diff --git a/doc/Clusters_from_Scratch/en-US/Ch-Shared-Storage.txt b/doc/Clusters_from_Scratch/en-US/Ch-Shared-Storage.txt index 124fbb60eb..270c7b30f2 100644 --- a/doc/Clusters_from_Scratch/en-US/Ch-Shared-Storage.txt +++ b/doc/Clusters_from_Scratch/en-US/Ch-Shared-Storage.txt @@ -1,564 +1,564 @@ = Replicate Storage Using DRBD = Even if you're serving up static websites, having to manually synchronize the contents of that website to all the machines in the cluster is not ideal. For dynamic websites, such as a wiki, it's not even an option. Not everyone care afford network-attached storage, but somehow the data needs to be kept in sync. Enter DRBD, which can be thought of as network-based RAID-1. footnote:[See http://www.drbd.org/ for details.] == Install the DRBD Packages == DRBD itself is included in the upstream kernel,footnote:[Since version 2.6.33] but we do need some utilities to use it effectively. CentOS does not ship these utilities, so we need to enable a third-party repository to get them. Supported packages for many OSes are available from DRBD's maker http://www.linbit.com/[LINBIT], but here we'll use the free http://elrepo.org/[ELRepo] repository. On both nodes, import the ELRepo package signing key, and enable the repository: ---- # rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org # rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm ---- Now, we can install the DRBD kernel module and utilities: ---- # yum install -y kmod-drbd84 drbd84-utils ---- [IMPORTANT] =========== The version of drbd84-utils shipped with CentOS 7.1 has a bug in the Pacemaker integration script. Until a fix is packaged, download the affected script directly from the upstream, on both nodes: ---- # curl -o /usr/lib/ocf/resource.d/linbit/drbd 'http://git.linbit.com/gitweb.cgi?p=drbd-utils.git;a=blob_plain;f=scripts/drbd.ocf;h=cf6b966341377a993d1bf5f585a5b9fe72eaa5f2;hb=c11ba026bbbbc647b8112543df142f2185cb4b4b' ---- This is a temporary fix that will be overwritten if the package is upgraded. =========== DRBD will not be able to run under the default SELinux security policies. If you are familiar with SELinux, you can modify the policies in a more fine-grained manner, but here we will simply exempt DRBD processes from SELinux control: ---- # semanage permissive -a drbd_t ---- We will configure DRBD to use port 7789, so allow that port from each host to the other: ---- [root@pcmk-1 ~]# firewall-cmd --permanent --add-rich-rule='rule family="ipv4" source address="192.168.122.102" port port="7789" protocol="tcp" accept' success [root@pcmk-1 ~]# firewall-cmd --reload success ---- ---- [root@pcmk-2 ~]# firewall-cmd --permanent --add-rich-rule='rule family="ipv4" source address="192.168.122.101" port port="7789" protocol="tcp" accept' success [root@pcmk-2 ~]# firewall-cmd --reload success ---- [NOTE] ====== In this example, we have only two nodes, and all network traffic is on the same LAN. In production, it is recommended to use a dedicated, isolated network for cluster-related traffic, so the firewall configuration would likely be different; one approach would be to add the dedicated network interfaces to the trusted zone. ====== == Allocate a Disk Volume for DRBD == DRBD will need its own block device on each node. This can be a physical disk partition or logical volume, of whatever size you need for your data. For this document, we will use a 1GiB logical volume, which is more than sufficient for a single HTML file and (later) GFS2 metadata. ---- [root@pcmk-1 ~]# vgdisplay | grep -e Name -e Free VG Name centos_pcmk-1 Free PE / Size 382 / 1.49 GiB [root@pcmk-1 ~]# lvcreate --name drbd-demo --size 1G centos_pcmk-1 Logical volume "drbd-demo" created [root@pcmk-1 ~]# lvs LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert drbd-demo centos_pcmk-1 -wi-a----- 1.00g root centos_pcmk-1 -wi-ao---- 5.00g swap centos_pcmk-1 -wi-ao---- 1.00g ---- Repeat for the second node, making sure to use the same size: ---- [root@pcmk-1 ~]# ssh pcmk-2 -- lvcreate --name drbd-demo --size 1G centos_pcmk-2 Logical volume "drbd-demo" created ---- == Configure DRBD == There is no series of commands for building a DRBD configuration, so simply run this on both nodes to use this sample configuration: ---- # cat </etc/drbd.d/wwwdata.res resource wwwdata { protocol C; meta-disk internal; device /dev/drbd1; syncer { verify-alg sha1; } net { allow-two-primaries; } on pcmk-1 { disk /dev/centos_pcmk-1/drbd-demo; address 192.168.122.101:7789; } on pcmk-2 { disk /dev/centos_pcmk-2/drbd-demo; address 192.168.122.102:7789; } } END ---- [IMPORTANT] ========= Edit the file to use the hostnames, IP addresses and logical volume paths of your nodes if they differ from the ones used in this guide. ========= [NOTE] ======= Detailed information on the directives used in this configuration (and other alternatives) is available at http://www.drbd.org/users-guide/ch-configure.html The *allow-two-primaries* option would not normally be used in an active/passive cluster. We are adding it here for the convenience of changing to an active/active cluster later. ======= == Initialize DRBD == With the configuration in place, we can now get DRBD running. These commands create the local metadata for the DRBD resource, ensure the DRBD kernel module is loaded, and bring up the DRBD resource. Run them on one node: ---- [root@pcmk-1 ~]# drbdadm create-md wwwdata initializing activity log NOT initializing bitmap Writing meta data... New drbd meta data block successfully created. [root@pcmk-1 ~]# modprobe drbd [root@pcmk-1 ~]# drbdadm up wwwdata ---- We can confirm DRBD's status on this node: ---- [root@pcmk-1 ~]# cat /proc/drbd version: 8.4.6 (api:1/proto:86-101) GIT-hash: 833d830e0152d1e457fa7856e71e11248ccf3f70 build by phil@Build64R7, 2015-04-10 05:13:52 1: cs:WFConnection ro:Secondary/Unknown ds:Inconsistent/DUnknown C r----s ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:1048508 ---- Because we have not yet initialized the data, this node's data is marked as *Inconsistent*. Because we have not yet initialized the second node, the local state is *WFConnection* (waiting for connection), and the partner node's status is marked as *Unknown*. Now, repeat the above commands on the second node. This time, when we check the status, it shows: ---- [root@pcmk-2 ~]# cat /proc/drbd version: 8.4.6 (api:1/proto:86-101) GIT-hash: 833d830e0152d1e457fa7856e71e11248ccf3f70 build by phil@Build64R7, 2015-04-10 05:13:52 1: cs:Connected ro:Secondary/Secondary ds:Inconsistent/Inconsistent C r----- ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:1048508 ---- You can see the state has changed to *Connected*, meaning the two DRBD nodes are communicating properly, and both nodes are in *Secondary* role with *Inconsistent* data. To make the data consistent, we need to tell DRBD which node should be considered to have the correct data. In this case, since we are creating a new resource, both have garbage, so we'll just pick pcmk-1 and run this command on it: ---- [root@pcmk-1 ~]# drbdadm primary --force wwwdata ---- [NOTE] ====== If you are using an older version of DRBD, the required syntax may be different. See the documentation for your version for how to perform these commands. ====== If we check the status immediately, we'll see something like this: ---- [root@pcmk-1 ~]# cat /proc/drbd version: 8.4.6 (api:1/proto:86-101) GIT-hash: 833d830e0152d1e457fa7856e71e11248ccf3f70 build by phil@Build64R7, 2015-04-10 05:13:52 1: cs:SyncSource ro:Primary/Secondary ds:UpToDate/Inconsistent C r----- ns:2872 nr:0 dw:0 dr:3784 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:1045636 [>....................] sync'ed: 0.4% (1045636/1048508)K finish: 0:10:53 speed: 1,436 (1,436) K/sec ---- We can see that this node has the *Primary* role, the partner node has the *Secondary* role, this node's data is now considered *UpToDate*, the partner node's data is still *Inconsistent*, and a progress bar shows how far along the partner node is in synchronizing the data. After a while, the sync should finish, and you'll see something like: ---- [root@pcmk-1 ~]# cat /proc/drbd version: 8.4.6 (api:1/proto:86-101) GIT-hash: 833d830e0152d1e457fa7856e71e11248ccf3f70 build by phil@Build64R7, 2015-04-10 05:13:52 1: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r----- ns:1048508 nr:0 dw:0 dr:1049420 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:0 ---- Both sets of data are now *UpToDate*, and we can proceed to creating and populating a filesystem for our WebSite resource's documents. == Populate the DRBD Disk == On the node with the primary role (pcmk-1 in this example), create a filesystem on the DRBD device: ---- [root@pcmk-1 ~]# mkfs.xfs /dev/drbd1 meta-data=/dev/drbd1 isize=256 agcount=4, agsize=65532 blks = sectsz=512 attr=2, projid32bit=1 = crc=0 finobt=0 data = bsize=4096 