diff --git a/libknet/handle.c b/libknet/handle.c index eeb98a31..a3f067af 100644 --- a/libknet/handle.c +++ b/libknet/handle.c @@ -1,1606 +1,1598 @@ /* * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * Federico Simoncelli * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include #include #include #include #include #include "internals.h" #include "crypto.h" #include "links.h" #include "compress.h" #include "compat.h" #include "common.h" #include "threads_common.h" #include "threads_heartbeat.h" #include "threads_pmtud.h" #include "threads_dsthandler.h" #include "threads_rx.h" #include "threads_tx.h" #include "transports.h" #include "transport_common.h" #include "logging.h" static pthread_mutex_t handle_config_mutex = PTHREAD_MUTEX_INITIALIZER; pthread_rwlock_t shlib_rwlock; static uint8_t shlib_wrlock_init = 0; static uint32_t knet_ref = 0; static int _init_shlib_tracker(knet_handle_t knet_h) { int savederrno = 0; if (!shlib_wrlock_init) { savederrno = pthread_rwlock_init(&shlib_rwlock, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize shared lib rwlock: %s", strerror(savederrno)); errno = savederrno; return -1; } shlib_wrlock_init = 1; } return 0; } static void _fini_shlib_tracker(void) { if (knet_ref == 0) { pthread_rwlock_destroy(&shlib_rwlock); shlib_wrlock_init = 0; } return; } static int _init_locks(knet_handle_t knet_h) { int savederrno = 0; savederrno = pthread_rwlock_init(&knet_h->global_rwlock, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize list rwlock: %s", strerror(savederrno)); goto exit_fail; } - knet_h->lock_init_done = 1; - savederrno = pthread_mutex_init(&knet_h->pmtud_mutex, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pmtud mutex: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_mutex_init(&knet_h->kmtu_mutex, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize kernel_mtu mutex: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_cond_init(&knet_h->pmtud_cond, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pmtud conditional mutex: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_mutex_init(&knet_h->hb_mutex, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize hb_thread mutex: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_mutex_init(&knet_h->tx_mutex, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize tx_thread mutex: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_mutex_init(&knet_h->backoff_mutex, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize pong timeout backoff mutex: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_mutex_init(&knet_h->tx_seq_num_mutex, NULL); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize tx_seq_num_mutex mutex: %s", strerror(savederrno)); goto exit_fail; } return 0; exit_fail: errno = savederrno; return -1; } static void _destroy_locks(knet_handle_t knet_h) { - knet_h->lock_init_done = 0; pthread_rwlock_destroy(&knet_h->global_rwlock); pthread_mutex_destroy(&knet_h->pmtud_mutex); pthread_mutex_destroy(&knet_h->kmtu_mutex); pthread_cond_destroy(&knet_h->pmtud_cond); pthread_mutex_destroy(&knet_h->hb_mutex); pthread_mutex_destroy(&knet_h->tx_mutex); pthread_mutex_destroy(&knet_h->backoff_mutex); pthread_mutex_destroy(&knet_h->tx_seq_num_mutex); } static int _init_socks(knet_handle_t knet_h) { int savederrno = 0; if (_init_socketpair(knet_h, knet_h->hostsockfd)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize internal hostsockpair: %s", strerror(savederrno)); goto exit_fail; } if (_init_socketpair(knet_h, knet_h->dstsockfd)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to initialize internal dstsockpair: %s", strerror(savederrno)); goto exit_fail; } return 0; exit_fail: errno = savederrno; return -1; } static void _close_socks(knet_handle_t knet_h) { _close_socketpair(knet_h, knet_h->dstsockfd); _close_socketpair(knet_h, knet_h->hostsockfd); } static int _init_buffers(knet_handle_t knet_h) { int savederrno = 0; int i; size_t bufsize; for (i = 0; i < PCKT_FRAG_MAX; i++) { bufsize = ceil((float)KNET_MAX_PACKET_SIZE / (i + 1)) + KNET_HEADER_ALL_SIZE; knet_h->send_to_links_buf[i] = malloc(bufsize); if (!knet_h->send_to_links_buf[i]) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory datafd to link buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->send_to_links_buf[i], 0, bufsize); } for (i = 0; i < PCKT_RX_BUFS; i++) { knet_h->recv_from_links_buf[i] = malloc(KNET_DATABUFSIZE); if (!knet_h->recv_from_links_buf[i]) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for link to datafd buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->recv_from_links_buf[i], 0, KNET_DATABUFSIZE); } knet_h->recv_from_sock_buf = malloc(KNET_DATABUFSIZE); if (!knet_h->recv_from_sock_buf) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for app to datafd buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->recv_from_sock_buf, 0, KNET_DATABUFSIZE); knet_h->pingbuf = malloc(KNET_HEADER_PING_SIZE); if (!knet_h->pingbuf) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for hearbeat buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->pingbuf, 0, KNET_HEADER_PING_SIZE); knet_h->pmtudbuf = malloc(KNET_PMTUD_SIZE_V6); if (!knet_h->pmtudbuf) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for pmtud buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->pmtudbuf, 0, KNET_PMTUD_SIZE_V6); for (i = 0; i < PCKT_FRAG_MAX; i++) { bufsize = ceil((float)KNET_MAX_PACKET_SIZE / (i + 1)) + KNET_HEADER_ALL_SIZE + KNET_DATABUFSIZE_CRYPT_PAD; knet_h->send_to_links_buf_crypt[i] = malloc(bufsize); if (!knet_h->send_to_links_buf_crypt[i]) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for