diff --git a/doc/sphinx/Pacemaker_Explained/cluster-options.rst b/doc/sphinx/Pacemaker_Explained/cluster-options.rst
index 7848b2a876..6ebe5f38eb 100644
--- a/doc/sphinx/Pacemaker_Explained/cluster-options.rst
+++ b/doc/sphinx/Pacemaker_Explained/cluster-options.rst
@@ -1,932 +1,936 @@
Cluster-Wide Configuration
--------------------------
.. index::
pair: XML element; cib
pair: XML element; configuration
Configuration Layout
####################
The cluster is defined by the Cluster Information Base (CIB), which uses XML
notation. The simplest CIB, an empty one, looks like this:
.. topic:: An empty configuration
.. code-block:: xml
The empty configuration above contains the major sections that make up a CIB:
* ``cib``: The entire CIB is enclosed with a ``cib`` element. Certain
fundamental settings are defined as attributes of this element.
* ``configuration``: This section -- the primary focus of this document --
contains traditional configuration information such as what resources the
cluster serves and the relationships among them.
* ``crm_config``: cluster-wide configuration options
* ``nodes``: the machines that host the cluster
* ``resources``: the services run by the cluster
* ``constraints``: indications of how resources should be placed
* ``status``: This section contains the history of each resource on each
node. Based on this data, the cluster can construct the complete current
state of the cluster. The authoritative source for this section is the
local executor (pacemaker-execd process) on each cluster node, and the
cluster will occasionally repopulate the entire section. For this reason,
it is never written to disk, and administrators are advised against
modifying it in any way.
In this document, configuration settings will be described as properties or
options based on how they are defined in the CIB:
* Properties are XML attributes of an XML element.
* Options are name-value pairs expressed as ``nvpair`` child elements of an XML
element.
Normally, you will use command-line tools that abstract the XML, so the
distinction will be unimportant; both properties and options are cluster
settings you can tweak.
Options can appear within four types of enclosing elements:
* ``cluster_property_set``
* ``instance_attributes``
* ``meta_attributes``
* ``utilization``
We will refer to a set of options and its enclosing element as a *block*.
.. list-table:: **Properties of an Option Block's Enclosing Element**
:class: longtable
:widths: 2 2 3 5
:header-rows: 1
* - Name
- Type
- Default
- Description
* - .. _option_block_id:
.. index::
pair: id; cluster_property_set
pair: id; instance_attributes
pair: id; meta_attributes
pair: id; utilization
single: attribute; id (cluster_property_set)
single: attribute; id (instance_attributes)
single: attribute; id (meta_attributes)
single: attribute; id (utilization)
id
- :ref:`id `
-
- A unique name for the block (required)
* - .. _option_block_score:
.. index::
pair: score; cluster_property_set
pair: score; instance_attributes
pair: score; meta_attributes
pair: score; utilization
single: attribute; score (cluster_property_set)
single: attribute; score (instance_attributes)
single: attribute; score (meta_attributes)
single: attribute; score (utilization)
score
- :ref:`score `
- 0
- Priority with which to process the block
Each block may optionally contain a :ref:`rule `.
.. _option_precedence:
Option Precedence
#################
This subsection describes the precedence of options within a set of blocks and
within a single block.
Options are processed as follows:
* All option blocks of a given type are processed in order of their ``score``
attribute, from highest to lowest. For ``cluster_property_set``, if there is a
block whose enclosing element has ``id="cib-bootstrap-options"``, then that
block is always processed first regardless of score.
* If a block contains a rule that evaluates to false, that block is skipped.
* Within a block, options are processed in order from first to last.
* The first value found for a given option is applied, and the rest are ignored.
Note that this means it is pointless to configure the same option twice in a
single block, because occurrences after the first one would be ignored.
For example, in the following configuration snippet, the ``no-quorum-policy``
value ``demote`` is applied. ``property-set2`` has a higher score than
``property-set1``, so it's processed first. There are no rules in this snippet,
so both sets are processed. Within ``property-set2``, the value ``demote``
appears first, so the later value ``freeze`` is ignored. We've already found a
value for ``no-quorum-policy`` before we begin processing ``property-set1``, so
its value ``stop`` is ignored.
.. code-block:: xml
CIB Properties
##############
Certain settings are defined by CIB properties (that is, attributes of the
``cib`` tag) rather than with the rest of the cluster configuration in the
``configuration`` section.
