_join_under_operational (instance, memb_join)) {
memb_join_process (instance, memb_join);
}
break;
case MEMB_STATE_GATHER:
memb_join_process (instance, memb_join);
break;
case MEMB_STATE_COMMIT:
if (memb_set_subset (&aligned_system_from,
1,
instance->my_new_memb_list,
instance->my_new_memb_entries) &&
memb_join->ring_seq >= instance->my_ring_id.seq) {
memb_join_process (instance, memb_join);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_JOIN_DURING_COMMIT_STATE);
}
break;
case MEMB_STATE_RECOVERY:
if (memb_set_subset (&aligned_system_from,
1,
instance->my_new_memb_list,
instance->my_new_memb_entries) &&
memb_join->ring_seq >= instance->my_ring_id.seq) {
memb_join_process (instance, memb_join);
memb_recovery_state_token_loss (instance);
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_JOIN_DURING_RECOVERY);
}
break;
}
return (0);
}
static int message_handler_memb_commit_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct memb_commit_token *memb_commit_token_convert = alloca (msg_len);
struct memb_commit_token *memb_commit_token;
struct srp_addr sub[PROCESSOR_COUNT_MAX];
int sub_entries;
struct srp_addr *addr;
log_printf (instance->totemsrp_log_level_debug,
"got commit token");
if (check_memb_commit_token_sanity(instance, msg, msg_len, endian_conversion_needed) == -1) {
return (0);
}
if (endian_conversion_needed) {
memb_commit_token_endian_convert (msg, memb_commit_token_convert);
} else {
memcpy (memb_commit_token_convert, msg, msg_len);
}
memb_commit_token = memb_commit_token_convert;
addr = (struct srp_addr *)memb_commit_token->end_of_commit_token;
#ifdef TEST_DROP_COMMIT_TOKEN_PERCENTAGE
if (random()%100 < TEST_DROP_COMMIT_TOKEN_PERCENTAGE) {
return (0);
}
#endif
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
/* discard token */
break;
case MEMB_STATE_GATHER:
memb_set_subtract (sub, &sub_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
if (memb_set_equal (addr,
memb_commit_token->addr_entries,
sub,
sub_entries) &&
memb_commit_token->ring_id.seq > instance->my_ring_id.seq) {
memcpy (instance->commit_token, memb_commit_token, msg_len);
memb_state_commit_enter (instance);
}
break;
case MEMB_STATE_COMMIT:
/*
* If retransmitted commit tokens are sent on this ring
* filter them out and only enter recovery once the
* commit token has traversed the array. This is
* determined by :
* memb_commit_token->memb_index == memb_commit_token->addr_entries) {
*/
if (memb_commit_token->ring_id.seq == instance->my_ring_id.seq &&
memb_commit_token->memb_index == memb_commit_token->addr_entries) {
memb_state_recovery_enter (instance, memb_commit_token);
}
break;
case MEMB_STATE_RECOVERY:
if (instance->my_id.nodeid == instance->my_ring_id.rep) {
/* Filter out duplicated tokens */
if (instance->originated_orf_token) {
break;
}
instance->originated_orf_token = 1;
log_printf (instance->totemsrp_log_level_debug,
"Sending initial ORF token");
// TODO convert instead of initiate
orf_token_send_initial (instance);
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
}
break;
}
return (0);
}
static int message_handler_token_hold_cancel (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct token_hold_cancel *token_hold_cancel = msg;
if (check_token_hold_cancel_sanity(instance, msg, msg_len, endian_conversion_needed) == -1) {
return (0);
}
if (memcmp (&token_hold_cancel->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) == 0) {
instance->my_seq_unchanged = 0;
if (instance->my_ring_id.rep == instance->my_id.nodeid) {
timer_function_token_retransmit_timeout (instance);
}
}
return (0);
}
static int check_message_header_validity(
void *context,
const void *msg,
unsigned int msg_len,
const struct sockaddr_storage *system_from)
{
struct totemsrp_instance *instance = context;
const struct totem_message_header *message_header = msg;
const char *guessed_str;
const char *msg_byte = msg;
if (msg_len < sizeof (struct totem_message_header)) {
log_printf (instance->totemsrp_log_level_security,
"Message received from %s is too short... Ignoring %u.",
