diff --git a/configure.ac b/configure.ac index 13b02c3e..4d050c82 100644 --- a/configure.ac +++ b/configure.ac @@ -1,502 +1,521 @@ # # Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. # # Authors: Fabio M. Di Nitto # Federico Simoncelli # # This software licensed under GPL-2.0+, LGPL-2.0+ # # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. # AC_PREREQ([2.63]) AC_INIT([kronosnet], m4_esyscmd([build-aux/git-version-gen .tarball-version]), [devel@lists.kronosnet.org]) AC_USE_SYSTEM_EXTENSIONS AM_INIT_AUTOMAKE([1.13 dist-bzip2 dist-xz color-tests -Wno-portability subdir-objects]) LT_PREREQ([2.2.6]) LT_INIT AC_CONFIG_MACRO_DIR([m4]) AC_CONFIG_SRCDIR([kronosnetd/main.c]) AC_CONFIG_HEADERS([config.h]) AC_CANONICAL_HOST AC_PROG_LIBTOOL AC_LANG([C]) systemddir=${prefix}/lib/systemd/system if test "$prefix" = "NONE"; then prefix="/usr" if test "$localstatedir" = "\${prefix}/var"; then localstatedir="/var" fi if test "$sysconfdir" = "\${prefix}/etc"; then sysconfdir="/etc" fi if test "$systemddir" = "NONE/lib/systemd/system"; then systemddir=/lib/systemd/system fi if test "$libdir" = "\${exec_prefix}/lib"; then if test -e /usr/lib64; then libdir="/usr/lib64" else libdir="/usr/lib" fi fi fi AC_PROG_AWK AC_PROG_GREP AC_PROG_SED AC_PROG_CPP AC_PROG_CC AC_PROG_CC_C99 if test "x$ac_cv_prog_cc_c99" = "xno"; then AC_MSG_ERROR(["C99 support is required"]) fi AC_PROG_LN_S AC_PROG_INSTALL AC_PROG_MAKE_SET PKG_PROG_PKG_CONFIG AC_CHECK_PROGS([DOXYGEN], [doxygen]) AC_CHECK_PROGS([DOXY2MAN], [doxy2man]) manpageupdates=1 if test "x$DOXYGEN" = "x" || test "x$DOXY2MAN" = "x"; then manpageupdates=0; fi AM_CONDITIONAL([MANPAGEUPDATES], [test $manpageupdates -gt 0]) AC_CHECK_PROGS([VALGRIND_EXEC], [valgrind]) AM_CONDITIONAL([HAS_VALGRIND], [test x$VALGRIND_EXEC != "x"]) AC_ARG_ENABLE([libknet-sctp], [ --disable-libknet-sctp : disable libknet SCTP support ],, [ enable_libknet_sctp="yes" ]) AM_CONDITIONAL([BUILDSCTP], [test x$enable_libknet_sctp = xyes]) AC_ARG_ENABLE([crypto-all], [ --disable-crypto-all : disable libknet all crypto modules support ],, [ enable_crypto_all="yes" ]) AC_ARG_ENABLE([crypto-nss], [ --disable-crypto-nss : disable libknet nss support ],, [ enable_crypto_nss="$enable_crypto_all" ]) AM_CONDITIONAL([BUILDCRYPTONSS], [test x$enable_crypto_nss = xyes]) AC_ARG_ENABLE([crypto-openssl], [ --disable-crypto-openssl : disable libknet openssl support ],, [ enable_crypto_openssl="$enable_crypto_all" ]) AM_CONDITIONAL([BUILDCRYPTOOPENSSL], [test x$enable_crypto_openssl = xyes]) AC_ARG_ENABLE([compress-all], [ --disable-compress-all : disable libknet all compress modules support ],, [ enable_compress_all="yes" ]) AC_ARG_ENABLE([compress-zlib], [ --disable-compress-zlib : disable libknet zlib support ],, [ enable_compress_zlib="$enable_compress_all" ]) AM_CONDITIONAL([BUILDCOMPZLIB], [test x$enable_compress_zlib = xyes]) AC_ARG_ENABLE([compress-lz4], [ --disable-compress-lz4 : disable libknet lz4 support ],, [ enable_compress_lz4="$enable_compress_all" ]) AM_CONDITIONAL([BUILDCOMPLZ4], [test x$enable_compress_lz4 = xyes]) AC_ARG_ENABLE([compress-lzo2], [ --disable-compress-lzo2 : disable libknet lzo2 support ],, [ enable_compress_lzo2="$enable_compress_all" ]) AM_CONDITIONAL([BUILDCOMPLZO2], [test x$enable_compress_lzo2 = xyes]) AC_ARG_ENABLE([compress-lzma], [ --disable-compress-lzma : disable libknet lzma support ],, [ enable_compress_lzma="$enable_compress_all" ]) AM_CONDITIONAL([BUILDCOMPLZMA], [test x$enable_compress_lzma = xyes]) AC_ARG_ENABLE([compress-bzip2], [ --disable-compress-bzip2 : disable libknet bzip2 support ],, [ enable_compress_bzip2="$enable_compress_all" ]) AM_CONDITIONAL([BUILDCOMPBZIP2], [test x$enable_compress_bzip2 = xyes]) AC_ARG_ENABLE([poc], [ --enable-poc : enable building poc code ],, [ enable_poc="no" ]) AM_CONDITIONAL([BUILD_POC], [test x$enable_poc = xyes]) AC_ARG_ENABLE([kronosnetd], [ --enable-kronosnetd : Kronosnetd support ],, [ enable_kronosnetd="no" ]) AM_CONDITIONAL([BUILD_KRONOSNETD], [test x$enable_kronosnetd = xyes]) AC_ARG_ENABLE([runautogen], [ --enable-runautogen : run autogen.sh ],, [ enable_runautogen="no" ]) AM_CONDITIONAL([BUILD_RUNAUTOGEN], [test x$enable_runautogen = xyes]) AC_ARG_ENABLE([libtap], [ --enable-libtap : libtap support ],, [ enable_libtap="no" ]) if test "x$enable_kronosnetd" = xyes; then enable_libtap=yes fi AM_CONDITIONAL([BUILD_LIBTAP], [test x$enable_libtap = xyes]) ## local helper functions # this function checks if CC support options passed as # args. Global CFLAGS are ignored during this test. cc_supports_flag() { saveCPPFLAGS="$CPPFLAGS" CPPFLAGS="$@" if echo $CC | grep -q clang; then CPPFLAGS="-Werror $CPPFLAGS" fi AC_MSG_CHECKING([whether $CC supports "$@"]) AC_PREPROC_IFELSE([AC_LANG_PROGRAM([])], [RC=0; AC_MSG_RESULT([yes])], [RC=1; AC_MSG_RESULT([no])]) CPPFLAGS="$saveCPPFLAGS" return $RC } # Checks for C features AC_C_INLINE # Checks for libraries. AX_PTHREAD(,[AC_MSG_ERROR([POSIX threads support is required])]) AC_CHECK_LIB([m], [ceil], [AC_SUBST([m_LIBS], [-lm])], [AC_MSG_ERROR([kronosnet requires m library])]) saved_LIBS="$LIBS" LIBS= AC_SEARCH_LIBS([clock_gettime], [rt], , [AC_MSG_ERROR([clock_gettime not found])]) AC_SUBST([rt_LIBS], [$LIBS]) LIBS= AC_SEARCH_LIBS([dlopen], [dl dld], , [AC_MSG_ERROR([dlopen not found])]) AC_SUBST([dl_LIBS], [$LIBS]) LIBS="$saved_LIBS" # OS detection AC_MSG_CHECKING([for os in ${host_os}]) case "$host_os" in *linux*) AC_DEFINE_UNQUOTED([KNET_LINUX], [1], [Compiling for Linux platform]) AC_MSG_RESULT([Linux]) ;; *bsd*) AC_DEFINE_UNQUOTED([KNET_BSD], [1], [Compiling for BSD platform]) AC_MSG_RESULT([BSD]) if test "x$enable_libtap" = xyes; then AC_MSG_ERROR([libtap is not currently supported on BSD platforms]) fi ;; *) AC_MSG_ERROR([Unsupported OS? hmmmm]) ;; esac +AC_DEFUN([KNET_PKG_SONAME],[ +AC_MSG_CHECKING([for soname of $1]) +$CC -shared -nostdlib -o dummy.so -Wl,--no-as-needed $$1_LIBS +# Choosing the first SONAME is a best guess here: +knet_pkg_soname=`$OBJDUMP -p dummy.so | $SED -n '/^Dynamic Section:$/,/^[^ ]/{s/ *NEEDED *//p;}' | head -n1` +rm dummy.so +AC_DEFINE_UNQUOTED([$2],["$knet_pkg_soname"],[SONAME of the $1 library]) +AS_IF([test "x$knet_pkg_soname" = x], + [AC_MSG_FAILURE([failed to extract SONAME])], + [AC_MSG_RESULT([$knet_pkg_soname])]) +]) + # crypto libraries checks if test "x$enable_crypto_nss" = xyes; then PKG_CHECK_MODULES([nss],[nss]) AC_DEFINE_UNQUOTED([BUILDCRYPTONSS], [1], [Enable nss crypto]) + KNET_PKG_SONAME([nss],[LIBNSS3]) fi if test "x$enable_crypto_openssl" = xyes; then PKG_CHECK_MODULES([openssl],[libcrypto < 1.1], [AC_DEFINE_UNQUOTED([BUILDCRYPTOOPENSSL10], [1], [openssl 1.0 crypto])], [PKG_CHECK_MODULES([openssl],[libcrypto >= 1.1], [AC_DEFINE_UNQUOTED([BUILDCRYPTOOPENSSL11], [1], [openssl 1.1 crypto])])]) AC_DEFINE_UNQUOTED([BUILDCRYPTOOPENSSL], [1], [Enable openssl crypto]) + KNET_PKG_SONAME([openssl],[LIBOPENSSL]) fi # compress libraries checks if test "x$enable_compress_zlib" = xyes; then PKG_CHECK_MODULES([zlib], [zlib]) AC_DEFINE_UNQUOTED([BUILDCOMPZLIB], [1], [Enable zlib compression]) + KNET_PKG_SONAME([zlib],[LIBZ_1]) fi if test "x$enable_compress_lz4" = xyes; then PKG_CHECK_MODULES([liblz4], [liblz4]) AC_DEFINE_UNQUOTED([BUILDCOMPLZ4], [1], [Enable lz4 compress]) + KNET_PKG_SONAME([liblz4],[LIBLZ4_1]) fi if test "x$enable_compress_lzo2" = xyes; then PKG_CHECK_MODULES([lzo2], [lzo2],, [AC_CHECK_HEADERS([lzo/lzo1x.h], [AC_CHECK_LIB([lzo2], [lzo1x_decompress_safe], [AC_SUBST([lzo2_LIBS], [-llzo2])])], [AC_MSG_ERROR(["missing required lzo/lzo1x.h