crypto datafd to link buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->send_to_links_buf_crypt[i], 0, bufsize); } knet_h->recv_from_links_buf_decrypt = malloc(KNET_DATABUFSIZE_CRYPT); if (!knet_h->recv_from_links_buf_decrypt) { savederrno = errno; log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto link to datafd buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->recv_from_links_buf_decrypt, 0, KNET_DATABUFSIZE_CRYPT); knet_h->recv_from_links_buf_crypt = malloc(KNET_DATABUFSIZE_CRYPT); if (!knet_h->recv_from_links_buf_crypt) { savederrno = errno; log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto link to datafd buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->recv_from_links_buf_crypt, 0, KNET_DATABUFSIZE_CRYPT); knet_h->pingbuf_crypt = malloc(KNET_DATABUFSIZE_CRYPT); if (!knet_h->pingbuf_crypt) { savederrno = errno; log_err(knet_h, KNET_SUB_CRYPTO, "Unable to allocate memory for crypto hearbeat buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->pingbuf_crypt, 0, KNET_DATABUFSIZE_CRYPT); knet_h->pmtudbuf_crypt = malloc(KNET_DATABUFSIZE_CRYPT); if (!knet_h->pmtudbuf_crypt) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for crypto pmtud buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->pmtudbuf_crypt, 0, KNET_DATABUFSIZE_CRYPT); knet_h->recv_from_links_buf_decompress = malloc(KNET_DATABUFSIZE_COMPRESS); if (!knet_h->recv_from_links_buf_decompress) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for decompress buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->recv_from_links_buf_decompress, 0, KNET_DATABUFSIZE_COMPRESS); knet_h->send_to_links_buf_compress = malloc(KNET_DATABUFSIZE_COMPRESS); if (!knet_h->send_to_links_buf_compress) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to allocate memory for compress buffer: %s", strerror(savederrno)); goto exit_fail; } memset(knet_h->send_to_links_buf_compress, 0, KNET_DATABUFSIZE_COMPRESS); memset(knet_h->knet_transport_fd_tracker, KNET_MAX_TRANSPORTS, sizeof(knet_h->knet_transport_fd_tracker)); return 0; exit_fail: errno = savederrno; return -1; } static void _destroy_buffers(knet_handle_t knet_h) { int i; for (i = 0; i < PCKT_FRAG_MAX; i++) { free(knet_h->send_to_links_buf[i]); free(knet_h->send_to_links_buf_crypt[i]); } for (i = 0; i < PCKT_RX_BUFS; i++) { free(knet_h->recv_from_links_buf[i]); } free(knet_h->recv_from_links_buf_decompress); free(knet_h->send_to_links_buf_compress); free(knet_h->recv_from_sock_buf); free(knet_h->recv_from_links_buf_decrypt); free(knet_h->recv_from_links_buf_crypt); free(knet_h->pingbuf); free(knet_h->pingbuf_crypt); free(knet_h->pmtudbuf); free(knet_h->pmtudbuf_crypt); } static int _init_epolls(knet_handle_t knet_h) { struct epoll_event ev; int savederrno = 0; /* * even if the kernel does dynamic allocation with epoll_ctl * we need to reserve one extra for host to host communication */ knet_h->send_to_links_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1); if (knet_h->send_to_links_epollfd < 0) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll datafd to link fd: %s", strerror(savederrno)); goto exit_fail; } knet_h->recv_from_links_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS); if (knet_h->recv_from_links_epollfd < 0) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll link to datafd fd: %s", strerror(savederrno)); goto exit_fail; } knet_h->dst_link_handler_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS); if (knet_h->dst_link_handler_epollfd < 0) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to create epoll dst cache fd: %s", strerror(savederrno)); goto exit_fail; } if (_fdset_cloexec(knet_h->send_to_links_epollfd)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on datafd to link epoll fd: %s", strerror(savederrno)); goto exit_fail; } if (_fdset_cloexec(knet_h->recv_from_links_epollfd)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on link to datafd epoll fd: %s", strerror(savederrno)); goto exit_fail; } if (_fdset_cloexec(knet_h->dst_link_handler_epollfd)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on dst cache epoll fd: %s", strerror(savederrno)); goto exit_fail; } memset(&ev, 0, sizeof(struct epoll_event)); ev.events = EPOLLIN; ev.data.fd = knet_h->hostsockfd[0]; if (epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_ADD, knet_h->hostsockfd[0], &ev)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to add hostsockfd[0] to epoll pool: %s", strerror(savederrno)); goto exit_fail; } memset(&ev, 0, sizeof(struct epoll_event)); ev.events = EPOLLIN; ev.data.fd = knet_h->dstsockfd[0]; if (epoll_ctl(knet_h->dst_link_handler_epollfd, EPOLL_CTL_ADD, knet_h->dstsockfd[0], &ev)) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to add dstsockfd[0] to epoll pool: %s", strerror(savederrno)); goto exit_fail; } return 0; exit_fail: errno = savederrno; return -1; } static void _close_epolls(knet_handle_t knet_h) { struct epoll_event ev; int i; memset(&ev, 0, sizeof(struct epoll_event)); for (i = 0; i < KNET_DATAFD_MAX; i++) { if (knet_h->sockfd[i].in_use) { epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->sockfd[i].sockfd[knet_h->sockfd[i].is_created], &ev); if (knet_h->sockfd[i].sockfd[knet_h->sockfd[i].is_created]) { _close_socketpair(knet_h, knet_h->sockfd[i].sockfd); } } } epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->hostsockfd[0], &ev); epoll_ctl(knet_h->dst_link_handler_epollfd, EPOLL_CTL_DEL, knet_h->dstsockfd[0], &ev); close(knet_h->send_to_links_epollfd); close(knet_h->recv_from_links_epollfd); close(knet_h->dst_link_handler_epollfd); } static int _start_threads(knet_handle_t knet_h) { int