totemip_sa_print((struct sockaddr *)system_from), (unsigned int)msg_len);
return (-1);
}
if (message_header->magic != TOTEM_MH_MAGIC &&
message_header->magic != swab16(TOTEM_MH_MAGIC)) {
/*
* We've received ether Knet, old version of Corosync,
* or something else. Do some guessing to display (hopefully)
* helpful message
*/
guessed_str = NULL;
if (message_header->magic == 0xFFFF) {
/*
* Corosync 2.2 used header with two UINT8_MAX
*/
guessed_str = "Corosync 2.2";
} else if (message_header->magic == 0xFEFE) {
/*
* Corosync 2.3+ used header with two UINT8_MAX - 1
*/
guessed_str = "Corosync 2.3+";
} else if (msg_byte[0] == 0x01) {
/*
* Knet has stable1 with first byte of message == 1
*/
guessed_str = "unencrypted Kronosnet";
} else if (msg_byte[0] >= 0 && msg_byte[0] <= 5) {
/*
* Unencrypted Corosync 1.x/OpenAIS has first byte
* 0-5. Collision with Knet (but still worth the try)
*/
guessed_str = "unencrypted Corosync 2.0/2.1/1.x/OpenAIS";
} else {
/*
* Encrypted Kronosned packet has a hash at the end of
* the packet and nothing specific at the beginning of the
* packet (just encrypted data).
* Encrypted Corosync 1.x/OpenAIS is quite similar but hash_digest
* is in the beginning of the packet.
*
* So it's not possible to reliably detect ether of them.
*/
guessed_str = "encrypted Kronosnet/Corosync 2.0/2.1/1.x/OpenAIS or unknown";
}
log_printf(instance->totemsrp_log_level_security,
"Message received from %s has bad magic number (probably sent by %s).. Ignoring",
totemip_sa_print((struct sockaddr *)system_from),
guessed_str);
return (-1);
}
if (message_header->version != TOTEM_MH_VERSION) {
log_printf(instance->totemsrp_log_level_security,
"Message received from %s has unsupported version %u... Ignoring",
totemip_sa_print((struct sockaddr *)system_from),
message_header->version);
return (-1);
}
return (0);
}
int main_deliver_fn (
void *context,
const void *msg,
unsigned int msg_len,
const struct sockaddr_storage *system_from)
{
struct totemsrp_instance *instance = context;
const struct totem_message_header *message_header = msg;
if (check_message_header_validity(context, msg, msg_len, system_from) == -1) {
return -1;
}
switch (message_header->type) {
case MESSAGE_TYPE_ORF_TOKEN:
instance->stats.orf_token_rx++;
break;
case MESSAGE_TYPE_MCAST:
instance->stats.mcast_rx++;
break;
case MESSAGE_TYPE_MEMB_MERGE_DETECT:
instance->stats.memb_merge_detect_rx++;
break;
case MESSAGE_TYPE_MEMB_JOIN:
instance->stats.memb_join_rx++;
break;
case MESSAGE_TYPE_MEMB_COMMIT_TOKEN:
instance->stats.memb_commit_token_rx++;
break;
case MESSAGE_TYPE_TOKEN_HOLD_CANCEL:
instance->stats.token_hold_cancel_rx++;
break;
default:
log_printf (instance->totemsrp_log_level_security,
"Message received from %s has wrong type... ignoring %d.\n",
totemip_sa_print((struct sockaddr *)system_from),
(int)message_header->type);
instance->stats.rx_msg_dropped++;
return 0;
}
/*
* Handle incoming message
*/
return totemsrp_message_handlers.handler_functions[(int)message_header->type] (
instance,
msg,
msg_len,
message_header->magic != TOTEM_MH_MAGIC);
}
int totemsrp_iface_set (
void *context,
const struct totem_ip_address *interface_addr,
unsigned short ip_port,
unsigned int iface_no)
{
struct totemsrp_instance *instance = context;
int res;
totemip_copy(&instance->my_addrs[iface_no], interface_addr);
res = totemnet_iface_set (
instance->totemnet_context,
interface_addr,
ip_port,
iface_no);
return (res);
}
/* Contrary to its name, this only gets called when the interface is enabled */
int main_iface_change_fn (
void *context,
const struct totem_ip_address *iface_addr,
unsigned int iface_no)
{
struct totemsrp_instance *instance = context;
int num_interfaces;
int i;
int res = 0;
if (!instance->my_id.nodeid) {
instance->my_id.nodeid = iface_addr->nodeid;
}
totemip_copy (&instance->my_addrs[iface_no], iface_addr);
if (instance->iface_changes++ == 0) {
instance->memb_ring_id_create_or_load (&instance->my_ring_id, instance->my_id.nodeid);
/*
* Increase the ring_id sequence number. This doesn't follow specification.