header"])])]) AC_DEFINE_UNQUOTED([BUILDCOMPLZO2], [1], [Enable lzo2 compress]) + KNET_PKG_SONAME([lzo2],[LIBLZO2_2]) fi if test "x$enable_compress_lzma" = xyes; then PKG_CHECK_MODULES([liblzma], [liblzma]) AC_DEFINE_UNQUOTED([BUILDCOMPLZMA], [1], [Enable lzma compress]) + KNET_PKG_SONAME([liblzma],[LIBLZMA_5]) fi if test "x$enable_compress_bzip2" = xyes; then PKG_CHECK_MODULES([bzip2], [bzip2],, [AC_CHECK_HEADERS([bzlib.h], [AC_CHECK_LIB([bz2], [BZ2_bzBuffToBuffCompress], [AC_SUBST([bzip2_LIBS], [-lbz2])])], [AC_MSG_ERROR(["missing required bzlib.h"])])]) AC_DEFINE_UNQUOTED([BUILDCOMPBZIP2], [1], [Enable bzip2 compress]) + KNET_PKG_SONAME([bzip2],[LIBBZ2_1]) fi # Checks for header files. AC_CHECK_HEADERS([fcntl.h]) AC_CHECK_HEADERS([stdlib.h]) AC_CHECK_HEADERS([string.h]) AC_CHECK_HEADERS([strings.h]) AC_CHECK_HEADERS([sys/ioctl.h]) AC_CHECK_HEADERS([syslog.h]) AC_CHECK_HEADERS([unistd.h]) AC_CHECK_HEADERS([netinet/in.h]) AC_CHECK_HEADERS([sys/socket.h]) AC_CHECK_HEADERS([arpa/inet.h]) AC_CHECK_HEADERS([netdb.h]) AC_CHECK_HEADERS([limits.h]) AC_CHECK_HEADERS([stdint.h]) AC_CHECK_HEADERS([sys/epoll.h]) if test "x$enable_libknet_sctp" = xyes; then AC_CHECK_HEADERS([netinet/sctp.h],, [AC_MSG_ERROR(["missing required SCTP headers"])]) fi # Checks for typedefs, structures, and compiler characteristics. AC_C_INLINE AC_TYPE_SIZE_T AC_TYPE_PID_T AC_TYPE_SSIZE_T AC_TYPE_UINT8_T AC_TYPE_UINT16_T AC_TYPE_UINT32_T AC_TYPE_UINT64_T AC_TYPE_INT32_T # Checks for library functions. AC_FUNC_ALLOCA AC_FUNC_FORK AC_FUNC_MALLOC AC_FUNC_REALLOC AC_CHECK_FUNCS([kevent]) # if neither sys/epoll.h nor kevent are present, we should fail. if test "x$ac_cv_header_sys_epoll_h" = xno && test "x$ac_cv_func_kevent" = xno; then AC_MSG_ERROR([Both epoll and kevent unavailable on this OS]) fi if test "x$ac_cv_header_sys_epoll_h" = xyes && test "x$ac_cv_func_kevent" = xyes; then AC_MSG_ERROR([Both epoll and kevent available on this OS, please contact the maintainers to fix the code]) fi # checks (for kronosnetd) if test "x$enable_kronosnetd" = xyes; then AC_CHECK_HEADERS([security/pam_appl.h], [AC_CHECK_LIB([pam], [pam_start], [AC_SUBST([pam_LIBS], [-lpam])], [AC_MSG_ERROR([Unable to find LinuxPAM devel files])])]) AC_CHECK_HEADERS([security/pam_misc.h], [AC_CHECK_LIB([pam_misc], [misc_conv], [AC_SUBST([pam_misc_LIBS], [-lpam_misc])], [AC_MSG_ERROR([Unable to find LinuxPAM MISC devel files])])]) PKG_CHECK_MODULES([libqb], [libqb]) AC_CHECK_LIB([qb], [qb_log_thread_priority_set], [have_qb_log_thread_priority_set="yes"], [have_qb_log_thread_priority_set="no"]) if test "x${have_qb_log_thread_priority_set}" = xyes; then AC_DEFINE_UNQUOTED([HAVE_QB_LOG_THREAD_PRIORITY_SET], [1], [have qb_log_thread_priority_set]) fi fi # local options AC_ARG_ENABLE([debug], [ --enable-debug enable debug build. ], [ default="no" ]) AC_ARG_WITH([initdefaultdir], [ --with-initdefaultdir : path to /etc/sysconfig/.. or /etc/default dir. ], [ INITDEFAULTDIR="$withval" ], [ INITDEFAULTDIR="$sysconfdir/default" ]) AC_ARG_WITH([initddir], [ --with-initddir=DIR : path to init script directory. ], [ INITDDIR="$withval" ], [ INITDDIR="$sysconfdir/init.d" ]) AC_ARG_WITH([systemddir], [ --with-systemddir=DIR : path to systemd unit files directory. ], [ SYSTEMDDIR="$withval" ], [ SYSTEMDDIR="$systemddir" ]) AC_ARG_WITH([syslogfacility], [ --with-syslogfacility=FACILITY default syslog facility. ], [ SYSLOGFACILITY="$withval" ], [ SYSLOGFACILITY="LOG_DAEMON" ]) AC_ARG_WITH([sysloglevel], [ --with-sysloglevel=LEVEL default syslog level. ], [ SYSLOGLEVEL="$withval" ], [ SYSLOGLEVEL="LOG_INFO" ]) AC_ARG_WITH([defaultadmgroup], [ --with-defaultadmgroup=GROUP define PAM group. Users part of this group will be allowed to configure kronosnet. Others will only receive read-only rights. ], [ DEFAULTADMGROUP="$withval" ], [ DEFAULTADMGROUP="kronosnetadm" ]) ## random vars LOGDIR=${localstatedir}/log/ RUNDIR=${localstatedir}/run/ DEFAULT_CONFIG_DIR=${sysconfdir}/kronosnet ## do subst AM_CONDITIONAL([DEBUG], [test "x${enable_debug}" = xyes]) AC_SUBST([DEFAULT_CONFIG_DIR]) AC_SUBST([INITDEFAULTDIR]) AC_SUBST([INITDDIR]) AC_SUBST([SYSTEMDDIR]) AC_SUBST([LOGDIR]) AC_SUBST([DEFAULTADMGROUP]) AC_DEFINE_UNQUOTED([DEFAULT_CONFIG_DIR], ["$(eval echo ${DEFAULT_CONFIG_DIR})"], [Default config directory]) AC_DEFINE_UNQUOTED([DEFAULT_CONFIG_FILE], ["$(eval echo ${DEFAULT_CONFIG_DIR}/kronosnetd.conf)"], [Default config file]) AC_DEFINE_UNQUOTED([LOGDIR], ["$(eval echo ${LOGDIR})"], [Default logging directory]) AC_DEFINE_UNQUOTED([DEFAULT_LOG_FILE], ["$(eval echo ${LOGDIR}/kronosnetd.log)"], [Default log file]) AC_DEFINE_UNQUOTED([RUNDIR], ["$(eval echo ${RUNDIR})"], [Default run directory]) AC_DEFINE_UNQUOTED([SYSLOGFACILITY], [$(eval echo ${SYSLOGFACILITY})], [Default syslog facility]) AC_DEFINE_UNQUOTED([SYSLOGLEVEL], [$(eval echo ${SYSLOGLEVEL})], [Default syslog level]) AC_DEFINE_UNQUOTED([DEFAULTADMGROUP], ["$(eval echo ${DEFAULTADMGROUP})"], [Default admin group]) ## *FLAGS handling ENV_CFLAGS="$CFLAGS" ENV_CPPFLAGS="$CPPFLAGS" ENV_LDFLAGS="$LDFLAGS" # debug build stuff if test "x${enable_debug}" = xyes; then AC_DEFINE_UNQUOTED([DEBUG], [1], [Compiling Debugging code]) OPT_CFLAGS="-O0" else OPT_CFLAGS="-O3" fi # gdb flags if test "x${GCC}" = xyes; then GDB_FLAGS="-ggdb3" else GDB_FLAGS="-g" fi # extra warnings EXTRA_WARNINGS="" WARNLIST=" all extra unused shadow missing-prototypes missing-declarations suggest-attribute=noreturn suggest-attribute=format strict-prototypes declaration-after-statement pointer-arith write-strings cast-align bad-function-cast missing-format-attribute float-equal format=2 format-signedness format-security format-nonliteral no-long-long unsigned-char gnu89-inline no-strict-aliasing error address cpp overflow parentheses sequence-point switch shift-overflow=2 overlength-strings retundent-decls init-self uninitialized unused-but-set-variable unused-function unused-result unused-value unused-variable unknown-pragmas no-unused-parameter " for j in $WARNLIST; do if cc_supports_flag -W$j; then EXTRA_WARNINGS="$EXTRA_WARNINGS -W$j"; fi done CFLAGS="$ENV_CFLAGS $lt_prog_compiler_pic $OPT_CFLAGS $GDB_FLAGS \ $EXTRA_WARNINGS $WERROR_CFLAGS" CPPFLAGS="$ENV_CPPFLAGS" LDFLAGS="$ENV_LDFLAGS $lt_prog_compiler_pic" AC_CONFIG_FILES([ Makefile init/Makefile libtap/Makefile libtap/libtap.pc kronosnetd/Makefile kronosnetd/kronosnetd.logrotate libknet/Makefile libknet/libknet.pc libknet/tests/Makefile libknet/man/Doxyfile libknet/man/Makefile poc-code/Makefile poc-code/iov-hash/Makefile poc-code/access-list/Makefile ]) AC_OUTPUT diff --git a/libknet/compress_bzip2.c b/libknet/compress_bzip2.c index b276530a..38add11d 100644 --- a/libknet/compress_bzip2.c +++ b/libknet/compress_bzip2.c @@ -1,167 +1,165 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPBZIP2 #include #include "internals.h" #include "compress_bzip2.h" #include "logging.h" #include "common.h" -#define LIBBZ2_1 "libbz2.so.1" - /* * global vars for dlopen */ static void *bzip2_lib; #include "compress_bzip2_remap.h" static int bzip2_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_BZIP2COMP, bzip2_lib, name) #include "compress_bzip2_remap.h" return 0; fail: #define REMAP_FAIL #include "compress_bzip2_remap.h" errno = EINVAL; return -1; } int bzip2_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!bzip2_lib) { bzip2_lib = open_lib(knet_h, LIBBZ2_1, 0); if (!bzip2_lib) { savederrno = errno; err = -1; goto out; } } if (bzip2_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; } out: errno = savederrno; return err; } int bzip2_val_level( knet_handle_t knet_h, int