diff --git a/doc/Pacemaker_Explained/en-US/Ap-Upgrade.txt b/doc/Pacemaker_Explained/en-US/Ap-Upgrade.txt index 32c0537618..d628f1bf7a 100644 --- a/doc/Pacemaker_Explained/en-US/Ap-Upgrade.txt +++ b/doc/Pacemaker_Explained/en-US/Ap-Upgrade.txt @@ -1,408 +1,408 @@ [appendix] == Upgrading == [[ap-upgrade]] === Upgrading Cluster Software === There are three approaches to upgrading a cluster, each with advantages and disadvantages. .Upgrade Methods [width="95%",cols="s,6*",options="header",align="center"] |========================================================= |Method |Available between all versions |Can be used with Pacemaker Remote nodes |Service outage during upgrade |Service recovery during upgrade |Exercises failover logic |Allows change of messaging layer indexterm:[Cluster,switching between stacks] indexterm:[Changing cluster stack] footnote:[For example, switching from Heartbeat to Corosync.] |Complete cluster shutdown indexterm:[upgrade,shutdown] indexterm:[shutdown upgrade] |yes |yes |always |N/A |no |yes |Rolling (node by node) indexterm:[upgrade,rolling] indexterm:[rolling upgrade] |no |yes |always footnote:[Any active resources will be moved off the node being upgraded, so there will be at least a brief outage unless all resources can be migrated "live".] |yes |yes |no |Detach and reattach indexterm:[upgrade,reattach] indexterm:[reattach upgrade] |yes |no |only due to failure |no |no |yes |========================================================= ==== Complete Cluster Shutdown ==== In this scenario, one shuts down all cluster nodes and resources, then upgrades all the nodes before restarting the cluster. . On each node: .. Shutdown the cluster software (pacemaker and the messaging layer). .. Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the underlying operating system. .. Check the configuration with the `crm_verify` tool. . On each node: .. Start the cluster software. The messaging layer can be either Corosync or Heartbeat and does not need to be the same one before the upgrade. One variation of this approach is to build a new cluster on new hosts. This allows the new version to be tested beforehand, and minimizes downtime by having the new nodes ready to be placed in production as soon as the old nodes are shut down. ==== Rolling (node by node) ==== In this scenario, each node is removed from the cluster, upgraded, and then brought back online, until all nodes are running the newest version. If you plan to upgrade other cluster software -- such as the messaging layer -- at the same time, consult that software's documentation for its compatibility with a rolling upgrade. Pacemaker has three version numbers that affect rolling upgrades: * *Pacemaker release version:* Rolling upgrades are possible as long as the major version number (the _x_ in _x.y.z_) stays the same. For example, a rolling upgrade may be done from 1.0.8 to 1.1.15, but not from 0.6.7 to 1.0.0. * *CRM feature set:* This version number applies to the communication between full cluster nodes. + It increases when a cluster node running the older version would have problems if the cluster's Designated Controller (DC) has the newer version. To avoid these problems, Pacemaker ensures that the longest-running node is the DC, and that nodes with an older feature set cannot join the cluster. + Therefore, if the CRM feature set is changing in the Pacemaker version you are upgrading to, you should run a mixed-version cluster only during a small rolling upgrade window. If one of the older nodes drops out of the cluster for any reason, it will not be able to rejoin until it is upgraded. * *LRMD protocol version:* This version number applies to communication between a Pacemaker Remote node and the cluster. It increases when an older cluster node would have problems hosting the connection to a newer Pacemaker Remote node. To avoid these problems, Pacemaker Remote nodes will accept connections only from cluster nodes with the same or newer LRMD protocol version. + For rolling upgrades, this means that all cluster nodes should be upgraded before upgrading any Pacemaker Remote nodes. + Unlike with CRM feature set differences between full cluster nodes, mixed LRMD protocol versions between Pacemaker Remote nodes and full cluster nodes are fine, as long as the Pacemaker Remote nodes have the older version. This can be useful, for example, to host a legacy application in an older operating system version used as a Pacemaker Remote node. See the ClusterLabs wiki's http://clusterlabs.org/wiki/ReleaseCalendar[Release Calendar] to figure out whether the CRM feature set and/or LRMD protocol version changed between the the Pacemaker release versions in your rolling upgrade. [WARNING] ==== The interpretation of the LRMD protocol version changed in Pacemaker 1.1.15. If you are planning a rolling upgrade from an earlier Pacemaker version to Pacemaker 1.1.15 or later involving Pacemaker Remote nodes, you will need to take special precautions to avoid problems. See http://clusterlabs.org/wiki/Upgrading_to_Pacemaker_1.1.15_or_later_from_an_earlier_version[Upgrading to Pacemaker 1.1.15 or later from an earlier version] on the ClusterLabs wiki. ==== To perform a rolling upgrade, on each node in turn: . Put the node into standby mode, and wait for any active resources to be moved cleanly to another node. (This step is optional, but allows you to deal with any resource issues before the upgrade.) . Shutdown the cluster software (pacemaker and the messaging layer) on the node. . Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the underlying operating system. . If this is the first node to be upgraded, check the configuration with the `crm_verify` tool. . Start the messaging layer. This must be the same messaging layer (Corosync or Heartbeat) that the rest of the cluster is using. [NOTE] ==== Rolling upgrades were not always possible with older heartbeat and pacemaker versions. Rolling upgrades that cross compatibility boundaries listed in the following table must be performed in multiple steps. .Version Compatibility Table [width="95%",cols="2*",options="header",align="center"] |========================================================= |Version being Installed |Oldest Compatible Version |Pacemaker 1.x.y |Pacemaker 1.0.0 |Pacemaker 0.7.x |Pacemaker 0.6 or Heartbeat 2.1.3 |Pacemaker 0.6.x |Heartbeat 2.0.8 |Heartbeat 2.1.3 (or less) |Heartbeat 2.0.4 |Heartbeat 2.0.4 (or less) |Heartbeat 2.0.0 |Heartbeat 2.0.0 |None. Use an alternate upgrade strategy. |========================================================= ==== ==== Detach and Reattach ==== The reattach method is a variant of a complete cluster shutdown, where the resources are left active and get re-detected when the cluster is restarted. This method may not be used if the cluster contains any Pacemaker Remote nodes. . Tell the cluster to stop managing services. This is required to allow the services to remain active after the cluster shuts down. + ---- # crm_attribute --name maintenance-mode --update true ---- . On each node, shutdown the cluster software (pacemaker and the messaging layer), and upgrade the Pacemaker software. This may also include upgrading the messaging layer. While the underlying operating system may be upgraded at the same time, that will be more likely to cause outages in the detached services (certainly, if a reboot is required). . Check the configuration with the `crm_verify` tool. . On each node, start the cluster software. The messaging layer can be either Corosync or Heartbeat and does not need to be the same one as before the upgrade. . Verify that the cluster re-detected all resources correctly. . Allow the cluster to resume managing resources again: + ---- # crm_attribute --name maintenance-mode --delete ---- [NOTE] =========== Support for maintenance mode was added in Pacemaker 1.0.0. If you are upgrading from an earlier version, you can detach by setting +is-managed+ to +false+ for all resources. =========== === Upgrading the Configuration === indexterm:[upgrade,Configuration] indexterm:[Configuration,upgrading] Pacemaker's configuration -- the Configuration Information Base (CIB) -- has its own XML schema version, independent of the Pacemaker software version. After cluster software is upgraded, the cluster will continue to use the older schema version that it was previously using. This can be useful, for example, when administrators have written tools that modify the configuration, and are based on the older syntax. However, when using an older syntax, new features may be unavailable, and there is a performance impact, since the cluster must do a non-persistent configuration upgrade before each transition. So while using the old syntax is possible, it is not advisable to continue using it indefinitely. Even if you wish to continue using the old syntax, it is a good idea to follow the upgrade procedure outlined below, except for the last step, to ensure that the new software has no problems with your existing configuration (since it will perform much the same task internally). If you are brave, it is sufficient simply to run `cibadmin --upgrade`. A more cautious approach would proceed like this: . Create a shadow copy of the configuration. The later commands will automatically operate on this copy, rather than the live configuration. + ----- # crm_shadow --create shadow ----- . Verify the configuration is valid with the new software (which may be stricter about syntax mistakes, or may have dropped support for deprecated features): indexterm:[Configuration,verify] indexterm:[verify,Configuration] + ----- # crm_verify --live-check ----- . Fix any errors or warnings. . Perform the upgrade: + ----- # cibadmin --upgrade ----- . If this step fails, there are three main possibilities: .. The configuration was not valid to start with (did you do steps 2 and 3?). .. The transformation failed - http://bugs.clusterlabs.org/[report a bug] or mailto:users@clusterlabs.org?subject=Transformation%20failed%20during%20upgrade[email the project]. .. The transformation was successful but produced an invalid result. + If the result of the transformation