blocks=262127, imaxpct=25 = sunit=0 swidth=0 blks naming =version 2 bsize=4096 ascii-ci=0 ftype=0 log =internal log bsize=4096 blocks=853, version=2 = sectsz=512 sunit=0 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 ---- [NOTE] ==== In this example, we create an xfs filesystem with no special options. In a production environment, you should choose a filesystem type and options that are suitable for your application. ==== Mount the newly created filesystem, populate it with our web document, give it the same SELinux policy as the web document root, then unmount it (the cluster will handle mounting and unmounting it later): ---- [root@pcmk-1 ~]# mount /dev/drbd1 /mnt [root@pcmk-1 ~]# cat <<-END >/mnt/index.html My Test Site - DRBD END [root@pcmk-1 ~]# chcon -R --reference=/var/www/html /mnt [root@pcmk-1 ~]# umount /dev/drbd1 ---- == Configure the Cluster for the DRBD device == One handy feature `pcs` has is the ability to queue up several changes -into a file and commit those changes atomically. To do this, start by +into a file and commit those changes all at once. To do this, start by populating the file with the current raw XML config from the CIB. ---- [root@pcmk-1 ~]# pcs cluster cib drbd_cfg ---- Using the `pcs -f` option, make changes to the configuration saved in the +drbd_cfg+ file. These changes will not be seen by the cluster until the +drbd_cfg+ file is pushed into the live cluster's CIB later. Here, we create a cluster resource for the DRBD device, and an additional _clone_ resource to allow the resource to run on both nodes at the same time. ---- [root@pcmk-1 ~]# pcs -f drbd_cfg resource create WebData ocf:linbit:drbd \ drbd_resource=wwwdata op monitor interval=60s [root@pcmk-1 ~]# pcs -f drbd_cfg resource master WebDataClone WebData \ master-max=1 master-node-max=1 clone-max=2 clone-node-max=1 \ notify=true [root@pcmk-1 ~]# pcs -f drbd_cfg resource show ClusterIP (ocf::heartbeat:IPaddr2): Started WebSite (ocf::heartbeat:apache): Started Master/Slave Set: WebDataClone [WebData] Stopped: [ pcmk-1 pcmk-2 ] ---- After you are satisfied with all the changes, you can commit them all at once by pushing the drbd_cfg file into the live CIB. ---- [root@pcmk-1 ~]# pcs cluster cib-push drbd_cfg CIB updated ---- [NOTE] ==== Early versions of `pcs` required `push cib` in place of `cib-push` above. ==== Let's see what the cluster did with the new configuration: ---- [root@pcmk-1 ~]# pcs status Cluster name: mycluster Last updated: Fri Aug 14 09:29:41 2015 Last change: Fri Aug 14 09:29:25 2015 Stack: corosync Current DC: pcmk-1 (1) - partition with quorum Version: 1.1.12-a14efad 2 Nodes configured 4 Resources configured Online: [ pcmk-1 pcmk-2 ] Full list of resources: ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-1 WebSite (ocf::heartbeat:apache): Started pcmk-1 Master/Slave Set: WebDataClone [WebData] Masters: [ pcmk-1 ] Slaves: [ pcmk-2 ] PCSD Status: pcmk-1: Online pcmk-2: Online Daemon Status: corosync: active/disabled pacemaker: active/disabled pcsd: active/enabled ---- We can see that *WebDataClone* (our DRBD device) is running as master (DRBD's primary role) on *pcmk-1* and slave (DRBD's secondary role) on *pcmk-2*. [IMPORTANT] ==== The resource agent should load the DRBD module when needed if it's not already loaded. If that does not happen, configure your operating system to load the module at boot time. For &DISTRO; &DISTRO_VERSION;, you would run this on both nodes: ---- # echo drbd >/etc/modules-load.d/drbd.conf ---- ==== == Configure the Cluster for the Filesystem == Now that we have a working DRBD device, we need to mount its filesystem. In addition to defining the filesystem, we also need to tell the cluster where it can be located (only on the DRBD Primary) and when it is allowed to start (after the Primary was promoted). We are going to take a shortcut when creating the resource this time. Instead of explicitly saying we want the *ocf:heartbeat:Filesystem* script, we are only going to ask for *Filesystem*. We can do this because we know there is only one resource script named *Filesystem* available to pacemaker, and that pcs is smart enough to fill in the *ocf:heartbeat:* portion for us correctly in the configuration. If there were multiple *Filesystem* scripts from different OCF providers, we would need to specify the exact one we wanted. Once again, we will queue our changes to a file and then push the new