compress_level) { if ((compress_level < 1) || (compress_level > 9)) { log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unsupported compression level %d (accepted values from 1 to 9)", compress_level); errno = EINVAL; return -1; } return 0; } int bzip2_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; unsigned int destLen = KNET_DATABUFSIZE_COMPRESS; err = (*_int_BZ2_bzBuffToBuffCompress)((char *)buf_out, &destLen, (char *)buf_in, buf_in_len, knet_h->compress_level, 0, 0); switch(err) { case BZ_OK: *buf_out_len = destLen; break; case BZ_MEM_ERROR: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 compress has not enough memory"); savederrno = ENOMEM; err = -1; break; case BZ_OUTBUFF_FULL: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unable to compress source in destination buffer"); savederrno = E2BIG; err = -1; break; default: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 compress unknown error %d", err); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } int bzip2_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; unsigned int destLen = KNET_DATABUFSIZE_COMPRESS; err = (*_int_BZ2_bzBuffToBuffDecompress)((char *)buf_out, &destLen, (char *)buf_in, buf_in_len, 0, 0); switch(err) { case BZ_OK: *buf_out_len = destLen; break; case BZ_MEM_ERROR: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress has not enough memory"); savederrno = ENOMEM; err = -1; break; case BZ_OUTBUFF_FULL: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unable to decompress source in destination buffer"); savederrno = E2BIG; err = -1; break; case BZ_DATA_ERROR: case BZ_DATA_ERROR_MAGIC: case BZ_UNEXPECTED_EOF: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress detected input data corruption"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress unknown error %d", err); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_lz4.c b/libknet/compress_lz4.c index e491ee12..aa00fc02 100644 --- a/libknet/compress_lz4.c +++ b/libknet/compress_lz4.c @@ -1,207 +1,205 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPLZ4 #include #include "internals.h" #include "compress_lz4.h" #include "logging.h" #include "common.h" -#define LIBLZ4_1 "liblz4.so.1" - /* * global vars for dlopen */ static void *lz4_lib; #include "compress_lz4_remap.h" static int lz4_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_LZ4COMP, lz4_lib, name) #include "compress_lz4_remap.h" return 0; fail: #define REMAP_FAIL #include "compress_lz4_remap.h" errno = EINVAL; return -1; } int lz4_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!lz4_lib) { lz4_lib = open_lib(knet_h, LIBLZ4_1, 0); if (!lz4_lib) { savederrno = EAGAIN; err = -1; goto out; } } if (lz4_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; } out: errno = savederrno; return err; } int lz4_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level <= 0) { log_info(knet_h, KNET_SUB_LZ4COMP, "lz4 acceleration level 0 (or negatives) are automatically remapped to 1 by %s", LIBLZ4_1); } return 0; } int lz4_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = (*_int_LZ4_compress_fast)((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE_COMPRESS, knet_h->compress_level); /* * data compressed */ if (lzerr > 0) { *buf_out_len = lzerr; } /* * unable to compress */ if (lzerr == 0) { *buf_out_len = buf_in_len; } /* * lz4 internal error */ if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 compression error: %d", lzerr); savederrno = EINVAL; err = -1; } errno = savederrno; return err; } #ifdef LZ4HC_CLEVEL_MAX #define KNET_LZ4HC_MAX LZ4HC_CLEVEL_MAX #endif #ifdef LZ4HC_MAX_CLEVEL #define KNET_LZ4HC_MAX LZ4HC_MAX_CLEVEL #endif #ifndef KNET_LZ4HC_MAX #define KNET_LZ4HC_MAX 0 #error Please check lz4hc.h for missing LZ4HC_CLEVEL_MAX or LZ4HC_MAX_CLEVEL variants #endif int lz4hc_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level < 1) { log_err(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc supports only 1+ values for compression level"); errno = EINVAL; return -1; } if (compress_level < 4) { log_info(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc recommends 4+ compression level for better results"); } if (compress_level > KNET_LZ4HC_MAX) { log_warn(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc installed on this system supports up to compression level %d. Higher values behaves as %d", KNET_LZ4HC_MAX, KNET_LZ4HC_MAX); } return 0; } int lz4hc_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = (*_int_LZ4_compress_HC)((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE_COMPRESS, knet_h->compress_level); /* * data compressed */ if (lzerr > 0) { *buf_out_len = lzerr; } /* * unable to compress */ if (lzerr <= 0) { log_err(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc compression error: %d", lzerr); savederrno = EINVAL; err = -1; } errno = savederrno; return err; } int lz4_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = (*_int_LZ4_decompress_safe)((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE); if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 decompression error: %d", lzerr); savederrno = EINVAL; err = -1; } if (lzerr > 0) { *buf_out_len = lzerr; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_lzma.c b/libknet/compress_lzma.c index 359382ca..3ace3d07 100644 --- a/libknet/compress_lzma.c +++ b/libknet/compress_lzma.c @@ -1,179 +1,177 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPLZMA #include #include "internals.h" #include "compress_lzma.h" #include "logging.h" #include "common.h" -#define LIBLZMA_5 "liblzma.so.5" - /* * global vars for dlopen */ static void *lzma_lib; #include "compress_lzma_remap.h" static int lzma_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_LZMACOMP, lzma_lib, name) #include "compress_lzma_remap.h" return 0; fail: #define REMAP_FAIL #include "compress_lzma_remap.h" errno = EINVAL; return -1; } int lzma_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!lzma_lib) { lzma_lib = open_lib(knet_h, LIBLZMA_5, 0); if (!lzma_lib) { savederrno = EAGAIN; err = -1; goto out; } } if (lzma_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; } out: errno = savederrno; return err; } int lzma_val_level( knet_handle_t knet_h, int compress_level) { if ((compress_level < 0) || (compress_level > 9)) { log_err(knet_h, KNET_SUB_LZMACOMP, "lzma unsupported compression preset %d (accepted values from 0 to 9)", compress_level); errno = EINVAL; return -1; } return 0; } int lzma_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; size_t out_pos = 0; lzma_ret ret = 0; ret = (*_int_lzma_easy_buffer_encode)(knet_h->compress_level, LZMA_CHECK_NONE, NULL, (const uint8_t *)buf_in, buf_in_len, (uint8_t *)buf_out, &out_pos, KNET_DATABUFSIZE_COMPRESS); switch(ret) { case LZMA_OK: *buf_out_len = out_pos; break; case LZMA_MEM_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress memory allocation failed"); savederrno = ENOMEM; err = -1; break; case LZMA_MEMLIMIT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress requires higher memory boundaries (see lzma_memlimit_set)"); savederrno = ENOMEM; err = -1; break; case LZMA_PROG_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress has been called with incorrect options"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress unknown error %u", ret); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } int lzma_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; uint64_t memlimit = UINT64_MAX; /* disable lzma internal memlimit check */ size_t out_pos = 0, in_pos = 0; lzma_ret ret = 0; ret = (*_int_lzma_stream_buffer_decode)(&memlimit, 