diff --git a/lib/pacemaker/pcmk_sched_nodes.c b/lib/pacemaker/pcmk_sched_nodes.c index f7b1428c5c..03f09ef344 100644 --- a/lib/pacemaker/pcmk_sched_nodes.c +++ b/lib/pacemaker/pcmk_sched_nodes.c @@ -1,429 +1,434 @@ /* * Copyright 2004-2023 the Pacemaker project contributors * * The version control history for this file may have further details. * * This source code is licensed under the GNU General Public License version 2 * or later (GPLv2+) WITHOUT ANY WARRANTY. */ #include #include #include #include #include #include "libpacemaker_private.h" /*! * \internal * \brief Check whether a node is available to run resources * * \param[in] node Node to check * \param[in] consider_score If true, consider a negative score unavailable * \param[in] consider_guest If true, consider a guest node unavailable whose * resource will not be active * * \return true if node is online and not shutting down, unclean, or in standby * or maintenance mode, otherwise false */ bool pcmk__node_available(const pcmk_node_t *node, bool consider_score, bool consider_guest) { if ((node == NULL) || (node->details == NULL) || !node->details->online || node->details->shutdown || node->details->unclean || node->details->standby || node->details->maintenance) { return false; } if (consider_score && (node->weight < 0)) { return false; } // @TODO Go through all callers to see which should set consider_guest if (consider_guest && pe__is_guest_node(node)) { pcmk_resource_t *guest = node->details->remote_rsc->container; if (guest->fns->location(guest, NULL, FALSE) == NULL) { return false; } } return true; } /*! * \internal * \brief Copy a hash table of node objects * * \param[in] nodes Hash table to copy * * \return New copy of nodes (or NULL if nodes is NULL) */ GHashTable * pcmk__copy_node_table(GHashTable *nodes) { GHashTable *new_table = NULL; GHashTableIter iter; pcmk_node_t *node = NULL; if (nodes == NULL) { return NULL; } new_table = pcmk__strkey_table(NULL, free); g_hash_table_iter_init(&iter, nodes); while (g_hash_table_iter_next(&iter, NULL, (gpointer *) &node)) { pcmk_node_t *new_node = pe__copy_node(node); g_hash_table_insert(new_table, (gpointer) new_node->details->id, new_node); } return new_table; } /*! * \internal * \brief Free a table of node tables * * \param[in,out] data Table to free * * \note This is a \c GDestroyNotify wrapper for \c g_hash_table_destroy(). */ static void destroy_node_tables(gpointer data) { g_hash_table_destroy((GHashTable *) data); } /*! * \internal * \brief Recursively copy the node tables of a resource * * Build a hash table containing copies of the allowed nodes tables of \p rsc * and its entire tree of descendants. The key is the resource ID, and the value * is a copy of the resource's node table. * * \param[in] rsc Resource whose node table to copy * \param[in,out] copy Where to store the copied node tables * * \note \p *copy should be \c NULL for the top-level call. * \note The caller is responsible for freeing \p copy using * \c g_hash_table_destroy(). */ void pcmk__copy_node_tables(const pcmk_resource_t *rsc, GHashTable **copy) { CRM_ASSERT((rsc != NULL) && (copy != NULL)); if (*copy == NULL) { *copy = pcmk__strkey_table(NULL, destroy_node_tables); } g_hash_table_insert(*copy, rsc->id, pcmk__copy_node_table(rsc->allowed_nodes)); for (const GList *iter = rsc->children; iter != NULL; iter = iter->next) { pcmk__copy_node_tables((const pcmk_resource_t *) iter->data, copy); } } /*! * \internal * \brief Recursively restore the node tables of a resource from backup * * Given a hash table containing backup copies of the allowed nodes tables of * \p rsc and its entire tree of descendants, replace the resources' current * node tables with the backed-up copies. * * \param[in,out] rsc Resource whose node tables to restore * \param[in] backup Table of backup node tables (created by * \c pcmk__copy_node_tables()) * * \note This function frees the resources' current node tables. */ void pcmk__restore_node_tables(pcmk_resource_t *rsc, GHashTable *backup) { CRM_ASSERT((rsc != NULL) && (backup != NULL)); g_hash_table_destroy(rsc->allowed_nodes); // Copy to avoid danger with multiple restores rsc->allowed_nodes = g_hash_table_lookup(backup, rsc->id); rsc->allowed_nodes = pcmk__copy_node_table(rsc->allowed_nodes); for (GList *iter = rsc->children; iter != NULL; iter = iter->next) { pcmk__restore_node_tables((pcmk_resource_t *) iter->data, backup); } } /*! * \internal * \brief Copy a list of node objects * * \param[in] list List to copy * \param[in] reset Set copies' scores to 0 * * \return New list of shallow copies of nodes in original list */ GList * pcmk__copy_node_list(const GList *list, bool reset) { GList *result = NULL; for (const GList *iter = list; iter != NULL; iter = iter->next) { pcmk_node_t *new_node = NULL; pcmk_node_t *this_node = iter->data; new_node = pe__copy_node(this_node); if (reset) { new_node->weight = 0; } result = g_list_prepend(result, new_node); } return result; } /*! * \internal * \brief Compare two nodes for assignment preference * * Given two nodes, check which one is more preferred by assignment criteria * such as node score and utilization. * * \param[in] a First node to compare * \param[in] b Second node to compare - * \param[in] data Node that resource being assigned is active on, if any + * \param[in] data Node to prefer if all else equal * * \return -1 if \p a is preferred, +1 if \p b is preferred, or 0 if they are * equally preferred */ static gint compare_nodes(gconstpointer a, gconstpointer b, gpointer data) { const pcmk_node_t *node1 = (const pcmk_node_t *) a; const pcmk_node_t *node2 = (const pcmk_node_t *) b; - const pcmk_node_t *active = (const pcmk_node_t *) data; + const pcmk_node_t *preferred = (const pcmk_node_t *) data; int node1_score = -INFINITY; int node2_score = -INFINITY; int result = 0; if (a == NULL) { return 1; } if (b == NULL) { return -1; } // Compare node scores if (pcmk__node_available(node1, false, false)) { node1_score = node1->weight; } if (pcmk__node_available(node2, false, false)) { node2_score = node2->weight; } if (node1_score > node2_score) { - crm_trace("%s (%d) > %s (%d) : score", - pe__node_name(node1), node1_score, pe__node_name(node2), - node2_score); + crm_trace("%s before %s (score %d > %d)", + pe__node_name(node1), pe__node_name(node2), + node1_score, node2_score); return -1; } if (node1_score < node2_score) { - crm_trace("%s (%d) < %s (%d) : score", - pe__node_name(node1), node1_score, pe__node_name(node2), - node2_score); + crm_trace("%s after %s (score %d < %d)", + pe__node_name(node1), pe__node_name(node2), + node1_score, node2_score); return 1; } - crm_trace("%s (%d) == %s (%d) : score", - pe__node_name(node1), node1_score, pe__node_name(node2), - node2_score); - // If appropriate, compare node utilization if (pcmk__str_eq(node1->details->data_set->placement_strategy, "minimal", pcmk__str_casei)) { goto equal; } if (pcmk__str_eq(node1->details->data_set->placement_strategy, "balanced", pcmk__str_casei)) { result = pcmk__compare_node_capacities(node1, node2); if (result < 0) { - crm_trace("%s > %s : capacity (%d)", - pe__node_name(node1), pe__node_name(node2), result); + crm_trace("%s before %s (greater capacity by %d attributes)", + pe__node_name(node1), pe__node_name(node2), result * -1); return -1; } else if (result > 0) { - crm_trace("%s < %s : capacity (%d)", + crm_trace("%s after %s (lower capacity by %d attributes)", pe__node_name(node1), pe__node_name(node2), result); return 1; } } // Compare number of resources already assigned to node if (node1->details->num_resources < node2->details->num_resources) { - crm_trace("%s (%d) > %s (%d) : resources", - pe__node_name(node1), node1->details->num_resources, - pe__node_name(node2), node2->details->num_resources); + crm_trace("%s before %s (%d resources < %d)", + pe__node_name(node1), pe__node_name(node2), + node1->details->num_resources, node2->details->num_resources); return -1; } else if (node1->details->num_resources > node2->details->num_resources) { - crm_trace("%s (%d) < %s (%d) : resources", - pe__node_name(node1), node1->details->num_resources, - pe__node_name(node2), node2->details->num_resources); + crm_trace("%s after %s (%d resources > %d)", + pe__node_name(node1), pe__node_name(node2), + node1->details->num_resources, node2->details->num_resources); return 1; } // Check whether one node is already running desired resource - if (active != NULL) { - if (pe__same_node(active, node1)) { - crm_trace("%s (%d) > %s (%d) : active", - pe__node_name(node1), node1->details->num_resources, - pe__node_name(node2), node2->details->num_resources); + if (preferred != NULL) { + if (pe__same_node(preferred, node1)) { + crm_trace("%s before %s (preferred node)", + pe__node_name(node1), pe__node_name(node2)); return -1; - } else if (pe__same_node(active, node2)) { - crm_trace("%s (%d) < %s (%d) : active", - pe__node_name(node1), node1->details->num_resources, - pe__node_name(node2), node2->details->num_resources); + } else if (pe__same_node(preferred, node2)) { + crm_trace("%s after %s (not preferred node)", + pe__node_name(node1), pe__node_name(node2)); return 1; } } // If all else is equal, prefer node with lowest-sorting name equal: - crm_trace("%s = %s", pe__node_name(node1), pe__node_name(node2)); - return strcmp(node1->details->uname, node2->details->uname); + result = strcmp(node1->details->uname, node2->details->uname); + if (result < 0) { + crm_trace("%s before %s (name)", + pe__node_name(node1), pe__node_name(node2)); + return -1; + } else if (result > 0) { + crm_trace("%s after %s (name)", + pe__node_name(node1), pe__node_name(node2)); + return 1; + } + + crm_trace("%s == %s", pe__node_name(node1), pe__node_name(node2)); + return 0; } /*! * \internal * \brief Sort a list of nodes by assigment preference * * \param[in,out] nodes Node list to sort * \param[in] active_node Node where resource being assigned is active * * \return New head of sorted list */ GList * pcmk__sort_nodes(GList *nodes, pcmk_node_t *active_node) { return g_list_sort_with_data(nodes, compare_nodes, active_node); } /*! * \internal * \brief Check whether any node is available to run resources * * \param[in] nodes Nodes to check * * \return true if any node in \p nodes is available to run resources, * otherwise false */ bool pcmk__any_node_available(GHashTable *nodes) { GHashTableIter iter; const pcmk_node_t *node = NULL; if (nodes == NULL) { return false; } g_hash_table_iter_init(&iter, nodes); while (g_hash_table_iter_next(&iter, NULL, (void **) &node)) { if (pcmk__node_available(node, true, false)) { return true; } } return false; } /*! * \internal * \brief Apply node health values for all nodes in cluster * * \param[in,out] data_set Cluster working set */ void pcmk__apply_node_health(pcmk_scheduler_t *data_set) { int base_health = 0; enum pcmk__health_strategy strategy; const char *strategy_str = pe_pref(data_set->config_hash, PCMK__OPT_NODE_HEALTH_STRATEGY); strategy = pcmk__parse_health_strategy(strategy_str); if (strategy == pcmk__health_strategy_none) { return; } crm_info("Applying node health strategy '%s'", strategy_str); // The progressive strategy can use a base health score if (strategy == pcmk__health_strategy_progressive) { base_health = pe__health_score(PCMK__OPT_NODE_HEALTH_BASE, data_set); } for (GList *iter = data_set->nodes; iter != NULL; iter = iter->next) { pcmk_node_t *node = (pcmk_node_t *) iter->data; int health = pe__sum_node_health_scores(node, base_health); // An overall health score of 0 has no effect if (health == 0) { continue; } crm_info("Overall system health of %s is %d", pe__node_name(node), health); // Use node health as a location score for each resource on the node for (GList *r = data_set->resources; r != NULL; r = r->next) { pcmk_resource_t *rsc = (pcmk_resource_t *) r->data; bool constrain = true; if (health < 0) { /* Negative health scores do not apply to resources with * allow-unhealthy-nodes=true. */ constrain = !crm_is_true(g_hash_table_lookup(rsc->meta, PCMK__META_ALLOW_UNHEALTHY_NODES)); } if (constrain) { pcmk__new_location(strategy_str, rsc, health, NULL, node); } else { pe_rsc_trace(rsc, "%s is immune from health ban on %s", rsc->id, pe__node_name(node)); } } } } /*! * \internal * \brief Check for a node in a resource's parent's allowed nodes * * \param[in] rsc Resource whose parent should be checked * \param[in] node Node to check for * * \return Equivalent of \p node from \p rsc's parent's allowed nodes if any, * otherwise NULL */ pcmk_node_t * pcmk__top_allowed_node(const pcmk_resource_t *rsc, const pcmk_node_t *node) { GHashTable *allowed_nodes = NULL; if ((rsc == NULL) || (node == NULL)) { return NULL; } else if (rsc->parent == NULL) { allowed_nodes = rsc->allowed_nodes; } else { allowed_nodes = rsc->parent->allowed_nodes; } return g_hash_table_lookup(allowed_nodes, node->details->id); } diff --git a/lib/pacemaker/pcmk_sched_utilization.c