is invalid, you may see a number of errors from the validation library. If these are not helpful, visit the http://clusterlabs.org/wiki/Validation_FAQ[Validation FAQ wiki page] and/or try the manual upgrade procedure described below. + . Check the changes: + ----- # crm_shadow --diff ----- + If at this point there is anything about the upgrade that you wish to fine-tune (for example, to change some of the automatic IDs), now is the time to do so: + ----- # crm_shadow --edit ----- + This will open the configuration in your favorite editor (whichever is specified by the standard *$EDITOR* environment variable). + . Preview how the cluster will react: + ------ # crm_simulate --live-check --save-dotfile shadow.dot -S # graphviz shadow.dot ------ + Verify that either no resource actions will occur or that you are happy with any that are scheduled. If the output contains actions you do not expect (possibly due to changes to the score calculations), you may need to make further manual changes. See <> for further details on how to interpret the output of `crm_simulate` and `graphviz`. + . Upload the changes: + ----- # crm_shadow --commit shadow --force ----- + In the unlikely event this step fails, please report a bug. [NOTE] ==== indexterm:[Configuration,upgrade manually] It is also possible to perform the configuration upgrade steps manually: . Locate the +upgrade*.xsl+ conversion scripts provided with the source code. These will often be installed in a location such as +/usr/share/pacemaker+, or may be obtained from the https://github.com/ClusterLabs/pacemaker/tree/master/xml[source repository]. . Run the conversion scripts that apply to your older version, for example: indexterm:[XML,convert] + ----- # xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml ----- + . Locate the +pacemaker.rng+ script (from the same location as the xsl files). . Check the XML validity: indexterm:[validate configuration]indexterm:[Configuration,validate XML] + ---- # xmllint --relaxng /path/to/pacemaker.rng config10.xml ---- The advantage of this method is that it can be performed without the cluster running, and any validation errors are often more informative. ==== === What Changed in 1.0 === ==== New ==== -* Failure timeouts. See <> +* Failure timeouts. See <> * New section for resource and operation defaults. See <> and <> * Tool for making offline configuration changes. See <> * +Rules, instance_attributes, meta_attributes+ and sets of operations can be defined once and referenced in multiple places. See <> * The CIB now accepts XPath-based create/modify/delete operations. See the pass:[cibadmin] help text. * Multi-dimensional colocation and ordering constraints. See <> and <> * The ability to connect to the CIB from non-cluster machines. See <> * Allow recurring actions to be triggered at known times. See <> ==== Changed ==== * Syntax ** All resource and cluster options now use dashes (-) instead of underscores (_) ** +master_slave+ was renamed to +master+ ** The +attributes+ container tag was removed ** The operation field +pre-req+ has been renamed +requires+ ** All operations must have an +interval+, +start+/+stop+ must have it set to zero * The +stonith-enabled+ option now defaults to true. * The cluster will refuse to start resources if +stonith-enabled+ is true (or unset) and no STONITH resources have been defined * The attributes of colocation and ordering constraints were renamed for clarity. See <> and <> -* +resource-failure-stickiness+ has been replaced by +migration-threshold+. See <> +* +resource-failure-stickiness+ has been replaced by +migration-threshold+. See <> * The parameters for command-line tools have been made consistent * Switched to 'RelaxNG' schema validation and 'libxml2' parser ** id fields are now XML IDs which have the following limitations: *** id's cannot contain colons (:) *** id's cannot begin with a number *** id's must be globally unique (not just unique for that tag) ** Some fields (such as those in constraints that refer to resources) are IDREFs. + This means that they must reference existing resources or objects in order for the configuration to be valid. Removing an object which is referenced elsewhere will therefore fail. + ** The CIB representation, from which a MD5 digest is calculated to verify CIBs on the nodes, has changed. + This means that every CIB update will require a full refresh on any upgraded nodes until the cluster is fully upgraded to 1.0. This will result in significant performance degradation and it is therefore highly inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely necessary. + * Ping node information no longer needs to be added to _ha.cf_. + Simply include the lists of hosts in your ping resource(s). ==== Removed ==== * Syntax ** It is no longer possible to set resource meta options as top-level attributes. Use meta attributes instead. ** Resource and operation defaults are no longer read from +crm_config+. See <> and <> instead. diff --git a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt index b470d16e3f..5c0f68ed3b 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt @@ -1,823 +1,889 @@ = Advanced Configuration = [[s-remote-connection]] == Connecting from a Remote Machine == indexterm:[Cluster,Remote connection] indexterm:[Cluster,Remote administration] Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the machine itself is not in the same cluster. To do this, one simply sets up a number of environment variables and runs the same commands as when working on a cluster node. .Environment Variables Used to Connect to Remote Instances of the CIB [width="95%",cols="1m,1,3<",options="header",align="center"] |========================================================= |Environment Variable |Default |Description |CIB_user |$USER |The user to connect as. Needs to be part of the +haclient+ group on the target host. indexterm:[Environment Variable,CIB_user] |CIB_passwd | |The user's password. Read from the command line if unset. indexterm:[Environment Variable,CIB_passwd] |CIB_server |localhost |The host to contact indexterm:[Environment Variable,CIB_server] |CIB_port | |The port on which to contact the server; required. indexterm:[Environment Variable,CIB_port] |CIB_encrypted |TRUE |Whether to encrypt network traffic indexterm:[Environment Variable,CIB_encrypted] |========================================================= So, if *c001n01* is an active cluster node and is listening on port 1234 for connections, and *someuser* is a member of the *haclient* group, then the following would prompt for *someuser*'s password and return the cluster's current configuration: ---- # export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someuser; # cibadmin -Q ---- For security reasons, the cluster does not listen for remote connections by default. If you wish to allow remote access, you need to set the +remote-tls-port+ (encrypted) or +remote-clear-port+ (unencrypted) CIB properties (i.e., those kept in the +cib+ tag, like +num_updates+ and +epoch+). .Extra top-level CIB properties for remote access [width="95%",cols="1m,1,3<",options="header",align="center"] |========================================================= |Field |Default |Description |remote-tls-port |_none_ |Listen for encrypted remote connections on this port. indexterm:[remote-tls-port,Remote Connection Option] indexterm:[Remote Connection,Option,remote-tls-port] |remote-clear-port |_none_ |Listen for plaintext remote connections on this port. indexterm:[remote-clear-port,Remote Connection Option] indexterm:[Remote Connection,Option,remote-clear-port] |========================================================= [[s-recurring-start]] == Specifying When Recurring Actions are Performed == By default, recurring actions are scheduled relative to when the resource started. So if your resource was last started at 14:32 and you have a backup set to be performed every 24 hours, then the backup will always run in the middle of the business day -- hardly desirable. To specify a date and time that the operation should be relative to, set the operation's +interval-origin+. The cluster uses this point to calculate the correct +start-delay+ such that the operation will occur at _origin + (interval * N)_. So, if the operation's interval is 24h, its interval-origin is set to 02:00 and it is currently 14:32, then the cluster would initiate the operation with a start delay of 11 hours and 28 minutes. If the resource is moved to another node before 2am, then the operation is cancelled. The value specified for +interval+ and +interval-origin+ can be any date/time conforming to the http://en.wikipedia.org/wiki/ISO_8601[ISO8601 standard]. By way of example, to specify an operation that would run on the first Monday of 2009 and every Monday after that, you would add: .Specifying a Base for Recurring Action Intervals ===== [source,XML] ===== +[[s-failure-handling]] +== Handling Resource Failure == + +By default, Pacemaker will attempt to recover failed resources by restarting +them. However, failure recovery is highly configurable. + +=== Failure Counts === + +Pacemaker tracks resource failures for each combination of node, resource, and +operation (start, stop, monitor, etc.). + +You can query the fail count for a particular node, resource, and/or operation +using the `crm_failcount` command. For example, to see how many times the +10-second monitor for +myrsc+ has failed on +node1+, run: + +---- +# crm_failcount --query -r myrsc -N node1 -n monitor -I 10s +---- + +If you omit the node, `crm_failcount` will use the local node. If you omit the +operation and interval, `crm_failcount` will display the sum of the fail counts +for all operations on the resource. + +You can use `crm_resource --cleanup` or `crm_failcount --delete` to clear +fail counts. For example, to clear the above monitor failures, run: + +---- +# crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s +---- + +If you omit the resource, `crm_resource --cleanup` will clear failures for all +resources. If you omit the node, it will clear failures on all nodes. If you +omit the operation and interval, it will