0, NULL, (const uint8_t *)buf_in, &in_pos, buf_in_len, (uint8_t *)buf_out, &out_pos, KNET_DATABUFSIZE_COMPRESS); switch(ret) { case LZMA_OK: *buf_out_len = out_pos; break; case LZMA_MEM_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress memory allocation failed"); savederrno = ENOMEM; err = -1; break; case LZMA_MEMLIMIT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress requires higher memory boundaries (see lzma_memlimit_set)"); savederrno = ENOMEM; err = -1; break; case LZMA_DATA_ERROR: case LZMA_FORMAT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress invalid data received"); savederrno = EINVAL; err = -1; break; case LZMA_PROG_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress has been called with incorrect options"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress unknown error %u", ret); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_lzo2.c b/libknet/compress_lzo2.c index 37ac8f2c..e3476519 100644 --- a/libknet/compress_lzo2.c +++ b/libknet/compress_lzo2.c @@ -1,204 +1,202 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPLZO2 #include #include "internals.h" #include "compress_lzo2.h" #include "logging.h" #include "common.h" -#define LIBLZO2_2 "liblzo2.so.2" - /* * global vars for dlopen */ static void *lzo2_lib; #include "compress_lzo2_remap.h" static int lzo2_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_LZO2COMP, lzo2_lib, name) #include "compress_lzo2_remap.h" return 0; fail: #define REMAP_FAIL #include "compress_lzo2_remap.h" errno = EINVAL; return -1; } int lzo2_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!lzo2_lib) { lzo2_lib = open_lib(knet_h, LIBLZO2_2, 0); if (!lzo2_lib) { savederrno = EAGAIN; err = -1; goto out; } } if (lzo2_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; } out: errno = savederrno; return err; } int lzo2_is_init( knet_handle_t knet_h, int method_idx) { if (knet_h->compress_int_data[method_idx]) { return 1; } return 0; } int lzo2_init( knet_handle_t knet_h, int method_idx) { /* * LZO1X_999_MEM_COMPRESS is the highest amount of memory lzo2 can use */ if (!knet_h->compress_int_data[method_idx]) { knet_h->compress_int_data[method_idx] = malloc(LZO1X_999_MEM_COMPRESS); if (!knet_h->compress_int_data[method_idx]) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 unable to allocate work memory"); errno = ENOMEM; return -1; } memset(knet_h->compress_int_data[method_idx], 0, LZO1X_999_MEM_COMPRESS); } return 0; } void lzo2_fini( knet_handle_t knet_h, int method_idx) { if (knet_h->compress_int_data[method_idx]) { free(knet_h->compress_int_data[method_idx]); knet_h->compress_int_data[method_idx] = NULL; } return; } int lzo2_val_level( knet_handle_t knet_h, int compress_level) { switch(compress_level) { case 1: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_compress internal compress method"); break; case 11: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_11_compress internal compress method"); break; case 12: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_12_compress internal compress method"); break; case 15: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_15_compress internal compress method"); break; case 999: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_999_compress internal compress method"); break; default: log_warn(knet_h, KNET_SUB_LZO2COMP, "Unknown lzo2 internal compress method. lzo1x_1_compress will be used as default fallback"); break; } return 0; } int lzo2_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int savederrno = 0, lzerr = 0, err = 0; lzo_uint cmp_len; switch(knet_h->compress_level) { case 1: lzerr = (*_int_lzo1x_1_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 11: lzerr = (*_int_lzo1x_1_11_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 12: lzerr = (*_int_lzo1x_1_12_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 15: lzerr = (*_int_lzo1x_1_15_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 999: lzerr = (*_int_lzo1x_999_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; default: lzerr = (*_int_lzo1x_1_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; } if (lzerr != LZO_E_OK) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 internal compression error"); savederrno = EAGAIN; err = -1; } else { *buf_out_len = cmp_len; } errno = savederrno; return err; } int lzo2_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzo_uint decmp_len; lzerr = (*_int_lzo1x_decompress)(buf_in, buf_in_len, buf_out, &decmp_len, NULL); if (lzerr != LZO_E_OK) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 internal decompression error"); savederrno = EAGAIN; err = -1; } else { *buf_out_len = decmp_len; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_zlib.c b/libknet/compress_zlib.c index 08037d24..76a7d04e 100644 --- a/libknet/compress_zlib.c +++ b/libknet/compress_zlib.c @@ -1,182 +1,175 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPZLIB #include #include "internals.h" #include "compress_zlib.h" #include "logging.h" #include "common.h" -#ifdef KNET_LINUX -#define LIBZ_1 "libz.so.1" -#endif -#ifdef KNET_BSD -#define LIBZ_1 "libz.so" -#endif - /* * global vars for dlopen */ static void *zlib_lib; #include "compress_zlib_remap.h" static int zlib_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_ZLIBCOMP, zlib_lib, name) #include "compress_zlib_remap.h" return 0; fail: #define REMAP_FAIL #include "compress_zlib_remap.h" errno = EINVAL; return -1; } int zlib_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!zlib_lib) { zlib_lib = open_lib(knet_h, LIBZ_1, 0); if (!zlib_lib) { savederrno = EAGAIN; err = -1; goto out; } } if (zlib_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; } out: errno = savederrno; return err; } int zlib_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level < 0) { log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib does not support negative compression level %d", compress_level); return -1; } if (compress_level > 9) { log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib does not support compression level higher than 9"); return -1; } if (compress_level == 0) { log_warn(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress level 0 does NOT perform any compression"); } return 0; } int zlib_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int zerr = 0, err = 0; int savederrno = 0; uLongf destLen = *buf_out_len; zerr = (*_int_compress2)(buf_out, &destLen, buf_in, buf_in_len, knet_h->compress_level); *buf_out_len = destLen; switch(zerr) { case Z_OK: err = 0; savederrno = 0; break; case Z_MEM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress mem error"); err = -1; savederrno = ENOMEM; break; case Z_BUF_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress buf error"); err = -1; savederrno = ENOBUFS; break; case Z_STREAM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress stream error"); err = -1; savederrno = EINVAL; break; default: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib unknown compress error: %d", zerr); break; } errno = savederrno; return err; } int zlib_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int zerr = 0, err = 0; int savederrno = 0; uLongf destLen = *buf_out_len; zerr = (*_int_uncompress)(buf_out, &destLen, buf_in, buf_in_len); *buf_out_len = destLen; switch(zerr) { case Z_OK: err = 0; savederrno = 0; break; case Z_MEM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress mem error"); err = -1; savederrno = ENOMEM; break; case Z_BUF_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress buf error"); err = -1; savederrno = ENOBUFS; break; case