diff --git a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt
index 4e89d8aa74..47eca8948a 100644
--- a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt
+++ b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt
@@ -1,1395 +1,1400 @@
 = Advanced Resource Types =
 
 [[group-resources]]
 == Groups - A Syntactic Shortcut ==
 indexterm:[Group Resources]
 indexterm:[Resource,Groups]
 
 
 One of the most common elements of a cluster is a set of resources
 that need to be located together, start sequentially, and stop in the
 reverse order.  To simplify this configuration, we support the concept
 of groups.
 
 .A group of two primitive resources
 ======
 [source,XML]
 -------
 <group id="shortcut">
    <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
     <instance_attributes id="params-public-ip">
        <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
     </instance_attributes>
    </primitive>
    <primitive id="Email" class="lsb" type="exim"/>
 </group> 
 -------
 ======
 
 
 Although the example above contains only two resources, there is no
 limit to the number of resources a group can contain.  The example is
 also sufficient to explain the fundamental properties of a group:
 
 * Resources are started in the order they appear in (+Public-IP+
   first, then +Email+)
 * Resources are stopped in the reverse order to which they appear in
   (+Email+ first, then +Public-IP+)
 
 If a resource in the group can't run anywhere, then nothing after that
 is allowed to run, too.
 
 * If +Public-IP+ can't run anywhere, neither can +Email+;
 * but if +Email+ can't run anywhere, this does not affect +Public-IP+
   in any way
 
 The group above is logically equivalent to writing:
 
 .How the cluster sees a group resource
 ======
 [source,XML]
 -------
 <configuration>
    <resources>
     <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
      <instance_attributes id="params-public-ip">
         <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/>
      </instance_attributes>
     </primitive>
     <primitive id="Email" class="lsb" type="exim"/>
    </resources>
    <constraints>
       <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
       <rsc_order id="yyy" first="Public-IP" then="Email"/>
    </constraints>
 </configuration> 
 -------
 ======
 
 Obviously as the group grows bigger, the reduced configuration effort
 can become significant.
 
 Another (typical) example of a group is a DRBD volume, the filesystem
 mount, an IP address, and an application that uses them.
 
 === Group Properties ===
 .Properties of a Group Resource
 [width="95%",cols="3m,5<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Description
 
 |id
 |A unique name for the group
  indexterm:[id,Group Resource Property]
  indexterm:[Resource,Group Property,id]
 
 |=========================================================
 
 === Group Options ===
 
 Groups inherit the +priority+, +target-role+, and +is-managed+ properties
 from primitive resources. See <<s-resource-options>> for information about
 those properties.
 
 === Group Instance Attributes ===
 
 Groups have no instance attributes. However, any that are set for the group
 object will be inherited by the group's children.
 
 === Group Contents ===
 
 Groups may only contain a collection of cluster resources (see
 <<primitive-resource>>).  To refer to a child of a group resource, just use
 the child's +id+ instead of the group's.
 
 === Group Constraints ===
 
 Although it is possible to reference a group's children in
 constraints, it is usually preferable to reference the group itself.
 
 .Some constraints involving groups
 ======
 [source,XML]
 -------
 <constraints>
     <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
     <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
     <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>
 </constraints> 
 -------
 ======
 
 === Group Stickiness ===
 indexterm:[resource-stickiness,Groups]
 
 Stickiness, the measure of how much a resource wants to stay where it
 is, is additive in groups.  Every active resource of the group will
 contribute its stickiness value to the group's total.  So if the
 default +resource-stickiness+ is 100, and a group has seven members,
 five of which are active, then the group as a whole will prefer its
 current location with a score of 500.
 
 [[s-resource-clone]]
 == Clones - Resources That Get Active on Multiple Hosts ==
 indexterm:[Clone Resources]
 indexterm:[Resource,Clones]
 
 Clones were initially conceived as a convenient way to start multiple
 instances of an IP address resource and have them distributed throughout the
 cluster for load balancing.  They have turned out to quite useful for
 a number of purposes including integrating with the Distributed Lock Manager
 (used by many cluster filesystems), the fencing subsystem, and OCFS2.
 
 You can clone any resource, provided the resource agent supports it.
 
 Three types of cloned resources exist:
 
 * Anonymous
 * Globally unique
 * Stateful
 
 'Anonymous' clones are the simplest.  These behave
 completely identically everywhere they are running.  Because of this,
 there can be only one copy of an anonymous clone active per machine.
       
 'Globally unique' clones are distinct entities.  A copy of the clone
 running on one machine is not equivalent to another instance on
 another node, nor would any two copies on the same node be
 equivalent.
 
 'Stateful' clones are covered later in <<s-resource-multistate>>.
 