* Solves problem with restarted leader node (node with lowest nodeid) before
* rest of the cluster forms new membership and guarantees unique ring_id for
* new singleton configuration.
*/
instance->my_ring_id.seq++;
instance->token_ring_id_seq = instance->my_ring_id.seq;
log_printf (
instance->totemsrp_log_level_debug,
"Created or loaded sequence id " CS_PRI_RING_ID " for this ring.",
instance->my_ring_id.rep,
(uint64_t)instance->my_ring_id.seq);
if (instance->totemsrp_service_ready_fn) {
instance->totemsrp_service_ready_fn ();
}
}
num_interfaces = 0;
for (i = 0; i < INTERFACE_MAX; i++) {
if (instance->totem_config->interfaces[i].configured) {
num_interfaces++;
}
}
if (instance->iface_changes >= num_interfaces) {
/* We need to clear orig_interfaces so that 'commit' diffs against nothing */
instance->totem_config->orig_interfaces = malloc (sizeof (struct totem_interface) * INTERFACE_MAX);
assert(instance->totem_config->orig_interfaces != NULL);
memset(instance->totem_config->orig_interfaces, 0, sizeof (struct totem_interface) * INTERFACE_MAX);
res = totemconfig_commit_new_params(instance->totem_config, icmap_get_global_map());
memb_state_gather_enter (instance, TOTEMSRP_GSFROM_INTERFACE_CHANGE);
free(instance->totem_config->orig_interfaces);
}
return res;
}
void totemsrp_net_mtu_adjust (struct totem_config *totem_config) {
totem_config->net_mtu -= 2 * sizeof (struct mcast);
}
void totemsrp_service_ready_register (
void *context,
void (*totem_service_ready) (void))
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
instance->totemsrp_service_ready_fn = totem_service_ready;
}
int totemsrp_member_add (
void *context,
const struct totem_ip_address *member,
int iface_no)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
int res;
res = totemnet_member_add (instance->totemnet_context, &instance->my_addrs[iface_no], member, iface_no);
return (res);
}
int totemsrp_member_remove (
void *context,
const struct totem_ip_address *member,
int iface_no)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
int res;
res = totemnet_member_remove (instance->totemnet_context, member, iface_no);
return (res);
}
void totemsrp_threaded_mode_enable (void *context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
instance->threaded_mode_enabled = 1;
}
void totemsrp_trans_ack (void *context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
instance->waiting_trans_ack = 0;
instance->totemsrp_waiting_trans_ack_cb_fn (0);
}
int totemsrp_reconfigure (void *context, struct totem_config *totem_config)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
int res;
res = totemnet_reconfigure (instance->totemnet_context, totem_config);
return (res);
}
int totemsrp_crypto_reconfigure_phase (void *context, struct totem_config *totem_config, cfg_message_crypto_reconfig_phase_t phase)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
int res;
res = totemnet_crypto_reconfigure_phase (instance->totemnet_context, totem_config, phase);
return (res);
}
void totemsrp_stats_clear (void *context, int flags)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
memset(&instance->stats, 0, sizeof(totemsrp_stats_t));
if (flags & TOTEMPG_STATS_CLEAR_TRANSPORT) {
totemnet_stats_clear (instance->totemnet_context);
}
}
void totemsrp_force_gather (void *context)
{
timer_function_orf_token_timeout(context);
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Jan 25, 12:33 PM (13 h, 8 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1322579
Default Alt Text
(151 KB)

Event Timeline