Z_DATA_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress data error"); err = -1; savederrno = EINVAL; break; default: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib unknown decompress error: %d", zerr); break; } errno = savederrno; return err; } #endif diff --git a/libknet/crypto_nss.c b/libknet/crypto_nss.c index 4f554ebb..2b5a7314 100644 --- a/libknet/crypto_nss.c +++ b/libknet/crypto_nss.c @@ -1,858 +1,856 @@ /* * Copyright (C) 2012-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #ifdef BUILDCRYPTONSS #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "crypto.h" #include "crypto_nss.h" #include "logging.h" -#define LIBNSS3 "libnss3.so" - /* * global vars for dlopen */ static void *nss_lib; #include "crypto_nss_remap.h" static int nsscrypto_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_NSSCRYPTO, nss_lib, name) #include "crypto_nss_remap.h" return 0; fail: #define REMAP_FAIL #include "crypto_nss_remap.h" errno = EINVAL; return -1; } static int nss_db_is_init = 0; static int at_exit_registered = 0; static void nss_atexit_handler(void) { if (nss_db_is_init) { if (_int_NSS_Shutdown) { (*_int_NSS_Shutdown)(); } if ((_int_PR_Initialized) && ((*_int_PR_Initialized)())) { if (_int_PL_ArenaFinish) { (*_int_PL_ArenaFinish)(); } if (_int_PR_Cleanup) { (*_int_PR_Cleanup)(); } } } return; } int nsscrypto_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!nss_lib) { nss_lib = open_lib(knet_h, LIBNSS3, 0); if (!nss_lib) { savederrno = errno; err = -1; goto out; } } if (nsscrypto_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; goto out; } if (!at_exit_registered) { if (atexit(nss_atexit_handler)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to register NSS atexit handler"); savederrno = EAGAIN; err = -1; goto out; } at_exit_registered = 1; } if ((nss_lib) && (_int_NSS_NoDB_Init) && (!nss_db_is_init)) { if ((*_int_NSS_NoDB_Init)(".") != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "NSS DB initialization failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); savederrno = EAGAIN; err = -1; goto out; } nss_db_is_init = 1; } out: errno = savederrno; return err; } /* * crypto definitions and conversion tables */ #define SALT_SIZE 16 /* * This are defined in new NSS. For older one, we will define our own */ #ifndef AES_256_KEY_LENGTH #define AES_256_KEY_LENGTH 32 #endif #ifndef AES_192_KEY_LENGTH #define AES_192_KEY_LENGTH 24 #endif #ifndef AES_128_KEY_LENGTH #define AES_128_KEY_LENGTH 16 #endif enum nsscrypto_crypt_t { CRYPTO_CIPHER_TYPE_NONE = 0, CRYPTO_CIPHER_TYPE_AES256 = 1, CRYPTO_CIPHER_TYPE_AES192 = 2, CRYPTO_CIPHER_TYPE_AES128 = 3, CRYPTO_CIPHER_TYPE_3DES = 4 }; CK_MECHANISM_TYPE cipher_to_nss[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES256 */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES192 */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES128 */ CKM_DES3_CBC_PAD /* CRYPTO_CIPHER_TYPE_3DES */ }; size_t nsscipher_key_len[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ AES_256_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES256 */ AES_192_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES192 */ AES_128_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES128 */ 24 /* CRYPTO_CIPHER_TYPE_3DES */ }; size_t nsscypher_block_len[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES256 */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES192 */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES128 */ 0 /* CRYPTO_CIPHER_TYPE_3DES */ }; /* * hash definitions and conversion tables */ enum nsscrypto_hash_t { CRYPTO_HASH_TYPE_NONE = 0, CRYPTO_HASH_TYPE_MD5 = 1, CRYPTO_HASH_TYPE_SHA1 = 2, CRYPTO_HASH_TYPE_SHA256 = 3, CRYPTO_HASH_TYPE_SHA384 = 4, CRYPTO_HASH_TYPE_SHA512 = 5 }; CK_MECHANISM_TYPE hash_to_nss[] = { 0, /* CRYPTO_HASH_TYPE_NONE */ CKM_MD5_HMAC, /* CRYPTO_HASH_TYPE_MD5 */ CKM_SHA_1_HMAC, /* CRYPTO_HASH_TYPE_SHA1 */ CKM_SHA256_HMAC, /* CRYPTO_HASH_TYPE_SHA256 */ CKM_SHA384_HMAC, /* CRYPTO_HASH_TYPE_SHA384 */ CKM_SHA512_HMAC /* CRYPTO_HASH_TYPE_SHA512 */ }; size_t nsshash_len[] = { 0, /* CRYPTO_HASH_TYPE_NONE */ MD5_LENGTH, /* CRYPTO_HASH_TYPE_MD5 */ SHA1_LENGTH, /* CRYPTO_HASH_TYPE_SHA1 */ SHA256_LENGTH, /* CRYPTO_HASH_TYPE_SHA256 */ SHA384_LENGTH, /* CRYPTO_HASH_TYPE_SHA384 */ SHA512_LENGTH /* CRYPTO_HASH_TYPE_SHA512 */ }; enum sym_key_type { SYM_KEY_TYPE_CRYPT, SYM_KEY_TYPE_HASH }; struct nsscrypto_instance { PK11SymKey *nss_sym_key; PK11SymKey *nss_sym_key_sign; unsigned char *private_key; unsigned int private_key_len; int crypto_cipher_type; int crypto_hash_type; }; /* * crypt/decrypt functions */ static int nssstring_to_crypto_cipher_type(const char* crypto_cipher_type) { if (strcmp(crypto_cipher_type, "none") == 0) { return CRYPTO_CIPHER_TYPE_NONE; } else if (strcmp(crypto_cipher_type, "aes256") == 0) { return CRYPTO_CIPHER_TYPE_AES256; } else if (strcmp(crypto_cipher_type, "aes192") == 0) { return CRYPTO_CIPHER_TYPE_AES192; } else if (strcmp(crypto_cipher_type, "aes128") == 0) { return CRYPTO_CIPHER_TYPE_AES128; } else if (strcmp(crypto_cipher_type, "3des") == 0) { return CRYPTO_CIPHER_TYPE_3DES; } return -1; } static PK11SymKey *nssimport_symmetric_key(knet_handle_t knet_h, enum sym_key_type key_type) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; SECItem key_item; PK11SlotInfo *slot; PK11SymKey *res_key; CK_MECHANISM_TYPE cipher; CK_ATTRIBUTE_TYPE operation; CK_MECHANISM_TYPE wrap_mechanism; int wrap_key_len; PK11SymKey *wrap_key; PK11Context *wrap_key_crypt_context; SECItem tmp_sec_item; SECItem wrapped_key; int wrapped_key_len; unsigned char wrapped_key_data[KNET_MAX_KEY_LEN]; memset(&key_item, 0, sizeof(key_item)); slot = NULL; wrap_key = NULL; res_key = NULL; wrap_key_crypt_context = NULL; key_item.type = siBuffer; key_item.data = instance->private_key; switch (key_type) { case SYM_KEY_TYPE_CRYPT: key_item.len = nsscipher_key_len[instance->crypto_cipher_type]; cipher = cipher_to_nss[instance->crypto_cipher_type]; operation = CKA_ENCRYPT|CKA_DECRYPT; break; case SYM_KEY_TYPE_HASH: key_item.len = instance->private_key_len; cipher = hash_to_nss[instance->crypto_hash_type]; operation = CKA_SIGN; break; default: log_err(knet_h, KNET_SUB_NSSCRYPTO, "Import symmetric key failed. Unknown keyimport request"); goto exit_res_key; break; } slot = (*_int_PK11_GetBestSlot)(cipher, NULL); if (slot == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to find security slot (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Without FIPS it would be possible to just use * res_key = PK11_ImportSymKey(slot, cipher, PK11_OriginUnwrap, operation, &key_item, NULL); * with FIPS NSS Level 2 certification has to be "workarounded" (so it becomes Level 1) by using * following method: * 1. Generate wrap key * 2. Encrypt authkey with wrap key * 3. Unwrap encrypted authkey using wrap key */ /* * Generate wrapping key */ wrap_mechanism = (*_int_PK11_GetBestWrapMechanism)(slot); wrap_key_len = (*_int_PK11_GetBestKeyLength)(slot, wrap_mechanism); wrap_key = (*_int_PK11_KeyGen)(slot, wrap_mechanism, NULL, wrap_key_len, NULL); if (wrap_key == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to generate wrapping key (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Encrypt authkey with wrapping key */ /* * Initialization of IV is not needed because PK11_GetBestWrapMechanism should return ECB mode */ memset(&tmp_sec_item, 0, sizeof(tmp_sec_item)); wrap_key_crypt_context = (*_int_PK11_CreateContextBySymKey)(wrap_mechanism, CKA_ENCRYPT, wrap_key, &tmp_sec_item); if (wrap_key_crypt_context == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to