diff --git a/libknet/crypto_openssl.c b/libknet/crypto_openssl.c index 904193a7..98c52523 100644 --- a/libknet/crypto_openssl.c +++ b/libknet/crypto_openssl.c @@ -1,887 +1,892 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #ifdef BUILDCRYPTOOPENSSL #include #include #include #include #include #include "common.h" #include "crypto.h" #include "crypto_openssl.h" #include "logging.h" /* * 1.0.2 requires at least 120 bytes * 1.1.0 requires at least 256 bytes */ #define SSLERR_BUF_SIZE 512 /* * make this more generic. * Fedora packages it one way, Debian another * and it changes by version */ #define LIBOPENSSL "libcrypto.so" /* * global vars for dlopen */ static void *openssl_lib; /* * symbols remapping */ #ifdef BUILDCRYPTOOPENSSL10 void (*_int_OPENSSL_add_all_algorithms_noconf)(void); #endif #ifdef BUILDCRYPTOOPENSSL11 int (*_int_OPENSSL_init_crypto)(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings); #endif #ifdef BUILDCRYPTOOPENSSL10 void (*_int_ERR_load_crypto_strings)(void); #endif unsigned long (*_int_ERR_get_error)(void); void (*_int_ERR_error_string_n)(unsigned long e, char *buf, size_t len); #ifdef BUILDCRYPTOOPENSSL10 void (*_int_ERR_free_strings)(void); #endif void (*_int_RAND_seed)(const void *buf, int num); int (*_int_RAND_bytes)(unsigned char *buf, int num); const EVP_MD *(*_int_EVP_get_digestbyname)(const char *name); int (*_int_EVP_MD_size)(const EVP_MD *md); unsigned char *(*_int_HMAC)(const EVP_MD *evp_md, const void *key, int key_len, const unsigned char *d, size_t n, unsigned char *md, unsigned int *md_len); const EVP_CIPHER *(*_int_EVP_get_cipherbyname)(const char *name); int (*_int_EVP_CIPHER_block_size)(const EVP_CIPHER *cipher); #ifdef BUILDCRYPTOOPENSSL10 void (*_int_EVP_CIPHER_CTX_init)(EVP_CIPHER_CTX *a); int (*_int_EVP_CIPHER_CTX_cleanup)(EVP_CIPHER_CTX *a); #endif #ifdef BUILDCRYPTOOPENSSL11 EVP_CIPHER_CTX *(*_int_EVP_CIPHER_CTX_new)(void); void (*_int_EVP_CIPHER_CTX_free)(EVP_CIPHER_CTX *c); #endif int (*_int_EVP_EncryptInit_ex)(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv); int (*_int_EVP_EncryptUpdate)(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl); int (*_int_EVP_EncryptFinal_ex)(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl); int (*_int_EVP_DecryptInit_ex)(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv); int (*_int_EVP_DecryptUpdate)(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl); int (*_int_EVP_DecryptFinal_ex)(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl); #ifdef BUILDCRYPTOOPENSSL10 void (*_int_EVP_cleanup)(void); #endif static void clean_openssl_syms(void) { #ifdef BUILDCRYPTOOPENSSL10 _int_OPENSSL_add_all_algorithms_noconf = NULL; #endif #ifdef BUILDCRYPTOOPENSSL11 _int_OPENSSL_init_crypto = NULL; #endif #ifdef BUILDCRYPTOOPENSSL10 _int_ERR_load_crypto_strings = NULL; #endif _int_ERR_get_error = NULL; _int_ERR_error_string_n = NULL; #ifdef BUILDCRYPTOOPENSSL10 _int_ERR_free_strings = NULL; #endif _int_RAND_seed = NULL; _int_RAND_bytes = NULL; _int_EVP_get_digestbyname = NULL; _int_EVP_MD_size = NULL; _int_HMAC = NULL; _int_EVP_get_cipherbyname = NULL; _int_EVP_CIPHER_block_size = NULL; #ifdef BUILDCRYPTOOPENSSL10 _int_EVP_CIPHER_CTX_init = NULL; _int_EVP_CIPHER_CTX_cleanup = NULL; #endif #ifdef BUILDCRYPTOOPENSSL11 _int_EVP_CIPHER_CTX_new = NULL; _int_EVP_CIPHER_CTX_free = NULL; #endif _int_EVP_EncryptInit_ex = NULL; _int_EVP_EncryptUpdate = NULL; _int_EVP_EncryptFinal_ex = NULL; _int_EVP_DecryptInit_ex = NULL; _int_EVP_DecryptUpdate = NULL; _int_EVP_DecryptFinal_ex = NULL; #ifdef BUILDCRYPTOOPENSSL10 _int_EVP_cleanup = NULL; #endif return; } static int opensslcrypto_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; #ifdef BUILDCRYPTOOPENSSL10 _int_OPENSSL_add_all_algorithms_noconf = dlsym(openssl_lib, "OPENSSL_add_all_algorithms_noconf"); if (!