clear the failures for all operations +on the resource. + +[[NOTE]] +==== +Even when cleaning up only a single operation, all failed operations will +disappear from the status display. This allows us to trigger a re-check of the +resource's current status. +==== + +Higher-level tools may provide other commands for querying and clearing +fail counts. + +The `crm_mon` tool shows the current cluster status, including any failed +operations. To see the current fail counts for any failed resources, call +`crm_mon` with the `--failcounts` option. This shows the fail counts per +resource (that is, the sum of any operation fail counts for the resource). + +=== Failure Response === + +Normally, if a running resource fails, pacemaker will try to stop it and start +it again. Pacemaker will choose the best location to start it each time, which +may be the same node that it failed on. + +However, if a resource fails repeatedly, it is possible that there is an +underlying problem on that node, and you might desire trying a different node +in such a case. Pacemaker allows you to set your preference via the ++migration-threshold+ resource meta-attribute. +footnote:[ +The naming of this option was perhaps unfortunate as it is easily +confused with live migration, the process of moving a resource from +one node to another without stopping it. Xen virtual guests are the +most common example of resources that can be migrated in this manner. +] + +If you define +migration-threshold=pass:[N]+ for a +resource, it will be banned from the original node after 'N' failures. + +[[NOTE]] +==== +The +migration-threshold+ is per 'resource', even though fail counts are +tracked per 'operation'. The operation fail counts are added together +to compare against the +migration-threshold+. +==== + +By default, fail counts remain until manually cleared by an administrator +using `crm_resource --cleanup` or `crm_failcount --delete` (hopefully after +first fixing the failure's cause). It is possible to have fail counts expire +automatically by setting the +failure-timeout+ resource meta-attribute. + +[IMPORTANT] +==== +A successful operation does not clear past failures. If a recurring monitor +operation fails once, succeeds many times, then fails again days later, its +fail count is 2. Fail counts are cleared only by manual intervention or +falure timeout. +==== + +For example, a setting of +migration-threshold=2+ and +failure-timeout=60s+ +would cause the resource to move to a new node after 2 failures, and +allow it to move back (depending on stickiness and constraint scores) after one +minute. + +[[NOTE]] +==== ++failure-timeout+ is measured since the most recent failure. That is, older +failures do not individually time out and lower the fail count. Instead, all +failures are timed out simultaneously (and the fail count is reset to 0) if +there is no new failure for the timeout period. +==== + +There are two exceptions to the migration threshold concept: +when a resource either fails to start or fails to stop. + +If the cluster property +start-failure-is-fatal+ is set to +true+ (which is the +default), start failures cause the fail count to be set to +INFINITY+ and thus +always cause the resource to move immediately. + +Stop failures are slightly different and crucial. If a resource fails +to stop and STONITH is enabled, then the cluster will fence the node +in order to be able to start the resource elsewhere. If STONITH is +not enabled, then the cluster has no way to continue and will not try +to start the resource elsewhere, but will try to stop it again after +the failure timeout. + +[IMPORTANT] +Please read <> to understand how timeouts work +before configuring a +failure-timeout+. + == Moving Resources == indexterm:[Moving,Resources] indexterm:[Resource,Moving] === Moving Resources Manually === There are primarily two occasions when you would want to move a resource from its current location: when the whole node is under maintenance, and when a single resource needs to be moved. ==== Standby Mode ==== Since everything eventually comes down to a score, you could create constraints for every resource to prevent them from running on one node. While pacemaker configuration can seem convoluted at times, not even we would require this of administrators. Instead, one can set a special node attribute which tells the cluster "don't let anything run here". There is even a helpful tool to help query and set it, called `crm_standby`. To check the standby status of the current machine, run: ---- # crm_standby -G ---- A value of +on+ indicates that the node is _not_ able to host any resources, while a value of +off+ says that it _can_. You can also check the status of other nodes in the cluster by specifying the `--node` option: ---- # crm_standby -G --node sles-2 ---- To change the current node's standby status, use `-v` instead of `-G`: ---- # crm_standby -v on ---- Again, you can change another host's value by supplying a hostname with `--node`. ==== Moving One Resource ==== When only one resource is required to move, we could do this by creating location constraints. However, once again we provide a user-friendly shortcut as part of the `crm_resource` command, which creates and modifies the extra constraints for you. If +Email+ were running on +sles-1+ and you wanted it moved to a specific location, the command would look something like: ---- # crm_resource -M -r Email -H sles-2 ---- Behind the scenes, the tool will create the following location constraint: [source,XML] It is important to note that subsequent invocations of `crm_resource -M` are not cumulative. So, if you ran these commands ---- # crm_resource -M -r Email -H sles-2 # crm_resource -M -r Email -H sles-3 ---- then it is as if you had never performed the first command. To allow the resource to move back again, use: ---- # crm_resource -U -r Email ---- Note the use of the word _allow_. The resource can move back to its original location but, depending on +resource-stickiness+, it might stay where it is. To be absolutely certain that it moves back to +sles-1+, move it there before issuing the call to `crm_resource -U`: ---- # crm_resource -M -r Email -H sles-1 # crm_resource -U -r Email ---- Alternatively, if you only care that the resource should be moved from its current location, try: ---- # crm_resource -B -r Email ---- Which will instead create a negative constraint, like [source,XML] This will achieve the desired effect, but will also have long-term consequences. As the tool will warn you, the creation of a +-INFINITY+ constraint will prevent the resource from running on that node until `crm_resource -U` is used. This includes the situation where every other cluster node is no longer available! In some cases, such as when +resource-stickiness+ is set to +INFINITY+, it is possible that you will end up with the problem described in <>. The tool can detect some of these cases and deals with them by creating both positive and negative constraints. E.g. +Email+ prefers +sles-1+ with a score of +-INFINITY+ +Email+ prefers +sles-2+ with a score of +INFINITY+ which has the same long-term consequences as discussed earlier. -[[s-failure-migration]] -=== Moving Resources Due to Failure === - -Normally, if a running resource fails, pacemaker will try to start -it again on the same node. However if a resource fails repeatedly, -it is possible that there is an underlying problem on that node, and you -might desire trying a different node in such a case. - -indexterm:[migration-threshold] -indexterm:[failure-timeout] -indexterm:[start-failure-is-fatal] - -Pacemaker allows you to set your preference via the +migration-threshold+ -resource option. -footnote:[ -The naming of this option was perhaps unfortunate as it is easily -confused with live migration, the process of moving a resource from -one node to another without stopping it. Xen virtual guests are the -most common example of resources that can be migrated in this manner. -] - -Simply define +migration-threshold=pass:[N]+ for a resource and it will -migrate to a new node after 'N' failures. There is no threshold defined -by default. To determine the resource's current failure status and -limits, run `crm_mon --failcounts`. - -By default, once the threshold has been reached, the troublesome node will no -longer be allowed to run the failed resource until the administrator -manually resets the resource's failcount using `crm_failcount` (after -hopefully first fixing the failure's cause). Alternatively, it is possible -to expire them by setting the +failure-timeout+ option for the resource. - -For example, a setting of +migration-threshold=2+ and +failure-timeout=60s+ -would cause the resource to move to a new node after 2 failures, and -allow it to move back (depending on stickiness and constraint scores) after one -minute. - -There are two exceptions to the migration threshold concept: -when a resource either fails to start or fails to stop. - -If the cluster property +start-failure-is-fatal+ is set to +true+ (which is the -default), start failures cause the failcount to be set to +INFINITY+ and thus -always cause the resource to move immediately. - -Stop failures are slightly different and crucial. If a resource fails -to stop and STONITH is enabled, then the cluster will fence the node -in order to be able to start the resource elsewhere. If STONITH is -not enabled, then the cluster has no way to continue and will not try -to start the resource elsewhere, but will try to stop it again after -the failure timeout. - -[IMPORTANT] -Please read <> to understand how timeouts work -before configuring a +failure-timeout+. - === Moving Resources Due to Connectivity Changes === You can configure the cluster to move resources when external connectivity is lost in two steps. ==== Tell Pacemaker to Monitor Connectivity ==== First, add an *ocf:pacemaker:ping* resource to the cluster. The *ping* resource uses the system utility of the same name to a test whether list of machines (specified by DNS hostname or IPv4/IPv6 address) are reachable and uses the results to maintain a node attribute called +pingd+ by