 .A clone of an LSB resource
 ======
 [source,XML]
 -------
 <clone id="apache-clone">
     <meta_attributes id="apache-clone-meta">
        <nvpair id="apache-unique" name="globally-unique" value="false"/>
     </meta_attributes>
     <primitive id="apache" class="lsb" type="apache"/>
 </clone> 
 -------
 ======
 
 === Clone Properties ===
 
 .Properties of a Clone Resource
 [width="95%",cols="3m,5<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Description
 
 |id
 |A unique name for the clone
  indexterm:[id,Clone Property]
  indexterm:[Clone,Property,id]
 
 |=========================================================
 
 === Clone Options ===
 
 Options inherited from <<s-resource-options,primitive>> resources:
 +priority, target-role, is-managed+
 
 .Clone-specific configuration options
 [width="95%",cols="1m,1,3<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |clone-max
 |number of nodes in cluster
 |How many copies of the resource to start
  indexterm:[clone-max,Clone Option]
  indexterm:[Clone,Option,clone-max]
 
 |clone-node-max
 |1
 |How many copies of the resource can be started on a single node
  indexterm:[clone-node-max,Clone Option]
  indexterm:[Clone,Option,clone-node-max]
   
 |clone-min
 |1
 |Require at least this number of clone instances to be runnable before allowing
 resources depending on the clone to be runnable '(since 1.1.14)'
  indexterm:[clone-min,Clone Option]
  indexterm:[Clone,Option,clone-min]
 
 |notify
 |true
 |When stopping or starting a copy of the clone, tell all the other
  copies beforehand and again when the action was successful. Allowed values:
  +false+, +true+
  indexterm:[notify,Clone Option]
  indexterm:[Clone,Option,notify]
 
 |globally-unique
 |false
 |Does each copy of the clone perform a different function? Allowed
  values: +false+, +true+
  indexterm:[globally-unique,Clone Option]
  indexterm:[Clone,Option,globally-unique]
   
 |ordered
 |false
 |Should the copies be started in series (instead of in
  parallel)? Allowed values: +false+, +true+
  indexterm:[ordered,Clone Option]
  indexterm:[Clone,Option,ordered]
 
 |interleave
 |false
 |If this clone depends on another clone via an ordering constraint,
 is it allowed to start after the local instance of the other clone
 starts, rather than wait for all instances of the other clone to start?
 Allowed values: +false+, +true+
  indexterm:[interleave,Clone Option]
  indexterm:[Clone,Option,interleave]
 
 |=========================================================
 
 === Clone Instance Attributes ===
 
 Clones have no instance attributes; however, any that are set here
 will be inherited by the clone's children.
 
 === Clone Contents ===
 
 Clones must contain exactly one primitive or group resource.
 
 [WARNING]
 You should never reference the name of a clone's child.
 If you think you need to do this, you probably need to re-evaluate your design.
 
 === Clone Constraints ===
 
 In most cases, a clone will have a single copy on each active cluster
 node.  If this is not the case, you can indicate which nodes the
 cluster should preferentially assign copies to with resource location
 constraints.  These constraints are written no differently from those
 for primitive resources except that the clone's +id+ is used.
 
 .Some constraints involving clones
 ======
 [source,XML]
 -------
 <constraints>
     <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
     <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
     <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>
 </constraints> 
 -------
 ======
 
 Ordering constraints behave slightly differently for clones.  In the
 example above, +apache-stats+ will wait until all copies of +apache-clone+
 that need to be started have done so before being started itself.
 Only if _no_ copies can be started will +apache-stats+ be prevented
 from being active.  Additionally, the clone will wait for
 +apache-stats+ to be stopped before stopping itself.
 
 Colocation of a primitive or group resource with a clone means that
 the resource can run on any machine with an active copy of the clone.
 The cluster will choose a copy based on where the clone is running and
 the resource's own location preferences.
 
 Colocation between clones is also possible.  If one clone +A+ is colocated
 with another clone +B+, the set of allowed locations for +A+ is limited to
 nodes on which +B+ is (or will be) active.  Placement is then performed
 normally.
 
 [[s-clone-stickiness]]
 === Clone Stickiness ===
 
 indexterm:[resource-stickiness,Clones]
 
 To achieve a stable allocation pattern, clones are slightly sticky by
 default.  If no value for +resource-stickiness+ is provided, the clone
 will use a value of 1.  Being a small value, it causes minimal
 disturbance to the score calculations of other resources but is enough
 to prevent Pacemaker from needlessly moving copies around the cluster.
 
 [NOTE]
 ====
 For globally unique clones, this may result in multiple instances of the
 clone staying on a single node, even after another eligible node becomes
 active (for example, after being put into standby mode then made active again).
 If you do not want this behavior, specify a +resource-stickiness+ of 0
 for the clone temporarily and let the cluster adjust, then set it back
 to 1 if you want the default behavior to apply again.
 ====
 
 === Clone Resource Agent Requirements ===
 
 Any resource can be used as an anonymous clone, as it requires no
 additional support from the resource agent.  Whether it makes sense to
 do so depends on your resource and its resource agent.
 
 Globally unique clones do require some additional support in the
 resource agent.  In particular, it must only respond with
 +$\{OCF_SUCCESS}+ if the node has that exact instance active.  All
 other probes for instances of the clone should result in
 +$\{OCF_NOT_RUNNING}+ (or one of the other OCF error codes if
 they are failed).
 
 Individual instances of a clone are identified by appending a colon and a
 numerical offset, e.g. +apache:2+.
 
 Resource agents can find out how many copies there are by examining
 the +OCF_RESKEY_CRM_meta_clone_max+ environment variable and which
 copy it is by examining +OCF_RESKEY_CRM_meta_clone+.
 