_int_OPENSSL_add_all_algorithms_noconf) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map OPENSSL_add_all_algorithms_noconf: %s", error); err = -1; goto out; } #endif #ifdef BUILDCRYPTOOPENSSL11 _int_OPENSSL_init_crypto = dlsym(openssl_lib, "OPENSSL_init_crypto"); if (!_int_OPENSSL_init_crypto) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map OPENSSL_init_crypto: %s", error); err = -1; goto out; } #endif #ifdef BUILDCRYPTOOPENSSL10 _int_ERR_load_crypto_strings = dlsym(openssl_lib, "ERR_load_crypto_strings"); if (!_int_ERR_load_crypto_strings) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map ERR_load_crypto_strings: %s", error); err = -1; goto out; } #endif _int_ERR_get_error = dlsym(openssl_lib, "ERR_get_error"); if (!_int_ERR_get_error) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map ERR_get_error: %s", error); err = -1; goto out; } _int_ERR_error_string_n = dlsym(openssl_lib, "ERR_error_string_n"); if (!_int_ERR_error_string_n) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map ERR_error_string_n: %s", error); err = -1; goto out; } #ifdef BUILDCRYPTOOPENSSL10 _int_ERR_free_strings = dlsym(openssl_lib, "ERR_free_strings"); if (!_int_ERR_free_strings) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map ERR_free_strings: %s", error); err = -1; goto out; } #endif _int_RAND_seed = dlsym(openssl_lib, "RAND_seed"); if (!_int_RAND_seed) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map RAND_seed: %s", error); err = -1; goto out; } _int_RAND_bytes = dlsym(openssl_lib, "RAND_bytes"); if (!_int_RAND_bytes) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map RAND_bytes: %s", error); err = -1; goto out; } _int_EVP_get_digestbyname = dlsym(openssl_lib, "EVP_get_digestbyname"); if (!_int_EVP_get_digestbyname) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_get_digestbyname: %s", error); err = -1; goto out; } _int_EVP_MD_size = dlsym(openssl_lib, "EVP_MD_size"); if (!_int_EVP_MD_size) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_MD_size: %s", error); err = -1; goto out; } _int_HMAC = dlsym(openssl_lib, "HMAC"); if (!_int_HMAC) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map HMAC: %s", error); err = -1; goto out; } _int_EVP_get_cipherbyname = dlsym(openssl_lib, "EVP_get_cipherbyname"); if (!_int_EVP_get_cipherbyname) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_get_cipherbyname: %s", error); err = -1; goto out; } _int_EVP_CIPHER_block_size = dlsym(openssl_lib, "EVP_CIPHER_block_size"); if (!_int_EVP_CIPHER_block_size) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_CIPHER_block_size: %s", error); err = -1; goto out; } #ifdef BUILDCRYPTOOPENSSL10 _int_EVP_CIPHER_CTX_init = dlsym(openssl_lib, "EVP_CIPHER_CTX_init"); if (!_int_EVP_CIPHER_CTX_init) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_CIPHER_CTX_init: %s", error); err = -1; goto out; } _int_EVP_CIPHER_CTX_cleanup = dlsym(openssl_lib, "EVP_CIPHER_CTX_cleanup"); if (!_int_EVP_CIPHER_CTX_cleanup) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_CIPHER_CTX_cleanup: %s", error); err = -1; goto out; } #endif #ifdef BUILDCRYPTOOPENSSL11 _int_EVP_CIPHER_CTX_new = dlsym(openssl_lib, "EVP_CIPHER_CTX_new"); if (!_int_EVP_CIPHER_CTX_new) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_CIPHER_CTX_new: %s", error); err = -1; goto out; } _int_EVP_CIPHER_CTX_free = dlsym(openssl_lib, "EVP_CIPHER_CTX_free"); if (!_int_EVP_CIPHER_CTX_free) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_CIPHER_CTX_free: %s", error); err = -1; goto out; } #endif _int_EVP_EncryptInit_ex = dlsym(openssl_lib, "EVP_EncryptInit_ex"); if (!