The reason is simply a matter of parsing. These options are used by the
configuration database which is, by design, mostly ignorant of the content it
holds. So the decision was made to place them in an easy-to-find location.
.. list-table:: **CIB Properties**
:class: longtable
:widths: 2 2 2 5
:header-rows: 1
* - Name
- Type
- Default
- Description
* - .. _admin_epoch:
.. index::
pair: admin_epoch; cib
admin_epoch
- :ref:`nonnegative integer `
- 0
- When a node joins the cluster, the cluster asks the node with the
highest (``admin_epoch``, ``epoch``, ``num_updates``) tuple to replace
the configuration on all the nodes -- which makes setting them correctly
very important. ``admin_epoch`` is never modified by the cluster; you
can use this to make the configurations on any inactive nodes obsolete.
* - .. _epoch:
.. index::
pair: epoch; cib
epoch
- :ref:`nonnegative integer `
- 0
- The cluster increments this every time the CIB's configuration section
is updated.
* - .. _num_updates:
.. index::
pair: num_updates; cib
num_updates
- :ref:`nonnegative integer `
- 0
- The cluster increments this every time the CIB's configuration or status
sections are updated, and resets it to 0 when epoch changes.
* - .. _validate_with:
.. index::
pair: validate-with; cib
validate-with
- :ref:`enumeration `
-
- Determines the type of XML validation that will be done on the
configuration. Allowed values are ``none`` (in which case the cluster
will not require that updates conform to expected syntax) and the base
names of schema files installed on the local machine (for example,
"pacemaker-3.9")
* - .. _remote_tls_port:
.. index::
pair: remote-tls-port; cib
remote-tls-port
- :ref:`port `
-
- If set, the CIB manager will listen for anonymously encrypted remote
connections on this port, to allow CIB administration from hosts not in
the cluster. No key is used, so this should be used only on a protected
network where man-in-the-middle attacks can be avoided.
* - .. _remote_clear_port:
.. index::
pair: remote-clear-port; cib
remote-clear-port
- :ref:`port `
-
- If set to a TCP port number, the CIB manager will listen for remote
connections on this port, to allow for CIB administration from hosts not
in the cluster. No encryption is used, so this should be used only on a
protected network.
* - .. _cib_last_written:
.. index::
pair: cib-last-written; cib
cib-last-written
- :ref:`date/time `
-
- Indicates when the configuration was last written to disk. Maintained by
the cluster; for informational purposes only.
* - .. _have_quorum:
.. index::
pair: have-quorum; cib
have-quorum
- :ref:`boolean `
-
- Indicates whether the cluster has quorum. If false, the cluster's
response is determined by ``no-quorum-policy`` (see below). Maintained
by the cluster.
* - .. _dc_uuid:
.. index::
pair: dc-uuid; cib
dc-uuid
- :ref:`text `
-
- Node ID of the cluster's current designated controller (DC). Used and
maintained by the cluster.
* - .. _execution_date:
.. index::
pair: execution-date; cib
execution-date
- :ref:`epoch time `
-
- Time to use when evaluating rules.
.. _cluster_options:
Cluster Options
###############
Cluster options, as you might expect, control how the cluster behaves when
confronted with various situations.
They are grouped into sets within the ``crm_config`` section. In advanced
configurations, there may be more than one set. (This will be described later
in the chapter on :ref:`rules` where we will show how to have the cluster use
different sets of options during working hours than during weekends.) For now,
we will describe the simple case where each option is present at most once.
You can obtain an up-to-date list of cluster options, including their default
values, by running the ``man pacemaker-schedulerd`` and
``man pacemaker-controld`` commands.
.. list-table:: **Cluster Options**
:class: longtable
:widths: 2 2 2 5
:header-rows: 1
* - Name
- Type
- Default
- Description
* - .. _cluster_name:
.. index::
pair: cluster option; cluster-name
cluster-name
- :ref:`text `
-
- An (optional) name for the cluster as a whole. This is mostly for users'
convenience for use as desired in administration, but can be used in the
Pacemaker configuration in :ref:`rules` (as the ``#cluster-name``
:ref:`node attribute `). It may also
be used by higher-level tools when displaying cluster information, and
by certain resource agents (for example, the ``ocf:heartbeat:GFS2``
agent stores the cluster name in filesystem meta-data).
* - .. _dc_version:
.. index::
pair: cluster option; dc-version
dc-version
- :ref:`version `
- *detected*
- Version of Pacemaker on the cluster's designated controller (DC).
Maintained by the cluster, and intended for diagnostic purposes.