 The resource agent must not make any assumptions (based on
 +OCF_RESKEY_CRM_meta_clone+) about which numerical instances are active.  In
 particular, the list of active copies will not always be an unbroken
 sequence, nor always start at 0.
 
 ==== Clone Notifications ====
 
 Supporting notifications requires the +notify+ action to be
 implemented.  If supported, the notify action will be passed a
 number of extra variables which, when combined with additional
 context, can be used to calculate the current state of the cluster and
 what is about to happen to it.
 
 .Environment variables supplied with Clone notify actions
 [width="95%",cols="5,3<",options="header",align="center"]
 |=========================================================
 
 |Variable
 |Description
 
 |OCF_RESKEY_CRM_meta_notify_type
 |Allowed values: +pre+, +post+
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,type]
  indexterm:[type,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_operation
 |Allowed values: +start+, +stop+
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,operation]
  indexterm:[operation,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_start_resource
 |Resources to be started
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_resource]
  indexterm:[start_resource,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_stop_resource
 |Resources to be stopped
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_resource]
  indexterm:[stop_resource,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_active_resource
 |Resources that are running
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_resource]
  indexterm:[active_resource,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_inactive_resource
 |Resources that are not running
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,inactive_resource]
  indexterm:[inactive_resource,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_start_uname
 |Nodes on which resources will be started
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_uname]
  indexterm:[start_uname,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_stop_uname
 |Nodes on which resources will be stopped
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_uname]
  indexterm:[stop_uname,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_active_uname
 |Nodes on which resources are running
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_uname]
  indexterm:[active_uname,Notification Environment Variable]
 
 |=========================================================
 
 The variables come in pairs, such as
 +OCF_RESKEY_CRM_meta_notify_start_resource+ and
 +OCF_RESKEY_CRM_meta_notify_start_uname+ and should be treated as an
 array of whitespace-separated elements.
 
 +OCF_RESKEY_CRM_meta_notify_inactive_resource+ is an exception as the
 matching +uname+ variable does not exist since inactive resources
 are not running on any node.
 
 Thus in order to indicate that +clone:0+ will be started on +sles-1+,
 +clone:2+ will be started on +sles-3+, and +clone:3+ will be started
 on +sles-2+, the cluster would set
 
 .Notification variables
 ======
 [source,Bash]
 -------
 OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3"
 OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"
 -------
 ======
 
 ==== Proper Interpretation of Notification Environment Variables ====
 
 .Pre-notification (stop):
 
 * Active resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+
 * Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 
 .Post-notification (stop) / Pre-notification (start):
 
 * Active resources
 ** +$OCF_RESKEY_CRM_meta_notify_active_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 * Inactive resources
 ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ 
 * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 
 .Post-notification (start):
 
 * Active resources:
 ** +$OCF_RESKEY_CRM_meta_notify_active_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Inactive resources:
 ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 [[s-resource-multistate]]
 == Multi-state - Resources That Have Multiple Modes ==
 
 indexterm:[Multi-state Resources]
 indexterm:[Resource,Multi-state]
 
 Multi-state resources are a specialization of clone resources; please
 ensure you understand <<s-resource-clone>> before continuing!
 
 Multi-state resources allow the instances to be in one of two operating modes
 (called 'roles'). The roles are called 'master' and 'slave', but can mean
 whatever you wish them to mean. The only limitation is that when an instance is
 started, it must come up in the slave role.
 
 === Multi-state Properties ===
 
 .Properties of a Multi-State Resource
 [width="95%",cols="3m,5<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Description
 
 |id
 |Your name for the multi-state resource
  indexterm:[id,Multi-State Property]
  indexterm:[Multi-State,Property,id]
 
 |=========================================================
 
 === Multi-state Options ===
 
 Options inherited from <<s-resource-options,primitive>> resources:
 +priority+, +target-role+, +is-managed+
 
 Options inherited from <<s-resource-clone,clone>> resources:
 +clone-max+, +clone-node-max+, +notify+, +globally-unique+, +ordered+,
 +interleave+
 
 .Multi-state-specific resource configuration options
 [width="95%",cols="1m,1,3<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |master-max
 |1
 |How many copies of the resource can be promoted to the +master+ role
  indexterm:[master-max,Multi-State Option]
  indexterm:[Multi-State,Option,master-max]
 
 |master-node-max
 |1
 |How many copies of the resource can be promoted to the +master+ role on
  a single node
  indexterm:[master-node-max,Multi-State Option]
  indexterm:[Multi-State,Option,master-node-max]
 
 |=========================================================
 
 === Multi-state Instance Attributes ===
 
 Multi-state resources have no instance attributes; however, any that
 are set here will be inherited by a master's children.
 
 === Multi-state Contents ===
 
 Masters must contain exactly one primitive or group resource.
 
 [WARNING]
 You should never reference the name of a master's child.
 If you think you need to do this, you probably need to re-evaluate your design.
 
 === Monitoring Multi-State Resources ===
 
 The usual monitor actions are insufficient to monitor a multi-state resource,
 because pacemaker needs to verify not only that the resource is active, but
 also that its actual role matches its intended one.
 