_int_EVP_EncryptInit_ex) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_EncryptInit_ex: %s", error); err = -1; goto out; } _int_EVP_EncryptUpdate = dlsym(openssl_lib, "EVP_EncryptUpdate"); if (!_int_EVP_EncryptUpdate) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_EncryptUpdate: %s", error); err = -1; goto out; } _int_EVP_EncryptFinal_ex = dlsym(openssl_lib, "EVP_EncryptFinal_ex"); if (!_int_EVP_EncryptFinal_ex) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_EncryptFinal_ex: %s", error); err = -1; goto out; } _int_EVP_DecryptInit_ex = dlsym(openssl_lib, "EVP_DecryptInit_ex"); if (!_int_EVP_DecryptInit_ex) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_DecryptInit_ex: %s", error); err = -1; goto out; } _int_EVP_DecryptUpdate = dlsym(openssl_lib, "EVP_DecryptUpdate"); if (!_int_EVP_DecryptUpdate) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_DecryptUpdate: %s", error); err = -1; goto out; } _int_EVP_DecryptFinal_ex = dlsym(openssl_lib, "EVP_DecryptFinal_ex"); if (!_int_EVP_DecryptFinal_ex) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_DecryptFinal_ex: %s", error); err = -1; goto out; } #ifdef BUILDCRYPTOOPENSSL10 _int_EVP_cleanup = dlsym(openssl_lib, "EVP_cleanup"); if (!_int_EVP_cleanup) { error = dlerror(); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to map EVP_cleanup: %s", error); err = -1; goto out; } #endif out: if (err) { clean_openssl_syms(); } return err; } void opensslcrypto_unload_lib( knet_handle_t knet_h) { if (openssl_lib) { #ifdef BUILDCRYPTOOPENSSL10 if (_int_EVP_cleanup) { (*_int_EVP_cleanup)(); } if (_int_ERR_free_strings) { (*_int_ERR_free_strings)(); } #endif dlclose(openssl_lib); openssl_lib = NULL; clean_openssl_syms(); } return; } int opensslcrypto_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!openssl_lib) { openssl_lib = open_lib(knet_h, LIBOPENSSL, 0); if (!openssl_lib) { savederrno = errno; err = -1; goto out; } if (opensslcrypto_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; goto out; } #ifdef BUILDCRYPTOOPENSSL10 (*_int_ERR_load_crypto_strings)(); (*_int_OPENSSL_add_all_algorithms_noconf)(); #endif #ifdef BUILDCRYPTOOPENSSL11 - (*_int_OPENSSL_init_crypto)(OPENSSL_INIT_ADD_ALL_CIPHERS \ - | OPENSSL_INIT_ADD_ALL_DIGESTS, NULL); + if (!(*_int_OPENSSL_init_crypto)(OPENSSL_INIT_ADD_ALL_CIPHERS \ + | OPENSSL_INIT_ADD_ALL_DIGESTS, NULL)) { + log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to init openssl"); + err = -1; + savederrno = EAGAIN; + goto out; + } #endif } out: if (err) { opensslcrypto_unload_lib(knet_h); } errno = savederrno; return err; } /* * crypto definitions and conversion tables */ #define SALT_SIZE 16 struct opensslcrypto_instance { void *private_key; int private_key_len; const EVP_CIPHER *crypto_cipher_type; const EVP_MD *crypto_hash_type; }; /* * crypt/decrypt functions openssl1.0 */ #ifdef BUILDCRYPTOOPENSSL10 static int encrypt_openssl( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; EVP_CIPHER_CTX ctx; int tmplen = 0, offset = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = 0; int i; char sslerr[SSLERR_BUF_SIZE]; (*_int_EVP_CIPHER_CTX_init)(&ctx); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)((unsigned char *)iov[iovcnt - 1].iov_base, iov[iovcnt - 1].iov_len); if (!(*_int_RAND_bytes)(salt, SALT_SIZE)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr); err = -1; goto out; } /* * add warning re keylength */ (*_int_EVP_EncryptInit_ex)(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); for (i=0; icrypto_instance->model_instance; EVP_CIPHER_CTX ctx; int tmplen1 = 0, tmplen2 = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = 0; char sslerr[SSLERR_BUF_SIZE]; (*_int_EVP_CIPHER_CTX_init)(&ctx); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)(buf_in, buf_in_len); /* * add warning re keylength */ (*_int_EVP_DecryptInit_ex)(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); if (!