savederrno = 0; savederrno = pthread_create(&knet_h->pmtud_link_handler_thread, 0, _handle_pmtud_link_thread, (void *) knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to start pmtud link thread: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_create(&knet_h->dst_link_handler_thread, 0, _handle_dst_link_handler_thread, (void *) knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to start dst cache thread: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_create(&knet_h->send_to_links_thread, 0, _handle_send_to_links_thread, (void *) knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to start datafd to link thread: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_create(&knet_h->recv_from_links_thread, 0, _handle_recv_from_links_thread, (void *) knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to start link to datafd thread: %s", strerror(savederrno)); goto exit_fail; } savederrno = pthread_create(&knet_h->heartbt_thread, 0, _handle_heartbt_thread, (void *) knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to start heartbeat thread: %s", strerror(savederrno)); goto exit_fail; } return 0; exit_fail: errno = savederrno; return -1; } static void _stop_threads(knet_handle_t knet_h) { void *retval; /* * allow threads to catch on shutdown request * and release locks before we stop them. * this isn't the most efficent way to handle it * but it works good enough for now */ sleep(1); if (knet_h->heartbt_thread) { pthread_cancel(knet_h->heartbt_thread); pthread_join(knet_h->heartbt_thread, &retval); } if (knet_h->send_to_links_thread) { pthread_cancel(knet_h->send_to_links_thread); pthread_join(knet_h->send_to_links_thread, &retval); } if (knet_h->recv_from_links_thread) { pthread_cancel(knet_h->recv_from_links_thread); pthread_join(knet_h->recv_from_links_thread, &retval); } if (knet_h->dst_link_handler_thread) { pthread_cancel(knet_h->dst_link_handler_thread); pthread_join(knet_h->dst_link_handler_thread, &retval); } if (knet_h->pmtud_link_handler_thread) { pthread_cancel(knet_h->pmtud_link_handler_thread); pthread_join(knet_h->pmtud_link_handler_thread, &retval); } } knet_handle_t knet_handle_new_ex(knet_node_id_t host_id, int log_fd, uint8_t default_log_level, uint64_t flags) { knet_handle_t knet_h; int savederrno = 0; struct rlimit cur; if (getrlimit(RLIMIT_NOFILE, &cur) < 0) { return NULL; } if ((log_fd < 0) || ((unsigned int)log_fd >= cur.rlim_max)) { errno = EINVAL; return NULL; } /* * validate incoming request */ if ((log_fd) && (default_log_level > KNET_LOG_DEBUG)) { errno = EINVAL; return NULL; } if (flags > KNET_HANDLE_FLAG_PRIVILEGED * 2 - 1) { errno = EINVAL; return NULL; } /* * allocate handle */ knet_h = malloc(sizeof(struct knet_handle)); if (!knet_h) { errno = ENOMEM; return NULL; } memset(knet_h, 0, sizeof(struct knet_handle)); knet_h->flags = flags; savederrno = pthread_mutex_lock(&handle_config_mutex); if (savederrno) { errno = savederrno; goto exit_fail; } /* * copy config in place */ knet_h->host_id = host_id; knet_h->logfd = log_fd; if (knet_h->logfd > 0) { memset(&knet_h->log_levels, default_log_level, KNET_MAX_SUBSYSTEMS); } /* * set pmtud default timers */ knet_h->pmtud_interval = KNET_PMTUD_DEFAULT_INTERVAL; /* * set transports reconnect default timers */ knet_h->reconnect_int = KNET_TRANSPORT_DEFAULT_RECONNECT_INTERVAL; /* * Set 'min' stats to the maximum value so the * first value we get is always less */ knet_h->stats.tx_compress_time_min = UINT64_MAX; knet_h->stats.rx_compress_time_min = UINT64_MAX; knet_h->stats.tx_crypt_time_min = UINT64_MAX; knet_h->stats.rx_crypt_time_min = UINT64_MAX; /* * init global shlib tracker */ if (_init_shlib_tracker(knet_h) < 0) { savederrno = errno; log_err(knet_h, KNET_SUB_HANDLE, "Unable to init handles traceker: %s", strerror(savederrno)); errno = savederrno; goto exit_fail; } /* * init main locking structures */ if (_init_locks(knet_h)) { savederrno = errno; goto exit_fail; } /* * init sockets */ if (_init_socks(knet_h)) { savederrno = errno; goto exit_fail; } /* * allocate packet buffers */ if (_init_buffers(knet_h)) { savederrno = errno; goto exit_fail; } if (compress_init(knet_h)) { savederrno = errno; goto exit_fail; } /* * create epoll fds */ if (_init_epolls(knet_h)) { savederrno = errno; goto exit_fail; } /* * start transports */ if (start_all_transports(knet_h)) { savederrno = errno; goto exit_fail; } /* * start internal threads */ if (_start_threads(knet_h)) { savederrno = errno; goto exit_fail; } knet_ref++; pthread_mutex_unlock(&handle_config_mutex); return knet_h; exit_fail: pthread_mutex_unlock(&handle_config_mutex); knet_handle_free(knet_h); errno = savederrno; return NULL; } knet_handle_t knet_handle_new(knet_node_id_t host_id, int log_fd, uint8_t default_log_level) { return knet_handle_new_ex(host_id, log_fd, default_log_level, KNET_HANDLE_FLAG_PRIVILEGED); } int knet_handle_free(knet_handle_t knet_h) { int savederrno = 0; savederrno = pthread_mutex_lock(&handle_config_mutex); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get handle mutex lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (!knet_h) { pthread_mutex_unlock(&handle_config_mutex); errno = EINVAL; return -1; } - if (!knet_h->lock_init_done) { - goto exit_nolock; - } - savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); pthread_mutex_unlock(&handle_config_mutex); errno = savederrno; return -1; } if (knet_h->host_head != NULL) { savederrno = EBUSY; log_err(knet_h, KNET_SUB_HANDLE, "Unable to free handle: host(s) or listener(s) are still active: %s", strerror(savederrno)); pthread_rwlock_unlock(&knet_h->global_rwlock); pthread_mutex_unlock(&handle_config_mutex); errno = savederrno; return -1; } knet_h->fini_in_progress = 1; pthread_rwlock_unlock(&knet_h->global_rwlock); _stop_threads(knet_h); stop_all_transports(knet_h); _close_epolls(knet_h); _destroy_buffers(knet_h); _close_socks(knet_h); crypto_fini(knet_h); compress_fini(knet_h, 1); _destroy_locks(knet_h); -exit_nolock: free(knet_h); knet_h = NULL; knet_ref--; _fini_shlib_tracker(); pthread_mutex_unlock(&handle_config_mutex); return 0; } int knet_handle_enable_sock_notify(knet_handle_t knet_h, void *sock_notify_fn_private_data, void (*sock_notify_fn) ( void *private_data, int datafd, int8_t channel, uint8_t tx_rx, int error, int errorno)) { int savederrno = 0, err = 0; if (!knet_h) { errno = EINVAL; return -1; } if (!sock_notify_fn) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } knet_h->sock_notify_fn_private_data = sock_notify_fn_private_data; knet_h->sock_notify_fn = sock_notify_fn; log_debug(knet_h, KNET_SUB_HANDLE, "sock_notify_fn enabled"); pthread_rwlock_unlock(&knet_h->global_rwlock); return err; } int knet_handle_add_datafd(knet_handle_t knet_h, int *datafd, int8_t *channel) { int err = 0, savederrno = 0; int i; struct epoll_event ev; if (!knet_h) { errno = EINVAL; return -1; } if (datafd == NULL) { errno = EINVAL; return -1; } if (channel == NULL) { errno = EINVAL; return -1; } if (*channel >= KNET_DATAFD_MAX) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (!knet_h->sock_notify_fn) { log_err(knet_h, KNET_SUB_HANDLE, "Adding datafd requires sock notify callback enabled!"); savederrno = EINVAL; err = -1; goto out_unlock; } if (*datafd > 0) { for (i = 0; i < KNET_DATAFD_MAX; i++) { if ((knet_h->sockfd[i].in_use) && (knet_h->sockfd[i].sockfd[0] == *datafd)) { log_err(knet_h, KNET_SUB_HANDLE, "requested datafd: %d already exist in index: %d", *datafd, i); savederrno = EEXIST; err = -1; goto out_unlock; } } } /* * auto allocate a channel */ if (*channel < 0) { for (i = 0; i < KNET_DATAFD_MAX; i++) { if (!knet_h->sockfd[i].in_use) { *channel = i; break; } } if (*channel < 0) { savederrno = EBUSY; err = -1; goto out_unlock; } } else { if (knet_h->sockfd[*channel].in_use) { savederrno = EBUSY; err = -1; goto out_unlock; } } knet_h->sockfd[*channel].is_created = 0; knet_h->sockfd[*channel].is_socket = 0; knet_h->sockfd[*channel].has_error = 0; if (*datafd > 0) { int sockopt; socklen_t sockoptlen = sizeof(sockopt); if (_fdset_cloexec(*datafd)) { savederrno = errno; err = -1; log_err(knet_h, KNET_SUB_HANDLE, "Unable to set CLOEXEC on datafd: %s", strerror(savederrno)); goto out_unlock; } if (_fdset_nonblock(*datafd)) { savederrno = errno; err = -1; log_err(knet_h, KNET_SUB_HANDLE, "Unable to set NONBLOCK on datafd: %s", strerror(savederrno)); goto out_unlock; } knet_h->sockfd[*channel].sockfd[0] = *datafd; knet_h->sockfd[*channel].sockfd[1] = 0; if (!getsockopt(knet_h->sockfd[*channel].sockfd[0], SOL_SOCKET, SO_TYPE, &sockopt, &sockoptlen)) { knet_h->sockfd[*channel].is_socket = 1; } } else { if (_init_socketpair(knet_h, knet_h->sockfd[*channel].sockfd)) { savederrno = errno; err = -1; goto out_unlock; } knet_h->sockfd[*channel].is_created = 1; knet_h->sockfd[*channel].is_socket = 1; *datafd = knet_h->sockfd[*channel].sockfd[0]; } memset(&ev, 0, sizeof(struct epoll_event)); ev.events = EPOLLIN; ev.data.fd = knet_h->sockfd[*channel].sockfd[knet_h->sockfd[*channel].is_created]; if (epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_ADD, knet_h->sockfd[*channel].sockfd[knet_h->sockfd[*channel].is_created], &ev)) { savederrno = errno; err = -1; log_err(knet_h, KNET_SUB_HANDLE, "Unable to add datafd %d to linkfd epoll pool: %s", knet_h->sockfd[*channel].sockfd[knet_h->sockfd[*channel].is_created], strerror(savederrno)); if (knet_h->sockfd[*channel].is_created) { _close_socketpair(knet_h, knet_h->sockfd[*channel].sockfd); } goto out_unlock; } knet_h->sockfd[*channel].in_use = 1; out_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_remove_datafd(knet_handle_t knet_h, int datafd) { int err = 0, savederrno = 0; int8_t channel = -1; int i; struct epoll_event ev; if (!knet_h) { errno = EINVAL; return -1; } if (datafd <= 0) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } for (i = 0; i < KNET_DATAFD_MAX; i++) { if ((knet_h->sockfd[i].in_use) && (knet_h->sockfd[i].sockfd[0] == datafd)) { channel = i; break; } } if (channel < 0) { savederrno = EINVAL; err = -1; goto out_unlock; } if (!knet_h->sockfd[channel].has_error) { memset(&ev, 0, sizeof(struct epoll_event)); if (epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) { savederrno = errno; err = -1; log_err(knet_h, KNET_SUB_HANDLE, "Unable to del datafd %d from linkfd epoll pool: %s", knet_h->sockfd[channel].sockfd[0], strerror(savederrno)); goto out_unlock; } } if (knet_h->sockfd[channel].is_created) { _close_socketpair(knet_h, knet_h->sockfd[channel].sockfd); } memset(&knet_h->sockfd[channel], 0, sizeof(struct knet_sock)); out_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_get_datafd(knet_handle_t knet_h, const int8_t channel, int *datafd) { int err = 0, savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } if ((channel < 0) || (channel >= KNET_DATAFD_MAX)) { errno = EINVAL; return -1; } if (datafd == NULL) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (!knet_h->sockfd[channel].in_use) { savederrno = EINVAL; err = -1; goto out_unlock; } *datafd = knet_h->sockfd[channel].sockfd[0]; out_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_get_channel(knet_handle_t knet_h, const int datafd, int8_t *channel) { int err = 0, savederrno = 0; int i; if (!knet_h) { errno = EINVAL; return -1; } if (datafd <= 0) { errno = EINVAL; return -1; } if (channel == NULL) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } *channel = -1; for (i = 0; i < KNET_DATAFD_MAX; i++) { if ((knet_h->sockfd[i].in_use) && (knet_h->sockfd[i].sockfd[0] == datafd)) { *channel = i; break; } } if (*channel < 0) { savederrno = EINVAL; err = -1; goto out_unlock; } out_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_enable_filter(knet_handle_t knet_h, void *dst_host_filter_fn_private_data, int (*dst_host_filter_fn) ( void *private_data, const unsigned char *outdata, ssize_t outdata_len, uint8_t tx_rx, knet_node_id_t this_host_id, knet_node_id_t src_node_id, int8_t *channel, knet_node_id_t *dst_host_ids, size_t *dst_host_ids_entries)) { int savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } knet_h->dst_host_filter_fn_private_data = dst_host_filter_fn_private_data; knet_h->dst_host_filter_fn = dst_host_filter_fn; if (knet_h->dst_host_filter_fn) { log_debug(knet_h, KNET_SUB_HANDLE, "dst_host_filter_fn enabled"); } else { log_debug(knet_h, KNET_SUB_HANDLE, "dst_host_filter_fn disabled"); } pthread_rwlock_unlock(&knet_h->global_rwlock); return 0; } int knet_handle_setfwd(knet_handle_t knet_h, unsigned int enabled) { int savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } if (enabled > 1) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } knet_h->enabled = enabled; if (enabled) { log_debug(knet_h, KNET_SUB_HANDLE, "Data forwarding is enabled"); } else { log_debug(knet_h, KNET_SUB_HANDLE, "Data forwarding is disabled"); } pthread_rwlock_unlock(&knet_h->global_rwlock); return 0; } int knet_handle_pmtud_getfreq(knet_handle_t knet_h, unsigned int *interval) { int savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } if (!interval) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } *interval = knet_h->pmtud_interval; pthread_rwlock_unlock(&knet_h->global_rwlock); return 0; } int knet_handle_pmtud_setfreq(knet_handle_t knet_h, unsigned int interval) { int savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } if ((!interval) || (interval > 86400)) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } knet_h->pmtud_interval = interval; log_debug(knet_h, KNET_SUB_HANDLE, "PMTUd interval set to: %u seconds", interval); pthread_rwlock_unlock(&knet_h->global_rwlock); return 0; } int knet_handle_enable_pmtud_notify(knet_handle_t knet_h, void *pmtud_notify_fn_private_data, void (*pmtud_notify_fn) ( void *private_data, unsigned int data_mtu)) { int savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } knet_h->pmtud_notify_fn_private_data = pmtud_notify_fn_private_data; knet_h->pmtud_notify_fn = pmtud_notify_fn; if (knet_h->pmtud_notify_fn) { log_debug(knet_h, KNET_SUB_HANDLE, "pmtud_notify_fn enabled"); } else { log_debug(knet_h, KNET_SUB_HANDLE, "pmtud_notify_fn disabled"); } pthread_rwlock_unlock(&knet_h->global_rwlock); return 0; } int knet_handle_pmtud_get(knet_handle_t knet_h, unsigned int *data_mtu) { int savederrno = 0; if (!knet_h) { errno = EINVAL; return -1; } if (!data_mtu) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } *data_mtu = knet_h->data_mtu; pthread_rwlock_unlock(&knet_h->global_rwlock); return 0; } int knet_handle_crypto(knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { int savederrno = 0; int err = 0; if (!knet_h) { errno = EINVAL; return -1; } if (!knet_handle_crypto_cfg) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } crypto_fini(knet_h); if ((!strncmp("none", knet_handle_crypto_cfg->crypto_model, 4)) || ((!strncmp("none", knet_handle_crypto_cfg->crypto_cipher_type, 4)) && (!strncmp("none", knet_handle_crypto_cfg->crypto_hash_type, 4)))) { log_debug(knet_h, KNET_SUB_CRYPTO, "crypto is not enabled"); err = 0; goto exit_unlock; } if (knet_handle_crypto_cfg->private_key_len < KNET_MIN_KEY_LEN) { log_debug(knet_h, KNET_SUB_CRYPTO, "private key len too short (min %d): %u", KNET_MIN_KEY_LEN, knet_handle_crypto_cfg->private_key_len); savederrno = EINVAL; err = -1; goto exit_unlock; } if (knet_handle_crypto_cfg->private_key_len > KNET_MAX_KEY_LEN) { log_debug(knet_h, KNET_SUB_CRYPTO, "private key len too long (max %d): %u", KNET_MAX_KEY_LEN, knet_handle_crypto_cfg->private_key_len); savederrno = EINVAL; err = -1; goto exit_unlock; } err = crypto_init(knet_h, knet_handle_crypto_cfg); if (err) { err = -2; savederrno = errno; } exit_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_compress(knet_handle_t knet_h, struct knet_handle_compress_cfg *knet_handle_compress_cfg) { int savederrno = 0; int err = 0; if (!knet_h) { errno = EINVAL; return -1; } if (!knet_handle_compress_cfg) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } compress_fini(knet_h, 0); err = compress_cfg(knet_h, knet_handle_compress_cfg); savederrno = errno; pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } ssize_t knet_recv(knet_handle_t knet_h, char *buff, const size_t buff_len, const int8_t channel) { int savederrno = 0; ssize_t err = 0; struct iovec iov_in; if (!knet_h) { errno = EINVAL; return -1; } if (buff == NULL) { errno = EINVAL; return -1; } if (buff_len <= 0) { errno = EINVAL; return -1; } if (buff_len > KNET_MAX_PACKET_SIZE) { errno = EINVAL; return -1; } if (channel < 0) { errno = EINVAL; return -1; } if (channel >= KNET_DATAFD_MAX) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (!knet_h->sockfd[channel].in_use) { savederrno = EINVAL; err = -1; goto out_unlock; } memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (void *)buff; iov_in.iov_len = buff_len; err = readv(knet_h->sockfd[channel].sockfd[0], &iov_in, 1); savederrno = errno; out_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } ssize_t