* - .. _cluster_infrastructure:
.. index::
pair: cluster option; cluster-infrastructure
cluster-infrastructure
- :ref:`text `
- *detected*
- The messaging layer with which Pacemaker is currently running.
Maintained by the cluster, and intended for informational and diagnostic
purposes.
* - .. _no_quorum_policy:
.. index::
pair: cluster option; no-quorum-policy
no-quorum-policy
- :ref:`enumeration `
- stop
- What to do when the cluster does not have quorum. Allowed values:
* ``ignore:`` continue all resource management
* ``freeze:`` continue resource management, but don't recover resources
from nodes not in the affected partition
* ``stop:`` stop all resources in the affected cluster partition
* ``demote:`` demote promotable resources and stop all other resources
in the affected cluster partition *(since 2.0.5)*
* ``fence:`` fence all nodes in the affected cluster partition
*(since 2.1.9)*
* ``suicide:`` same as ``fence`` *(deprecated since 2.1.9)*
* - .. _batch_limit:
.. index::
pair: cluster option; batch-limit
batch-limit
- :ref:`integer `
- 0
- The maximum number of actions that the cluster may execute in parallel
across all nodes. The ideal value will depend on the speed and load
of your network and cluster nodes. If zero, the cluster will impose a
dynamically calculated limit only when any node has high load. If -1,
the cluster will not impose any limit.
* - .. _migration_limit:
.. index::
pair: cluster option; migration-limit
migration-limit
- :ref:`integer `
- -1
- The number of :ref:`live migration ` actions that the
cluster is allowed to execute in parallel on a node. A value of -1 means
unlimited.
* - .. _load_threshold:
.. index::
pair: cluster option; load-threshold
load-threshold
- :ref:`percentage `
- 80%
- Maximum amount of system load that should be used by cluster nodes. The
cluster will slow down its recovery process when the amount of system
resources used (currently CPU) approaches this limit.
* - .. _node_action_limit:
.. index::
pair: cluster option; node-action-limit
node-action-limit
- :ref:`integer `
- 0
- Maximum number of jobs that can be scheduled per node. If nonpositive or
invalid, double the number of cores is used as the maximum number of jobs
per node. :ref:`PCMK_node_action_limit `
overrides this option on a per-node basis.
* - .. _symmetric_cluster:
.. index::
pair: cluster option; symmetric-cluster
symmetric-cluster
- :ref:`boolean `
- true
- If true, resources can run on any node by default. If false, a resource
is allowed to run on a node only if a
:ref:`location constraint ` enables it.
* - .. _stop_all_resources:
.. index::
pair: cluster option; stop-all-resources
stop-all-resources
- :ref:`boolean `
- false
- Whether all resources should be disallowed from running (can be useful
during maintenance or troubleshooting)
* - .. _stop_orphan_resources:
.. index::
pair: cluster option; stop-orphan-resources
stop-orphan-resources
- :ref:`boolean `
- true
- Whether resources that have been deleted from the configuration should
be stopped. This value takes precedence over
:ref:`is-managed ` (that is, even unmanaged resources will
be stopped when orphaned if this value is ``true``).
* - .. _stop_orphan_actions:
.. index::
pair: cluster option; stop-orphan-actions
stop-orphan-actions
- :ref:`boolean `
- true
- Whether recurring :ref:`operations ` that have been deleted
from the configuration should be cancelled
* - .. _start_failure_is_fatal:
.. index::
pair: cluster option; start-failure-is-fatal
start-failure-is-fatal
- :ref:`boolean `
- true
- Whether a failure to start a resource on a particular node prevents
further start attempts on that node. If ``false``, the cluster will
decide whether the node is still eligible based on the resource's
current failure count and ``migration-threshold``.
* - .. _enable_startup_probes:
.. index::
pair: cluster option; enable-startup-probes
enable-startup-probes
- :ref:`boolean `
- true
- Whether the cluster should check the pre-existing state of resources
when the cluster starts
* - .. _maintenance_mode:
.. index::
pair: cluster option; maintenance-mode
maintenance-mode
- :ref:`boolean `
- false
- If true, the cluster will not start or stop any resource in the cluster,
and any recurring operations (expect those specifying ``role`` as
``Stopped``) will be paused. If true, this overrides the
:ref:`maintenance ` node attribute,
:ref:`is-managed ` and :ref:`maintenance `
resource meta-attributes, and :ref:`enabled ` operation
meta-attribute.