(*_int_EVP_DecryptUpdate)(&ctx, buf_out, &tmplen1, data, datalen)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr); err = -1; goto out; } if (!(*_int_EVP_DecryptFinal_ex)(&ctx, buf_out + tmplen1, &tmplen2)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr); err = -1; goto out; } *buf_out_len = tmplen1 + tmplen2; out: (*_int_EVP_CIPHER_CTX_cleanup)(&ctx); return err; } #endif #ifdef BUILDCRYPTOOPENSSL11 static int encrypt_openssl( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; EVP_CIPHER_CTX *ctx; int tmplen = 0, offset = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = 0; int i; char sslerr[SSLERR_BUF_SIZE]; ctx = (*_int_EVP_CIPHER_CTX_new)(); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)((unsigned char *)iov[iovcnt - 1].iov_base, iov[iovcnt - 1].iov_len); if (!(*_int_RAND_bytes)(salt, SALT_SIZE)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr); err = -1; goto out; } /* * add warning re keylength */ (*_int_EVP_EncryptInit_ex)(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); for (i=0; icrypto_instance->model_instance; EVP_CIPHER_CTX *ctx; int tmplen1 = 0, tmplen2 = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = 0; char sslerr[SSLERR_BUF_SIZE]; ctx = (*_int_EVP_CIPHER_CTX_new)(); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)(buf_in, buf_in_len); /* * add warning re keylength */ (*_int_EVP_DecryptInit_ex)(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); if (!(*_int_EVP_DecryptUpdate)(ctx, buf_out, &tmplen1, data, datalen)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr); err = -1; goto out; } if (!(*_int_EVP_DecryptFinal_ex)(ctx, buf_out + tmplen1, &tmplen2)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr); err = -1; goto out; } *buf_out_len = tmplen1 + tmplen2; out: (*_int_EVP_CIPHER_CTX_free)(ctx); return err; } #endif /* * hash/hmac/digest functions */ static int calculate_openssl_hash( knet_handle_t knet_h, const unsigned char *buf, const size_t buf_len, unsigned char *hash) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; unsigned int hash_len = 0; unsigned char *hash_out = NULL; char sslerr[SSLERR_BUF_SIZE]; hash_out = (*_int_HMAC)(instance->crypto_hash_type, instance->private_key, instance->private_key_len, buf, buf_len, hash, &hash_len); if ((!hash_out) || (hash_len != knet_h->sec_hash_size)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to calculate hash: %s", sslerr); return -1; } return 0; } /* * exported API */ int opensslcrypto_encrypt_and_sign ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct iovec iov_in; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (unsigned char *)buf_in; iov_in.iov_len = buf_in_len; return opensslcrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len); } int opensslcrypto_encrypt_and_signv ( knet_handle_t knet_h, const struct iovec *iov_in, int iovcnt_in, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; int i; if (instance->crypto_cipher_type) { if (encrypt_openssl(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) { return -1; } } else { *buf_out_len = 0; for (i=0; icrypto_hash_type) { if (calculate_openssl_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) { return -1; } *buf_out_len = *buf_out_len + knet_h->sec_hash_size; } return 0; } int opensslcrypto_authenticate_and_decrypt ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; ssize_t temp_len = buf_in_len; if (instance->crypto_hash_type) { unsigned char tmp_hash[knet_h->sec_hash_size]; ssize_t temp_buf_len = buf_in_len - knet_h->sec_hash_size; if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Incorrect