 Define two monitoring actions: the usual one will cover the slave role,
 and an additional one with +role="master"+ will cover the master role.
 
 .Monitoring both states of a multi-state resource
 ======
 [source,XML]
 -------
 <master id="myMasterRsc">
    <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
     <operations>
      <op id="public-ip-slave-check" name="monitor" interval="60"/>
      <op id="public-ip-master-check" name="monitor" interval="61" role="Master"/>
     </operations>
    </primitive>
 </master> 
 -------
 ======
 
 [IMPORTANT]
 ===========
 It is crucial that _every_ monitor operation has a different interval!
 Pacemaker currently differentiates between operations
 only by resource and interval; so if (for example) a master/slave resource had
 the same monitor interval for both roles, Pacemaker would ignore the
 role when checking the status -- which would cause unexpected return
 codes, and therefore unnecessary complications.
 ===========
 
 === Multi-state Constraints ===
 
 In most cases, multi-state resources will have a single copy on each
 active cluster node.  If this is not the case, you can indicate which
 nodes the cluster should preferentially assign copies to with resource
 location constraints.  These constraints are written no differently from
 those for primitive resources except that the master's +id+ is used.
 
 When considering multi-state resources in constraints, for most
 purposes it is sufficient to treat them as clones. The exception is
 that the +first-action+ and/or +then-action+ fields for ordering constraints
 may be set to +promote+ or +demote+ to constrain the master role,
 and colocation constraints may contain +rsc-role+ and/or +with-rsc-role+
 fields.
           
 .Additional colocation constraint options for multi-state resources
 [width="95%",cols="1m,1,3<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |rsc-role
 |Started
 |An additional attribute of colocation constraints that specifies the
  role that +rsc+ must be in.  Allowed values: +Started+, +Master+,
  +Slave+.
  indexterm:[rsc-role,Ordering Constraints]
  indexterm:[Constraints,Ordering,rsc-role]
 
 |with-rsc-role
 |Started
 |An additional attribute of colocation constraints that specifies the
  role that +with-rsc+ must be in.  Allowed values: +Started+,
  +Master+, +Slave+.
  indexterm:[with-rsc-role,Ordering Constraints]
  indexterm:[Constraints,Ordering,with-rsc-role]
 
 |=========================================================
 
 .Constraints involving multi-state resources       
 ======
 [source,XML]
 -------
 <constraints>
    <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
    <rsc_colocation id="backup-with-db-slave" rsc="backup"
      with-rsc="database" with-rsc-role="Slave"/>
    <rsc_colocation id="myapp-with-db-master" rsc="myApp"
      with-rsc="database" with-rsc-role="Master"/>
    <rsc_order id="start-db-before-backup" first="database" then="backup"/>
    <rsc_order id="promote-db-then-app" first="database" first-action="promote"
      then="myApp" then-action="start"/>
 </constraints> 
 -------
 ======
 
 In the example above, +myApp+ will wait until one of the database
 copies has been started and promoted to master before being started
 itself on the same node.  Only if no copies can be promoted will +myApp+ be
 prevented from being active.  Additionally, the cluster will wait for
 +myApp+ to be stopped before demoting the database.
 
 Colocation of a primitive or group resource with a multi-state
 resource means that it can run on any machine with an active copy of
 the multi-state resource that has the specified role (+master+ or
 +slave+).  In the example above, the cluster will choose a location based on
 where database is running as a +master+, and if there are multiple
 +master+ instances it will also factor in +myApp+'s own location
 preferences when deciding which location to choose.
 
 Colocation with regular clones and other multi-state resources is also
 possible.  In such cases, the set of allowed locations for the +rsc+
 clone is (after role filtering) limited to nodes on which the
 +with-rsc+ multi-state resource is (or will be) in the specified role.
 Placement is then performed as normal.
 
 ==== Using Multi-state Resources in Colocation Sets ====
 
 .Additional colocation set options relevant to multi-state resources
 [width="95%",cols="1m,1,6<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |role
 |Started
 |The role that 'all members' of the set must be in.  Allowed values: +Started+, +Master+,
  +Slave+.
  indexterm:[role,Ordering Constraints]
  indexterm:[Constraints,Ordering,role]
 
 |=========================================================
 
 In the following example +B+'s master must be located on the same node as +A+'s master.
 Additionally resources +C+ and +D+ must be located on the same node as +A+'s
 and +B+'s masters.
 