create encrypt context (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } wrapped_key_len = (int)sizeof(wrapped_key_data); if ((*_int_PK11_CipherOp)(wrap_key_crypt_context, wrapped_key_data, &wrapped_key_len, sizeof(wrapped_key_data), key_item.data, key_item.len) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to encrypt authkey (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } if ((*_int_PK11_Finalize)(wrap_key_crypt_context) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to finalize encryption of authkey (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Finally unwrap sym key */ memset(&tmp_sec_item, 0, sizeof(tmp_sec_item)); wrapped_key.data = wrapped_key_data; wrapped_key.len = wrapped_key_len; res_key = (*_int_PK11_UnwrapSymKey)(wrap_key, wrap_mechanism, &tmp_sec_item, &wrapped_key, cipher, operation, key_item.len); if (res_key == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to import key into NSS (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); if ((*_int_PR_GetError)() == SEC_ERROR_BAD_DATA) { /* * Maximum key length for FIPS enabled softtoken is limited to * MAX_KEY_LEN (pkcs11i.h - 256) and checked in NSC_UnwrapKey. Returned * error is CKR_TEMPLATE_INCONSISTENT which is mapped to SEC_ERROR_BAD_DATA. */ log_err(knet_h, KNET_SUB_NSSCRYPTO, "Secret key is probably too long. " "Try reduce it to 256 bytes"); } goto exit_res_key; } exit_res_key: if (wrap_key_crypt_context != NULL) { (*_int_PK11_DestroyContext)(wrap_key_crypt_context, PR_TRUE); } if (wrap_key != NULL) { (*_int_PK11_FreeSymKey)(wrap_key); } if (slot != NULL) { (*_int_PK11_FreeSlot)(slot); } return (res_key); } static int init_nss_crypto(knet_handle_t knet_h) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; if (!cipher_to_nss[instance->crypto_cipher_type]) { return 0; } instance->nss_sym_key = nssimport_symmetric_key(knet_h, SYM_KEY_TYPE_CRYPT); if (instance->nss_sym_key == NULL) { return -1; } return 0; } static int encrypt_nss( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* crypt_context = NULL; SECItem crypt_param; SECItem *nss_sec_param = NULL; int tmp_outlen = 0, tmp1_outlen = 0; unsigned int tmp2_outlen = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = -1; int i; if ((*_int_PK11_GenerateRandom)(salt, SALT_SIZE) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to generate a random number (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } crypt_param.type = siBuffer; crypt_param.data = salt; crypt_param.len = SALT_SIZE; nss_sec_param = (*_int_PK11_ParamFromIV)(cipher_to_nss[instance->crypto_cipher_type], &crypt_param); if (nss_sec_param == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to set up PKCS11 param (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } /* * Create cipher context for encryption */ crypt_context = (*_int_PK11_CreateContextBySymKey)(cipher_to_nss[instance->crypto_cipher_type], CKA_ENCRYPT, instance->nss_sym_key, nss_sec_param); if (!crypt_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (encrypt) crypt_type=%d (err %d): %s", (int)cipher_to_nss[instance->crypto_cipher_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } for (i=0; icrypto_cipher_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } tmp1_outlen = tmp1_outlen + tmp_outlen; } if ((*_int_PK11_DigestFinal)(crypt_context, data + tmp1_outlen, &tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal failed (encrypt) crypt_type=%d (err %d): %s", (int)cipher_to_nss[instance->crypto_cipher_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } *buf_out_len = tmp1_outlen + tmp2_outlen + SALT_SIZE; err = 0; out: if (crypt_context) { (*_int_PK11_DestroyContext)(crypt_context, PR_TRUE); } if (nss_sec_param) { (*_int_SECITEM_FreeItem)(nss_sec_param, PR_TRUE); } return err; } static int decrypt_nss ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* decrypt_context = NULL; SECItem decrypt_param; int tmp1_outlen = 0; unsigned int tmp2_outlen = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = -1; /* Create cipher context for decryption */ decrypt_param.type = siBuffer; decrypt_param.data = salt; decrypt_param.len = SALT_SIZE; decrypt_context = (*_int_PK11_CreateContextBySymKey)(cipher_to_nss[instance->crypto_cipher_type], CKA_DECRYPT, instance->nss_sym_key, &decrypt_param); if (!decrypt_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext (decrypt) failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_CipherOp)(decrypt_context, buf_out, &tmp1_outlen, KNET_DATABUFSIZE_CRYPT, data, datalen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CipherOp (decrypt) failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestFinal)(decrypt_context, buf_out + tmp1_outlen, &tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal (decrypt) failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } *buf_out_len = tmp1_outlen + tmp2_outlen; err = 0; out: if (decrypt_context) { (*_int_PK11_DestroyContext)(decrypt_context, PR_TRUE); } return err; } /* * hash/hmac/digest functions */ static int nssstring_to_crypto_hash_type(const char* crypto_hash_type) { if (strcmp(crypto_hash_type, "none") == 0) { return CRYPTO_HASH_TYPE_NONE; } else if (strcmp(crypto_hash_type, "md5") == 0) { return CRYPTO_HASH_TYPE_MD5; } else if (strcmp(crypto_hash_type, "sha1") == 0) { return CRYPTO_HASH_TYPE_SHA1; } else if (strcmp(crypto_hash_type, "sha256") == 0) { return CRYPTO_HASH_TYPE_SHA256; } else if (strcmp(crypto_hash_type, "sha384") == 0) { return CRYPTO_HASH_TYPE_SHA384; } else if (strcmp(crypto_hash_type, "sha512") == 0) { return CRYPTO_HASH_TYPE_SHA512; } return -1; } static int init_nss_hash(knet_handle_t knet_h) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; if (!hash_to_nss[instance->crypto_hash_type]) { return 0; } instance->nss_sym_key_sign = nssimport_symmetric_key(knet_h, SYM_KEY_TYPE_HASH); if (instance->nss_sym_key_sign == NULL) { return -1; } return 0; } static int calculate_nss_hash( knet_handle_t knet_h, const unsigned char *buf, const size_t buf_len, unsigned char *hash) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* hash_context = NULL; SECItem hash_param; unsigned int hash_tmp_outlen = 0; int err = -1; /* Now do the digest */ hash_param.type = siBuffer; hash_param.data = 0; hash_param.len = 0; hash_context = (*_int_PK11_CreateContextBySymKey)(hash_to_nss[instance->crypto_hash_type], CKA_SIGN, instance->nss_sym_key_sign, &hash_param); if (!hash_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestBegin)(hash_context) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestBegin failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestOp)(hash_context, buf, buf_len) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestOp failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestFinal)(hash_context, hash, &hash_tmp_outlen, nsshash_len[instance->crypto_hash_type]) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinale failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } err = 0; out: if (hash_context) { (*_int_PK11_DestroyContext)(hash_context, PR_TRUE); } return err; } /* * global/glue nss functions */ static int init_nss(knet_handle_t knet_h) { if (init_nss_crypto(knet_h) < 0) { return -1; } if (init_nss_hash(knet_h) < 0) { return -1; } return 0; } /* * exported API */ int nsscrypto_encrypt_and_sign ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct iovec iov_in; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (unsigned char *)buf_in; iov_in.iov_len = buf_in_len; return nsscrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len); } int