configuration to the cluster as the final step. ---- [root@pcmk-1 ~]# pcs cluster cib fs_cfg [root@pcmk-1 ~]# pcs -f fs_cfg resource create WebFS Filesystem \ device="/dev/drbd1" directory="/var/www/html" fstype="xfs" [root@pcmk-1 ~]# pcs -f fs_cfg constraint colocation add WebFS with WebDataClone INFINITY with-rsc-role=Master [root@pcmk-1 ~]# pcs -f fs_cfg constraint order promote WebDataClone then start WebFS Adding WebDataClone WebFS (kind: Mandatory) (Options: first-action=promote then-action=start) ---- We also need to tell the cluster that Apache needs to run on the same machine as the filesystem and that it must be active before Apache can start. ---- [root@pcmk-1 ~]# pcs -f fs_cfg constraint colocation add WebSite with WebFS INFINITY [root@pcmk-1 ~]# pcs -f fs_cfg constraint order WebFS then WebSite Adding WebFS WebSite (kind: Mandatory) (Options: first-action=start then-action=start) ---- Review the updated configuration. ---- [root@pcmk-1 ~]# pcs -f fs_cfg constraint Location Constraints: Ordering Constraints: start ClusterIP then start WebSite (kind:Mandatory) promote WebDataClone then start WebFS (kind:Mandatory) start WebFS then start WebSite (kind:Mandatory) Colocation Constraints: WebSite with ClusterIP (score:INFINITY) WebFS with WebDataClone (score:INFINITY) (with-rsc-role:Master) WebSite with WebFS (score:INFINITY) ---- ---- [root@pcmk-1 ~]# pcs -f fs_cfg resource show ClusterIP (ocf::heartbeat:IPaddr2): Started WebSite (ocf::heartbeat:apache): Started Master/Slave Set: WebDataClone [WebData] Masters: [ pcmk-1 ] Slaves: [ pcmk-2 ] WebFS (ocf::heartbeat:Filesystem): Stopped ---- After reviewing the new configuration, upload it and watch the cluster put it into effect. ---- [root@pcmk-1 ~]# pcs cluster cib-push fs_cfg [root@pcmk-1 ~]# pcs status Last updated: Fri Aug 14 09:34:11 2015 Last change: Fri Aug 14 09:34:09 2015 Stack: corosync Current DC: pcmk-1 (1) - partition with quorum Version: 1.1.12-a14efad 2 Nodes configured 5 Resources configured Online: [ pcmk-1 pcmk-2 ] Full list of resources: ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-1 WebSite (ocf::heartbeat:apache): Started pcmk-1 Master/Slave Set: WebDataClone [WebData] Masters: [ pcmk-1 ] Slaves: [ pcmk-2 ] WebFS (ocf::heartbeat:Filesystem): Started pcmk-1 PCSD Status: pcmk-1: Online pcmk-2: Online Daemon Status: corosync: active/disabled pacemaker: active/disabled pcsd: active/enabled ---- == Test Cluster Failover == Previously, we used `pcs cluster stop pcmk-1` to stop all cluster services on *pcmk-1*, failing over the cluster resources, but there is another way to safely simulate node failure. We can put the node into _standby mode_. Nodes in this state continue to run corosync and pacemaker but are not allowed to run resources. Any resources found active there will be moved elsewhere. This feature can be particularly useful when performing system administration tasks such as updating packages used by cluster resources. Put the active node into standby mode, and observe the cluster move all the resources to the other node. The node's status will change to indicate that it can no longer host resources. ---- [root@pcmk-1 ~]# pcs cluster standby pcmk-1 [root@pcmk-1 ~]# pcs status Cluster name: mycluster Last updated: Fri Aug 14 09:36:49 2015 Last change: Fri Aug 14 09:36:43 2015 Stack: corosync Current DC: pcmk-1 (1) - partition with quorum Version: 1.1.12-a14efad 2 Nodes configured 5 Resources configured Node pcmk-1 (1): standby Online: [ pcmk-2 ] Full list of resources: ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-2 WebSite (ocf::heartbeat:apache): Started pcmk-2 Master/Slave Set: WebDataClone [WebData] Masters: [ pcmk-2 ] Stopped: [ pcmk-1 ] WebFS (ocf::heartbeat:Filesystem): Started pcmk-2 PCSD Status: pcmk-1: Online pcmk-2: Online Daemon Status: corosync: active/disabled pacemaker: active/disabled pcsd: active/enabled ---- Once we've done everything we needed to on pcmk-1 (in this case nothing, we just wanted to see the resources move), we can allow the node to be a full cluster member again. ---- [root@pcmk-1 ~]# pcs cluster unstandby pcmk-1 [root@pcmk-1 ~]# pcs status Cluster name: mycluster Last updated: Fri Aug 14 09:38:02 2015 Last change: Fri Aug 14 09:37:56 2015 Stack: corosync Current DC: pcmk-1 (1) - partition with quorum Version: 1.1.12-a14efad 2 Nodes configured 5 Resources configured Online: [ pcmk-1 pcmk-2 ] Full list of resources: ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-2 WebSite (ocf::heartbeat:apache): Started pcmk-2 Master/Slave Set: WebDataClone [WebData] Masters: [ pcmk-2 ] Slaves: [ pcmk-1 ] WebFS (ocf::heartbeat:Filesystem): Started pcmk-2 PCSD Status: pcmk-1: Online pcmk-2: Online Daemon Status: corosync: active/disabled pacemaker: active/disabled pcsd: active/enabled ---- Notice that *pcmk-1* is back to the *Online* state, and that the cluster resources stay where they are due to our resource stickiness settings configured earlier. diff --git a/doc/Clusters_from_Scratch/en-US/Ch-Tools.txt b/doc/Clusters_from_Scratch/en-US/Ch-Tools.txt index 7ff4012a1e..7b53547ad6 100644 --- a/doc/Clusters_from_Scratch/en-US/Ch-Tools.txt +++ b/doc/Clusters_from_Scratch/en-US/Ch-Tools.txt @@ -1,114 +1,114 @@ = Pacemaker Tools = == Simplify administration using a cluster shell == In the dark past, configuring Pacemaker required the administrator to read and write XML. In true UNIX style, there were also a number of different commands that specialized in different aspects of querying and updating the cluster. All of that has been greatly simplified with the creation of unified command-line shells (and GUIs) that hide all the messy XML scaffolding. These shells take all the individual aspects required for managing and configuring a cluster, and pack them into one simple-to-use command line tool. They even allow you to queue up several changes at once and commit -them atomically. +them all at once. Two popular command-line shells are `pcs` and `crmsh`. This edition of Clusters from Scratch is based on `pcs`. [NOTE] =========== The two shells share many concepts but the scope, layout and syntax does differ, so make sure you read the version of this guide that corresponds to the software installed on your system. =========== == Explore pcs == Start by taking some time to familiarize yourself with what `pcs` can do. ---- [root@pcmk-1 ~]# pcs Usage: pcs [-f file] [-h] [commands]... Control and configure pacemaker and corosync. Options: -h, --help Display usage and exit -f file Perform actions on file instead of active CIB --debug Print all network traffic and external commands run --version Print pcs version information Commands: cluster Configure cluster options and nodes resource Manage cluster resources stonith Configure fence devices constraint Set resource constraints property Set pacemaker properties acl Set pacemaker access control lists status View cluster status config View and manage cluster configuration ---- As you can see, the different aspects of cluster management are separated into categories: resource, cluster, stonith, property, constraint, and status. To discover the functionality available in each of these categories, one can issue the command +pcs pass:[category] help+. Below is an example of all the options available under the status category. ---- [root@pcmk-1 ~]# pcs status help Usage: pcs status [commands]... View current cluster and resource status Commands: [status] [--full] View all information about the cluster and resources (--full provides more details) resources View current status of cluster resources groups View currently configured groups and their resources cluster View current cluster status corosync View current membership information as seen by corosync nodes [corosync|both|config] View current status of nodes from pacemaker. If 'corosync' is specified, print nodes currently configured in corosync, if 'both' is specified, print nodes from both corosync & pacemaker. If 'config' is specified, print nodes from corosync & pacemaker configuration. pcsd ... Show the current status of pcsd on the specified nodes xml View xml version of status (output from crm_mon -r -1 -X) ---- Additionally, if you are interested in the version and supported cluster stack(s) available with your Pacemaker installation, run: ---- [root@pcmk-1 ~]# pacemakerd --features Pacemaker 1.1.12 (Build: a14efad) Supporting v3.0.9: generated-manpages agent-manpages ascii-docs publican-docs ncurses libqb-logging libqb-ipc upstart systemd nagios corosync-native atomic-attrd acls ---- [NOTE] ====== If the SNMP and/or email options are not listed, then Pacemaker was not built to support them. This may be by the choice of your distribution, or the required libraries may not have been available. Please contact whoever supplied you with the packages for more details. ====== diff --git a/doc/Pacemaker_Explained/en-US/Ch-Basics.txt b/doc/Pacemaker_Explained/en-US/Ch-Basics.txt index 69b74e2886..9bfbf8a60c 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Basics.