 .Colocate C and D with A's and B's master instances
 ======
 [source,XML]
 -------
 <constraints>
     <rsc_colocation id="coloc-1" score="INFINITY" >
       <resource_set id="colocated-set-example-1" sequential="true" role="Master">
         <resource_ref id="A"/>
         <resource_ref id="B"/>
       </resource_set>
       <resource_set id="colocated-set-example-2" sequential="true">
         <resource_ref id="C"/>
         <resource_ref id="D"/>
       </resource_set>
     </rsc_colocation>
 </constraints>
 -------
 ======
 
 ==== Using Multi-state Resources in Ordering Sets ====
 
 .Additional ordered set options relevant to multi-state resources
 [width="95%",cols="1m,1,3<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |action
 |value of +first-action+
 |An additional attribute of ordering constraint sets that specifies the
  action that applies to 'all members' of the set.  Allowed
  values: +start+, +stop+, +promote+, +demote+.
  indexterm:[action,Ordering Constraints]
  indexterm:[Constraints,Ordering,action]
 
 |=========================================================
 
 .Start C and D after first promoting A and B
 ======
 [source,XML]
 -------
 <constraints>
     <rsc_order id="order-1" score="INFINITY" >
       <resource_set id="ordered-set-1" sequential="true" action="promote">
         <resource_ref id="A"/>
         <resource_ref id="B"/>
       </resource_set>
       <resource_set id="ordered-set-2" sequential="true" action="start">
         <resource_ref id="C"/>
         <resource_ref id="D"/>
       </resource_set>
     </rsc_order>
 </constraints>
 -------
 ======
 
 In the above example, +B+ cannot be promoted to a master role until +A+ has
 been promoted. Additionally, resources +C+ and +D+ must wait until +A+ and +B+
 have been promoted before they can start.
 
 
 === Multi-state Stickiness ===
 
 indexterm:[resource-stickiness,Multi-State]
 As with regular clones, multi-state resources are
 slightly sticky by default. See <<s-clone-stickiness>> for details.
 
 === Which Resource Instance is Promoted ===
 
 During the start operation, most resource agents should call
 the `crm_master` utility.  This tool automatically detects both the
 resource and host and should be used to set a preference for being
 promoted.  Based on this, +master-max+, and +master-node-max+, the
 instance(s) with the highest preference will be promoted.
 
 An alternative is to create a location constraint that
 indicates which nodes are most preferred as masters.
 
 .Explicitly preferring node1 to be promoted to master
 ======
 [source,XML]
 -------
 <rsc_location id="master-location" rsc="myMasterRsc">
     <rule id="master-rule" score="100" role="Master">
       <expression id="master-exp" attribute="#uname" operation="eq" value="node1"/>
     </rule>
 </rsc_location> 
 -------
 ======
 
 === Requirements for Multi-state Resource Agents ===
 
 Since multi-state resources are an extension of cloned resources, all
 the requirements for resource agents that support clones are also requirements
 for resource agents that support multi-state resources.
 
 Additionally, multi-state resources require two extra
 actions, +demote+ and +promote+, which are responsible for
 changing the state of the resource.  Like +start+ and +stop+, they
 should return +$\{OCF_SUCCESS}+ if they completed successfully or a
 relevant error code if they did not.
 
 The states can mean whatever you wish, but when the resource is
 started, it must come up in the mode called +slave+.  From there the
 cluster will decide which instances to promote to +master+.
 
 In addition to the clone requirements for monitor actions, agents must
 also _accurately_ report which state they are in.  The cluster relies
 on the agent to report its status (including role) accurately and does
 not indicate to the agent what role it currently believes it to be in.
 
 .Role implications of OCF return codes
 [width="95%",cols="1,1<",options="header",align="center"]
 |=========================================================
 
 |Monitor Return Code
 |Description
 
 |OCF_NOT_RUNNING
 |Stopped
  indexterm:[Return Code,OCF_NOT_RUNNING]
  
 |OCF_SUCCESS
 |Running (Slave)
  indexterm:[Return Code,OCF_SUCCESS]
  
 |OCF_RUNNING_MASTER
 |Running (Master)
  indexterm:[Return Code,OCF_RUNNING_MASTER]
 
 |OCF_FAILED_MASTER
 |Failed (Master)
  indexterm:[Return Code,OCF_FAILED_MASTER]
  
 |Other
 |Failed (Slave)
 
 |=========================================================
 
 ==== Multi-state Notifications ====
 
 Like clones, supporting notifications requires the +notify+ action to
 be implemented.  If supported, the notify action will be passed a
 number of extra variables which, when combined with additional
 context, can be used to calculate the current state of the cluster and
 what is about to happen to it.
           
 .Environment variables supplied with multi-state notify actions footnote:[Emphasized variables are specific to +Master+ resources, and all behave in the same manner as described for Clone resources.]
 [width="95%",cols="5,3<",options="header",align="center"]
 |=========================================================
 
 |Variable
 |Description
 
 |OCF_RESKEY_CRM_meta_notify_type
 |Allowed values: +pre+, +post+
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,type]
  indexterm:[type,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_operation
 |Allowed values: +start+, +stop+
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,operation]
  indexterm:[operation,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_active_resource
 |Resources that are running
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_resource]
  indexterm:[active_resource,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_inactive_resource
 |Resources that are not running
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,inactive_resource]
  indexterm:[inactive_resource,Notification Environment Variable]
   
 |_OCF_RESKEY_CRM_meta_notify_master_resource_
 |Resources that are running in +Master+ mode
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,master_resource]
  indexterm:[master_resource,Notification Environment Variable]
 
 |_OCF_RESKEY_CRM_meta_notify_slave_resource_
 |Resources that are running in +Slave+ mode
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,slave_resource]
  indexterm:[slave_resource,Notification Environment Variable]
    
 |OCF_RESKEY_CRM_meta_notify_start_resource
 |Resources to be started
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_resource]
  indexterm:[start_resource,Notification Environment Variable]
   