* - .. _stonith_enabled:
.. index::
pair: cluster option; stonith-enabled
stonith-enabled
- :ref:`boolean `
- true
- Whether the cluster is allowed to fence nodes (for example, failed nodes
and nodes with resources that can't be stopped).
If true, at least one fence device must be configured before resources
are allowed to run.
If false, unresponsive nodes are immediately assumed to be running no
resources, and resource recovery on online nodes starts without any
further protection (which can mean *data loss* if the unresponsive node
still accesses shared storage, for example). See also the
:ref:`requires ` resource meta-attribute.
+
+ This option applies only to fencing scheduled by the cluster, not to
+ requests initiated externally (such as with the ``stonith_admin``
+ command-line tool).
* - .. _stonith_action:
.. index::
pair: cluster option; stonith-action
stonith-action
- :ref:`enumeration `
- reboot
- Action the cluster should send to the fence agent when a node must be
fenced. Allowed values are ``reboot`` and ``off``.
* - .. _stonith_timeout:
.. index::
pair: cluster option; stonith-timeout
stonith-timeout
- :ref:`duration `
- 60s
- How long to wait for ``on``, ``off``, and ``reboot`` fence actions to
complete by default.
* - .. _stonith_max_attempts:
.. index::
pair: cluster option; stonith-max-attempts
stonith-max-attempts
- :ref:`score `
- 10
- How many times fencing can fail for a target before the cluster will no
longer immediately re-attempt it. Any value below 1 will be ignored, and
the default will be used instead.
* - .. _have_watchdog:
.. index::
pair: cluster option; have-watchdog
have-watchdog
- :ref:`boolean `
- *detected*
- Whether watchdog integration is enabled. This is set automatically by the
cluster according to whether SBD is detected to be in use.
User-configured values are ignored. The value `true` is meaningful if
diskless SBD is used and
:ref:`stonith-watchdog-timeout ` is nonzero. In
that case, if fencing is required, watchdog-based self-fencing will be
performed via SBD without requiring a fencing resource explicitly
configured.
* - .. _stonith_watchdog_timeout:
.. index::
pair: cluster option; stonith-watchdog-timeout
stonith-watchdog-timeout
- :ref:`timeout `
- 0
- If nonzero, and the cluster detects ``have-watchdog`` as ``true``, then
watchdog-based self-fencing will be performed via SBD when fencing is
required.
If this is set to a positive value, lost nodes are assumed to achieve
self-fencing within this much time.
This does not require a fencing resource to be explicitly configured,
though a fence_watchdog resource can be configured, to limit use to
specific nodes.
If this is set to 0 (the default), the cluster will never assume
watchdog-based self-fencing.
If this is set to a negative value, the cluster will use twice the local
value of the ``SBD_WATCHDOG_TIMEOUT`` environment variable if that is
positive, or otherwise treat this as 0.
**Warning:** When used, this timeout must be larger than
``SBD_WATCHDOG_TIMEOUT`` on all nodes that use watchdog-based SBD, and
Pacemaker will refuse to start on any of those nodes where this is not
true for the local value or SBD is not active. When this is set to a
negative value, ``SBD_WATCHDOG_TIMEOUT`` must be set to the same value
on all nodes that use SBD, otherwise data corruption or loss could occur.
* - .. _concurrent-fencing:
.. index::
pair: cluster option; concurrent-fencing
concurrent-fencing
- :ref:`boolean `
- false
- Whether the cluster is allowed to initiate multiple fence actions
concurrently. Fence actions initiated externally, such as via the
``stonith_admin`` tool or an application such as DLM, or by the fencer
itself such as recurring device monitors and ``status`` and ``list``
commands, are not limited by this option.