b/lib/pacemaker/pcmk_sched_utilization.c index e65b2fb2c3..437dd665d8 100644 --- a/lib/pacemaker/pcmk_sched_utilization.c +++ b/lib/pacemaker/pcmk_sched_utilization.c @@ -1,466 +1,466 @@ /* * Copyright 2014-2023 the Pacemaker project contributors * * The version control history for this file may have further details. * * This source code is licensed under the GNU General Public License version 2 * or later (GPLv2+) WITHOUT ANY WARRANTY. */ #include #include #include #include "libpacemaker_private.h" /*! * \internal * \brief Get integer utilization from a string * * \param[in] s String representation of a node utilization value * * \return Integer equivalent of \p s * \todo It would make sense to restrict utilization values to nonnegative * integers, but the documentation just says "integers" and we didn't * restrict them initially, so for backward compatibility, allow any * integer. */ static int utilization_value(const char *s) { int value = 0; if ((s != NULL) && (pcmk__scan_min_int(s, &value, INT_MIN) == EINVAL)) { pe_warn("Using 0 for utilization instead of invalid value '%s'", value); value = 0; } return value; } /* * Functions for comparing node capacities */ struct compare_data { const pcmk_node_t *node1; const pcmk_node_t *node2; bool node2_only; int result; }; /*! * \internal * \brief Compare a single utilization attribute for two nodes * - * Compare one utilization attribute for two nodes, incrementing the result if - * the first node has greater capacity, and decrementing it if the second node + * Compare one utilization attribute for two nodes, decrementing the result if + * the first node has greater capacity, and incrementing it if the second node * has greater capacity. * * \param[in] key Utilization attribute name to compare * \param[in] value Utilization attribute value to compare * \param[in,out] user_data Comparison data (as struct compare_data*) */ static void compare_utilization_value(gpointer key, gpointer value, gpointer user_data) { int node1_capacity = 0; int node2_capacity = 0; struct compare_data *data = user_data; const char *node2_value = NULL; if (data->node2_only) { if (g_hash_table_lookup(data->node1->details->utilization, key)) { return; // We've already compared this attribute } } else { node1_capacity = utilization_value((const char *) value); } node2_value = g_hash_table_lookup(data->node2->details->utilization, key); node2_capacity = utilization_value(node2_value); if (node1_capacity > node2_capacity) { data->result--; } else if (node1_capacity < node2_capacity) { data->result++; } } /*! * \internal * \brief Compare utilization capacities of two nodes * * \param[in] node1 First node to compare * \param[in] node2 Second node to compare * * \return Negative integer if node1 has more free capacity, * 0 if the capacities are equal, or a positive integer * if node2 has more free capacity */ int pcmk__compare_node_capacities(const pcmk_node_t *node1, const pcmk_node_t *node2) { struct compare_data data = { .node1 = node1, .node2 = node2, .node2_only = false, .result = 0, }; // Compare utilization values that node1 and maybe node2 have g_hash_table_foreach(node1->details->utilization, compare_utilization_value, &data); // Compare utilization values that only node2 has data.node2_only = true; g_hash_table_foreach(node2->details->utilization, compare_utilization_value, &data); return data.result; } /* * Functions for updating node capacities */ struct calculate_data { GHashTable *current_utilization; bool plus; }; /*! * \internal * \brief Update a single utilization attribute with a new value * * \param[in] key Name of utilization attribute to update * \param[in] value Value to add or substract * \param[in,out] user_data Calculation data (as struct calculate_data *) */ static void update_utilization_value(gpointer key, gpointer value, gpointer user_data) { int result = 0; const char *current = NULL; struct calculate_data *data = user_data; current = g_hash_table_lookup(data->current_utilization, key); if (data->plus) { result = utilization_value(current) + utilization_value(value); } else if (current) { result = utilization_value(current) - utilization_value(value); } g_hash_table_replace(data->current_utilization, strdup(key), pcmk__itoa(result)); } /*! * \internal * \brief Subtract a resource's