diff --git a/doc/Pacemaker_Explained/en-US/Ch-Stonith.txt b/doc/Pacemaker_Explained/en-US/Ch-Stonith.txt index 5facda1678..f644f805a4 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Stonith.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Stonith.txt @@ -1,824 +1,829 @@ = STONITH = //// We prefer [[ch-stonith]], but older versions of asciidoc don't deal well with that construct for chapter headings //// anchor:ch-stonith[Chapter 13, STONITH] indexterm:[STONITH, Configuration] == What Is STONITH? == STONITH (an acronym for "Shoot The Other Node In The Head"), also called 'fencing', protects your data from being corrupted by rogue nodes or concurrent access. Just because a node is unresponsive, this doesn't mean it isn't accessing your data. The only way to be 100% sure that your data is safe, is to use STONITH so we can be certain that the node is truly offline, before allowing the data to be accessed from another node. STONITH also has a role to play in the event that a clustered service cannot be stopped. In this case, the cluster uses STONITH to force the whole node offline, thereby making it safe to start the service elsewhere. == What STONITH Device Should You Use? == It is crucial that the STONITH device can allow the cluster to differentiate between a node failure and a network one. The biggest mistake people make in choosing a STONITH device is to use a remote power switch (such as many on-board IPMI controllers) that shares power with the node it controls. In such cases, the cluster cannot be sure if the node is really offline, or active and suffering from a network fault. Likewise, any device that relies on the machine being active (such as SSH-based "devices" used during testing) are inappropriate. == Special Treatment of STONITH Resources == STONITH resources are somewhat special in Pacemaker. -In previous versions, only "running" resources could be used by -Pacemaker for fencing. This requirement has been relaxed to allow -other parts of the cluster (such as resources like DRBD) to reliably -initiate fencing. footnote:[Fencing a node while Pacemaker was moving -stonith resources around would otherwise fail] +STONITH may be initiated by pacemaker or by other parts of the cluster +(such as resources like DRBD or DLM). To accommodate this, pacemaker +does not require the STONITH resource to be in the 'started' state +in order to be used, thus allowing reliable use of STONITH devices in such a +case. -Now all nodes have access to their definitions and instantiate them -on-the-fly when needed, however preference is given to 'verified' -instances which are the ones the cluster has explicitly started. +[NOTE] +==== +In pacemaker versions 1.1.9 and earlier, this feature either did not exist or +did not work well. Only "running" STONITH resources could be used by Pacemaker +for fencing, and if another component tried to fence a node while Pacemaker was +moving STONITH resources, the fencing could fail. +==== + +All nodes have access to STONITH devices' definitions and instantiate them +on-the-fly when needed, but preference is given to 'verified' instances, which +are the ones that are 'started' according to the cluster's knowledge. In the case of a cluster split, the partition with a verified instance will have a slight advantage, because the STONITH daemon in the other partition will have to hear from all its current peers before choosing a node to perform the fencing. -[NOTE] -=========== -To disable a fencing device/resource, 'target-role' can be set as you would for a normal resource. -=========== +Fencing resources do work the same as regular resources in some respects: -[NOTE] -=========== -To prevent a specific node from using a fencing device, location constraints will work as expected. -=========== +* +target-role+ can be used to enable or disable the resource +* Location constraints can be used to prevent a specific node from using the resource [IMPORTANT] =========== Currently there is a limitation that fencing resources may only have one set of meta-attributes and one set of instance attributes. This can be revisited if it becomes a significant limitation for people. =========== .Properties of Fencing Resources [width="95%",cols="5m,2,3,10 ---- ==== Based on that, we would create a STONITH resource fragment that might look like this: .An IPMI-based STONITH Resource ==== [source,XML] ---- ---- ==== Finally, we need to enable STONITH: ---- # crm_attribute -t crm_config -n stonith-enabled -v true ---- == Advanced STONITH Configurations == Some people consider that having one fencing device is a single point of failure footnote:[Not true, since a node or resource must fail before fencing even has a