 |OCF_RESKEY_CRM_meta_notify_stop_resource
 |Resources to be stopped
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_resource]
  indexterm:[stop_resource,Notification Environment Variable]
 
 |_OCF_RESKEY_CRM_meta_notify_promote_resource_
 |Resources to be promoted
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,promote_resource]
  indexterm:[promote_resource,Notification Environment Variable]
    
 |_OCF_RESKEY_CRM_meta_notify_demote_resource_
 |Resources to be demoted
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,demote_resource]
  indexterm:[demote_resource,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_start_uname
 |Nodes on which resources will be started
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_uname]
  indexterm:[start_uname,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_stop_uname
 |Nodes on which resources will be stopped
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_uname]
  indexterm:[stop_uname,Notification Environment Variable]
 
 |_OCF_RESKEY_CRM_meta_notify_promote_uname_
 |Nodes on which resources will be promoted
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,promote_uname]
  indexterm:[promote_uname,Notification Environment Variable]
 
 |_OCF_RESKEY_CRM_meta_notify_demote_uname_
 |Nodes on which resources will be demoted
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,demote_uname]
  indexterm:[demote_uname,Notification Environment Variable]
 
 |OCF_RESKEY_CRM_meta_notify_active_uname
 |Nodes on which resources are running
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_uname]
  indexterm:[active_uname,Notification Environment Variable]
 
 |_OCF_RESKEY_CRM_meta_notify_master_uname_
 |Nodes on which resources are running in +Master+ mode
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,master_uname]
  indexterm:[master_uname,Notification Environment Variable]
 
 |_OCF_RESKEY_CRM_meta_notify_slave_uname_
 |Nodes on which resources are running in +Slave+ mode
  indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,slave_uname]
  indexterm:[slave_uname,Notification Environment Variable]
 
 |=========================================================
 
 ==== Proper Interpretation of Multi-state Notification Environment Variables ====
 
 
 .Pre-notification (demote):
 
 * +Active+ resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+
 * +Master+ resources: +$OCF_RESKEY_CRM_meta_notify_master_resource+
 * +Slave+ resources: +$OCF_RESKEY_CRM_meta_notify_slave_resource+
 * Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 
 .Post-notification (demote) / Pre-notification (stop):
 
 * +Active+ resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+
 * +Master+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_master_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ 
 * +Slave+ resources: +$OCF_RESKEY_CRM_meta_notify_slave_resource+
 * Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 
 
 .Post-notification (stop) / Pre-notification (start)
 
 * +Active+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_active_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ 
 * +Master+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_master_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ 
 * +Slave+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_slave_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ 
 * Inactive resources:
 ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ 
 * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 
 .Post-notification (start) / Pre-notification (promote)
 
 * +Active+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_active_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ 
 * +Master+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_master_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ 
 * +Slave+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_slave_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ 
 * Inactive resources:
 ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+           
 * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 .Post-notification (promote)
 
 * +Active+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_active_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ 
 * +Master+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_master_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * +Slave+ resources:
 ** +$OCF_RESKEY_CRM_meta_notify_slave_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_promote_resource+ 
 * Inactive resources:
 ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
 ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 ** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+ 
 * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
 * Resources that were promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
 * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
 * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
 
 [[s-resource-bundle]]
 == Bundles - Isolated Environments ==
 indexterm:[bundle]
 indexterm:[Resource,bundle]
 indexterm:[Docker,bundle]
 
 Pacemaker (version 1.1.17 and later) supports a special syntax for combining an
 isolated environment with the infrastructure support that it needs: the
 'bundle'.
 
 The only isolation technology currently supported by Pacemaker bundles
 is https://www.docker.com/[Docker] containers.
 footnote:[Docker is a trademark of Docker, Inc. No endorsement by or
 association with Docker, Inc. is implied.]
 
 .A bundle for a containerized web server
 ====
 [source,XML]
 ----
 <bundle id="httpd-bundle">
    <docker image="pcmk:http" replicas="3"/>
    <network ip-range-start="192.168.122.131"
             host-netmask="24"
             host-interface="eth0">
       <port-mapping id="httpd-port" port="80"/>
    </network>
    <storage>
       <storage-mapping id="httpd-syslog"
                        source-dir="/dev/log"
                        target-dir="/dev/log"
                        options="rw"/>
       <storage-mapping id="httpd-root"
                        source-dir="/srv/html"
                        target-dir="/var/www/html"
                        options="rw"/>
       <storage-mapping id="httpd-logs"
                        source-dir-root="/var/log/pacemaker/bundles"
                        target-dir="/etc/httpd/logs"
                        options="rw"/>
    </storage>
    <primitive class="ocf" id="httpd" provider="heartbeat" type="apache"/>
 </bundle>
 ----
 ====
 
 === Bundle Properties ===
 
 .Properties of a Bundle
 [width="95%",cols="3m,5<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Description
 
 |id
 |A unique name for the bundle (required)
  indexterm:[id,bundle]
  indexterm:[bundle,Property,id]
 
 |description
 |Arbitrary text (not used by Pacemaker)
  indexterm:[description,bundle]
  indexterm:[bundle,Property,description]
 
 |=========================================================
 
 === Docker Properties ===
 
 A bundle must contain exactly one +<docker>+ element.
 