knet_send(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel) { int savederrno = 0; ssize_t err = 0; struct iovec iov_out[1]; if (!knet_h) { errno = EINVAL; return -1; } if (buff == NULL) { errno = EINVAL; return -1; } if (buff_len <= 0) { errno = EINVAL; return -1; } if (buff_len > KNET_MAX_PACKET_SIZE) { errno = EINVAL; return -1; } if (channel < 0) { errno = EINVAL; return -1; } if (channel >= KNET_DATAFD_MAX) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (!knet_h->sockfd[channel].in_use) { savederrno = EINVAL; err = -1; goto out_unlock; } memset(iov_out, 0, sizeof(iov_out)); iov_out[0].iov_base = (void *)buff; iov_out[0].iov_len = buff_len; err = writev(knet_h->sockfd[channel].sockfd[0], iov_out, 1); savederrno = errno; out_unlock: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_get_stats(knet_handle_t knet_h, struct knet_handle_stats *stats, size_t struct_size) { int savederrno = 0; int err = 0; if (!knet_h) { errno = EINVAL; return -1; } if (!stats) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (struct_size > sizeof(struct knet_handle_stats)) { struct_size = sizeof(struct knet_handle_stats); } memmove(stats, &knet_h->stats, struct_size); /* * TX crypt stats only count the data packets sent, so add in the ping/pong/pmtud figures * RX is OK as it counts them before they are sorted. */ stats->tx_crypt_packets += knet_h->stats_extra.tx_crypt_ping_packets + knet_h->stats_extra.tx_crypt_pong_packets + knet_h->stats_extra.tx_crypt_pmtu_packets + knet_h->stats_extra.tx_crypt_pmtu_reply_packets; /* Tell the caller our full size in case they have an old version */ stats->size = sizeof(struct knet_handle_stats); pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } int knet_handle_clear_stats(knet_handle_t knet_h, int clear_option) { int savederrno = 0; int err = 0; if (!knet_h) { errno = EINVAL; return -1; } if (clear_option != KNET_CLEARSTATS_HANDLE_ONLY && clear_option != KNET_CLEARSTATS_HANDLE_AND_LINK) { errno = EINVAL; return -1; } savederrno = get_global_wrlock(knet_h); if (savederrno) { log_err(knet_h, KNET_SUB_HANDLE, "Unable to get write lock: %s", strerror(savederrno)); errno = savederrno; return -1; } memset(&knet_h->stats, 0, sizeof(struct knet_handle_stats)); memset(&knet_h->stats_extra, 0, sizeof(struct knet_handle_stats_extra)); if (clear_option == KNET_CLEARSTATS_HANDLE_AND_LINK) { _link_clear_stats(knet_h); } pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } diff --git a/libknet/internals.h b/libknet/internals.h index a785cd72..06f8750f 100644 --- a/libknet/internals.h +++ b/libknet/internals.h @@ -1,507 +1,506 @@ /* * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * Federico Simoncelli * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #ifndef __KNET_INTERNALS_H__ #define __KNET_INTERNALS_H__ /* * NOTE: you shouldn't need to include this header normally */ #include #include "libknet.h" #include "onwire.h" #include "compat.h" #define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE #define KNET_DATABUFSIZE_CRYPT_PAD 1024 #define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD #define KNET_DATABUFSIZE_COMPRESS_PAD 1024 #define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD #define KNET_RING_RCVBUFF 8388608 #define PCKT_FRAG_MAX UINT8_MAX #define PCKT_RX_BUFS 512 #define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX typedef void *knet_transport_link_t; /* per link transport handle */ typedef void *knet_transport_t; /* per knet_h transport handle */ struct knet_transport_ops; /* Forward because of circular dependancy */ struct knet_mmsghdr { struct msghdr msg_hdr; /* Message header */ unsigned int msg_len; /* Number of bytes transmitted */ }; struct knet_link { /* required */ struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; /* configurable */ unsigned int dynamic; /* see KNET_LINK_DYN_ define above */ uint8_t priority; /* higher priority == preferred for A/P */ unsigned long long ping_interval; /* interval */ unsigned long long pong_timeout; /* timeout */ unsigned long long pong_timeout_adj; /* timeout adjusted for latency */ uint8_t pong_timeout_backoff; /* see link.h for definition */ unsigned int latency_fix; /* precision */ uint8_t pong_count; /* how many ping/pong to send/receive before link is up */ uint64_t flags; /* status */ struct knet_link_status status; /* internals */ uint8_t link_id; uint8_t transport_type; /* #defined constant from API */ knet_transport_link_t transport_link; /* link_info_t from transport */ int outsock; unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/ unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */ unsigned int latency_exp; uint8_t received_pong; struct timespec ping_last; /* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */ uint32_t proto_overhead; struct timespec pmtud_last; uint32_t last_ping_size; uint32_t last_good_mtu; uint32_t last_bad_mtu; uint32_t last_sent_mtu; uint32_t last_recv_mtu; uint8_t has_valid_mtu; }; #define KNET_CBUFFER_SIZE 4096 struct knet_host_defrag_buf { char buf[KNET_DATABUFSIZE]; uint8_t in_use; /* 0 buffer is free, 1 is in use */ seq_num_t pckt_seq; /* identify the pckt we are receiving */ uint8_t frag_recv; /* how many frags did we receive */ uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */ uint8_t last_first; /* special case if we receive the last fragment first */ uint16_t frag_size; /* normal frag size (not the last one) */ uint16_t last_frag_size; /* the last fragment might not be aligned with MTU size */ struct timespec last_update; /* keep time of the last pckt */ }; struct knet_host { /* required */ knet_node_id_t host_id; /* configurable */ uint8_t