* - .. _fence_reaction:
.. index::
pair: cluster option; fence-reaction
fence-reaction
- :ref:`enumeration `
- stop
- How should a cluster node react if notified of its own fencing? A
cluster node may receive notification of a "succeeded" fencing that
targeted it if fencing is misconfigured, or if fabric fencing is in use
that doesn't cut cluster communication. Allowed values are ``stop`` to
attempt to immediately stop Pacemaker and stay stopped, or ``panic`` to
attempt to immediately reboot the local node, falling back to stop on
failure. The default is likely to be changed to ``panic`` in a future
release. *(since 2.0.3)*
* - .. _priority_fencing_delay:
.. index::
pair: cluster option; priority-fencing-delay
priority-fencing-delay
- :ref:`duration `
- 0
- Apply this delay to any fencing targeting the lost nodes with the
highest total resource priority in case we don't have the majority of
the nodes in our cluster partition, so that the more significant nodes
potentially win any fencing match (especially meaningful in a
split-brain of a 2-node cluster). A promoted resource instance takes the
resource's priority plus 1 if the resource's priority is not 0. Any
static or random delays introduced by ``pcmk_delay_base`` and
``pcmk_delay_max`` configured for the corresponding fencing resources
will be added to this delay. This delay should be significantly greater
than (safely twice) the maximum delay from those parameters. *(since
2.0.4)*
* - .. _node_pending_timeout:
.. index::
pair: cluster option; node-pending-timeout
node-pending-timeout
- :ref:`duration `
- 0
- Fence nodes that do not join the controller process group within this
much time after joining the cluster, to allow the cluster to continue
managing resources. A value of 0 means never fence pending nodes. Setting the value to 2h means fence nodes after 2 hours.
*(since 2.1.7)*
* - .. _cluster_delay:
.. index::
pair: cluster option; cluster-delay
cluster-delay
- :ref:`duration `
- 60s
- If the DC requires an action to be executed on another node, it will
consider the action failed if it does not get a response from the other
node within this time (beyond the action's own timeout). The ideal value
will depend on the speed and load of your network and cluster nodes.
* - .. _dc_deadtime:
.. index::
pair: cluster option; dc-deadtime
dc-deadtime
- :ref:`duration `
- 20s
- How long to wait for a response from other nodes when electing a DC. The
ideal value will depend on the speed and load of your network and
cluster nodes.
* - .. _cluster_ipc_limit:
.. index::
pair: cluster option; cluster-ipc-limit
cluster-ipc-limit
- :ref:`nonnegative integer `
- 500
- The maximum IPC message backlog before one cluster daemon will
disconnect another. This is of use in large clusters, for which a good
value is the number of resources in the cluster multiplied by the number
of nodes. The default of 500 is also the minimum. Raise this if you see
"Evicting client" log messages for cluster daemon process IDs.
* - .. _pe_error_series_max:
.. index::
pair: cluster option; pe-error-series-max
pe-error-series-max
- :ref:`integer `
- -1
- The number of scheduler inputs resulting in errors to save. These inputs
can be helpful during troubleshooting and when reporting issues. A
negative value means save all inputs, and 0 means save none.
* - .. _pe_warn_series_max:
.. index::
pair: cluster option; pe-warn-series-max
pe-warn-series-max
- :ref:`integer `
- 5000
- The number of scheduler inputs resulting in warnings to save. These
inputs can be helpful during troubleshooting and when reporting issues.
A negative value means save all inputs, and 0 means save none.
* - .. _pe_input_series_max:
.. index::
pair: cluster option; pe-input-series-max
pe-input-series-max
- :ref:`integer `
- 4000
- The number of "normal" scheduler inputs to save. These inputs can be
helpful during troubleshooting and when reporting issues. A negative
value means save all inputs, and 0 means save none.
* - .. _enable_acl:
.. index::
pair: cluster option; enable-acl
enable-acl
- :ref:`boolean `
- false
- Whether :ref:`access control lists ` should be used to authorize
CIB modifications
* - .. _placement_strategy:
.. index::
pair: cluster option; placement-strategy
placement-strategy
- :ref:`enumeration `
- default
- How the cluster should assign resources to nodes (see
:ref:`utilization`). Allowed values are ``default``, ``utilization``,
``balanced``, and ``minimal``.
* - .. _node_health_strategy:
.. index::
pair: cluster option; node-health-strategy
node-health-strategy
- :ref:`enumeration `
- none
- How the cluster should react to :ref:`node health `
attributes. Allowed values are ``none``, ``migrate-on-red``,
``only-green``, ``progressive``, and ``custom``.
* - .. _node_health_base:
.. index::
pair: cluster option; node-health-base
node-health-base
- :ref:`score `
- 0
- The base health score assigned to a node. Only used when
``node-health-strategy`` is ``progressive``.
* - .. _node_health_green:
.. index::
pair: cluster option; node-health-green
node-health-green
- :ref:`score `
- 0
- The score to use for a node health attribute whose value is ``green``.
Only used when ``node-health-strategy`` is ``progressive`` or
``custom``.
* - .. _node_health_yellow:
.. index::
pair: cluster option; node-health-yellow
node-health-yellow
- :ref:`score `
- 0
- The score to use for a node health attribute whose value is ``yellow``.