 Before configuring a bundle in Pacemaker, the user must install Docker and
 supply a fully configured Docker image on every node allowed to run the bundle.
 
 Pacemaker will create an implicit +ocf:heartbeat:docker+ resource to manage
 a bundle's Docker container.
 
 .Properties of a Bundle's Docker Element
 [width="95%",cols="3m,4,5<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |image
 |
 |Docker image tag (required)
  indexterm:[image,Docker]
  indexterm:[Docker,Property,image]
 
 |replicas
 |Value of +masters+ if that is positive, else 1
 |A positive integer specifying the number of container instances to launch
  indexterm:[replicas,Docker]
  indexterm:[Docker,Property,replicas]
 
 |replicas-per-host
 |1
 |A positive integer specifying the number of container instances allowed to run
  on a single node
  indexterm:[replicas-per-host,Docker]
  indexterm:[Docker,Property,replicas-per-host]
 
 |masters
 |0
 |A non-negative integer that, if positive, indicates that the containerized
  service should be treated as a multistate service, with this many replicas
  allowed to run the service in the master role
  indexterm:[masters,Docker]
  indexterm:[Docker,Property,masters]
 
 |network
 |
 |If specified, this will be passed to +docker run+ as the
  https://docs.docker.com/engine/reference/run/#network-settings[network setting]
  for the Docker container.
  indexterm:[network,Docker]
  indexterm:[Docker,Property,network]
 
 |run-command
 |`/usr/sbin/pacemaker_remoted` if bundle contains a +primitive+, otherwise none
 |This command will be run inside the container when launching it ("PID 1"). If
  the bundle contains a +primitive+, this command 'must' start pacemaker_remoted
  (but could, for example, be a script that does other stuff, too).
  indexterm:[network,Docker]
  indexterm:[Docker,Property,network]
 
 |options
 |
 |Extra command-line options to pass to `docker run`
  indexterm:[options,Docker]
  indexterm:[Docker,Property,options]
 
 |=========================================================
 
 === Bundle Network Properties ===
 
 A bundle may optionally contain one +<network>+ element.
 indexterm:[bundle,network]
 
 .Properties of a Bundle's Network Element
 [width="95%",cols="2m,1,4<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |ip-range-start
 |
 |If specified, Pacemaker will create an implicit +ocf:heartbeat:IPaddr2+
  resource for each container instance, starting with this IP address,
  using up to +replicas+ sequential addresses. These addresses can be used
  from the host's network to reach the service inside the container, though
  it is not visible within the container itself. Only IPv4 addresses are
  currently supported.
  indexterm:[ip-range-start,network]
  indexterm:[network,Property,ip-range-start]
 
 |host-netmask
 |32
 |If +ip-range-start+ is specified, the IP addresses are created with this
  CIDR netmask (as a number of bits).
  indexterm:[host-netmask,network]
  indexterm:[network,Property,host-netmask]
 
 |host-interface
 |
 |If +ip-range-start+ is specified, the IP addresses are created on this
  host interface (by default, it will be determined from the IP address).
  indexterm:[host-interface,network]
  indexterm:[network,Property,host-interface]
 
 |control-port
 |
 |If the bundle contains a +primitive+, the cluster will use this integer TCP
  port for communication with Pacemaker Remote inside the container. This takes
  precedence over the value of any PCMK_remote_port environment variable set
  in the container image. This can allow a +primitive+ to be specified without
  using +ip-range-start+ (in which case +replicas-per-host+ must be 1), or
  allow a bundle to run on a Pacemaker Remote node that is already listening on
  the default port.
  indexterm:[control-port,network]
  indexterm:[network,Property,control-port]
 
 |=========================================================
 
 [NOTE]
 ====
 If +ip-range-start+ is used, Pacemaker will automatically ensure that
 +/etc/hosts+ inside the containers has entries for each replica and its
 assigned IP. Replicas are named by the bundle id plus a dash and an integer
 counter starting with zero. For example, if a bundle named +httpd-bundle+ has
 +replicas=2+, its containers will be named +httpd-bundle-0+ and
 +httpd-bundle-1+.
 ====
 
 Additionally, a +<network>+ element may optionally contain one or more
 +<port-mapping>+ elements.
 indexterm:[bundle,network,port-mapping]
 
 .Properties of a Bundle's Port-Mapping Element
 [width="95%",cols="2m,1,4<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |id
 |
 |A unique name for the port mapping (required)
  indexterm:[id,port-mapping]
  indexterm:[port-mapping,Property,id]
 
 |port
 |
 |If this is specified, connections to this TCP port number on the host network
  (on the container's assigned IP address, if +ip-range-start+ is specified)
  will be forwarded to the container network. Exactly one of +port+ or +range+
  must be specified in a +port-mapping+.
  indexterm:[port,port-mapping]
  indexterm:[port-mapping,Property,port]
 
 |internal-port
 |value of +port+
 |If +port+ and this are specified, connections to +port+ on the host's network
  will be forwarded to this port on the container network.
  indexterm:[internal-port,port-mapping]
  indexterm:[port-mapping,Property,internal-port]
 
 |range
 |
 |If this is specified, connections to these TCP port numbers (expressed as
  'first_port'-'last_port') on the host network (on the container's assigned IP
  address, if +ip-range-start+ is specified) will be forwarded to the same ports
  in the container network. Exactly one of +port+ or +range+ must be specified
  in a +port-mapping+.
  indexterm:[range,port-mapping]
  indexterm:[port-mapping,Property,range]
 
 |=========================================================
 
 [NOTE]
 ====
 If the bundle contains a +primitive+, Pacemaker will automatically map the
 +control-port+, so it is not necessary to specify that port in a
 +port-mapping+.
 ====
 