default. footnote:[ The attribute name is customizable, in order to allow multiple ping groups to be defined. ] [NOTE] =========== Older versions of Heartbeat required users to add ping nodes to +ha.cf+, but this is no longer required. Older versions of Pacemaker used a different agent *ocf:pacemaker:pingd* which is now deprecated in favor of *ping*. If your version of Pacemaker does not contain the *ping* resource agent, download the latest version from https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping =========== Normally, the ping resource should run on all cluster nodes, which means that you'll need to create a clone. A template for this can be found below along with a description of the most interesting parameters. .Common Options for a 'ping' Resource [width="95%",cols="1m,4<",options="header",align="center"] |========================================================= |Field |Description |dampen |The time to wait (dampening) for further changes to occur. Use this to prevent a resource from bouncing around the cluster when cluster nodes notice the loss of connectivity at slightly different times. indexterm:[dampen,Ping Resource Option] indexterm:[Ping Resource,Option,dampen] |multiplier |The number of connected ping nodes gets multiplied by this value to get a score. Useful when there are multiple ping nodes configured. indexterm:[multiplier,Ping Resource Option] indexterm:[Ping Resource,Option,multiplier] |host_list |The machines to contact in order to determine the current connectivity status. Allowed values include resolvable DNS host names, IPv4 and IPv6 addresses. indexterm:[host_list,Ping Resource Option] indexterm:[Ping Resource,Option,host_list] |========================================================= .An example ping cluster resource that checks node connectivity once every minute ===== [source,XML] ------------ ------------ ===== [IMPORTANT] =========== You're only half done. The next section deals with telling Pacemaker how to deal with the connectivity status that +ocf:pacemaker:ping+ is recording. =========== ==== Tell Pacemaker How to Interpret the Connectivity Data ==== [IMPORTANT] ====== Before attempting the following, make sure you understand <>. ====== There are a number of ways to use the connectivity data. The most common setup is for people to have a single ping target (e.g. the service network's default gateway), to prevent the cluster from running a resource on any unconnected node. .Don't run a resource on unconnected nodes ===== [source,XML] ------- ------- ===== A more complex setup is to have a number of ping targets configured. You can require the cluster to only run resources on nodes that can connect to all (or a minimum subset) of them. .Run only on nodes connected to three or more ping targets. ===== [source,XML] ------- ... ... ... ------- ===== Alternatively, you can tell the cluster only to _prefer_ nodes with the best connectivity. Just be sure to set +multiplier+ to a value higher than that of +resource-stickiness+ (and don't set either of them to +INFINITY+). .Prefer the node with the most connected ping nodes ===== [source,XML] ------- ------- ===== It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into. For example, if *sles-1* is connected to all five ping nodes but *sles-2* is only connected to two, then it would be as if you instead had the following constraints in your configuration: .How the cluster translates the above location constraint ===== [source,XML] ------- ------- ===== The advantage is that you don't have to manually update any constraints whenever your network connectivity changes. You can also combine the concepts above into something even more complex. The example below shows how you can prefer the node with the most connected ping nodes provided they have connectivity to at least three (again assuming that +multiplier+ is set to 1000). .A more complex example of choosing a location based on connectivity ===== [source,XML] ------- ------- ===== [[s-migrating-resources]] === Migrating Resources === Normally, when the cluster needs to move a resource, it fully restarts the resource (i.e. stops the resource on the current node and starts it on the new node). However, some types of resources, such as Xen virtual guests, are able to move to another location without loss of state (often referred to as live migration or hot migration). In pacemaker, this is called resource migration. Pacemaker can be configured to migrate a resource when moving it, rather than restarting it. Not all resources are able to migrate; see the Migration Checklist below, and those that can, won't do so in all situations. Conceptually, there are two requirements from which the other prerequisites follow: * The resource must be active and healthy at the old location; and * everything required for the resource to run must be available on both the old and new locations. The cluster is able to accommodate both 'push' and 'pull' migration models by requiring the resource agent to support two special actions: +migrate_to+ (performed on the current location) and +migrate_from+ (performed on the destination). In push migration, the process on the current location transfers the resource to the new location where is it later activated. In this scenario, most of the work would be done in the +migrate_to+ action and, if anything, the activation would occur during +migrate_from+. Conversely for pull, the +migrate_to+ action is practically empty and +migrate_from+ does most of the work, extracting the relevant resource state from the old location and activating it. There is no wrong or right way for a resource agent to implement migration, as long as it works. .Migration Checklist * The resource may not be a clone. * The resource must use an OCF style agent. * The resource must not be in a failed or degraded state. * The resource agent must support +migrate_to+ and +migrate_from+ actions, and advertise them in its metadata. * The resource must have the +allow-migrate+ meta-attribute set to +true+ (which is not the default). If an otherwise migratable resource depends on another resource via an ordering constraint, there are special situations in which it will be restarted rather than migrated. For example, if the resource depends on a clone, and at the time the resource needs to be moved, the clone has instances that are stopping and instances that are starting, then the resource will be restarted. The Policy Engine is not yet able to model this situation correctly and so takes the safer (if less optimal) path. In pacemaker 1.1.11 and earlier, a migratable resource will be restarted when moving if it directly or indirectly depends on 'any' primitive or group resources. Even in newer versions, if a migratable resource depends on a non-migratable resource, and both need to be moved, the migratable resource will be restarted. [[s-node-health]] == Tracking Node Health == A node may be functioning adequately as far as cluster membership is concerned, and yet be "unhealthy" in some respect that makes it an undesirable location for resources. For example, a disk drive may be reporting SMART errors, or the CPU may be highly loaded. Pacemaker offers a way to automatically move resources off unhealthy nodes. === Node Health Attributes === Pacemaker will treat any node attribute whose name starts with +#health+ as an indicator of node health. Node health attributes may have one of the following values: .Allowed Values for Node Health Attributes [width="95%",cols="1,3<",options="header",align="center"] |========================================================= |Value |Intended significance |+red+ |This indicator is unhealthy indexterm:[Node health,red] |+yellow+ |This indicator is becoming unhealthy indexterm:[Node health,yellow] |+green+ |This indicator is healthy indexterm:[Node health,green] |'integer' |A numeric score to apply to all resources on this node (0 or positive is healthy, negative is unhealthy) indexterm:[Node health,score] |========================================================= === Node Health Strategy === Pacemaker assigns a node health score to each node, as the sum of the values of all its node health attributes. This score will be used as a location constraint applied to this node for all resources. The +node-health-strategy+ cluster option controls how Pacemaker responds to changes in node health attributes, and how it translates +red+, +yellow+, and +green+ to scores. Allowed values are: .Node Health Strategies [width="95%",cols="1m,3<",options="header",align="center"] |========================================================= |Value |Effect |none |Do not track node health attributes at all. indexterm:[Node health,none] |migrate-on-red |Assign the value of +-INFINITY+ to +red+, and 0 to +yellow+ and +green+. This will cause all resources to move off the node if any attribute is +red+. indexterm:[Node health,migrate-on-red] |only-green |Assign the value of +-INFINITY+ to +red+ and +yellow+, and 0 to +green+. This will cause all resources to move off the node if any attribute is +red+ or +yellow+. indexterm:[Node health,only-green] |progressive |Assign the value of the +node-health-red+ cluster option to +red+, the value of +node-health-yellow+ to +yellow+, and the value of +node-health-green+ to +green+. Each node is additionally assigned a score of +node-health-base+ (this allows resources to start even if some attributes are +yellow+). This strategy gives the administrator finer control over how important each value is. indexterm:[Node health,progressive] |custom |Track node health attributes using the same values as +progressive+ for +red+, +yellow+, and +green+, but do not take them into account. The administrator is expected to implement a policy by defining rules (see <>) referencing node health attributes. indexterm:[Node health,custom] |========================================================= === Measuring Node Health === Since Pacemaker calculates node health based on node attributes, any method that sets node attributes may be used to measure node health. The most common ways are resource agents or separate