utilization from node capacity * * \param[in,out] current_utilization Current node utilization attributes * \param[in] rsc Resource with utilization to subtract */ void pcmk__consume_node_capacity(GHashTable *current_utilization, const pcmk_resource_t *rsc) { struct calculate_data data = { .current_utilization = current_utilization, .plus = false, }; g_hash_table_foreach(rsc->utilization, update_utilization_value, &data); } /*! * \internal * \brief Add a resource's utilization to node capacity * * \param[in,out] current_utilization Current node utilization attributes * \param[in] rsc Resource with utilization to add */ void pcmk__release_node_capacity(GHashTable *current_utilization, const pcmk_resource_t *rsc) { struct calculate_data data = { .current_utilization = current_utilization, .plus = true, }; g_hash_table_foreach(rsc->utilization, update_utilization_value, &data); } /* * Functions for checking for sufficient node capacity */ struct capacity_data { const pcmk_node_t *node; const char *rsc_id; bool is_enough; }; /*! * \internal * \brief Check whether a single utilization attribute has sufficient capacity * * \param[in] key Name of utilization attribute to check * \param[in] value Amount of utilization required * \param[in,out] user_data Capacity data (as struct capacity_data *) */ static void check_capacity(gpointer key, gpointer value, gpointer user_data) { int required = 0; int remaining = 0; const char *node_value_s = NULL; struct capacity_data *data = user_data; node_value_s = g_hash_table_lookup(data->node->details->utilization, key); required = utilization_value(value); remaining = utilization_value(node_value_s); if (required > remaining) { crm_debug("Remaining capacity for %s on %s (%d) is insufficient " "for resource %s usage (%d)", (const char *) key, pe__node_name(data->node), remaining, data->rsc_id, required); data->is_enough = false; } } /*! * \internal * \brief Check whether a node has sufficient capacity for a resource * * \param[in] node Node to check * \param[in] rsc_id ID of resource to check (for debug logs only) * \param[in] utilization Required utilization amounts * * \return true if node has sufficient capacity for resource, otherwise false */ static bool have_enough_capacity(const pcmk_node_t *node, const char *rsc_id, GHashTable *utilization) { struct capacity_data data = { .node = node, .rsc_id = rsc_id, .is_enough = true, }; g_hash_table_foreach(utilization, check_capacity, &data); return data.is_enough; } /*! * \internal * \brief Sum the utilization requirements of a list of resources * * \param[in] orig_rsc Resource being assigned (for logging purposes) * \param[in] rscs Resources whose utilization should be summed * * \return Newly allocated hash table with sum of all utilization values * \note It is the caller's responsibility to free the return value using * g_hash_table_destroy(). */ static GHashTable * sum_resource_utilization(const pcmk_resource_t *orig_rsc, GList *rscs) { GHashTable *utilization = pcmk__strkey_table(free, free); for (GList *iter = rscs; iter != NULL; iter = iter->next) { pcmk_resource_t *rsc = (pcmk_resource_t *) iter->data; rsc->cmds->add_utilization(rsc, orig_rsc, rscs, utilization); } return utilization; } /*! * \internal * \brief Ban resource from nodes with insufficient utilization capacity * * \param[in,out] rsc Resource to check * * \return Allowed node for \p rsc with most spare capacity, if there are no * nodes with enough capacity for \p rsc and all its colocated resources */ const pcmk_node_t * pcmk__ban_insufficient_capacity(pcmk_resource_t *rsc) { bool any_capable = false; char *rscs_id = NULL; pcmk_node_t *node = NULL; const pcmk_node_t *most_capable_node = NULL; GList *colocated_rscs = NULL; GHashTable *unassigned_utilization = NULL; GHashTableIter iter; CRM_CHECK(rsc != NULL, return NULL); // The default placement strategy ignores utilization if (pcmk__str_eq(rsc->cluster->placement_strategy, "default", pcmk__str_casei)) { return NULL; } // Check whether any resources are colocated with this one colocated_rscs = rsc->cmds->colocated_resources(rsc, NULL, NULL); if (colocated_rscs == NULL) { return NULL; } rscs_id = crm_strdup_printf("%s and its colocated resources", rsc->id); // If rsc isn't in the list, add it so we include its utilization if (g_list_find(colocated_rscs, rsc) == NULL) { colocated_rscs = g_list_append(colocated_rscs, rsc); } // Sum utilization of colocated resources that haven't been assigned yet unassigned_utilization = sum_resource_utilization(rsc, colocated_rscs); // Check whether any node has enough capacity for all the resources g_hash_table_iter_init(&iter, rsc->allowed_nodes); while (g_hash_table_iter_next(&iter, NULL, (void **) &node)) { if (!pcmk__node_available(node, true, false)) { continue; } if (have_enough_capacity(node, rscs_id, unassigned_utilization)) { any_capable = true; } // Keep track of node with most free capacity if ((most_capable_node == NULL) || (pcmk__compare_node_capacities(node, most_capable_node) < 0)) { most_capable_node = node; } } if (any_capable) { // If so, ban resource from any node with insufficient capacity g_hash_table_iter_init(&iter, rsc->allowed_nodes); while (g_hash_table_iter_next(&iter, NULL, (void **) &node)) { if (pcmk__node_available(node, true, false) && !have_enough_capacity(node, rscs_id, unassigned_utilization)) { pe_rsc_debug(rsc, "%s does not have enough capacity for %s", pe__node_name(node), rscs_id); resource_location(rsc, node, -INFINITY, "__limit_utilization__", rsc->cluster); } } most_capable_node = NULL; } else { // Otherwise, ban from nodes with insufficient capacity for rsc alone g_hash_table_iter_init(&iter, rsc->allowed_nodes); while (g_hash_table_iter_next(&iter, NULL, (void **) &node)) { if (pcmk__node_available(node, true, false) && !have_enough_capacity(node, rsc->id, rsc->utilization)) { pe_rsc_debug(rsc, "%s does not have enough capacity for %s", pe__node_name(node), rsc->id); resource_location(rsc, node, -INFINITY, "__limit_utilization__", rsc->cluster); } } } g_hash_table_destroy(unassigned_utilization); g_list_free(colocated_rscs); free(rscs_id); pe__show_node_scores(true, rsc, "Post-utilization", rsc->allowed_nodes, rsc->cluster); return most_capable_node; } /*! * \internal * \brief Create a new load_stopped pseudo-op for a node * * \param[in,out] node Node to create op for * * \return Newly created load_stopped op */ static pcmk_action_t * new_load_stopped_op(pcmk_node_t *node) { char *load_stopped_task = crm_strdup_printf(PCMK_ACTION_LOAD_STOPPED "_%s", node->details->uname); pcmk_action_t *load_stopped = get_pseudo_op(load_stopped_task, node->details->data_set); if (load_stopped->node == NULL) { load_stopped->node = pe__copy_node(node); pe__clear_action_flags(load_stopped, pcmk_action_optional); } free(load_stopped_task); return load_stopped; } /*! * \internal * \brief Create utilization-related internal constraints for a resource * * \param[in,out] rsc Resource to create constraints for * \param[in] allowed_nodes List of allowed next nodes for \p rsc */ void pcmk__create_utilization_constraints(pcmk_resource_t *rsc, const GList *allowed_nodes) { const GList *iter = NULL; pcmk_action_t *load_stopped = NULL; pe_rsc_trace(rsc, "Creating utilization constraints for %s - strategy: %s", rsc->id, rsc->cluster->placement_strategy); // "stop rsc then load_stopped" constraints for current nodes for (iter = rsc->running_on; iter != NULL; iter = iter->next) { load_stopped = new_load_stopped_op(iter->data); pcmk__new_ordering(rsc, stop_key(rsc), NULL, NULL, NULL, load_stopped, pcmk__ar_if_on_same_node_or_target, rsc->cluster); } // "load_stopped then start/migrate_to rsc" constraints for allowed nodes for (iter = allowed_nodes; iter; iter = iter->next) { load_stopped = new_load_stopped_op(iter->data); pcmk__new_ordering(NULL, NULL, load_stopped, rsc, start_key(rsc), NULL, pcmk__ar_if_on_same_node_or_target, rsc->cluster); pcmk__new_ordering(NULL, NULL, load_stopped, rsc, pcmk__op_key(rsc->id, PCMK_ACTION_MIGRATE_TO, 0), NULL, pcmk__ar_if_on_same_node_or_target, rsc->cluster); } } /*! * \internal * \brief Output node capacities if enabled * * \param[in] desc Prefix for output * \param[in,out] data_set Cluster working set */ void pcmk__show_node_capacities(const char *desc, pcmk_scheduler_t *data_set) { if (!pcmk_is_set(data_set->flags, pcmk_sched_show_utilization)) { return; } for (const GList *iter = data_set->nodes; iter != NULL; iter = iter->next) { const pcmk_node_t *node = (const pcmk_node_t *) iter->data; pcmk__output_t *out = data_set->priv; out->message(out, "node-capacity", node, desc); } }