diff --git a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt index 9b8945d7ed..a8e38f214e 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Options.txt @@ -1,761 +1,757 @@ :compat-mode: legacy = Advanced Configuration = [[s-recurring-start]] == Specifying When Recurring Actions are Performed == By default, recurring actions are scheduled relative to when the resource started. So if your resource was last started at 14:32 and you have a backup set to be performed every 24 hours, then the backup will always run in the middle of the business day -- hardly desirable. To specify a date and time that the operation should be relative to, set the operation's +interval-origin+. The cluster uses this point to calculate the correct +start-delay+ such that the operation will occur at _origin + (interval * N)_. So, if the operation's interval is 24h, its interval-origin is set to 02:00 and it is currently 14:32, then the cluster would initiate the operation with a start delay of 11 hours and 28 minutes. If the resource is moved to another node before 2am, then the operation is cancelled. The value specified for +interval+ and +interval-origin+ can be any date/time conforming to the http://en.wikipedia.org/wiki/ISO_8601[ISO8601 standard]. By way of example, to specify an operation that would run on the first Monday of 2009 and every Monday after that, you would add: .Specifying a Base for Recurring Action Intervals ===== [source,XML] ===== [[s-failure-handling]] == Handling Resource Failure == By default, Pacemaker will attempt to recover failed resources by restarting them. However, failure recovery is highly configurable. === Failure Counts === Pacemaker tracks resource failures for each combination of node, resource, and operation (start, stop, monitor, etc.). You can query the fail count for a particular node, resource, and/or operation using the `crm_failcount` command. For example, to see how many times the 10-second monitor for +myrsc+ has failed on +node1+, run: ---- # crm_failcount --query -r myrsc -N node1 -n monitor -I 10s ---- If you omit the node, `crm_failcount` will use the local node. If you omit the operation and interval, `crm_failcount` will display the sum of the fail counts for all operations on the resource. You can use `crm_resource --cleanup` or `crm_failcount --delete` to clear fail counts. For example, to clear the above monitor failures, run: ---- # crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s ---- If you omit the resource, `crm_resource --cleanup` will clear failures for all resources. If you omit the node, it will clear failures on all nodes. If you omit the operation and interval, it will clear the failures for all operations on the resource. [NOTE] ==== Even when cleaning up only a single operation, all failed operations will disappear from the status display. This allows us to trigger a re-check of the resource's current status. ==== Higher-level tools may provide other commands for querying and clearing fail counts. The `crm_mon` tool shows the current cluster status, including any failed operations. To see the current fail counts for any failed resources, call `crm_mon` with the `--failcounts` option. This shows the fail counts per resource (that is, the sum of any operation fail counts for the resource). === Failure Response === Normally, if a running resource fails, pacemaker will try to stop it and start it again. Pacemaker will choose the best location to start it each time, which may be the same node that it failed on. However, if a resource fails repeatedly, it is possible that there is an underlying problem on that node, and you might desire trying a different node in such a case. Pacemaker allows you to set your preference via the +migration-threshold+ resource meta-attribute. footnote:[ The naming of this option was perhaps unfortunate as it is easily confused with live migration, the process of moving a resource from one node to another without stopping it. Xen virtual guests are the most common example of resources that can be migrated in this manner. ] If you define +migration-threshold=pass:[N]+ for a resource, it will be banned from the original node after 'N' failures. [NOTE] ==== The +migration-threshold+ is per 'resource', even though fail counts are tracked per 'operation'. The operation fail counts are added together to compare against the +migration-threshold+. ==== By default, fail counts remain until manually cleared by an administrator using `crm_resource --cleanup` or `crm_failcount --delete` (hopefully after first fixing the failure's cause). It is possible to have fail counts expire automatically by setting the +failure-timeout+ resource meta-attribute. [IMPORTANT] ==== A successful operation does not clear past failures. If a recurring monitor operation fails once, succeeds many times, then fails again days later, its fail count is 2. Fail counts are cleared only by manual intervention or falure timeout. ==== For example, a setting of +migration-threshold=2+ and +failure-timeout=60s+ would