daemons. Pacemaker provides examples that can be used directly or as a basis for custom code. The +ocf:pacemaker:HealthCPU+ and +ocf:pacemaker:HealthSMART+ resource agents set node health attributes based on CPU and disk parameters. The +ipmiservicelogd+ daemon sets node health attributes based on IPMI values (the +ocf:pacemaker:SystemHealth+ resource agent can be used to manage the daemon as a cluster resource). [[s-reusing-config-elements]] == Reusing Rules, Options and Sets of Operations == Sometimes a number of constraints need to use the same set of rules, and resources need to set the same options and parameters. To simplify this situation, you can refer to an existing object using an +id-ref+ instead of an id. So if for one resource you have [source,XML] ------ ------ Then instead of duplicating the rule for all your other resources, you can instead specify: .Referencing rules from other constraints ===== [source,XML] ------- ------- ===== [IMPORTANT] =========== The cluster will insist that the +rule+ exists somewhere. Attempting to add a reference to a non-existing rule will cause a validation failure, as will attempting to remove a +rule+ that is referenced elsewhere. =========== The same principle applies for +meta_attributes+ and +instance_attributes+ as illustrated in the example below: .Referencing attributes, options, and operations from other resources ===== [source,XML] ------- ------- ===== == Reloading Services After a Definition Change == The cluster automatically detects changes to the definition of services it manages. The normal response is to stop the service (using the old definition) and start it again (with the new definition). This works well, but some services are smarter and can be told to use a new set of options without restarting. To take advantage of this capability, the resource agent must: . Accept the +reload+ operation and perform any required actions. _The actions here depend completely on your application!_ + .The DRBD agent's logic for supporting +reload+ ===== [source,Bash] ------- case $1 in start) drbd_start ;; stop) drbd_stop ;; reload) drbd_reload ;; monitor) drbd_monitor ;; *) drbd_usage exit $OCF_ERR_UNIMPLEMENTED ;; esac exit $? ------- ===== . Advertise the +reload+ operation in the +actions+ section of its metadata + .The DRBD Agent Advertising Support for the +reload+ Operation ===== [source,XML] ------- 1.1 Master/Slave OCF Resource Agent for DRBD ... ------- ===== . Advertise one or more parameters that can take effect using +reload+. + Any parameter with the +unique+ set to 0 is eligible to be used in this way. + .Parameter that can be changed using reload ===== [source,XML] ------- Full path to the drbd.conf file. Path to drbd.conf ------- ===== Once these requirements are satisfied, the cluster will automatically know to reload the resource (instead of restarting) when a non-unique field changes. [NOTE] ====== Metadata will not be re-read unless the resource needs to be started. This may mean that the resource will be restarted the first time, even though you changed a parameter with +unique=0+. ====== [NOTE] ====== If both a unique and non-unique field are changed simultaneously, the resource will still be restarted. ====== diff --git a/doc/Pacemaker_Explained/en-US/Ch-Options.txt b/doc/Pacemaker_Explained/en-US/Ch-Options.txt index 894458d0ce..a7c34f7c03 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Options.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Options.txt @@ -1,441 +1,441 @@ = Cluster-Wide Configuration = == CIB Properties == Certain settings are defined by CIB properties (that is, attributes of the +cib+ tag) rather than with the rest of the cluster configuration in the +configuration+ section. The reason is simply a matter of parsing. These options are used by the configuration database which is, by design, mostly ignorant of the content it holds. So the decision was made to place them in an easy-to-find location. .CIB Properties [width="95%",cols="2m,5<",options="header",align="center"] |========================================================= |Field |Description | admin_epoch | indexterm:[Configuration Version,Cluster] indexterm:[Cluster,Option,Configuration Version] indexterm:[admin_epoch,Cluster Option] indexterm:[Cluster,Option,admin_epoch] When a node joins the cluster, the cluster performs a check to see which node has the best configuration. It asks the node with the highest (+admin_epoch+, +epoch+, +num_updates+) tuple to replace the configuration on all the nodes -- which makes setting them, and setting them correctly, very important. +admin_epoch+ is never modified by the cluster; you can use this to make the configurations on any inactive nodes obsolete. _Never set this value to zero_. In such cases, the cluster cannot tell the difference between your configuration and the "empty" one used when nothing is found on disk. | epoch | indexterm:[epoch,Cluster Option] indexterm:[Cluster,Option,epoch] The cluster increments this every time the configuration is updated (usually by the administrator). | num_updates | indexterm:[num_updates,Cluster Option] indexterm:[Cluster,Option,num_updates] The cluster increments this every time the configuration or status is updated (usually by the cluster) and resets it to 0 when epoch changes. | validate-with | indexterm:[validate-with,Cluster Option] indexterm:[Cluster,Option,validate-with] Determines the type of XML validation that will be done on the configuration. If set to +none+, the cluster will not verify that updates conform to the DTD (nor reject ones that don't). This option can be useful when operating a mixed-version cluster during an upgrade. |cib-last-written | indexterm:[cib-last-written,Cluster Property] indexterm:[Cluster,Property,cib-last-written] Indicates when the configuration was last written to disk. Maintained by the cluster; for informational purposes only. |have-quorum | indexterm:[have-quorum,Cluster Property] indexterm:[Cluster,Property,have-quorum] Indicates if the cluster has quorum. If false, this may mean that the cluster cannot start resources or fence other nodes (see +no-quorum-policy+ below). Maintained by the cluster. |dc-uuid | indexterm:[dc-uuid,Cluster Property] indexterm:[Cluster,Property,dc-uuid] Indicates which cluster node is the current leader. Used by the cluster when placing resources and determining the order of some events. Maintained by the cluster. |========================================================= === Working with CIB Properties === Although these fields can be written to by the user, in most cases the cluster will overwrite any values specified by the user with the "correct" ones. To change the ones that can be specified by the user, for example +admin_epoch+, one should use: ---- # cibadmin --modify --xml-text '' ---- A complete set of CIB properties will look something like this: .Attributes set for a cib object ====== [source,XML] ------- ------- ====== [[s-cluster-options]] == Cluster Options == Cluster options, as you might expect, control how the cluster behaves when confronted with certain situations. They are grouped into sets within the +crm_config+ section, and, in advanced configurations, there may be more than one set. (This will be described later in the section on <> where we will show how to have the cluster use different sets of options during working hours than during weekends.) For now, we will describe the simple case where each option is present at most once. You can obtain an up-to-date list of cluster options, including their default values, by running the `man pengine` and `man crmd` commands. .Cluster Options [width="95%",cols="5m,2,11>). +and +migration-threshold+ (see <>). | enable-startup-probes | TRUE | indexterm:[enable-startup-probes,Cluster Option] indexterm:[Cluster,Option,enable-startup-probes] Should the cluster check for active resources during startup? | maintenance-mode | FALSE | indexterm:[maintenance-mode,Cluster Option] indexterm:[Cluster,Option,maintenance-mode] Should the cluster refrain from monitoring, starting and stopping resources? | stonith-enabled | TRUE | indexterm:[stonith-enabled,Cluster Option] indexterm:[Cluster,Option,stonith-enabled] Should failed nodes and nodes with resources that can't be stopped be shot? If you value your data, set up a STONITH device and enable this. If true, or unset, the cluster will refuse to start resources unless one or more STONITH resources have been configured. If false, unresponsive nodes are immediately assumed to be running no resources, and resource takeover to online nodes starts without any further protection (which means _data loss_ if the unresponsive node still accesses shared storage, for example). See also the +requires+ meta-attribute in <>. | stonith-action | reboot | indexterm:[stonith-action,Cluster Option] indexterm:[Cluster,Option,stonith-action] Action to send to STONITH device. Allowed values are +reboot+ and +off+. The value +poweroff+ is also allowed, but is only used for legacy devices. | stonith-timeout | 60s | indexterm:[stonith-timeout,Cluster Option] indexterm:[Cluster,Option,stonith-timeout] How long to wait for STONITH actions (reboot, on, off) to complete | concurrent-fencing | FALSE | indexterm:[concurrent-fencing,Cluster Option] indexterm:[Cluster,Option,concurrent-fencing] Is the cluster allowed to initiate multiple fence actions concurrently? | cluster-delay | 60s | indexterm:[cluster-delay,Cluster Option] indexterm:[Cluster,Option,cluster-delay] Estimated maximum round-trip delay over the network (excluding action execution). If the TE requires an action to be executed on another node, it will consider the action failed if it does not get a response from the other node in this time (after considering the action's own timeout). The "correct" value will depend on the speed and load of your network and cluster nodes. | dc-deadtime | 20s | indexterm:[dc-deadtime,Cluster Option] indexterm:[Cluster,Option,dc-deadtime] How long to wait for a response from other nodes during startup. The "correct" value will depend on the speed/load of your network and the type