diff --git a/libknet/common.c b/libknet/common.c index 1ddf31c9..437e5392 100644 --- a/libknet/common.c +++ b/libknet/common.c @@ -1,185 +1,203 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include "logging.h" #include "common.h" int _fdset_cloexec(int fd) { int fdflags; fdflags = fcntl(fd, F_GETFD, 0); if (fdflags < 0) return -1; fdflags |= FD_CLOEXEC; if (fcntl(fd, F_SETFD, fdflags) < 0) return -1; return 0; } int _fdset_nonblock(int fd) { int fdflags; fdflags = fcntl(fd, F_GETFL, 0); if (fdflags < 0) return -1; fdflags |= O_NONBLOCK; if (fcntl(fd, F_SETFL, fdflags) < 0) return -1; return 0; } void *open_lib(knet_handle_t knet_h, const char *libname, int extra_flags) { void *ret = NULL; char *error = NULL; char dir[MAXPATHLEN], path[MAXPATHLEN], link[MAXPATHLEN]; struct stat sb; /* * clear any pending error */ dlerror(); ret = dlopen(libname, RTLD_NOW | RTLD_GLOBAL | extra_flags); error = dlerror(); if (error != NULL) { log_err(knet_h, KNET_SUB_COMMON, "unable to dlopen %s: %s", libname, error); errno = EAGAIN; return NULL; } memset(dir, 0, sizeof(dir)); memset(link, 0, sizeof(link)); memset(path, 0, sizeof(path)); if (dlinfo(ret, RTLD_DI_ORIGIN, &dir) < 0) { /* * should we dlclose and return error? */ log_warn(knet_h, KNET_SUB_COMMON, "unable to dlinfo %s: %s", libname, error); } else { snprintf(path, sizeof(path), "%s/%s", dir, libname); log_info(knet_h, KNET_SUB_COMMON, "%s has been loaded from %s", libname, path); /* * try to resolve the library and check if it is a symlink and to where. * we can't prevent symlink attacks but at least we can log where the library * has been loaded from */ if (lstat(path, &sb) < 0) { log_debug(knet_h, KNET_SUB_COMMON, "Unable to stat %s: %s", path, strerror(errno)); goto out; } if (S_ISLNK(sb.st_mode)) { if (readlink(path, link, sizeof(link)) < 0) { log_debug(knet_h, KNET_SUB_COMMON, "Unable to readlink %s: %s", path, strerror(errno)); goto out; } /* * symlink is relative to the directory */ if (link[0] != '/') { snprintf(path, sizeof(path), "%s/%s", dir, link); log_info(knet_h, KNET_SUB_COMMON, "%s/%s is a symlink to %s", dir, libname, path); } else { log_info(knet_h, KNET_SUB_COMMON, "%s/%s is a symlink to %s", dir, libname, link); } } } out: return ret; } /* Separate these into compress.c and crypto.c or keep them together? */ int load_compress_lib(knet_handle_t knet_h, compress_model_t *model) { void *module; + log_msg_t **log_msg_sym; compress_model_t *module_cmds; char soname[MAXPATHLEN]; const char model_sym[] = "compress_model"; if (model->loaded) { return 0; } snprintf (soname, sizeof soname, "compress_%s.so", model->model_name); module = open_lib(knet_h, soname, 0); if (!module) { return -1; } + log_msg_sym = dlsym (module, "log_msg"); + if (!log_msg_sym) { + log_err (knet_h, KNET_SUB_COMPRESS, "unable to map symbol log_msg in module %s: %s", + soname, dlerror ()); + errno = EINVAL; + return -1; + } + *log_msg_sym = log_msg; module_cmds = dlsym (module, model_sym); if (!module_cmds) { log_err (knet_h, KNET_SUB_COMPRESS, "unable to map symbol %s in module %s: %s", model_sym, soname, dlerror ()); errno = EINVAL; return -1; } model->is_init = module_cmds->is_init; model->init = module_cmds->init; model->fini = module_cmds->fini; model->val_level = module_cmds->val_level; model->compress = module_cmds->compress; model->decompress = module_cmds->decompress; return 0; } int load_crypto_lib(knet_handle_t knet_h, crypto_model_t *model) { void *module; + log_msg_t **log_msg_sym; crypto_model_t *module_cmds; char soname[MAXPATHLEN]; const char model_sym[] = "crypto_model"; if (model->loaded) { return 0; } snprintf (soname, sizeof soname, "crypto_%s.so", model->model_name); module = open_lib(knet_h, soname, 0); if (!module) { return -1; } + log_msg_sym = dlsym (module, "log_msg"); + if (!log_msg_sym) { + log_err (knet_h, KNET_SUB_COMPRESS, "unable to map symbol log_msg in module %s: %s", + soname, dlerror ()); + errno = EINVAL; + return -1; + } + *log_msg_sym = log_msg; module_cmds = dlsym (module, model_sym); if (!module_cmds) { log_err (knet_h, KNET_SUB_CRYPTO, "unable to map symbol %s in module %s: %s", model_sym, soname, dlerror ()); errno = EINVAL; return -1; } if (module_cmds->load_lib && (*module_cmds->load_lib)(knet_h)) { return -1; } model->init = module_cmds->init; model->fini = module_cmds->fini; model->crypt = module_cmds->crypt; model->cryptv = module_cmds->cryptv; model->decrypt = module_cmds->decrypt; return 0; } diff --git a/libknet/compress_bzip2.c b/libknet/compress_bzip2.c index 79d1f66f..7f03f9e4 100644 --- a/libknet/compress_bzip2.c +++ b/libknet/compress_bzip2.c @@ -1,117 +1,118 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include "logging.h" #include "compress_model.h" static int bzip2_val_level( knet_handle_t knet_h, int compress_level) { if ((compress_level < 1) || (compress_level > 9)) { log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unsupported compression level %d (accepted values from 1 to 9)", compress_level); errno = EINVAL; return -1; } return 0; } static int bzip2_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; unsigned int destLen = KNET_DATABUFSIZE_COMPRESS; err = BZ2_bzBuffToBuffCompress((char *)buf_out, &destLen, (char *)buf_in, buf_in_len, knet_h->compress_level, 0, 0); switch(err) { case BZ_OK: *buf_out_len = destLen; break; case BZ_MEM_ERROR: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 compress has not enough memory"); savederrno = ENOMEM; err = -1; break; case BZ_OUTBUFF_FULL: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unable to compress source in destination buffer"); savederrno = E2BIG; err = -1; break; default: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 compress unknown error %d", err); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } static int bzip2_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; unsigned int destLen = KNET_DATABUFSIZE_COMPRESS; err = BZ2_bzBuffToBuffDecompress((char *)buf_out, &destLen, (char *)buf_in, buf_in_len, 0, 0); switch(err) { case BZ_OK: *buf_out_len = destLen; break; case