link_handler_policy; char name[KNET_MAX_HOST_LEN]; /* status */ struct knet_host_status status; /* internals */ char circular_buffer[KNET_CBUFFER_SIZE]; seq_num_t rx_seq_num; seq_num_t untimed_rx_seq_num; seq_num_t timed_rx_seq_num; uint8_t got_data; /* defrag/reassembly buffers */ struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK]; char circular_buffer_defrag[KNET_CBUFFER_SIZE]; /* link stuff */ struct knet_link link[KNET_MAX_LINK]; uint8_t active_link_entries; uint8_t active_links[KNET_MAX_LINK]; struct knet_host *next; }; struct knet_sock { int sockfd[2]; /* sockfd[0] will always be application facing * and sockfd[1] internal if sockpair has been created by knet */ int is_socket; /* check if it's a socket for recvmmsg usage */ int is_created; /* knet created this socket and has to clean up on exit/del */ int in_use; /* set to 1 if it's use, 0 if free */ int has_error; /* set to 1 if there were errors reading from the sock * and socket has been removed from epoll */ }; struct knet_fd_trackers { uint8_t transport; /* transport type (UDP/SCTP...) */ uint8_t data_type; /* internal use for transport to define what data are associated * to this fd */ void *data; /* pointer to the data */ }; #define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4 #define KNET_MAX_COMPRESS_METHODS UINT8_MAX struct knet_handle_stats_extra { uint64_t tx_crypt_pmtu_packets; uint64_t tx_crypt_pmtu_reply_packets; uint64_t tx_crypt_ping_packets; uint64_t tx_crypt_pong_packets; }; struct knet_handle { knet_node_id_t host_id; unsigned int enabled:1; struct knet_sock sockfd[KNET_DATAFD_MAX]; int logfd; uint8_t log_levels[KNET_MAX_SUBSYSTEMS]; int hostsockfd[2]; int dstsockfd[2]; int send_to_links_epollfd; int recv_from_links_epollfd; int dst_link_handler_epollfd; unsigned int pmtud_interval; unsigned int data_mtu; /* contains the max data size that we can send onwire * without frags */ struct knet_host *host_head; struct knet_host *host_index[KNET_MAX_HOST]; knet_transport_t transports[KNET_MAX_TRANSPORTS+1]; struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */ struct knet_handle_stats stats; struct knet_handle_stats_extra stats_extra; uint32_t reconnect_int; knet_node_id_t host_ids[KNET_MAX_HOST]; size_t host_ids_entries; struct knet_header *recv_from_sock_buf; struct knet_header *send_to_links_buf[PCKT_FRAG_MAX]; struct knet_header *recv_from_links_buf[PCKT_RX_BUFS]; struct knet_header *pingbuf; struct knet_header *pmtudbuf; pthread_t send_to_links_thread; pthread_t recv_from_links_thread; pthread_t heartbt_thread; pthread_t dst_link_handler_thread; pthread_t pmtud_link_handler_thread; - int lock_init_done; pthread_rwlock_t global_rwlock; /* global config lock */ pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */ pthread_cond_t pmtud_cond; /* conditional for above */ pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */ pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */ pthread_mutex_t backoff_mutex; /* used to protect dst_link->pong_timeout_adj */ pthread_mutex_t kmtu_mutex; /* used to protect kernel_mtu */ uint32_t kernel_mtu; /* contains the MTU detected by the kernel on a given link */ int pmtud_waiting; int pmtud_running; int pmtud_forcerun; int pmtud_abort; struct crypto_instance *crypto_instance; size_t sec_header_size; size_t sec_block_size; size_t sec_hash_size; size_t sec_salt_size; unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX]; unsigned char *recv_from_links_buf_crypt; unsigned char *recv_from_links_buf_decrypt; unsigned char *pingbuf_crypt; unsigned char *pmtudbuf_crypt; int compress_model; int compress_level; size_t compress_threshold; void *compress_int_data[KNET_MAX_COMPRESS_METHODS]; /* for compress method private data */ unsigned char *recv_from_links_buf_decompress; unsigned char *send_to_links_buf_compress; seq_num_t tx_seq_num; pthread_mutex_t tx_seq_num_mutex; uint8_t has_loop_link; uint8_t loop_link; void *dst_host_filter_fn_private_data; int (*dst_host_filter_fn) ( void *private_data, const unsigned char *outdata, ssize_t outdata_len, uint8_t tx_rx, knet_node_id_t this_host_id, knet_node_id_t src_node_id, int8_t *channel, knet_node_id_t *dst_host_ids, size_t *dst_host_ids_entries); void *pmtud_notify_fn_private_data; void (*pmtud_notify_fn) ( void *private_data, unsigned int data_mtu); void *host_status_change_notify_fn_private_data; void (*host_status_change_notify_fn) ( void *private_data, knet_node_id_t host_id, uint8_t reachable, uint8_t remote, uint8_t external); void *sock_notify_fn_private_data; void (*sock_notify_fn) ( void *private_data, int datafd, int8_t channel, uint8_t tx_rx, int error, int errorno); int fini_in_progress; uint64_t flags; }; extern pthread_rwlock_t shlib_rwlock; /* global shared lib load lock */ /* * NOTE: every single operation must be implementend * for every protocol. */ typedef struct knet_transport_ops { /* * transport generic information */ const char *transport_name; const uint8_t transport_id; const uint8_t built_in; uint32_t transport_mtu_overhead; /* * transport init must allocate the new transport * and perform all internal initializations * (threads, lists, etc). */ int (*transport_init)(knet_handle_t knet_h); /* * transport free must releases _all_ resources * allocated by tranport_init */ int (*transport_free)(knet_handle_t knet_h); /* * link operations should take care of all the * sockets and epoll management for a given link/transport set * transport_link_disable should return err = -1 and errno = EBUSY * if listener is still in use, and any other errno in case * the link cannot be disabled. * * set_config/clear_config are invoked