cause the resource to move to a new node after 2 failures, and allow it to move back (depending on stickiness and constraint scores) after one minute. [NOTE] ==== +failure-timeout+ is measured since the most recent failure. That is, older failures do not individually time out and lower the fail count. Instead, all failures are timed out simultaneously (and the fail count is reset to 0) if there is no new failure for the timeout period. ==== There are two exceptions to the migration threshold concept: when a resource either fails to start or fails to stop. If the cluster property +start-failure-is-fatal+ is set to +true+ (which is the default), start failures cause the fail count to be set to +INFINITY+ and thus always cause the resource to move immediately. Stop failures are slightly different and crucial. If a resource fails to stop and STONITH is enabled, then the cluster will fence the node in order to be able to start the resource elsewhere. If STONITH is not enabled, then the cluster has no way to continue and will not try to start the resource elsewhere, but will try to stop it again after the failure timeout. -[IMPORTANT] -Please read <> to understand how timeouts work -before configuring a +failure-timeout+. - == Moving Resources == indexterm:[Moving,Resources] indexterm:[Resource,Moving] === Moving Resources Manually === There are primarily two occasions when you would want to move a resource from its current location: when the whole node is under maintenance, and when a single resource needs to be moved. ==== Standby Mode ==== Since everything eventually comes down to a score, you could create constraints for every resource to prevent them from running on one node. While pacemaker configuration can seem convoluted at times, not even we would require this of administrators. Instead, one can set a special node attribute which tells the cluster "don't let anything run here". There is even a helpful tool to help query and set it, called `crm_standby`. To check the standby status of the current machine, run: ---- # crm_standby -G ---- A value of +on+ indicates that the node is _not_ able to host any resources, while a value of +off+ says that it _can_. You can also check the status of other nodes in the cluster by specifying the `--node` option: ---- # crm_standby -G --node sles-2 ---- To change the current node's standby status, use `-v` instead of `-G`: ---- # crm_standby -v on ---- Again, you can change another host's value by supplying a hostname with `--node`. A cluster node in standby mode will not run resources, but still contributes to quorum, and may fence or be fenced by nodes. ==== Moving One Resource ==== When only one resource is required to move, we could do this by creating location constraints. However, once again we provide a user-friendly shortcut as part of the `crm_resource` command, which creates and modifies the extra constraints for you. If +Email+ were running on +sles-1+ and you wanted it moved to a specific location, the command would look something like: ---- # crm_resource -M -r Email -H sles-2 ---- Behind the scenes, the tool will create the following location constraint: [source,XML] It is important to note that subsequent invocations of `crm_resource -M` are not cumulative. So, if you ran these commands ---- # crm_resource -M -r Email -H sles-2 # crm_resource -M -r Email -H sles-3 ---- then it is as if you had never performed the first command. To allow the resource to move back again, use: ---- # crm_resource -U -r Email ---- Note the use of the word _allow_. The resource can move back to its original location but, depending on +resource-stickiness+, it might stay where it is. To be absolutely certain that it moves back to +sles-1+, move it there before issuing the call to `crm_resource -U`: ---- # crm_resource -M -r Email -H sles-1 # crm_resource -U -r Email ---- Alternatively, if you only care that the resource should be moved from its current location, try: ---- # crm_resource -B -r Email ---- Which will instead create a negative constraint, like [source,XML] This will achieve the desired effect, but will also have long-term consequences. As the tool will warn you, the creation of a +-INFINITY+ constraint will prevent the resource from running on that node until `crm_resource -U` is used. This includes the situation where every other cluster node is no longer available! In some cases, such as when +resource-stickiness+ is set to +INFINITY+, it is possible that you will end up with the problem described in <>. The tool can detect some of these cases and deals with them by creating both positive and negative constraints. E.g. +Email+ prefers +sles-1+ with a score of +-INFINITY+ +Email+ prefers +sles-2+ with a score of +INFINITY+ which has the same long-term consequences as discussed earlier. === Moving Resources Due to Connectivity Changes === You can configure the cluster to move resources when external connectivity is lost in two steps. ==== Tell Pacemaker to Monitor Connectivity ==== First, add an *ocf:pacemaker:ping* resource