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Basics.txt @@ -1,394 +1,394 @@ = Configuration Basics = == Configuration Layout == The cluster is defined by the Cluster Information Base (CIB), which uses XML notation. The simplest CIB, an empty one, looks like this: .An empty configuration ====== [source,XML] ------- ------- ====== The empty configuration above contains the major sections that make up a CIB: * +cib+: The entire CIB is enclosed with a +cib+ tag. Certain fundamental settings are defined as attributes of this tag. ** +configuration+: This section -- the primary focus of this document -- contains traditional configuration information such as what resources the cluster serves and the relationships among them. *** +crm_config+: cluster-wide configuration options *** +nodes+: the machines that host the cluster *** +resources+: the services run by the cluster *** +constraints+: indications of how resources should be placed ** +status+: This section contains the history of each resource on each node. Based on this data, the cluster can construct the complete current state of the cluster. The authoritative source for this section is the local resource manager (lrmd process) on each cluster node, and the cluster will occasionally repopulate the entire section. For this reason, it is never written to disk, and administrators are advised against modifying it in any way. In this document, configuration settings will be described as 'properties' or 'options' based on how they are defined in the CIB: * Properties are XML attributes of an XML element. * Options are name-value pairs expressed as +nvpair+ child elements of an XML element. Normally you will use command-line tools that abstract the XML, so the distinction will be unimportant; both properties and options are cluster settings you can tweak. == The Current State of the Cluster == Before one starts to configure a cluster, it is worth explaining how to view the finished product. For this purpose we have created the `crm_mon` utility, which will display the current state of an active cluster. It can show the cluster status by node or by resource and can be used in either single-shot or dynamically-updating mode. There are also modes for displaying a list of the operations performed (grouped by node and resource) as well as information about failures. Using this tool, you can examine the state of the cluster for irregularities and see how it responds when you cause or simulate failures. Details on all the available options can be obtained using the `crm_mon --help` command. .Sample output from crm_mon ====== ------- ============ Last updated: Fri Nov 23 15:26:13 2007 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec) 3 Nodes configured. 5 Resources configured. ============ Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1 192.168.100.182 (heartbeat:IPaddr): Started sles-1 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1 child_DoFencing:2 (stonith:external/vmware): Started sles-1 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3 child_DoFencing:0 (stonith:external/vmware): Started sles-3 ------- ====== .Sample output from crm_mon -n ====== ------- ============ Last updated: Fri Nov 23 15:26:13 2007 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec) 3 Nodes configured. 5 Resources configured. ============ Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online Resource Group: group-1 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1 192.168.100.182 (heartbeat:IPaddr): Started sles-1 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3 Clone Set: DoFencing child_DoFencing:0 (stonith:external/vmware): Started sles-3 child_DoFencing:1 (stonith:external/vmware): Stopped child_DoFencing:2 (stonith:external/vmware): Started sles-1 ------- ====== The DC (Designated Controller) node is where all the decisions are made, and if the current DC fails a new one is elected from the remaining cluster nodes. The choice of DC is of no significance to an administrator beyond the fact that its logs will generally be more interesting. == How Should the Configuration be Updated? == There are three basic rules for updating the cluster configuration: * Rule 1 - Never edit the +cib.xml+ file manually. Ever. I'm not making this up. * Rule 2 - Read Rule 1 again. * Rule 3 - The cluster will notice if you ignored rules 1 & 2 and refuse to use the configuration. Now that it is clear how 'not' to update the configuration, we can begin to explain how you 'should'. === Editing the CIB Using XML === The most powerful tool for modifying the configuration is the +cibadmin+ command. With +cibadmin+, you can query, add, remove, update or replace any part of the configuration. All changes take effect immediately, so there is no need to perform a reload-like operation. The simplest way of using `cibadmin` is to use it to save the current configuration to a temporary file, edit that file with your favorite text or XML editor, and then upload the revised configuration. footnote:[This process might appear to risk overwriting changes that happen after the initial cibadmin call, but pacemaker will reject any update that is "too old". If the CIB is updated in some other fashion after the initial cibadmin, the second cibadmin will be rejected because the version number will be too low.] .Safely using an editor to modify the cluster configuration ====== -------- # cibadmin --query > tmp.xml # vi tmp.xml # cibadmin --replace --xml-file tmp.xml -------- ====== Some of the better XML editors can make use of a Relax NG schema to help make sure any changes you make are valid. The schema describing the configuration can be found in +pacemaker.rng+, which may be deployed in a location such as +/usr/share/pacemaker+ or +/usr/lib/heartbeat+ depending on your operating system and how you installed the software. If you want to modify just one section of the configuration, you can query and replace just that section to avoid modifying any others. .Safely using an editor to modify only the resources section ====== -------- # cibadmin --query --scope resources > tmp.xml # vi tmp.xml # cibadmin --replace --scope resources --xml-file tmp.xml -------- ====== === Quickly Deleting Part of the Configuration === Identify the object you wish to delete by XML tag and id. For example, you might search the CIB for all STONITH-related configuration: .Searching for STONITH-related configuration items ====== ---- # cibadmin -Q | grep stonith ---- ====== If you wanted to delete the +primitive+ tag with id +child_DoFencing+, you would run: ---- # cibadmin --delete --xml-text '' ---- === Updating the Configuration Without Using XML === Most tasks can be performed with one of the other command-line tools provided with pacemaker, avoiding the need to read or edit XML. To enable STONITH for example, one could run: ---- # crm_attribute --name stonith-enabled --update 1 ---- Or, to check whether *somenode* is allowed to run resources, there is: ---- # crm_standby --get-value --node somenode ---- Or, to find the current location of *my-test-rsc*, one can use: ---- # crm_resource --locate --resource my-test-rsc ---- Examples of using these tools for specific cases will be given throughout this document where appropriate. [NOTE] ==== Old versions of pacemaker (1.0.3 and earlier) had different command-line tool syntax. If you are using an older version, check your installed manual pages for the proper syntax to use. ==== [[s-config-sandboxes]] == Making Configuration Changes in a Sandbox == Often it is desirable to preview the effects of a series of changes -before updating the configuration atomically. For this purpose we +before updating the configuration all at once. For this purpose, we have created `crm_shadow` which creates a "shadow" copy of the configuration and arranges for all the command line tools to use it. To begin, simply invoke `crm_shadow --create` with the name of a configuration to create footnote:[Shadow copies are identified with a name, making it possible to have more than one.], and follow the simple on-screen instructions. [WARNING] ==== Read this section and the on-screen instructions carefully; failure to do so could result in destroying the cluster's active configuration! ==== .Creating and displaying the active sandbox ====== ---- # crm_shadow --create test Setting up shadow instance Type Ctrl-D to exit the crm_shadow shell shadow[test]: shadow[test] # crm_shadow --which test ---- ====== From this point on, all cluster commands will automatically use the shadow copy instead of talking to the cluster's active configuration. Once you have finished experimenting, you