BZ_MEM_ERROR: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress has not enough memory"); savederrno = ENOMEM; err = -1; break; case BZ_OUTBUFF_FULL: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unable to decompress source in destination buffer"); savederrno = E2BIG; err = -1; break; case BZ_DATA_ERROR: case BZ_DATA_ERROR_MAGIC: case BZ_UNEXPECTED_EOF: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress detected input data corruption"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress unknown error %d", err); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } compress_model_t compress_model = { "", 0, 0, NULL, 0, NULL, NULL, NULL, bzip2_val_level, bzip2_compress, bzip2_decompress }; diff --git a/libknet/compress_lz4.c b/libknet/compress_lz4.c index 02c96643..f9a7a7f6 100644 --- a/libknet/compress_lz4.c +++ b/libknet/compress_lz4.c @@ -1,93 +1,94 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include "logging.h" #include "compress_model.h" static int lz4_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level <= 0) { log_info(knet_h, KNET_SUB_LZ4COMP, "lz4 acceleration level 0 (or negatives) are automatically remapped to 1"); } return 0; } static int lz4_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = LZ4_compress_fast((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE_COMPRESS, knet_h->compress_level); /* * data compressed */ if (lzerr > 0) { *buf_out_len = lzerr; } /* * unable to compress */ if (lzerr == 0) { *buf_out_len = buf_in_len; } /* * lz4 internal error */ if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 compression error: %d", lzerr); savederrno = EINVAL; err = -1; } errno = savederrno; return err; } static int lz4_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = LZ4_decompress_safe((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE); if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 decompression error: %d", lzerr); savederrno = EINVAL; err = -1; } if (lzerr > 0) { *buf_out_len = lzerr; } errno = savederrno; return err; } compress_model_t compress_model = { "", 0, 0, NULL, 0, NULL, NULL, NULL, lz4_val_level, lz4_compress, lz4_decompress }; diff --git a/libknet/compress_lz4hc.c b/libknet/compress_lz4hc.c index c496b8da..a418458e 100644 --- a/libknet/compress_lz4hc.c +++ b/libknet/compress_lz4hc.c @@ -1,108 +1,109 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include "logging.h" #include "compress_model.h" #ifdef LZ4HC_CLEVEL_MAX #define KNET_LZ4HC_MAX LZ4HC_CLEVEL_MAX #endif #ifdef LZ4HC_MAX_CLEVEL #define KNET_LZ4HC_MAX LZ4HC_MAX_CLEVEL #endif #ifndef KNET_LZ4HC_MAX #define KNET_LZ4HC_MAX 0 #error Please check lz4hc.h for missing LZ4HC_CLEVEL_MAX or LZ4HC_MAX_CLEVEL variants #endif static int lz4hc_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level < 1) { log_err(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc supports only 1+ values for compression level"); errno = EINVAL; return -1; } if (compress_level < 4) { log_info(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc recommends 4+ compression level for better results"); } if (compress_level > KNET_LZ4HC_MAX) { log_warn(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc installed on this system supports up to compression level %d. Higher values behaves as %d", KNET_LZ4HC_MAX, KNET_LZ4HC_MAX); } return 0; } static int lz4hc_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = LZ4_compress_HC((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE_COMPRESS, knet_h->compress_level); /* * data compressed */ if (lzerr > 0) { *buf_out_len = lzerr; } /* * unable to compress */ if (lzerr <= 0) { log_err(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc compression error: %d", lzerr); savederrno = EINVAL; err = -1; } errno = savederrno; return err; } /* This is a straight copy from compress_lz4.c */ static int lz4_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = LZ4_decompress_safe((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE); if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 decompression error: %d", lzerr); savederrno = EINVAL; err = -1; } if (lzerr > 0) { *buf_out_len = lzerr; } errno = savederrno; return err; } compress_model_t compress_model = { "", 0, 0, NULL, 0, NULL, NULL, NULL, lz4hc_val_level, lz4hc_compress, lz4_decompress }; diff --git a/libknet/compress_lzma.c b/libknet/compress_lzma.c index f719e23f..81e135c0 100644 --- a/libknet/compress_lzma.c +++ b/libknet/compress_lzma.c @@ -1,129 +1,130 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include "logging.h" #include "compress_model.h" static int lzma_val_level( knet_handle_t knet_h, int compress_level) { if ((compress_level < 0) || (compress_level > 9)) { log_err(knet_h, KNET_SUB_LZMACOMP, "lzma unsupported compression preset %d (accepted values from 0 to 9)", compress_level); errno = EINVAL; return -1; } return 0; } static int lzma_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; size_t out_pos = 0; lzma_ret ret = 0; ret = lzma_easy_buffer_encode(knet_h->compress_level, LZMA_CHECK_NONE, NULL, (const uint8_t *)buf_in, buf_in_len, (uint8_t *)buf_out, &out_pos, KNET_DATABUFSIZE_COMPRESS); switch(ret) { case LZMA_OK: *buf_out_len = out_pos; break; case LZMA_MEM_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress memory allocation failed"); savederrno = ENOMEM; err = -1; break; case LZMA_MEMLIMIT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress requires higher memory boundaries (see lzma_memlimit_set)"); savederrno = ENOMEM; err = -1; break; case LZMA_PROG_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress has been called with incorrect options"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress unknown error %u", ret); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } static int lzma_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; uint64_t memlimit = UINT64_MAX; /* disable lzma internal memlimit check */ size_t out_pos = 0, in_pos = 0; lzma_ret ret = 0; ret = lzma_stream_buffer_decode(&memlimit, 0, NULL, (const uint8_t *)buf_in, &in_pos, buf_in_len, (uint8_t *)buf_out, &out_pos, KNET_DATABUFSIZE_COMPRESS); switch(ret) { case LZMA_OK: *buf_out_len = out_pos; break; case LZMA_MEM_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress memory allocation failed"); savederrno = ENOMEM; err = -1; break; case LZMA_MEMLIMIT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress requires higher memory boundaries (see lzma_memlimit_set)"); savederrno = ENOMEM; err = -1; break; case LZMA_DATA_ERROR: case LZMA_FORMAT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress invalid data received"); savederrno = EINVAL; err = -1; break; case LZMA_PROG_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress has been called with incorrect options"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress unknown error %u", ret); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } compress_model_t compress_model = { "", 0, 0, NULL, 0, NULL, NULL, NULL, lzma_val_level, lzma_compress, lzma_decompress }; diff --git a/libknet/compress_lzo2.c b/libknet/compress_lzo2.c index d1405dec..f2f7ecf4 100644 --- a/libknet/compress_lzo2.c +++ b/libknet/compress_lzo2.c @@ -1,156 +1,157 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include #include #include "logging.h" #include "compress_model.h" static int lzo2_is_init( knet_handle_t knet_h, int method_idx) { if (knet_h->compress_int_data[method_idx]) { return 1; } return 0; } static int lzo2_init( knet_handle_t knet_h, int method_idx) { /* * LZO1X_999_MEM_COMPRESS is the highest amount of memory lzo2 can use */ if (!knet_h->compress_int_data[method_idx]) { knet_h->compress_int_data[method_idx] = malloc(LZO1X_999_MEM_COMPRESS); if (!knet_h->compress_int_data[method_idx]) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 unable to allocate work memory"); errno = ENOMEM; return -1; } memset(knet_h->compress_int_data[method_idx], 0, LZO1X_999_MEM_COMPRESS); } return 0; } static void lzo2_fini( knet_handle_t knet_h, int method_idx) { if (knet_h->compress_int_data[method_idx]) { free(knet_h->compress_int_data[method_idx]); knet_h->compress_int_data[method_idx] = NULL; } return; } static int lzo2_val_level( knet_handle_t knet_h, int compress_level) { switch(compress_level) { case 1: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_compress internal compress method"); break; case 11: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_11_compress internal compress method"); break; case 12: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_12_compress internal compress method"); break; case 15: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_15_compress internal compress method"); break; case 999: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_999_compress internal compress method"); break; default: log_warn(knet_h, KNET_SUB_LZO2COMP, "Unknown lzo2 internal compress method. lzo1x_1_compress will be used as default fallback"); break; } return 0; } static int lzo2_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int savederrno = 0, lzerr = 0, err = 0; lzo_uint cmp_len; switch(knet_h->compress_level) { case 1: lzerr = lzo1x_1_compress(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 11: lzerr = lzo1x_1_11_compress(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 12: lzerr = lzo1x_1_12_compress(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 15: lzerr = lzo1x_1_15_compress(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 999: lzerr = lzo1x_999_compress(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; default: lzerr = lzo1x_1_compress(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; } if (lzerr != LZO_E_OK) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 internal compression error"); savederrno = EAGAIN; err = -1; } else { *buf_out_len = cmp_len; } errno = savederrno; return err; } static int lzo2_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzo_uint decmp_len; lzerr = lzo1x_decompress(buf_in, buf_in_len, buf_out, &decmp_len, NULL); if (lzerr != LZO_E_OK) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 internal decompression error"); savederrno = EAGAIN; err = -1; } else { *buf_out_len = decmp_len; } errno = savederrno; return err; } compress_model_t compress_model = { "", 0, 0, NULL, 0, lzo2_is_init, lzo2_init, lzo2_fini, lzo2_val_level, lzo2_compress, lzo2_decompress }; diff --git a/libknet/compress_zlib.c b/libknet/compress_zlib.c index e319d9c3..91a8ccaf 100644 --- a/libknet/compress_zlib.c +++ b/libknet/compress_zlib.c @@ -1,127 +1,128 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include "logging.h" #include "compress_model.h" static int zlib_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level < 0) { log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib does not support negative compression level %d", compress_level); return -1; } if (compress_level > 9) { log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib does not support compression level higher than 9"); return -1; } if (compress_level == 0) { log_warn(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress level 0 does NOT perform any compression"); } return 0; } static int zlib_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int zerr = 0, err = 0; int savederrno = 0; uLongf destLen = *buf_out_len; zerr = compress2(buf_out, &destLen, buf_in, buf_in_len, knet_h->compress_level); *buf_out_len = destLen; switch(zerr) { case Z_OK: err = 0; savederrno = 0; break; case Z_MEM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress mem error"); err = -1; savederrno = ENOMEM; break; case Z_BUF_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress buf error"); err = -1; savederrno = ENOBUFS; break; case Z_STREAM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress stream error"); err = -1; savederrno = EINVAL; break; default: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib unknown compress error: %d", zerr); break; } errno = savederrno; return err; } static int zlib_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int zerr = 0, err = 0; int savederrno = 0; uLongf destLen = *buf_out_len; zerr = uncompress(buf_out, &destLen, buf_in, buf_in_len); *buf_out_len = destLen; switch(zerr) { case Z_OK: err = 0; savederrno = 0; break; case Z_MEM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress mem error"); err = -1; savederrno = ENOMEM; break; case Z_BUF_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress buf error"); err = -1; savederrno = ENOBUFS; break; case Z_DATA_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress data error"); err = -1; savederrno = EINVAL; break; default: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib unknown decompress error: %d", zerr); break; } errno = savederrno; return err; } compress_model_t compress_model = { "", 0, 0, NULL, 0, NULL, NULL, NULL, zlib_val_level, zlib_compress, zlib_decompress }; diff --git a/libknet/crypto_nss.c b/libknet/crypto_nss.c index 548eaf0b..70ca81fd 100644 --- a/libknet/crypto_nss.c +++ b/libknet/crypto_nss.c @@ -1,806 +1,807 @@ /* * Copyright (C) 2012-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto_model.h" #include "logging.h" static int nss_db_is_init = 0; static int at_exit_registered = 0; static void nss_atexit_handler(void) { if (nss_db_is_init) { NSS_Shutdown(); if (PR_Initialized()) { PL_ArenaFinish(); PR_Cleanup(); } } return; } static int nsscrypto_load_lib( knet_handle_t knet_h) { if (!at_exit_registered) { if (atexit(nss_atexit_handler)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to register NSS atexit handler"); errno = EAGAIN; return -1; } at_exit_registered = 1; } if (!nss_db_is_init) { if (NSS_NoDB_Init(".") != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "NSS DB initialization failed (err %d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); errno = EAGAIN; return -1; } nss_db_is_init = 1; } return 0; } /* * crypto definitions and conversion tables */ #define SALT_SIZE 16 /* * This are defined in new NSS. For older one, we will define our own */ #ifndef AES_256_KEY_LENGTH #define AES_256_KEY_LENGTH 32 #endif #ifndef AES_192_KEY_LENGTH #define AES_192_KEY_LENGTH 24 #endif #ifndef AES_128_KEY_LENGTH #define AES_128_KEY_LENGTH 16 #endif enum nsscrypto_crypt_t { CRYPTO_CIPHER_TYPE_NONE = 0, CRYPTO_CIPHER_TYPE_AES256 = 1, CRYPTO_CIPHER_TYPE_AES192 = 2, CRYPTO_CIPHER_TYPE_AES128 = 3, CRYPTO_CIPHER_TYPE_3DES = 4 }; CK_MECHANISM_TYPE cipher_to_nss[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES256 */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES192 */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES128 */ CKM_DES3_CBC_PAD /* CRYPTO_CIPHER_TYPE_3DES */ }; size_t nsscipher_key_len[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ AES_256_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES256 */ AES_192_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES192 */ AES_128_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES128 */ 24 /* CRYPTO_CIPHER_TYPE_3DES */ }; size_t nsscypher_block_len[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES256 */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES192 */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES128 */ 0 /* CRYPTO_CIPHER_TYPE_3DES */ }; /* * hash definitions and conversion tables */ enum nsscrypto_hash_t { CRYPTO_HASH_TYPE_NONE = 0, CRYPTO_HASH_TYPE_MD5 = 1, CRYPTO_HASH_TYPE_SHA1 = 2, CRYPTO_HASH_TYPE_SHA256 = 3, CRYPTO_HASH_TYPE_SHA384 = 4, CRYPTO_HASH_TYPE_SHA512 = 5 }; CK_MECHANISM_TYPE hash_to_nss[] = { 0, /* CRYPTO_HASH_TYPE_NONE */ CKM_MD5_HMAC, /* CRYPTO_HASH_TYPE_MD5 */ CKM_SHA_1_HMAC, /* CRYPTO_HASH_TYPE_SHA1 */ CKM_SHA256_HMAC, /* CRYPTO_HASH_TYPE_SHA256 */ CKM_SHA384_HMAC, /* CRYPTO_HASH_TYPE_SHA384 */ CKM_SHA512_HMAC /* CRYPTO_HASH_TYPE_SHA512 */ }; size_t nsshash_len[] = { 0, /* CRYPTO_HASH_TYPE_NONE */ MD5_LENGTH, /* CRYPTO_HASH_TYPE_MD5 */ SHA1_LENGTH, /* CRYPTO_HASH_TYPE_SHA1 */ SHA256_LENGTH, /* CRYPTO_HASH_TYPE_SHA256 */ SHA384_LENGTH, /* CRYPTO_HASH_TYPE_SHA384 */ SHA512_LENGTH /* CRYPTO_HASH_TYPE_SHA512 */ }; enum sym_key_type { SYM_KEY_TYPE_CRYPT, SYM_KEY_TYPE_HASH }; struct nsscrypto_instance { PK11SymKey *nss_sym_key; PK11SymKey *nss_sym_key_sign; unsigned char *private_key; unsigned int private_key_len; int crypto_cipher_type; int crypto_hash_type; }; /* * crypt/decrypt functions */ static int nssstring_to_crypto_cipher_type(const char* crypto_cipher_type) { if (strcmp(crypto_cipher_type, "none") == 0) { return CRYPTO_CIPHER_TYPE_NONE; } else if (strcmp(crypto_cipher_type, "aes256") == 0) { return CRYPTO_CIPHER_TYPE_AES256; } else if (strcmp(crypto_cipher_type, "aes192") == 0) { return CRYPTO_CIPHER_TYPE_AES192; } else if (strcmp(crypto_cipher_type, "aes128") == 0) { return CRYPTO_CIPHER_TYPE_AES128; } else if (strcmp(crypto_cipher_type, "3des") == 0) { return CRYPTO_CIPHER_TYPE_3DES; } return -1; } static PK11SymKey *nssimport_symmetric_key(knet_handle_t knet_h, enum sym_key_type key_type) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; SECItem key_item; PK11SlotInfo *slot; PK11SymKey *res_key; CK_MECHANISM_TYPE cipher; CK_ATTRIBUTE_TYPE operation; CK_MECHANISM_TYPE wrap_mechanism; int wrap_key_len; PK11SymKey *wrap_key; PK11Context *wrap_key_crypt_context; SECItem tmp_sec_item; SECItem wrapped_key; int wrapped_key_len; unsigned char wrapped_key_data[KNET_MAX_KEY_LEN]; memset(&key_item, 0, sizeof(key_item)); slot = NULL; wrap_key = NULL; res_key = NULL; wrap_key_crypt_context = NULL; key_item.type = siBuffer; key_item.data = instance->private_key; switch (key_type) { case SYM_KEY_TYPE_CRYPT: key_item.len = nsscipher_key_len[instance->crypto_cipher_type]; cipher = cipher_to_nss[instance->crypto_cipher_type]; operation = CKA_ENCRYPT|CKA_DECRYPT; break; case SYM_KEY_TYPE_HASH: key_item.len = instance->private_key_len; cipher = hash_to_nss[instance->crypto_hash_type]; operation = CKA_SIGN; break; default: log_err(knet_h, KNET_SUB_NSSCRYPTO, "Import symmetric key failed. Unknown keyimport request"); goto exit_res_key; break; } slot = PK11_GetBestSlot(cipher, NULL); if (slot == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to find security slot (%d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Without FIPS it would be possible to just use * res_key = PK11_ImportSymKey(slot, cipher, PK11_OriginUnwrap, operation, &key_item, NULL); * with FIPS NSS Level 2 certification has to be "workarounded" (so it becomes Level 1) by using * following method: * 1. Generate wrap key * 2. Encrypt authkey with wrap key * 3. Unwrap encrypted authkey using wrap key */ /* * Generate wrapping key */ wrap_mechanism = PK11_GetBestWrapMechanism(slot); wrap_key_len = PK11_GetBestKeyLength(slot, wrap_mechanism); wrap_key = PK11_KeyGen(slot, wrap_mechanism, NULL, wrap_key_len, NULL); if (wrap_key == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to generate wrapping key (%d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Encrypt authkey with wrapping key */ /* * Initialization of IV is not needed because PK11_GetBestWrapMechanism should return ECB mode */ memset(&tmp_sec_item, 0, sizeof(tmp_sec_item)); wrap_key_crypt_context = PK11_CreateContextBySymKey(wrap_mechanism, CKA_ENCRYPT, wrap_key, &tmp_sec_item); if (wrap_key_crypt_context == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to create encrypt context (%d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } wrapped_key_len = (int)sizeof(wrapped_key_data); if (PK11_CipherOp(wrap_key_crypt_context, wrapped_key_data, &wrapped_key_len, sizeof(wrapped_key_data), key_item.data, key_item.len) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to encrypt authkey (%d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } if (PK11_Finalize(wrap_key_crypt_context) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to finalize encryption of authkey (%d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Finally unwrap sym key */ memset(&tmp_sec_item, 0, sizeof(tmp_sec_item)); wrapped_key.data = wrapped_key_data; wrapped_key.len = wrapped_key_len; res_key = PK11_UnwrapSymKey(wrap_key, wrap_mechanism, &tmp_sec_item, &wrapped_key, cipher, operation, key_item.len); if (res_key == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to import key into NSS (%d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); if (PR_GetError() == SEC_ERROR_BAD_DATA) { /* * Maximum key length for FIPS enabled softtoken is limited to * MAX_KEY_LEN (pkcs11i.h - 256) and checked in NSC_UnwrapKey. Returned * error is CKR_TEMPLATE_INCONSISTENT which is mapped to SEC_ERROR_BAD_DATA. */ log_err(knet_h, KNET_SUB_NSSCRYPTO, "Secret key is probably too long. " "Try reduce it to 256 bytes"); } goto exit_res_key; } exit_res_key: if (wrap_key_crypt_context != NULL) { PK11_DestroyContext(wrap_key_crypt_context, PR_TRUE); } if (wrap_key != NULL) { PK11_FreeSymKey(wrap_key); } if (slot != NULL) { PK11_FreeSlot(slot); } return (res_key); } static int init_nss_crypto(knet_handle_t knet_h) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; if (!cipher_to_nss[instance->crypto_cipher_type]) { return 0; } instance->nss_sym_key = nssimport_symmetric_key(knet_h, SYM_KEY_TYPE_CRYPT); if (instance->nss_sym_key == NULL) { return -1; } return 0; } static int encrypt_nss( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* crypt_context = NULL; SECItem crypt_param; SECItem *nss_sec_param = NULL; int tmp_outlen = 0, tmp1_outlen = 0; unsigned int tmp2_outlen = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = -1; int i; if (PK11_GenerateRandom(salt, SALT_SIZE) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to generate a random number (err %d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } crypt_param.type = siBuffer; crypt_param.data = salt; crypt_param.len = SALT_SIZE; nss_sec_param = PK11_ParamFromIV(cipher_to_nss[instance->crypto_cipher_type], &crypt_param); if (nss_sec_param == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to set up PKCS11 param (err %d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } /* * Create cipher context for encryption */ crypt_context = PK11_CreateContextBySymKey(cipher_to_nss[instance->crypto_cipher_type], CKA_ENCRYPT, instance->nss_sym_key, nss_sec_param); if (!crypt_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (encrypt) crypt_type=%d (err %d): %s", (int)cipher_to_nss[instance->crypto_cipher_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } for (i=0; icrypto_cipher_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } tmp1_outlen = tmp1_outlen + tmp_outlen; } if (PK11_DigestFinal(crypt_context, data + tmp1_outlen, &tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal failed (encrypt) crypt_type=%d (err %d): %s", (int)cipher_to_nss[instance->crypto_cipher_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } *buf_out_len = tmp1_outlen + tmp2_outlen + SALT_SIZE; err = 0; out: if (crypt_context) { PK11_DestroyContext(crypt_context, PR_TRUE); } if (nss_sec_param) { SECITEM_FreeItem(nss_sec_param, PR_TRUE); } return err; } static int decrypt_nss ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* decrypt_context = NULL; SECItem decrypt_param; int tmp1_outlen = 0; unsigned int tmp2_outlen = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = -1; /* Create cipher context for decryption */ decrypt_param.type = siBuffer; decrypt_param.data = salt; decrypt_param.len = SALT_SIZE; decrypt_context = PK11_CreateContextBySymKey(cipher_to_nss[instance->crypto_cipher_type], CKA_DECRYPT, instance->nss_sym_key, &decrypt_param); if (!decrypt_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext (decrypt) failed (err %d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } if (PK11_CipherOp(decrypt_context, buf_out, &tmp1_outlen, KNET_DATABUFSIZE_CRYPT, data, datalen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CipherOp (decrypt) failed (err %d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } if (PK11_DigestFinal(decrypt_context, buf_out + tmp1_outlen, &tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal (decrypt) failed (err %d): %s", PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } *buf_out_len = tmp1_outlen + tmp2_outlen; err = 0; out: if (decrypt_context) { PK11_DestroyContext(decrypt_context, PR_TRUE); } return err; } /* * hash/hmac/digest functions */ static int nssstring_to_crypto_hash_type(const char* crypto_hash_type) { if (strcmp(crypto_hash_type, "none") == 