to the cluster. The *ping* resource uses the system utility of the same name to a test whether list of machines (specified by DNS hostname or IPv4/IPv6 address) are reachable and uses the results to maintain a node attribute called +pingd+ by default. footnote:[ The attribute name is customizable, in order to allow multiple ping groups to be defined. ] [NOTE] =========== Older versions of Pacemaker used a different agent *ocf:pacemaker:pingd* which is now deprecated in favor of *ping*. If your version of Pacemaker does not contain the *ping* resource agent, download the latest version from https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping =========== Normally, the ping resource should run on all cluster nodes, which means that you'll need to create a clone. A template for this can be found below along with a description of the most interesting parameters. .Common Options for a 'ping' Resource [width="95%",cols="1m,<4",options="header",align="center"] |========================================================= |Field |Description |dampen |The time to wait (dampening) for further changes to occur. Use this to prevent a resource from bouncing around the cluster when cluster nodes notice the loss of connectivity at slightly different times. indexterm:[dampen,Ping Resource Option] indexterm:[Ping Resource,Option,dampen] |multiplier |The number of connected ping nodes gets multiplied by this value to get a score. Useful when there are multiple ping nodes configured. indexterm:[multiplier,Ping Resource Option] indexterm:[Ping Resource,Option,multiplier] |host_list |The machines to contact in order to determine the current connectivity status. Allowed values include resolvable DNS host names, IPv4 and IPv6 addresses. indexterm:[host_list,Ping Resource Option] indexterm:[Ping Resource,Option,host_list] |========================================================= .An example ping cluster resource that checks node connectivity once every minute ===== [source,XML] ------------ ------------ ===== [IMPORTANT] =========== You're only half done. The next section deals with telling Pacemaker how to deal with the connectivity status that +ocf:pacemaker:ping+ is recording. =========== ==== Tell Pacemaker How to Interpret the Connectivity Data ==== [IMPORTANT] ====== Before attempting the following, make sure you understand <>. ====== There are a number of ways to use the connectivity data. The most common setup is for people to have a single ping target (e.g. the service network's default gateway), to prevent the cluster from running a resource on any unconnected node. .Don't run a resource on unconnected nodes ===== [source,XML] ------- ------- ===== A more complex setup is to have a number of ping targets configured. You can require the cluster to only run resources on nodes that can connect to all (or a minimum subset) of them. .Run only on nodes connected to three or more ping targets. ===== [source,XML] ------- ... ... ... ------- ===== Alternatively, you can tell the cluster only to _prefer_ nodes with the best connectivity. Just be sure to set +multiplier+ to a value higher than that of +resource-stickiness+ (and don't set either of them to +INFINITY+). .Prefer the node with the most connected ping nodes ===== [source,XML] ------- ------- ===== It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into. For example, if *sles-1* is connected to all five ping nodes but *sles-2* is only connected to two, then it would be as if you instead had the following constraints in your configuration: .How the cluster translates the above location constraint ===== [source,XML] ------- ------- ===== The advantage is that you don't have to manually update any constraints whenever your network connectivity changes. You can also combine the concepts above into something even more complex. The example below shows how you can prefer the node with the most connected ping nodes provided they have connectivity to at least three (again assuming that +multiplier+ is set to 1000). .A more complex example of choosing a location based on connectivity ===== [source,XML] ------- ------- ===== [[s-migrating-resources]] === Migrating Resources === Normally, when the cluster needs to move a resource, it fully restarts the resource (i.e. stops the resource on the current node and starts it on the new node). However, some types of resources, such as Xen virtual guests, are able to move to another location without loss of state (often referred to as live migration or hot migration). In pacemaker, this is called resource migration. Pacemaker can be configured to migrate a resource when moving it, rather than restarting it. Not all resources are able to migrate; see the Migration Checklist below, and those that can, won't do so in all situations. Conceptually, there are two requirements from which the other prerequisites follow: * The resource must be active and healthy at the old location; and * everything required for the resource to run must be available on both the old and new