chance to]; others prefer removing the node from the storage and network instead of turning it off. Whatever the reason, Pacemaker supports fencing nodes with multiple devices through a feature called 'fencing topologies'. Simply create the individual devices as you normally would, then define one or more +fencing-level+ entries in the +fencing-topology+ section of the configuration. * Each fencing level is attempted in order of ascending +index+. * If a device fails, processing terminates for the current level. No further devices in that level are exercised, and the next level is attempted instead. * If the operation succeeds for all the listed devices in a level, the level is deemed to have passed. * The operation is finished when a level has passed (success), or all levels have been attempted (failed). * If the operation failed, the next step is determined by the Policy Engine and/or `crmd`. Some possible uses of topologies include: * Try poison-pill and fail back to power * Try disk and network, and fall back to power if either fails * Initiate a kdump and then poweroff the node .Properties of Fencing Levels [width="95%",cols="1m,6<",options="header",align="center"] |========================================================= |Field |Description |id |A unique name for the level indexterm:[id,fencing-level] indexterm:[Fencing,fencing-level,id] |target |The node to which this level applies indexterm:[target,fencing-level] indexterm:[Fencing,fencing-level,target] |index |The order in which to attempt the levels. Levels are attempted in ascending order 'until one succeeds'. indexterm:[index,fencing-level] indexterm:[Fencing,fencing-level,index] |devices |A comma-separated list of devices that must all be tried for this level indexterm:[devices,fencing-level] indexterm:[Fencing,fencing-level,devices] |========================================================= -=== Example use of Fencing Topologies === +.Fencing topology with different devices for different nodes +==== [source,XML] ---- ... ... ---- +==== === Example Dual-Layer, Dual-Device Fencing Topologies === The following example illustrates an advanced use of +fencing-topology+ in a cluster with the following properties: * 3 nodes (2 active prod-mysql nodes, 1 prod_mysql-rep in standby for quorum purposes) * the active nodes have an IPMI-controlled power board reached at 192.0.2.1 and 192.0.2.2 * the active nodes also have two independent PSUs (Power Supply Units) connected to two independent PDUs (Power Distribution Units) reached at 198.51.100.1 (port 10 and port 11) and 203.0.113.1 (port 10 and port 11) * the first fencing method uses the `fence_ipmi` agent * the second fencing method uses the `fence_apc_snmp` agent targetting 2 fencing devices (one per PSU, either port 10 or 11) * fencing is only implemented for the active nodes and has location constraints * fencing topology is set to try IPMI fencing first then default to a "sure-kill" dual PDU fencing In a normal failure scenario, STONITH will first select +fence_ipmi+ to try to kill the faulty node. Using a fencing topology, if that first method fails, STONITH will then move on to selecting +fence_apc_snmp+ twice: * once for the first PDU * again for the second PDU The fence action is considered successful only if both PDUs report the required status. If any of them fails, STONITH loops back to the first fencing method, +fence_ipmi+, and so on until the node is fenced or fencing action is cancelled. .First fencing method: single IPMI device Each cluster node has it own dedicated IPMI channel that can be called for fencing using the following primitives: [source,XML] ---- ---- .Second fencing method: dual PDU devices Each cluster node also has two distinct power channels controlled by two distinct PDUs. That means a total of 4 fencing devices configured as follows: - Node 1, PDU 1, PSU 1 @ port 10 - Node 1, PDU 2, PSU 2 @ port 10 - Node 2, PDU 1, PSU 1 @ port 11 - Node 2, PDU 2, PSU 2 @ port 11 The matching fencing agents are configured as follows: [source,XML] ---- ---- .Location Constraints To prevent STONITH from trying to run a fencing agent on the same node it is supposed to fence, constraints are placed on all the fencing primitives: [source,XML] ---- ---- .Fencing topology Now that all the fencing resources are defined, it's time to create the right topology. We want to first fence using IPMI and if that does not work, fence both PDUs to effectively and surely kill the node. [source,XML] ---- ---- Please note, in +fencing-topology+, the lowest +index+ value determines the priority of the first fencing method. .Final configuration Put together, the configuration looks like this: [source,XML] ---- ... ... ----