of switches used. | cluster-recheck-interval | 15min | indexterm:[cluster-recheck-interval,Cluster Option] indexterm:[Cluster,Option,cluster-recheck-interval] Polling interval for time-based changes to options, resource parameters and constraints. The Cluster is primarily event-driven, but your configuration can have elements that take effect based on the time of day. To ensure these changes take effect, we can optionally poll the cluster's status for changes. A value of 0 disables polling. Positive values are an interval (in seconds unless other SI units are specified, e.g. 5min). | pe-error-series-max | -1 | indexterm:[pe-error-series-max,Cluster Option] indexterm:[Cluster,Option,pe-error-series-max] The number of PE inputs resulting in ERRORs to save. Used when reporting problems. A value of -1 means unlimited (report all). | pe-warn-series-max | -1 | indexterm:[pe-warn-series-max,Cluster Option] indexterm:[Cluster,Option,pe-warn-series-max] The number of PE inputs resulting in WARNINGs to save. Used when reporting problems. A value of -1 means unlimited (report all). | pe-input-series-max | -1 | indexterm:[pe-input-series-max,Cluster Option] indexterm:[Cluster,Option,pe-input-series-max] The number of "normal" PE inputs to save. Used when reporting problems. A value of -1 means unlimited (report all). | node-health-strategy | none | indexterm:[node-health-strategy,Cluster Option] indexterm:[Cluster,Option,node-health-strategy] How the cluster should react to node health attributes (see <>). Allowed values are +none+, +migrate-on-red+, +only-green+, +progressive+, and +custom+. | node-health-base | 0 | indexterm:[node-health-base,Cluster Option] indexterm:[Cluster,Option,node-health-base] The base health score assigned to a node. Only used when +node-health-strategy+ is +progressive+. '(since 1.1.16)' | node-health-green | 0 | indexterm:[node-health-green,Cluster Option] indexterm:[Cluster,Option,node-health-green] The score to use for a node health attribute whose value is +green+. Only used when +node-health-strategy+ is +progressive+ or +custom+. | node-health-yellow | 0 | indexterm:[node-health-yellow,Cluster Option] indexterm:[Cluster,Option,node-health-yellow] The score to use for a node health attribute whose value is +yellow+. Only used when +node-health-strategy+ is +progressive+ or +custom+. | node-health-red | 0 | indexterm:[node-health-red,Cluster Option] indexterm:[Cluster,Option,node-health-red] The score to use for a node health attribute whose value is +red+. Only used when +node-health-strategy+ is +progressive+ or +custom+. | remove-after-stop | FALSE | indexterm:[remove-after-stop,Cluster Option] indexterm:[Cluster,Option,remove-after-stop] _Advanced Use Only:_ Should the cluster remove resources from the LRM after they are stopped? Values other than the default are, at best, poorly tested and potentially dangerous. | startup-fencing | TRUE | indexterm:[startup-fencing,Cluster Option] indexterm:[Cluster,Option,startup-fencing] _Advanced Use Only:_ Should the cluster shoot unseen nodes? Not using the default is very unsafe! | election-timeout | 2min | indexterm:[election-timeout,Cluster Option] indexterm:[Cluster,Option,election-timeout] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | shutdown-escalation | 20min | indexterm:[shutdown-escalation,Cluster Option] indexterm:[Cluster,Option,shutdown-escalation] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | crmd-integration-timeout | 3min | indexterm:[crmd-integration-timeout,Cluster Option] indexterm:[Cluster,Option,crmd-integration-timeout] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | crmd-finalization-timeout | 30min | indexterm:[crmd-finalization-timeout,Cluster Option] indexterm:[Cluster,Option,crmd-finalization-timeout] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | crmd-transition-delay | 0s | indexterm:[crmd-transition-delay,Cluster Option] indexterm:[Cluster,Option,crmd-transition-delay] _Advanced Use Only:_ Delay cluster recovery for the configured interval to allow for additional/related events to occur. Useful if your configuration is sensitive to the order in which ping updates arrive. Enabling this option will slow down cluster recovery under all conditions. |default-resource-stickiness | 0 | indexterm:[default-resource-stickiness,Cluster Option] indexterm:[Cluster,Option,default-resource-stickiness] _Deprecated:_ See <> instead | is-managed-default | TRUE | indexterm:[is-managed-default,Cluster Option] indexterm:[Cluster,Option,is-managed-default] _Deprecated:_ See <> instead | default-action-timeout | 20s | indexterm:[default-action-timeout,Cluster Option] indexterm:[Cluster,Option,default-action-timeout] _Deprecated:_ See <> instead |========================================================= === Querying and Setting Cluster Options === indexterm:[Querying,Cluster Option] indexterm:[Setting,Cluster Option] indexterm:[Cluster,Querying Options] indexterm:[Cluster,Setting Options] Cluster options can be queried and modified using the `crm_attribute` tool. To get the current value of +cluster-delay+, you can run: ---- # crm_attribute --query --name cluster-delay ---- which is more simply written as ---- # crm_attribute -G -n cluster-delay ---- If a value is found, you'll see a result like this: ---- # crm_attribute -G -n cluster-delay scope=crm_config name=cluster-delay value=60s ---- If no value is found, the tool will display an error: ---- # crm_attribute -G -n clusta-deway scope=crm_config name=clusta-deway value=(null) Error performing operation: No such device or address ---- To use a different value (for example, 30 seconds), simply run: ---- # crm_attribute --name cluster-delay --update 30s ---- To go back to the cluster's default value, you can delete the value, for example: ---- # crm_attribute --name cluster-delay --delete Deleted crm_config option: id=cib-bootstrap-options-cluster-delay name=cluster-delay ---- === When Options are Listed More Than Once === If you ever see something like the following, it means that the option you're modifying is present more than once. .Deleting an option that is listed twice ======= ------ # crm_attribute --name batch-limit --delete Multiple attributes match name=batch-limit in crm_config: Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit) Value: 100 (set=custom, id=custom-batch-limit) Please choose from one of the matches above and supply the 'id' with --id ------- ======= In such cases, follow the on-screen instructions to perform the requested action. To determine which value is currently being used by the cluster, refer to <>. diff --git a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt index 4f6ebc4848..23912d3e8b 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt @@ -1,848 +1,848 @@ = Cluster Resources = == What is a Cluster Resource? == indexterm:[Resource] A resource is a service made highly available by a cluster. The simplest type of resource, a 'primitive' resource, is described in this chapter. More complex forms, such as groups and clones, are described in later chapters. Every primitive resource has a 'resource agent'. A resource agent is an external program that abstracts the service it provides and present a consistent view to the cluster. This allows the cluster to be agnostic about the resources it manages. The cluster doesn't need to understand how the resource works because it relies on the resource agent to do the right thing when given a `start`, `stop` or `monitor` command. For this reason, it is crucial that resource agents are well-tested. Typically, resource agents come in the form of shell scripts. However, they can be written using any technology (such as C, Python or Perl) that the author is comfortable with. [[s-resource-supported]] == Resource Classes == indexterm:[Resource,class] Pacemaker supports several classes of agents: * OCF * LSB * Upstart * Systemd * Service * Fencing * Nagios Plugins === Open Cluster Framework === indexterm:[Resource,OCF] indexterm:[OCF,Resources] indexterm:[Open Cluster Framework,Resources] The OCF standard footnote:[See http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD -- at least as it relates to resource agents. The Pacemaker implementation has been somewhat extended from the OCF specs, but none of those changes are incompatible with the original OCF specification.] is basically an extension of the Linux Standard Base conventions for init scripts to: * support parameters, * make them self-describing, and * make them extensible OCF specs have strict definitions of the exit codes that actions must return. footnote:[ The resource-agents source code includes the `ocf-tester` script, which can be useful in this regard. ] The cluster follows these specifications exactly, and giving the wrong exit code will cause the cluster to behave in ways you will likely find puzzling and annoying. In particular, the cluster needs to distinguish a completely stopped resource from one which is in some erroneous and indeterminate state. Parameters are passed to the resource agent as environment variables, with the special prefix +OCF_RESKEY_+. So, a parameter which the user thinks of as +ip+ will be passed to the resource agent as +OCF_RESKEY_ip+. The number and purpose of the parameters is left to the resource agent; however, the resource agent should use the `meta-data` command to advertise any that it supports. The OCF class is the most preferred as it is an industry standard, highly flexible (allowing parameters to be passed to agents in a non-positional manner) and self-describing. For more information, see the http://www.linux-ha.org/wiki/OCF_Resource_Agents[reference] and <>. === Linux Standard Base === indexterm:[Resource,LSB] indexterm:[LSB,Resources] indexterm:[Linux Standard Base,Resources] LSB resource agents are those found in +/etc/init.d+. Generally, they are provided by the OS distribution and, in order to be used with the cluster, they must conform to the LSB Spec. footnote:[ See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec as it relates to init scripts. ] [WARNING] ==== Many distributions claim LSB compliance but ship with