Only used when ``node-health-strategy`` is ``progressive`` or
``custom``.
* - .. _node_health_red:
.. index::
pair: cluster option; node-health-red
node-health-red
- :ref:`score `
- -INFINITY
- The score to use for a node health attribute whose value is ``red``.
Only used when ``node-health-strategy`` is ``progressive`` or
``custom``.
* - .. _cluster_recheck_interval:
.. index::
pair: cluster option; cluster-recheck-interval
cluster-recheck-interval
- :ref:`duration `
- 15min
- Pacemaker is primarily event-driven, and looks ahead to know when to
recheck the cluster for failure-timeout settings and most time-based
rules *(since 2.0.3)*. However, it will also recheck the cluster after
this amount of inactivity. This has three main effects:
* :ref:`Rules ` using ``date_spec`` are guaranteed to be checked
only this often.
* If :ref:`fencing ` fails enough to reach
:ref:`stonith-max-attempts `, attempts will
begin again after at most this time.
* It serves as a fail-safe in case of certain scheduler bugs. If the
scheduler incorrectly determines only some of the actions needed to
react to a particular event, it will often correctly determine the
rest after at most this time.
A value of 0 disables this polling.
* - .. _shutdown_lock:
.. index::
pair: cluster option; shutdown-lock
shutdown-lock
- :ref:`boolean `
- false
- The default of false allows active resources to be recovered elsewhere
when their node is cleanly shut down, which is what the vast majority of
users will want. However, some users prefer to make resources highly
available only for failures, with no recovery for clean shutdowns. If
this option is true, resources active on a node when it is cleanly shut
down are kept "locked" to that node (not allowed to run elsewhere) until
they start again on that node after it rejoins (or for at most
``shutdown-lock-limit``, if set). Stonith resources and Pacemaker Remote
connections are never locked. Clone and bundle instances and the
promoted role of promotable clones are currently never locked, though
support could be added in a future release. Locks may be manually
cleared using the ``--refresh`` option of ``crm_resource`` (both the
resource and node must be specified; this works with remote nodes if
their connection resource's ``target-role`` is set to ``Stopped``, but
not if Pacemaker Remote is stopped on the remote node without disabling
the connection resource). *(since 2.0.4)*
* - .. _shutdown_lock_limit:
.. index::
pair: cluster option; shutdown-lock-limit
shutdown-lock-limit
- :ref:`duration `
- 0
- If ``shutdown-lock`` is true, and this is set to a nonzero time
duration, locked resources will be allowed to start after this much time
has passed since the node shutdown was initiated, even if the node has
not rejoined. (This works with remote nodes only if their connection
resource's ``target-role`` is set to ``Stopped``.) *(since 2.0.4)*
* - .. _startup_fencing:
.. index::
pair: cluster option; startup-fencing
startup-fencing
- :ref:`boolean `
- true
- *Advanced Use Only:* Whether the cluster should fence unseen nodes at
start-up. Setting this to false is unsafe, because the unseen nodes
could be active and running resources but unreachable. ``dc-deadtime``
acts as a grace period before this fencing, since a DC must be elected
to schedule fencing.
* - .. _election_timeout:
.. index::
pair: cluster option; election-timeout
election-timeout
- :ref:`duration `
- 2min
- *Advanced Use Only:* If a winner is not declared within this much time
of starting an election, the node that initiated the election will
declare itself the winner.
* - .. _shutdown_escalation:
.. index::
pair: cluster option; shutdown-escalation
shutdown-escalation
- :ref:`duration `
- 20min
- *Advanced Use Only:* The controller will exit immediately if a shutdown
does not complete within this much time.
* - .. _join_integration_timeout:
.. index::
pair: cluster option; join-integration-timeout
join-integration-timeout
- :ref:`duration `
- 3min
- *Advanced Use Only:* If you need to adjust this value, it probably
indicates the presence of a bug.
* - .. _join_finalization_timeout:
.. index::
pair: cluster option; join-finalization-timeout
join-finalization-timeout
- :ref:`duration `
- 30min
- *Advanced Use Only:* If you need to adjust this value, it probably
indicates the presence of a bug.
* - .. _transition_delay:
.. index::
pair: cluster option; transition-delay
transition-delay
- :ref:`duration `
- 0s
- *Advanced Use Only:* Delay cluster recovery for the configured interval
to allow for additional or related events to occur. This can be useful
if your configuration is sensitive to the order in which ping updates
arrive. Enabling this option will slow down cluster recovery under all
conditions.