in global write lock context */ int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link); int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link); /* * transport callback for incoming dynamic connections * this is called in global read lock context */ int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link); /* * per transport error handling of recvmmsg * (see _handle_recv_from_links comments for details) */ /* * transport_rx_sock_error is invoked when recvmmsg returns <= 0 * * transport_rx_sock_error is invoked with both global_rdlock */ int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno); /* * transport_tx_sock_error is invoked with global_rwlock and * it's invoked when sendto or sendmmsg returns =< 0 * * it should return: * -1 on internal error * 0 ignore error and continue * 1 retry * any sleep or wait action should happen inside the transport code */ int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno); /* * this function is called on _every_ received packet * to verify if the packet is data or internal protocol error handling * * it should return: * -1 on error * 0 packet is not data and we should continue the packet process loop * 1 packet is not data and we should STOP the packet process loop * 2 packet is data and should be parsed as such * * transport_rx_is_data is invoked with both global_rwlock * and fd_tracker read lock (from RX thread) */ int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg); } knet_transport_ops_t; socklen_t sockaddr_len(const struct sockaddr_storage *ss); /** * This is a kernel style list implementation. * * @author Steven Dake */ struct knet_list_head { struct knet_list_head *next; struct knet_list_head *prev; }; /** * @def KNET_LIST_DECLARE() * Declare and initialize a list head. */ #define KNET_LIST_DECLARE(name) \ struct knet_list_head name = { &(name), &(name) } #define KNET_INIT_LIST_HEAD(ptr) do { \ (ptr)->next = (ptr); (ptr)->prev = (ptr); \ } while (0) /** * Initialize the list entry. * * Points next and prev pointers to head. * @param head pointer to the list head */ static inline void knet_list_init(struct knet_list_head *head) { head->next = head; head->prev = head; } /** * Add this element to the list. * * @param element the new element to insert. * @param head pointer to the list head */ static inline void knet_list_add(struct knet_list_head *element, struct knet_list_head *head) { head->next->prev = element; element->next = head->next; element->prev = head; head->next = element; } /** * Add to the list (but at the end of the list). * * @param element pointer to the element to add * @param head pointer to the list head * @see knet_list_add() */ static inline void knet_list_add_tail(struct knet_list_head *element, struct knet_list_head *head) { head->prev->next = element; element->next = head; element->prev = head->prev; head->prev = element; } /** * Delete an entry from the list. * * @param _remove the list item to remove */ static inline void knet_list_del(struct knet_list_head *_remove) { _remove->next->prev = _remove->prev; _remove->prev->next = _remove->next; } /** * Replace old entry by new one * @param old: the element to be replaced * @param new: the new element to insert */ static inline void knet_list_replace(struct knet_list_head *old, struct knet_list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } /** * Tests whether list is the last entry in list head * @param list: the entry to test * @param head: the head of the list * @return boolean true/false */ static inline int knet_list_is_last(const struct knet_list_head *list, const struct knet_list_head *head) { return list->next == head; } /** * A quick test to see if the list is empty (pointing to it's self). * @param head pointer to the list head * @return boolean true/false */ static inline int32_t knet_list_empty(const struct knet_list_head *head) { return head->next == head; } /** * Get the struct for this entry * @param ptr: the &struct list_head pointer. * @param type: the type of the struct this is embedded in. * @param member: the name of the list_struct within the struct. */ #define knet_list_entry(ptr,type,member)\ ((type *)((char *)(ptr)-(char*)(&((type *)0)->member))) /** * Get the first element from a list * @param ptr: the &struct list_head pointer. * @param type: the type of the struct this is embedded in. * @param member: the name of the list_struct within the struct. */ #define knet_list_first_entry(ptr, type, member) \ knet_list_entry((ptr)->next, type, member) /** * Iterate over a list * @param pos: the &struct list_head to use as a loop counter. * @param head: the head for your list. */ #define knet_list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * Iterate over a list backwards * @param pos: the &struct list_head to use as a loop counter. * @param head: the head for your list. */ #define knet_list_for_each_reverse(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * Iterate over a list safe against removal of list entry * @param pos: the &struct list_head to use as a loop counter. * @param n: another &struct list_head to use as temporary storage * @param head: the head for your list. */ #define knet_list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * Iterate over list of given type * @param pos: the type * to use as a loop counter. * @param head: the head for your list. * @param member: the name of the list_struct within the struct. */ #define knet_list_for_each_entry(pos, head, member) \ for (pos = knet_list_entry((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = knet_list_entry(pos->member.next, typeof(*pos), member)) #endif