broken init scripts. For details on how to check whether your init script is LSB-compatible, see <>. Common problematic violations of the LSB standard include: * Not implementing the status operation at all * Not observing the correct exit status codes for `start/stop/status` actions * Starting a started resource returns an error * Stopping a stopped resource returns an error ==== [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === Systemd === indexterm:[Resource,Systemd] indexterm:[Systemd,Resources] Some newer distributions have replaced the old http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of initialization daemons and scripts with an alternative called http://www.freedesktop.org/wiki/Software/systemd[Systemd]. Pacemaker is able to manage these services _if they are present_. Instead of init scripts, systemd has 'unit files'. Generally, the services (unit files) are provided by the OS distribution, but there are online guides for converting from init scripts. footnote:[For example, http://0pointer.de/blog/projects/systemd-for-admins-3.html] [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === Upstart === indexterm:[Resource,Upstart] indexterm:[Upstart,Resources] Some newer distributions have replaced the old http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of initialization daemons (and scripts) with an alternative called http://upstart.ubuntu.com/[Upstart]. Pacemaker is able to manage these services _if they are present_. Instead of init scripts, upstart has 'jobs'. Generally, the services (jobs) are provided by the OS distribution. [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === System Services === indexterm:[Resource,System Services] indexterm:[System Service,Resources] Since there are various types of system services (+systemd+, +upstart+, and +lsb+), Pacemaker supports a special +service+ alias which intelligently figures out which one applies to a given cluster node. This is particularly useful when the cluster contains a mix of +systemd+, +upstart+, and +lsb+. In order, Pacemaker will try to find the named service as: . an LSB init script . a Systemd unit file . an Upstart job === STONITH === indexterm:[Resource,STONITH] indexterm:[STONITH,Resources] The STONITH class is used exclusively for fencing-related resources. This is discussed later in <>. === Nagios Plugins === indexterm:[Resource,Nagios Plugins] indexterm:[Nagios Plugins,Resources] Nagios Plugins footnote:[The project has two independent forks, hosted at https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/. Output from both projects' plugins is similar, so plugins from either project can be used with pacemaker.] allow us to monitor services on remote hosts. Pacemaker is able to do remote monitoring with the plugins _if they are present_. A common use case is to configure them as resources belonging to a resource container (usually a virtual machine), and the container will be restarted if any of them has failed. Another use is to configure them as ordinary resources to be used for monitoring hosts or services via the network. The supported parameters are same as the long options of the plugin. [[primitive-resource]] == Resource Properties == These values tell the cluster which resource agent to use for the resource, where to find that resource agent and what standards it conforms to. .Properties of a Primitive Resource [width="95%",cols="1m,6<",options="header",align="center"] |========================================================= |Field |Description |id |Your name for the resource indexterm:[id,Resource] indexterm:[Resource,Property,id] |class |The standard the resource agent conforms to. Allowed values: +lsb+, +nagios+, +ocf+, +service+, +stonith+, +systemd+, +upstart+ indexterm:[class,Resource] indexterm:[Resource,Property,class] |type |The name of the Resource Agent you wish to use. E.g. +IPaddr+ or +Filesystem+ indexterm:[type,Resource] indexterm:[Resource,Property,type] |provider |The OCF spec allows multiple vendors to supply the same resource agent. To use the OCF resource agents supplied by the Heartbeat project, you would specify +heartbeat+ here. indexterm:[provider,Resource] indexterm:[Resource,Property,provider] |========================================================= The XML definition of a resource can be queried with the `crm_resource` tool. For example: ---- # crm_resource --resource Email --query-xml ---- might produce: .A system resource definition ===== [source,XML] ===== [NOTE] ===== One of the main drawbacks to system services (LSB, systemd or Upstart) resources is that they do not allow any parameters! ===== //// See https://tools.ietf.org/html/rfc5737 for choice of example IP address //// .An OCF resource definition ===== [source,XML] ------- ------- ===== [[s-resource-options]] == Resource Options == Resources have two types of options: 'meta-attributes' and 'instance attributes'. Meta-attributes apply to any type of resource, while instance attributes are specific to each resource agent. === Resource Meta-Attributes === Meta-attributes are used by the cluster to decide how a resource should behave and can be easily set using the `--meta` option of the `crm_resource` command. .Meta-attributes of a Primitive Resource [width="95%",cols="2m,2,5> resources, promoted to master if appropriate) * +Slave:+ Allow the resource to be started, but only in Slave mode if the resource is <> * +Master:+ Equivalent to +Started+ indexterm:[target-role,Resource Option] indexterm:[Resource,Option,target-role] |is-managed |TRUE |Is the cluster allowed to start and stop the resource? Allowed values: +true+, +false+ indexterm:[is-managed,Resource Option] indexterm:[Resource,Option,is-managed] |resource-stickiness |value of +resource-stickiness+ in the +rsc_defaults+ section |How much does the resource prefer to stay where it is? indexterm:[resource-stickiness,Resource Option] indexterm:[Resource,Option,resource-stickiness] |requires |fencing (unless +stonith-enabled+ is +false+ or +class+ is +stonith+, in which case it defaults to quorum) |Conditions under which the resource can be started '(since 1.1.8)' Allowed values: * +nothing:+ can always be started * +quorum:+ The cluster can only start this resource if a majority of the configured nodes are active * +fencing:+ The cluster can only start this resource if a majority of the configured nodes are active _and_ any failed or unknown nodes have been powered off * +unfencing:+ The cluster can only start this resource if a majority of the configured nodes are active _and_ any failed or unknown nodes have been powered off _and_ only on nodes that have been 'unfenced' '(since 1.1.9)' indexterm:[requires,Resource Option] indexterm:[Resource,Option,requires] |migration-threshold |INFINITY |How many failures may occur for this resource on a node, before this node is marked ineligible to host this resource. A value of 0 indicates that this feature is disabled (the node will never be marked ineligible); by constrast, the cluster treats INFINITY (the default) as a very large but finite number. This option has an effect only if the failed operation has on-fail=restart (the default), and additionally for failed start operations, if the cluster property start-failure-is-fatal is false. indexterm:[migration-threshold,Resource Option] indexterm:[Resource,Option,migration-threshold] |failure-timeout |0 |How many seconds to wait before acting as if the failure had not occurred, and potentially allowing the resource back to the node on which it failed. A value of 0 indicates that this feature is disabled. As with any time-based actions, this is not guaranteed to be checked more frequently than the value of +cluster-recheck-interval+ (see <>). indexterm:[failure-timeout,Resource Option] indexterm:[Resource,Option,failure-timeout] |multiple-active |stop_start |What should the cluster do if it ever finds the resource active on more than one node? Allowed values: * +block:+ mark the resource as unmanaged * +stop_only:+ stop all active instances and leave them that way * +stop_start:+ stop all active instances and start the resource in one location only indexterm:[multiple-active,Resource Option] indexterm:[Resource,Option,multiple-active] |allow-migrate |TRUE for ocf:pacemaker:remote resources, FALSE otherwise |Whether the cluster should try to "live migrate" this resource when it needs to be moved (see <>) |remote-node | |The name of the Pacemaker Remote guest node this resource is associated with, if any. If specified, this both enables the resource as a guest node and defines the unique name used to identify the guest node. The guest must be configured to run the Pacemaker Remote daemon when it is started. +WARNING:+ This value cannot overlap with any resource or node IDs. '(since 1.1.9)' |remote-port |3121 |If +remote-node+ is specified, the port on the guest used for its Pacemaker Remote connection. The Pacemaker Remote daemon on the guest must be configured to listen on this port. '(since 1.1.9)' |remote-addr |value of +remote-node+ |If +remote-node+ is specified, the IP address or hostname used to connect to the guest via Pacemaker Remote. The Pacemaker Remote daemon on the guest must be configured to accept connections on this address. '(since 1.1.9)' |remote-connect-timeout |60s |If +remote-node+ is specified, how long before a pending guest connection will time out. '(since 1.1.10)' |========================================================= As an example of setting resource options, if you performed the following commands on an LSB Email resource: ------- # crm_resource --meta --resource Email --set-parameter priority --parameter-value 100 # crm_resource -m -r Email -p multiple-active -v block ------- the resulting resource definition might be: .An LSB resource with cluster options ===== [source,XML] ------- ------- ===== [[s-resource-defaults]] === Setting Global Defaults for Resource Meta-Attributes === To set a default value for a resource option, add it to the +rsc_defaults+ section with `crm_attribute`. For example, ---- # crm_attribute --type rsc_defaults --name is-managed --update false ---- would