packet size."); return -1; } if (calculate_openssl_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) { return -1; } if (memcmp(tmp_hash, buf_in + temp_buf_len, knet_h->sec_hash_size) != 0) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Digest does not match"); return -1; } temp_len = temp_len - knet_h->sec_hash_size; *buf_out_len = temp_len; } if (instance->crypto_cipher_type) { if (decrypt_openssl(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) { return -1; } } else { memmove(buf_out, buf_in, temp_len); *buf_out_len = temp_len; } return 0; } int opensslcrypto_init( knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { struct opensslcrypto_instance *opensslcrypto_instance = NULL; log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Initizializing openssl crypto module [%s/%s]", knet_handle_crypto_cfg->crypto_cipher_type, knet_handle_crypto_cfg->crypto_hash_type); knet_h->crypto_instance->model_instance = malloc(sizeof(struct opensslcrypto_instance)); if (!knet_h->crypto_instance->model_instance) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl model instance"); return -1; } opensslcrypto_instance = knet_h->crypto_instance->model_instance; memset(opensslcrypto_instance, 0, sizeof(struct opensslcrypto_instance)); if (strcmp(knet_handle_crypto_cfg->crypto_cipher_type, "none") == 0) { opensslcrypto_instance->crypto_cipher_type = NULL; } else { opensslcrypto_instance->crypto_cipher_type = (*_int_EVP_get_cipherbyname)(knet_handle_crypto_cfg->crypto_cipher_type); if (!opensslcrypto_instance->crypto_cipher_type) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto cipher type requested"); goto out_err; } } if (strcmp(knet_handle_crypto_cfg->crypto_hash_type, "none") == 0) { opensslcrypto_instance->crypto_hash_type = NULL; } else { opensslcrypto_instance->crypto_hash_type = (*_int_EVP_get_digestbyname)(knet_handle_crypto_cfg->crypto_hash_type); if (!opensslcrypto_instance->crypto_hash_type) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto hash type requested"); goto out_err; } } if ((opensslcrypto_instance->crypto_cipher_type) && (!opensslcrypto_instance->crypto_hash_type)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "crypto communication requires hash specified"); goto out_err; } opensslcrypto_instance->private_key = malloc(knet_handle_crypto_cfg->private_key_len); if (!opensslcrypto_instance->private_key) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl private key"); goto out_err; } memmove(opensslcrypto_instance->private_key, knet_handle_crypto_cfg->private_key, knet_handle_crypto_cfg->private_key_len); opensslcrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len; knet_h->sec_header_size = 0; if (opensslcrypto_instance->crypto_hash_type) { knet_h->sec_hash_size = (*_int_EVP_MD_size)(opensslcrypto_instance->crypto_hash_type); knet_h->sec_header_size += knet_h->sec_hash_size; } if (opensslcrypto_instance->crypto_cipher_type) { int block_size; block_size = (*_int_EVP_CIPHER_block_size)(opensslcrypto_instance->crypto_cipher_type); if (block_size < 0) { goto out_err; } knet_h->sec_header_size += (block_size * 2); knet_h->sec_header_size += SALT_SIZE; knet_h->sec_salt_size = SALT_SIZE; knet_h->sec_block_size = block_size; } return 0; out_err: opensslcrypto_fini(knet_h); return -1; } void opensslcrypto_fini( knet_handle_t knet_h) { struct opensslcrypto_instance *opensslcrypto_instance = knet_h->crypto_instance->model_instance; if (opensslcrypto_instance) { if (opensslcrypto_instance->private_key) { free(opensslcrypto_instance->private_key); opensslcrypto_instance->private_key = NULL; } free(opensslcrypto_instance); knet_h->crypto_instance->model_instance = NULL; knet_h->sec_header_size = 0; } return; } #endif