nsscrypto_encrypt_and_signv ( knet_handle_t knet_h, const struct iovec *iov_in, int iovcnt_in, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; int i; if (cipher_to_nss[instance->crypto_cipher_type]) { if (encrypt_nss(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) { return -1; } } else { *buf_out_len = 0; for (i=0; icrypto_hash_type]) { if (calculate_nss_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) { return -1; } *buf_out_len = *buf_out_len + nsshash_len[instance->crypto_hash_type]; } return 0; } int nsscrypto_authenticate_and_decrypt ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; ssize_t temp_len = buf_in_len; if (hash_to_nss[instance->crypto_hash_type]) { unsigned char tmp_hash[nsshash_len[instance->crypto_hash_type]]; ssize_t temp_buf_len = buf_in_len - nsshash_len[instance->crypto_hash_type]; if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Incorrect packet size."); return -1; } if (calculate_nss_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) { return -1; } if (memcmp(tmp_hash, buf_in + temp_buf_len, nsshash_len[instance->crypto_hash_type]) != 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Digest does not match"); return -1; } temp_len = temp_len - nsshash_len[instance->crypto_hash_type]; *buf_out_len = temp_len; } if (cipher_to_nss[instance->crypto_cipher_type]) { if (decrypt_nss(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) { return -1; } } else { memmove(buf_out, buf_in, temp_len); *buf_out_len = temp_len; } return 0; } int nsscrypto_init( knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { struct nsscrypto_instance *nsscrypto_instance = NULL; log_debug(knet_h, KNET_SUB_NSSCRYPTO, "Initizializing nss crypto module [%s/%s]", knet_handle_crypto_cfg->crypto_cipher_type, knet_handle_crypto_cfg->crypto_hash_type); knet_h->crypto_instance->model_instance = malloc(sizeof(struct nsscrypto_instance)); if (!knet_h->crypto_instance->model_instance) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to allocate memory for nss model instance"); return -1; } nsscrypto_instance = knet_h->crypto_instance->model_instance; memset(nsscrypto_instance, 0, sizeof(struct nsscrypto_instance)); nsscrypto_instance->crypto_cipher_type = nssstring_to_crypto_cipher_type(knet_handle_crypto_cfg->crypto_cipher_type); if (nsscrypto_instance->crypto_cipher_type < 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto cipher type requested"); goto out_err; } nsscrypto_instance->crypto_hash_type = nssstring_to_crypto_hash_type(knet_handle_crypto_cfg->crypto_hash_type); if (nsscrypto_instance->crypto_hash_type < 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto hash type requested"); goto out_err; } if ((nsscrypto_instance->crypto_cipher_type > 0) && (nsscrypto_instance->crypto_hash_type == 0)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "crypto communication requires hash specified"); goto out_err; } nsscrypto_instance->private_key = knet_handle_crypto_cfg->private_key; nsscrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len; if (init_nss(knet_h) < 0) { goto out_err; } knet_h->sec_header_size = 0; if (nsscrypto_instance->crypto_hash_type > 0) { knet_h->sec_header_size += nsshash_len[nsscrypto_instance->crypto_hash_type]; knet_h->sec_hash_size = nsshash_len[nsscrypto_instance->crypto_hash_type]; } if (nsscrypto_instance->crypto_cipher_type > 0) { int block_size; if (nsscypher_block_len[nsscrypto_instance->crypto_cipher_type]) { block_size = nsscypher_block_len[nsscrypto_instance->crypto_cipher_type]; } else { block_size = (*_int_PK11_GetBlockSize)(nsscrypto_instance->crypto_cipher_type, NULL); if (block_size < 0) { goto out_err; } } knet_h->sec_header_size += (block_size * 2); knet_h->sec_header_size += SALT_SIZE; knet_h->sec_salt_size = SALT_SIZE; knet_h->sec_block_size = block_size; } return 0; out_err: nsscrypto_fini(knet_h); return -1; } void nsscrypto_fini( knet_handle_t knet_h) { struct nsscrypto_instance *nsscrypto_instance = knet_h->crypto_instance->model_instance; if (nsscrypto_instance) { if (nsscrypto_instance->nss_sym_key) { (*_int_PK11_FreeSymKey)(nsscrypto_instance->nss_sym_key); nsscrypto_instance->nss_sym_key = NULL; } if (nsscrypto_instance->nss_sym_key_sign) { (*_int_PK11_FreeSymKey)(nsscrypto_instance->nss_sym_key_sign); nsscrypto_instance->nss_sym_key_sign = NULL; } free(nsscrypto_instance); knet_h->crypto_instance->model_instance = NULL; knet_h->sec_header_size = 0; } return; } #endif diff --git a/libknet/crypto_openssl.c b/libknet/crypto_openssl.c index 81b4bc6b..c44760f7 100644 --- a/libknet/crypto_openssl.c +++ b/libknet/crypto_openssl.c @@ -1,577 +1,565 @@ /* * Copyright (C) 2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #ifdef BUILDCRYPTOOPENSSL #include #include #include #include #include #include "common.h" #include "crypto.h" #include "crypto_openssl.h" #include "logging.h" /* * 1.0.2 requires at least 120 bytes * 1.1.0 requires at least 256 bytes */ #define SSLERR_BUF_SIZE 512 -/* - * make this more generic. - * Fedora packages it one way, Debian another - * and it changes by version - */ -#ifdef KNET_LINUX -#define LIBOPENSSL "libcrypto.so" -#endif -#ifdef KNET_BSD -#define LIBOPENSSL "libcrypto.so.10" -#endif - /* * global vars for dlopen */ static void *openssl_lib; #include "crypto_openssl_remap.h" static int opensslcrypto_remap_symbols(knet_handle_t knet_h) { #define REMAP_WITH(name) remap_symbol (knet_h, KNET_SUB_OPENSSLCRYPTO, openssl_lib, name) #include "crypto_openssl_remap.h" return 0; fail: #define REMAP_FAIL #include "crypto_openssl_remap.h" errno = EINVAL; return -1; } static int openssl_is_init = 0; int opensslcrypto_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!openssl_lib) { openssl_lib = open_lib(knet_h, LIBOPENSSL, 0); if (!openssl_lib) { savederrno = errno; err = -1; goto out; } } if (opensslcrypto_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; goto out; } if (!openssl_is_init) { #ifdef BUILDCRYPTOOPENSSL10 (*_int_ERR_load_crypto_strings)(); (*_int_OPENSSL_add_all_algorithms_noconf)(); #endif #ifdef BUILDCRYPTOOPENSSL11 if (!(*_int_OPENSSL_init_crypto)(OPENSSL_INIT_ADD_ALL_CIPHERS \ | OPENSSL_INIT_ADD_ALL_DIGESTS, NULL)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to init openssl"); err = -1; savederrno = EAGAIN; goto out; } #endif openssl_is_init = 1; } out: errno = savederrno; return err; } /* * crypto definitions and conversion tables */ #define SALT_SIZE 16 struct opensslcrypto_instance { void *private_key; int private_key_len; const EVP_CIPHER *crypto_cipher_type; const EVP_MD *crypto_hash_type; }; /* * crypt/decrypt functions openssl1.0 */ #ifdef BUILDCRYPTOOPENSSL10 static int encrypt_openssl( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; EVP_CIPHER_CTX ctx; int tmplen = 0, offset = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = 0; int i; char sslerr[SSLERR_BUF_SIZE]; (*_int_EVP_CIPHER_CTX_init)(&ctx); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)((unsigned char *)iov[iovcnt - 1].iov_base, iov[iovcnt - 1].iov_len); if (!(*_int_RAND_bytes)(salt, SALT_SIZE)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr); err = -1; goto out; } /* * add warning re keylength */ (*_int_EVP_EncryptInit_ex)(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); for (i=0; icrypto_instance->model_instance; EVP_CIPHER_CTX ctx; int tmplen1 = 0, tmplen2 = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = 0; char sslerr[SSLERR_BUF_SIZE]; (*_int_EVP_CIPHER_CTX_init)(&ctx); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)(buf_in, buf_in_len); /* * add warning re keylength */ (*_int_EVP_DecryptInit_ex)(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); if (!