prevent the cluster from starting or stopping any of the resources in the configuration (unless of course the individual resources were specifically enabled by having their +is-managed+ set to +true+). === Resource Instance Attributes === The resource agents of some resource classes (lsb, systemd and upstart 'not' among them) can be given parameters which determine how they behave and which instance of a service they control. If your resource agent supports parameters, you can add them with the `crm_resource` command. For example, ---- # crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2 ---- would create an entry in the resource like this: .An example OCF resource with instance attributes ===== [source,XML] ------- ------- ===== For an OCF resource, the result would be an environment variable called +OCF_RESKEY_ip+ with a value of +192.0.2.2+. The list of instance attributes supported by an OCF resource agent can be found by calling the resource agent with the `meta-data` command. The output contains an XML description of all the supported attributes, their purpose and default values. .Displaying the metadata for the Dummy resource agent template ===== ---- # export OCF_ROOT=/usr/lib/ocf # $OCF_ROOT/resource.d/pacemaker/Dummy meta-data ---- [source,XML] ------- 1.0 This is a Dummy Resource Agent. It does absolutely nothing except keep track of whether its running or not. Its purpose in life is for testing and to serve as a template for RA writers. NB: Please pay attention to the timeouts specified in the actions section below. They should be meaningful for the kind of resource the agent manages. They should be the minimum advised timeouts, but they shouldn't/cannot cover _all_ possible resource instances. So, try to be neither overly generous nor too stingy, but moderate. The minimum timeouts should never be below 10 seconds. Example stateless resource agent Location to store the resource state in. State file Fake attribute that can be changed to cause a reload Fake attribute that can be changed to cause a reload Number of seconds to sleep during operations. This can be used to test how the cluster reacts to operation timeouts. Operation sleep duration in seconds. ------- ===== == Resource Operations == indexterm:[Resource,Action] 'Operations' are actions the cluster can perform on a resource by calling the resource agent. Resource agents must support certain common operations such as start, stop and monitor, and may implement any others. Some operations are generated by the cluster itself, for example, stopping and starting resources as needed. You can configure operations in the cluster configuration. As an example, by default the cluster will 'not' ensure your resources stay healthy once they are started. footnote:[Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.] To instruct the cluster to do this, you need to add a +monitor+ operation to the resource's definition. .An OCF resource with a recurring health check ===== [source,XML] ------- ------- ===== .Properties of an Operation [width="95%",cols="2m,3,6>. indexterm:[interval,Action Property] indexterm:[Action,Property,interval] |timeout | |How long to wait before declaring the action has failed indexterm:[timeout,Action Property] indexterm:[Action,Property,timeout] |on-fail |restart '(except for stop operations, which default to' fence 'when STONITH is enabled and' block 'otherwise)' |The action to take if this action ever fails. Allowed values: * +ignore:+ Pretend the resource did not fail. * +block:+ Don't perform any further operations on the resource. * +stop:+ Stop the resource and do not start it elsewhere. * +restart:+ Stop the resource and start it again (possibly on a different node). * +fence:+ STONITH the node on which the resource failed. * +standby:+ Move _all_ resources away from the node on which the resource failed. indexterm:[on-fail,Action Property] indexterm:[Action,Property,on-fail] |enabled |TRUE |If +false+, ignore this operation definition. This is typically used to pause a particular recurring monitor operation; for instance, it can complement the respective resource being unmanaged (+is-managed=false+), as this alone will <>. Disabling the operation does not suppress all actions of the given type. Allowed values: +true+, +false+. indexterm:[enabled,Action Property] indexterm:[Action,Property,enabled] |record-pending |FALSE |If +true+, the intention to perform the operation is recorded so that GUIs and CLI tools can indicate that an operation is in progress. - This is best set as an 'operation default' (see next section). + This is best set as an _operation default_ (see next section). Allowed values: +true+, +false+. indexterm:[enabled,Action Property] indexterm:[Action,Property,enabled] |role | |Run the operation only on node(s) that the cluster thinks should be in the specified role. This only makes sense for recurring monitor operations. Allowed (case-sensitive) values: +Stopped+, +Started+, and in the case of <> resources, +Slave+ and +Master+. indexterm:[role,Action Property] indexterm:[Action,Property,role] |========================================================= [[s-resource-monitoring]] === Monitoring Resources for Failure === When Pacemaker first starts a resource, it runs one-time monitor operations (referred to as 'probes') to ensure the resource is running where it's supposed to be, and not running where it's not supposed to be. (This behavior can be affected by the +resource-discovery+ location constraint property.) Other than those initial probes, Pacemaker will not (by default) check that the resource continues to stay healthy. As in the example above, you must configure monitor operations explicitly to perform these checks. By default, a monitor operation will ensure that the resource is running where it is supposed to. The +target-role+ property can be used for further checking. For example, if a resource has one monitor operation with +interval=10 role=Started+ and a second monitor operation with +interval=11 role=Stopped+, the cluster will run the first monitor on any nodes it thinks 'should' be running the resource, and the second monitor on any nodes that it thinks 'should not' be running the resource (for the truly paranoid, who want to know when an administrator manually starts a service by mistake). [[s-monitoring-unmanaged]] === Monitoring Resources When Administration is Disabled === Recurring monitor operations behave differently under various administrative settings: * When a resource is unmanaged (by setting +is-managed=false+): No monitors will be stopped. + If the unmanaged resource is stopped on a node where the cluster thinks it should be running, the cluster will detect and report that it is not, but it will not consider the monitor failed, and will not try to start the resource until it is managed again. + Starting the unmanaged resource on a different node is strongly discouraged and will at least cause the cluster to consider the resource failed, and may require the resource's +target-role+ to be set to +Stopped+ then +Started+ to be recovered. * When a node is put into standby: All resources will be moved away from the node, and all monitor operations will be stopped on the node, except those with +role=Stopped+. Monitor operations with +role=Stopped+ will be started on the node if appropriate. * When the cluster is put into maintenance mode: All resources will be marked as unmanaged. All monitor operations will be stopped, except those with +role=Stopped+. As with single unmanaged resources, starting a resource on a node other than where the cluster expects it to be will cause problems. [[s-operation-defaults]] === Setting Global Defaults for Operations === You can change the global default values for operation properties in a given cluster. These are defined in an +op_defaults+ section of the CIB's +configuration+ section, and can be set with `crm_attribute`. For example, ---- # crm_attribute --type op_defaults --name timeout --update 20s ---- would default each operation's +timeout+ to 20 seconds. If an operation's definition also includes a value for +timeout+, then that value would be used for that operation instead. === When Implicit Operations Take a Long Time === The cluster will always perform a number of implicit operations: +start+, +stop+ and a non-recurring +monitor+ operation used at startup to check whether the resource is already active. If one of these is taking too long, then you can create an entry for them and specify a longer timeout. .An OCF resource with custom timeouts for its implicit actions ===== [source,XML] ------- ------- ===== === Multiple Monitor Operations === Provided no two operations (for a single resource) have the same name and interval, you can have as many monitor operations as you like. In this way, you can do a superficial health check every minute and progressively more intense ones at higher intervals. To tell the resource agent what kind of check to perform, you need to provide each monitor with a different value for a common parameter. The OCF standard creates a special parameter called +OCF_CHECK_LEVEL+ for this purpose and dictates that it is "made available to the resource agent without the normal +OCF_RESKEY+ prefix". Whatever name you choose, you can specify it by adding an +instance_attributes+ block to the +op+ tag. It is up to each resource agent to look for the parameter and decide how to use it. .An OCF resource with two recurring health checks, performing different levels of checks specified via +OCF_CHECK_LEVEL+. ===== [source,XML] ------- ------- ===== === Disabling a Monitor Operation === The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you only want to disable it temporarily. In such cases, simply add +enabled="false"+ to the operation's definition. .Example of an OCF resource with a disabled health check ===== [source,XML] ------- ------- ===== This can be achieved from the command line by executing: ---- # cibadmin --modify --xml-text '' ---- Once you've done whatever you needed to do, you can then re-enable it with ---- # cibadmin --modify --xml-text '' ----