 === Bundle Storage Properties ===
 
 A bundle may optionally contain one +<storage>+ element. A +<storage>+ element
 has no properties of its own, but may contain one or more +<storage-mapping>+
 elements.
 indexterm:[bundle,storage,storage-mapping]
 
 .Properties of a Bundle's Storage-Mapping Element
 [width="95%",cols="2m,1,4<",options="header",align="center"]
 |=========================================================
 
 |Field
 |Default
 |Description
 
 |id
 |
 |A unique name for the storage mapping (required)
  indexterm:[id,storage-mapping]
  indexterm:[storage-mapping,Property,id]
 
 |source-dir
 |
 |The absolute path on the host's filesystem that will be mapped into the
  container. Exactly one of +source-dir+ and +source-dir-root+ must be specified
  in a +storage-mapping+.
  indexterm:[source-dir,storage-mapping]
  indexterm:[storage-mapping,Property,source-dir]
 
 |source-dir-root
 |
 |The start of a path on the host's filesystem that will be mapped into the
  container, using a different subdirectory on the host for each container
  instance. Exactly one of +source-dir+ and +source-dir-root+ must be specified
  in a +storage-mapping+.
  indexterm:[source-dir-root,storage-mapping]
  indexterm:[storage-mapping,Property,source-dir-root]
 
 |target-dir
 |
 |The path name within the container where the host storage will be mapped
  (required)
  indexterm:[target-dir,storage-mapping]
  indexterm:[storage-mapping,Property,target-dir]
 
 |options
 |
 |File system mount options to use when mapping the storage
  indexterm:[options,storage-mapping]
  indexterm:[storage-mapping,Property,options]
 
 |=========================================================
 
 [NOTE]
 ====
 If the bundle contains a +primitive+,
 Pacemaker will automatically map the equivalent of
 +source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey+
 and +source-dir-root=/var/log/pacemaker/bundles target-dir=/var/log+ into the
 container, so it is not necessary to specify those paths in a
 +storage-mapping+. Newer versions of +ocf:heartbeat:docker+ will automatically
 create the source directories if they do not exist, but the user may want to
 ensure they exist beforehand.
 ====
 
 === Bundle Primitive ===
 
 A bundle may optionally contain one +<primitive>+ resource
 (see <<s-resource-primitive>>). The primitive may have operations,
 instance attributes and meta-attributes defined, as usual.
 
 If a bundle contains a primitive resource, the container image must include
 the Pacemaker Remote daemon, and at least one of +ip-range-start+ or
 +control-port+ must be configured in the bundle. Pacemaker will create an
 implicit +ocf:pacemaker:remote+ resource for the connection, launch
 Pacemaker Remote within the container, and monitor and manage the primitive
 resource via Pacemaker Remote.
 
 If the bundle has more than one container instance (replica), the primitive
 resource will function as an implicit clone (see <<s-resource-clone>>) --
 a multistate clone if the bundle has +masters+ greater than zero
 (see <<s-resource-multistate>>).
  
 [IMPORTANT]
 ====
 Containers in bundles with a +primitive+ must have an accessible networking
 environment, so that Pacemaker on the cluster nodes can contact
 Pacemaker Remote inside the container. For example, the Docker option
 `--net=none` should not be used with a +primitive+. The default (using a
 distinct network space inside the container) works in combination with
 +ip-range-start+. If the Docker option `--net=host` is used (making the
 container share the host's network space), a unique +control-port+ should be
 specified for each bundle. Any firewall must allow access to the
 +control-port+.
 ====
 
 === Bundle Meta-Attributes ===
 
 Any meta-attribute set on a bundle will be inherited by the bundle's
 primitive and any resources implicitly created by Pacemaker for the bundle.
 
 This includes options such as +priority+, +target-role+, and +is-managed+. See
 <<s-resource-options>> for more information.
 
 === Limitations of Bundles ===
 
-Currently, bundles may not be cloned, or included in groups or colocation
+Bundle support is considered experimental in Pacemaker 1.1.17.
+
+Bundles may not be cloned, or included in groups or ordering
 constraints. This includes the bundle's primitive and any resources
 implicitly created by Pacemaker for the bundle.
 
 Bundles do not have instance attributes, utilization attributes, or operations,
 though a bundle's primitive may have them.
 
 A bundle with a primitive can run on a Pacemaker Remote node only if the bundle
 uses a distinct +control-port+.
+
+Interacting directly with any resource or guest node implicitly created by
+Pacemaker for the bundle is strongly discouraged and likely to cause problems.