(*_int_EVP_DecryptUpdate)(&ctx, buf_out, &tmplen1, data, datalen)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr); err = -1; goto out; } if (!(*_int_EVP_DecryptFinal_ex)(&ctx, buf_out + tmplen1, &tmplen2)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr); err = -1; goto out; } *buf_out_len = tmplen1 + tmplen2; out: (*_int_EVP_CIPHER_CTX_cleanup)(&ctx); return err; } #endif #ifdef BUILDCRYPTOOPENSSL11 static int encrypt_openssl( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; EVP_CIPHER_CTX *ctx; int tmplen = 0, offset = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = 0; int i; char sslerr[SSLERR_BUF_SIZE]; ctx = (*_int_EVP_CIPHER_CTX_new)(); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)((unsigned char *)iov[iovcnt - 1].iov_base, iov[iovcnt - 1].iov_len); if (!(*_int_RAND_bytes)(salt, SALT_SIZE)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr); err = -1; goto out; } /* * add warning re keylength */ (*_int_EVP_EncryptInit_ex)(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); for (i=0; icrypto_instance->model_instance; EVP_CIPHER_CTX *ctx; int tmplen1 = 0, tmplen2 = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = 0; char sslerr[SSLERR_BUF_SIZE]; ctx = (*_int_EVP_CIPHER_CTX_new)(); /* * contribute to PRNG for each packet we send/receive */ (*_int_RAND_seed)(buf_in, buf_in_len); /* * add warning re keylength */ (*_int_EVP_DecryptInit_ex)(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt); if (!(*_int_EVP_DecryptUpdate)(ctx, buf_out, &tmplen1, data, datalen)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr); err = -1; goto out; } if (!(*_int_EVP_DecryptFinal_ex)(ctx, buf_out + tmplen1, &tmplen2)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr); err = -1; goto out; } *buf_out_len = tmplen1 + tmplen2; out: (*_int_EVP_CIPHER_CTX_free)(ctx); return err; } #endif /* * hash/hmac/digest functions */ static int calculate_openssl_hash( knet_handle_t knet_h, const unsigned char *buf, const size_t buf_len, unsigned char *hash) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; unsigned int hash_len = 0; unsigned char *hash_out = NULL; char sslerr[SSLERR_BUF_SIZE]; hash_out = (*_int_HMAC)(instance->crypto_hash_type, instance->private_key, instance->private_key_len, buf, buf_len, hash, &hash_len); if ((!hash_out) || (hash_len != knet_h->sec_hash_size)) { (*_int_ERR_error_string_n)((*_int_ERR_get_error)(), sslerr, sizeof(sslerr)); log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to calculate hash: %s", sslerr); return -1; } return 0; } /* * exported API */ int opensslcrypto_encrypt_and_sign ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct iovec iov_in; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (unsigned char *)buf_in; iov_in.iov_len = buf_in_len; return opensslcrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len); } int opensslcrypto_encrypt_and_signv ( knet_handle_t knet_h, const struct iovec *iov_in, int iovcnt_in, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; int i; if (instance->crypto_cipher_type) { if (encrypt_openssl(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) { return -1; } } else { *buf_out_len = 0; for (i=0; icrypto_hash_type) { if (calculate_openssl_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) { return -1; } *buf_out_len = *buf_out_len + knet_h->sec_hash_size; } return 0; } int opensslcrypto_authenticate_and_decrypt ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct opensslcrypto_instance *instance = knet_h->crypto_instance->model_instance; ssize_t temp_len = buf_in_len; if (instance->crypto_hash_type) { unsigned char tmp_hash[knet_h->sec_hash_size]; ssize_t temp_buf_len = buf_in_len - knet_h->sec_hash_size; if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Incorrect packet size."); return -1; } if (calculate_openssl_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) { return -1; } if (memcmp(tmp_hash, buf_in + temp_buf_len, knet_h->sec_hash_size) != 0) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Digest does not match"); return -1; } temp_len = temp_len - knet_h->sec_hash_size; *buf_out_len = temp_len; } if (instance->crypto_cipher_type) { if (decrypt_openssl(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) { return -1; } } else { memmove(buf_out, buf_in, temp_len); *buf_out_len = temp_len; } return 0; } int opensslcrypto_init( knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { struct opensslcrypto_instance *opensslcrypto_instance = NULL; log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Initizializing openssl crypto module [%s/%s]", knet_handle_crypto_cfg->crypto_cipher_type, knet_handle_crypto_cfg->crypto_hash_type); knet_h->crypto_instance->model_instance = malloc(sizeof(struct opensslcrypto_instance)); if (!knet_h->crypto_instance->model_instance) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl model instance"); return -1; } opensslcrypto_instance = knet_h->crypto_instance->model_instance; memset(opensslcrypto_instance, 0, sizeof(struct opensslcrypto_instance)); if (strcmp(knet_handle_crypto_cfg->crypto_cipher_type, "none") == 0) { opensslcrypto_instance->crypto_cipher_type = NULL; } else { opensslcrypto_instance->crypto_cipher_type = (*_int_EVP_get_cipherbyname)(knet_handle_crypto_cfg->crypto_cipher_type); if (!opensslcrypto_instance->crypto_cipher_type) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto cipher type requested"); goto out_err; } } if (strcmp(knet_handle_crypto_cfg->crypto_hash_type, "none") == 0) { opensslcrypto_instance->crypto_hash_type = NULL; } else { opensslcrypto_instance->crypto_hash_type = (*_int_EVP_get_digestbyname)(knet_handle_crypto_cfg->crypto_hash_type); if (!opensslcrypto_instance->crypto_hash_type) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto hash type requested"); goto out_err; } } if ((opensslcrypto_instance->crypto_cipher_type) && (!opensslcrypto_instance->crypto_hash_type)) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "crypto communication requires hash specified"); goto out_err; } opensslcrypto_instance->private_key = malloc(knet_handle_crypto_cfg->private_key_len); if (!opensslcrypto_instance->private_key) { log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl private key"); goto out_err; } memmove(opensslcrypto_instance->private_key, knet_handle_crypto_cfg->private_key, knet_handle_crypto_cfg->private_key_len); opensslcrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len; knet_h->sec_header_size = 0; if (opensslcrypto_instance->crypto_hash_type) { knet_h->sec_hash_size = (*_int_EVP_MD_size)(opensslcrypto_instance->crypto_hash_type); knet_h->sec_header_size += knet_h->sec_hash_size; } if (opensslcrypto_instance->crypto_cipher_type) { int block_size; block_size = (*_int_EVP_CIPHER_block_size)(opensslcrypto_instance->crypto_cipher_type); if (block_size < 0) { goto out_err; } knet_h->sec_header_size += (block_size * 2); knet_h->sec_header_size += SALT_SIZE; knet_h->sec_salt_size = SALT_SIZE; knet_h->sec_block_size = block_size; } return 0; out_err: opensslcrypto_fini(knet_h); return -1; } void opensslcrypto_fini( knet_handle_t knet_h) { struct opensslcrypto_instance *opensslcrypto_instance = knet_h->crypto_instance->model_instance; if (opensslcrypto_instance) { if (opensslcrypto_instance->private_key) { free(opensslcrypto_instance->private_key); opensslcrypto_instance->private_key = NULL; } free(opensslcrypto_instance); knet_h->crypto_instance->model_instance = NULL; knet_h->sec_header_size = 0; } return; } #endif