can either make the changes active via the `--commit` option, or discard them using the `--delete` option. Again, be sure to follow the on-screen instructions carefully! For a full list of `crm_shadow` options and commands, invoke it with the `--help` option. -.Using a sandbox to make multiple changes atomically, discard them and verify the real configuration is untouched +.Use sandbox to make multiple changes all at once, discard them, and verify real configuration is untouched ====== ---- shadow[test] # crm_failcount -r rsc_c001n01 -G scope=status name=fail-count-rsc_c001n01 value=0 shadow[test] # crm_standby --node c001n02 -v on shadow[test] # crm_standby --node c001n02 -G scope=nodes name=standby value=on shadow[test] # cibadmin --erase --force shadow[test] # cibadmin --query shadow[test] # crm_shadow --delete test --force Now type Ctrl-D to exit the crm_shadow shell shadow[test] # exit # crm_shadow --which No active shadow configuration defined # cibadmin -Q ---- ====== [[s-config-testing-changes]] == Testing Your Configuration Changes == We saw previously how to make a series of changes to a "shadow" copy of the configuration. Before loading the changes back into the cluster (e.g. `crm_shadow --commit mytest --force`), it is often advisable to simulate the effect of the changes with +crm_simulate+. For example: ---- # crm_simulate --live-check -VVVVV --save-graph tmp.graph --save-dotfile tmp.dot ---- This tool uses the same library as the live cluster to show what it would have done given the supplied input. Its output, in addition to a significant amount of logging, is stored in two files +tmp.graph+ and +tmp.dot+. Both files are representations of the same thing: the cluster's response to your changes. The graph file stores the complete transition from the existing cluster state to your desired new state, containing a list of all the actions, their parameters and their pre-requisites. Because the transition graph is not terribly easy to read, the tool also generates a Graphviz footnote:[Graph visualization software. See http://www.graphviz.org/ for details.] dot-file representing the same information. For information on the options supported by `crm_simulate`, use its `--help` option. .Interpreting the Graphviz output * Arrows indicate ordering dependencies * Dashed arrows indicate dependencies that are not present in the transition graph * Actions with a dashed border of any color do not form part of the transition graph * Actions with a green border form part of the transition graph * Actions with a red border are ones the cluster would like to execute but cannot run * Actions with a blue border are ones the cluster does not feel need to be executed * Actions with orange text are pseudo/pretend actions that the cluster uses to simplify the graph * Actions with black text are sent to the LRM * Resource actions have text of the form pass:[rsc]_pass:[action]_pass:[interval] pass:[node] * Any action depending on an action with a red border will not be able to execute. * Loops are _really_ bad. Please report them to the development team. === Small Cluster Transition === image::images/Policy-Engine-small.png["An example transition graph as represented by Graphviz",width="16cm",height="6cm",align="center"] In the above example, it appears that a new node, *pcmk-2*, has come online and that the cluster is checking to make sure *rsc1*, *rsc2* and *rsc3* are not already running there (Indicated by the *rscN_monitor_0* entries). Once it did that, and assuming the resources were not active there, it would have liked to stop *rsc1* and *rsc2* on *pcmk-1* and move them to *pcmk-2*. However, there appears to be some problem and the cluster cannot or is not permitted to perform the stop actions which implies it also cannot perform the start actions. For some reason the cluster does not want to start *rsc3* anywhere. === Complex Cluster Transition === image::images/Policy-Engine-big.png["Another, slightly more complex, transition graph that you're not expected to be able to read",width="16cm",height="20cm",align="center"] == Do I Need to Update the Configuration on All Cluster Nodes? == No. Any changes are immediately synchronized to the other active members of the cluster. To reduce bandwidth, the cluster only broadcasts the incremental updates that result from your changes and uses MD5 checksums to ensure that each copy is completely consistent.