0) { return CRYPTO_HASH_TYPE_NONE; } else if (strcmp(crypto_hash_type, "md5") == 0) { return CRYPTO_HASH_TYPE_MD5; } else if (strcmp(crypto_hash_type, "sha1") == 0) { return CRYPTO_HASH_TYPE_SHA1; } else if (strcmp(crypto_hash_type, "sha256") == 0) { return CRYPTO_HASH_TYPE_SHA256; } else if (strcmp(crypto_hash_type, "sha384") == 0) { return CRYPTO_HASH_TYPE_SHA384; } else if (strcmp(crypto_hash_type, "sha512") == 0) { return CRYPTO_HASH_TYPE_SHA512; } return -1; } static int init_nss_hash(knet_handle_t knet_h) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; if (!hash_to_nss[instance->crypto_hash_type]) { return 0; } instance->nss_sym_key_sign = nssimport_symmetric_key(knet_h, SYM_KEY_TYPE_HASH); if (instance->nss_sym_key_sign == NULL) { return -1; } return 0; } static int calculate_nss_hash( knet_handle_t knet_h, const unsigned char *buf, const size_t buf_len, unsigned char *hash) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* hash_context = NULL; SECItem hash_param; unsigned int hash_tmp_outlen = 0; int err = -1; /* Now do the digest */ hash_param.type = siBuffer; hash_param.data = 0; hash_param.len = 0; hash_context = PK11_CreateContextBySymKey(hash_to_nss[instance->crypto_hash_type], CKA_SIGN, instance->nss_sym_key_sign, &hash_param); if (!hash_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } if (PK11_DigestBegin(hash_context) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestBegin failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } if (PK11_DigestOp(hash_context, buf, buf_len) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestOp failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } if (PK11_DigestFinal(hash_context, hash, &hash_tmp_outlen, nsshash_len[instance->crypto_hash_type]) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinale failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT)); goto out; } err = 0; out: if (hash_context) { PK11_DestroyContext(hash_context, PR_TRUE); } return err; } /* * global/glue nss functions */ static int init_nss(knet_handle_t knet_h) { if (init_nss_crypto(knet_h) < 0) { return -1; } if (init_nss_hash(knet_h) < 0) { return -1; } return 0; } /* * exported API */ static int nsscrypto_encrypt_and_signv ( knet_handle_t knet_h, const struct iovec *iov_in, int iovcnt_in, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; int i; if (cipher_to_nss[instance->crypto_cipher_type]) { if (encrypt_nss(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) { return -1; } } else { *buf_out_len = 0; for (i=0; icrypto_hash_type]) { if (calculate_nss_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) { return -1; } *buf_out_len = *buf_out_len + nsshash_len[instance->crypto_hash_type]; } return 0; } static int nsscrypto_encrypt_and_sign ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct iovec iov_in; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (unsigned char *)buf_in; iov_in.iov_len = buf_in_len; return nsscrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len); } static int nsscrypto_authenticate_and_decrypt ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; ssize_t temp_len = buf_in_len; if (hash_to_nss[instance->crypto_hash_type]) { unsigned char tmp_hash[nsshash_len[instance->crypto_hash_type]]; ssize_t temp_buf_len = buf_in_len - nsshash_len[instance->crypto_hash_type]; if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Incorrect packet size."); return -1; } if (calculate_nss_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) { return -1; } if (memcmp(tmp_hash, buf_in + temp_buf_len, nsshash_len[instance->crypto_hash_type]) != 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Digest does not match"); return -1; } temp_len = temp_len - nsshash_len[instance->crypto_hash_type]; *buf_out_len = temp_len; } if (cipher_to_nss[instance->crypto_cipher_type]) { if (decrypt_nss(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) { return -1; } } else { memmove(buf_out, buf_in, temp_len); *buf_out_len = temp_len; } return 0; } static void nsscrypto_fini( knet_handle_t knet_h) { struct nsscrypto_instance *nsscrypto_instance = knet_h->crypto_instance->model_instance; if (nsscrypto_instance) { if (nsscrypto_instance->nss_sym_key) { PK11_FreeSymKey(nsscrypto_instance->nss_sym_key); nsscrypto_instance->nss_sym_key = NULL; } if (nsscrypto_instance->nss_sym_key_sign) { PK11_FreeSymKey(nsscrypto_instance->nss_sym_key_sign); nsscrypto_instance->nss_sym_key_sign = NULL; } free(nsscrypto_instance); knet_h->crypto_instance->model_instance = NULL; knet_h->sec_header_size = 0; } return; } static int nsscrypto_init( knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { struct nsscrypto_instance *nsscrypto_instance = NULL; log_debug(knet_h, KNET_SUB_NSSCRYPTO, "Initizializing nss crypto module [%s/%s]", knet_handle_crypto_cfg->crypto_cipher_type, knet_handle_crypto_cfg->crypto_hash_type); knet_h->crypto_instance->model_instance = malloc(sizeof(struct nsscrypto_instance)); if (!knet_h->crypto_instance->model_instance) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to allocate memory for nss model instance"); return -1; } nsscrypto_instance = knet_h->crypto_instance->model_instance; memset(nsscrypto_instance, 0, sizeof(struct nsscrypto_instance)); nsscrypto_instance->crypto_cipher_type = nssstring_to_crypto_cipher_type(knet_handle_crypto_cfg->crypto_cipher_type); if (nsscrypto_instance->crypto_cipher_type < 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto cipher type requested"); goto out_err; } nsscrypto_instance->crypto_hash_type = nssstring_to_crypto_hash_type(knet_handle_crypto_cfg->crypto_hash_type); if (nsscrypto_instance->crypto_hash_type < 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto hash type requested"); goto out_err; } if ((nsscrypto_instance->crypto_cipher_type > 0) && (nsscrypto_instance->crypto_hash_type == 0)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "crypto communication requires hash specified"); goto out_err; } nsscrypto_instance->private_key = knet_handle_crypto_cfg->private_key; nsscrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len; if (init_nss(knet_h) < 0) { goto out_err; } knet_h->sec_header_size = 0; if (nsscrypto_instance->crypto_hash_type > 0) { knet_h->sec_header_size += nsshash_len[nsscrypto_instance->crypto_hash_type]; knet_h->sec_hash_size = nsshash_len[nsscrypto_instance->crypto_hash_type]; } if (nsscrypto_instance->crypto_cipher_type > 0) { int block_size; if (nsscypher_block_len[nsscrypto_instance->crypto_cipher_type]) { block_size = nsscypher_block_len[nsscrypto_instance->crypto_cipher_type]; } else { block_size = PK11_GetBlockSize(nsscrypto_instance->crypto_cipher_type, NULL); if (block_size < 0) { goto out_err; } } knet_h->sec_header_size += (block_size * 2); knet_h->sec_header_size += SALT_SIZE; knet_h->sec_salt_size = SALT_SIZE; knet_h->sec_block_size = block_size; } return 0; out_err: nsscrypto_fini(knet_h); return -1; } crypto_model_t crypto_model = { "", 0, nsscrypto_load_lib, 0, nsscrypto_init, nsscrypto_fini, nsscrypto_encrypt_and_sign, nsscrypto_encrypt_and_signv, nsscrypto_authenticate_and_decrypt }; diff --git a/libknet/crypto_openssl.c b/libknet/crypto_openssl.c index 130a9c8f..9d1ae8ba 100644 --- a/libknet/crypto_openssl.c +++ b/libknet/crypto_openssl.c @@ -1,522 +1,523 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ +#define KNET_MODULE #include "config.h" #include #include #include #include #include #include #include #include #include "logging.h" #include "crypto_model.h" /* * 1.0.2 requires at least 120 bytes * 1.1.0 requires at least 256 bytes */ #define SSLERR_BUF_SIZE 512 static int openssl_is_init = 0; static int opensslcrypto_load_lib( knet_handle_t knet_h) { if (!openssl_is_init) { #ifdef BUILDCRYPTOOPENSSL10 ERR_load_crypto_strings(); OPENSSL_add_all_algorithms_noconf(); #endif #ifdef BUILDCRYPTOOPENSSL11 if (!OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_CIPHERS \ | OPENSSL_INIT_ADD_ALL_DIGESTS, NULL)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to init openssl"); errno = EAGAIN; return -1; } #endif openssl_is_init = 1; } return 0; } /* * crypto definitions and conversion tables */ #define SALT_SIZE 16 struct opensslcrypto_instance { void *private_key; int private_key_len; const EVP_CIPHER *crypto_cipher_type; const EVP_MD *crypto_hash_type; }; /* * crypt/decrypt functions openssl1.0 */ #ifdef BUILDCRYPTOOPENSSL10 static int encrypt_openssl( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; EVP_CIPHER_CTX ctx; int tmplen = 0, offset = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = 0; int i; char sslerr[SSLERR_BUF_SIZE]; EVP_CIPHER_CTX_init(&ctx); /* * contribute to PRNG for each packet we send/receive */ RAND_seed((unsigned char *)iov[iovcnt - 1].iov_base, iov[iovcnt - 1].iov_len); if (!RAND_bytes(salt, SALT_SIZE)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr); err = -1; goto out; } /* * add warning re keylength */ EVP_EncryptInit_ex(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); for (i=0; icrypto_instance->model_instance; EVP_CIPHER_CTX ctx; int tmplen1 = 0, tmplen2 = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = 0; char sslerr[SSLERR_BUF_SIZE]; EVP_CIPHER_CTX_init(&ctx); /* * contribute to PRNG for each packet we send/receive */ RAND_seed(buf_in, buf_in_len); /* * add warning re keylength */ EVP_DecryptInit_ex(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); if (!EVP_DecryptUpdate(&ctx, buf_out, &tmplen1, data, datalen)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr); err = -1; goto out; } if (!EVP_DecryptFinal_ex(&ctx, buf_out + tmplen1, &tmplen2)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr); err = -1; goto out; } *buf_out_len = tmplen1 + tmplen2; out: EVP_CIPHER_CTX_cleanup(&ctx); return err; } #endif #ifdef BUILDCRYPTOOPENSSL11 static int encrypt_openssl( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; EVP_CIPHER_CTX *ctx; int tmplen = 0, offset = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = 0; int i; char sslerr[SSLERR_BUF_SIZE]; ctx = EVP_CIPHER_CTX_new(); /* * contribute to PRNG for each packet we send/receive */ RAND_seed((unsigned char *)iov[iovcnt - 1].iov_base, iov[iovcnt - 1].iov_len); if (!RAND_bytes(salt, SALT_SIZE)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr); err = -1; goto out; } /* * add warning re keylength */ EVP_EncryptInit_ex(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); for (i=0; icrypto_instance->model_instance; EVP_CIPHER_CTX *ctx; int tmplen1 = 0, tmplen2 = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = 0; char sslerr[SSLERR_BUF_SIZE]; ctx = EVP_CIPHER_CTX_new(); /* * contribute to PRNG for each packet we send/receive */ RAND_seed(buf_in, buf_in_len); /* * add warning re keylength */ EVP_DecryptInit_ex(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); if (!EVP_DecryptUpdate(ctx, buf_out, &tmplen1, data, datalen)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr); err = -1; goto out; } if (!EVP_DecryptFinal_ex(ctx, buf_out + tmplen1, &tmplen2)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr); err = -1; goto out; } *buf_out_len = tmplen1 + tmplen2; out: EVP_CIPHER_CTX_free(ctx); return err; } #endif /* * hash/hmac/digest functions */ static int calculate_openssl_hash( knet_handle_t knet_h, const unsigned char *buf, const size_t buf_len, unsigned char *hash) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; unsigned int hash_len = 0; unsigned char *hash_out = NULL; char sslerr[SSLERR_BUF_SIZE]; hash_out = HMAC(instance->crypto_hash_type, instance->private_key, instance->private_key_len, buf, buf_len, hash, &hash_len); if ((!hash_out) || (hash_len != knet_h->sec_hash_size)) { ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to calculate hash: %s", sslerr); return -1; } return 0; } /* * exported API */ static int opensslcrypto_encrypt_and_signv ( knet_handle_t knet_h, const struct iovec *iov_in, int iovcnt_in, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; int i; if (instance->crypto_cipher_type) { if (encrypt_openssl(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) { return -1; } } else { *buf_out_len = 0; for (i=0; icrypto_hash_type) { if (calculate_openssl_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) { return -1; } *buf_out_len = *buf_out_len + knet_h->sec_hash_size; } return 0; } static int opensslcrypto_encrypt_and_sign ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct iovec iov_in; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (unsigned char *)buf_in; iov_in.iov_len = buf_in_len; return opensslcrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len); } static int opensslcrypto_authenticate_and_decrypt ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; ssize_t temp_len = buf_in_len; if (instance->crypto_hash_type) { unsigned char tmp_hash[knet_h->sec_hash_size]; ssize_t temp_buf_len = buf_in_len - knet_h->sec_hash_size; if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Incorrect packet size."); return -1; } if (calculate_openssl_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) { return -1; } if (memcmp(tmp_hash, buf_in + temp_buf_len, knet_h->sec_hash_size) != 0) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Digest does not match"); return -1; } temp_len = temp_len - knet_h->sec_hash_size; *buf_out_len = temp_len; } if (instance->crypto_cipher_type) { if (decrypt_openssl(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) { return -1; } } else { memmove(buf_out, buf_in, temp_len); *buf_out_len = temp_len; } return 0; } static void opensslcrypto_fini( knet_handle_t knet_h) { struct opensslcrypto_instance *opensslcrypto_instance = knet_h->crypto_instance->model_instance; if (opensslcrypto_instance) { if (opensslcrypto_instance->private_key) { free(opensslcrypto_instance->private_key); opensslcrypto_instance->private_key = NULL; } free(opensslcrypto_instance); knet_h->crypto_instance->model_instance = NULL; knet_h->sec_header_size = 0; } return; } static int opensslcrypto_init( knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { struct opensslcrypto_instance *opensslcrypto_instance = NULL; log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Initizializing openssl crypto module [%s/%s]", knet_handle_crypto_cfg->crypto_cipher_type, knet_handle_crypto_cfg->crypto_hash_type); knet_h->crypto_instance->model_instance = malloc(sizeof(struct opensslcrypto_instance)); if (!knet_h->crypto_instance->model_instance) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl model instance"); return -1; } opensslcrypto_instance = knet_h->crypto_instance->model_instance; memset(opensslcrypto_instance, 0, sizeof(struct opensslcrypto_instance)); if (strcmp(knet_handle_crypto_cfg->crypto_cipher_type, "none") == 0) { opensslcrypto_instance->crypto_cipher_type = NULL; } else { opensslcrypto_instance->crypto_cipher_type = EVP_get_cipherbyname(knet_handle_crypto_cfg->crypto_cipher_type); if (!opensslcrypto_instance->crypto_cipher_type) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto cipher type requested"); goto out_err; } } if (strcmp(knet_handle_crypto_cfg->crypto_hash_type, "none") == 0) { opensslcrypto_instance->crypto_hash_type = NULL; } else { opensslcrypto_instance->crypto_hash_type = EVP_get_digestbyname(knet_handle_crypto_cfg->crypto_hash_type); if (!opensslcrypto_instance->crypto_hash_type) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto hash type requested"); goto out_err; } } if ((opensslcrypto_instance->crypto_cipher_type) && (!opensslcrypto_instance->crypto_hash_type)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "crypto communication requires hash specified"); goto out_err; } opensslcrypto_instance->private_key = malloc(knet_handle_crypto_cfg->private_key_len); if (!opensslcrypto_instance->private_key) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl private key"); goto out_err; } memmove(opensslcrypto_instance->private_key, knet_handle_crypto_cfg->private_key, knet_handle_crypto_cfg->private_key_len); opensslcrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len; knet_h->sec_header_size = 0; if (opensslcrypto_instance->crypto_hash_type) { knet_h->sec_hash_size = EVP_MD_size(opensslcrypto_instance->crypto_hash_type); knet_h->sec_header_size += knet_h->sec_hash_size; } if (opensslcrypto_instance->crypto_cipher_type) { int block_size; block_size = EVP_CIPHER_block_size(opensslcrypto_instance->crypto_cipher_type); if (block_size < 0) { goto out_err; } knet_h->sec_header_size += (block_size * 2); knet_h->sec_header_size += SALT_SIZE; knet_h->sec_salt_size = SALT_SIZE; knet_h->sec_block_size = block_size; } return 0; out_err: opensslcrypto_fini(knet_h); return -1; } crypto_model_t crypto_model = { "", 0, opensslcrypto_load_lib, 0, opensslcrypto_init, opensslcrypto_fini, opensslcrypto_encrypt_and_sign, opensslcrypto_encrypt_and_signv, opensslcrypto_authenticate_and_decrypt }; diff --git a/libknet/logging.h b/libknet/logging.h index 6f9e8666..785198c9 100644 --- a/libknet/logging.h +++ b/libknet/logging.h @@ -1,30 +1,38 @@ /* * Copyright (C) 2012-2017 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * Federico Simoncelli * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #ifndef __KNET_LOGGING_H__ #define __KNET_LOGGING_H__ #include "internals.h" -void log_msg(knet_handle_t knet_h, uint8_t subsystem, uint8_t msglevel, - const char *fmt, ...) __attribute__((format(printf, 4, 5)));; +typedef void log_msg_t(knet_handle_t knet_h, uint8_t subsystem, uint8_t msglevel, + const char *fmt, ...) __attribute__((format(printf, 4, 5))); + +#ifdef KNET_MODULE +#define LOG_MSG (*log_msg) +#else +#define LOG_MSG log_msg +#endif + +log_msg_t LOG_MSG; #define log_err(knet_h, subsys, fmt, args...) \ - log_msg(knet_h, subsys, KNET_LOG_ERR, fmt, ##args) + LOG_MSG(knet_h, subsys, KNET_LOG_ERR, fmt, ##args) #define log_warn(knet_h, subsys, fmt, args...) \ - log_msg(knet_h, subsys, KNET_LOG_WARN, fmt, ##args) + LOG_MSG(knet_h, subsys, KNET_LOG_WARN, fmt, ##args) #define log_info(knet_h, subsys, fmt, args...) \ - log_msg(knet_h, subsys, KNET_LOG_INFO, fmt, ##args) + LOG_MSG(knet_h, subsys, KNET_LOG_INFO, fmt, ##args) #define log_debug(knet_h, subsys, fmt, args...) \ - log_msg(knet_h, subsys, KNET_LOG_DEBUG, fmt, ##args) + LOG_MSG(knet_h, subsys, KNET_LOG_DEBUG, fmt, ##args) #endif