locations. The cluster is able to accommodate both 'push' and 'pull' migration models by requiring the resource agent to support two special actions: +migrate_to+ (performed on the current location) and +migrate_from+ (performed on the destination). In push migration, the process on the current location transfers the resource to the new location where is it later activated. In this scenario, most of the work would be done in the +migrate_to+ action and, if anything, the activation would occur during +migrate_from+. Conversely for pull, the +migrate_to+ action is practically empty and +migrate_from+ does most of the work, extracting the relevant resource state from the old location and activating it. There is no wrong or right way for a resource agent to implement migration, as long as it works. .Migration Checklist * The resource may not be a clone. * The resource must use an OCF style agent. * The resource must not be in a failed or degraded state. * The resource agent must support +migrate_to+ and +migrate_from+ actions, and advertise them in its metadata. * The resource must have the +allow-migrate+ meta-attribute set to +true+ (which is not the default). If an otherwise migratable resource depends on another resource via an ordering constraint, there are special situations in which it will be restarted rather than migrated. For example, if the resource depends on a clone, and at the time the resource needs to be moved, the clone has instances that are stopping and instances that are starting, then the resource will be restarted. The scheduler is not yet able to model this situation correctly and so takes the safer (if less optimal) path. Also, if a migratable resource depends on a non-migratable resource, and both need to be moved, the migratable resource will be restarted. [[s-node-health]] == Tracking Node Health == A node may be functioning adequately as far as cluster membership is concerned, and yet be "unhealthy" in some respect that makes it an undesirable location for resources. For example, a disk drive may be reporting SMART errors, or the CPU may be highly loaded. Pacemaker offers a way to automatically move resources off unhealthy nodes. === Node Health Attributes === Pacemaker will treat any node attribute whose name starts with +#health+ as an indicator of node health. Node health attributes may have one of the following values: .Allowed Values for Node Health Attributes [width="95%",cols="1,<3",options="header",align="center"] |========================================================= |Value |Intended significance |+red+ |This indicator is unhealthy indexterm:[Node health,red] |+yellow+ |This indicator is becoming unhealthy indexterm:[Node health,yellow] |+green+ |This indicator is healthy indexterm:[Node health,green] |'integer' |A numeric score to apply to all resources on this node (0 or positive is healthy, negative is unhealthy) indexterm:[Node health,score] |========================================================= === Node Health Strategy === Pacemaker assigns a node health score to each node, as the sum of the values of all its node health attributes. This score will be used as a location constraint applied to this node for all resources. The +node-health-strategy+ cluster option controls how Pacemaker responds to changes in node health attributes, and how it translates +red+, +yellow+, and +green+ to scores. Allowed values are: .Node Health Strategies [width="95%",cols="1m,<3",options="header",align="center"] |========================================================= |Value |Effect |none |Do not track node health attributes at all. indexterm:[Node health,none] |migrate-on-red |Assign the value of +-INFINITY+ to +red+, and 0 to +yellow+ and +green+. This will cause all resources to move off the node if any attribute is +red+. indexterm:[Node health,migrate-on-red] |only-green |Assign the value of +-INFINITY+ to +red+ and +yellow+, and 0 to +green+. This will cause all resources to move off the node if any attribute is +red+ or +yellow+. indexterm:[Node health,only-green] |progressive |Assign the value of the +node-health-red+ cluster option to +red+, the value of +node-health-yellow+ to +yellow+, and the value of +node-health-green+ to +green+. Each node is additionally assigned a score of +node-health-base+ (this allows resources to start even if some attributes are +yellow+). This strategy gives the administrator finer control over how important each value is. indexterm:[Node health,progressive] |custom |Track node health attributes using the same values as +progressive+ for +red+, +yellow+, and +green+, but do not take them into account. The administrator is expected to implement a policy by defining rules (see <>) referencing node health attributes. indexterm:[Node health,custom] |========================================================= === Measuring Node Health === Since Pacemaker calculates node health based on node attributes, any method that sets node attributes may be used to measure node health. The most common ways are resource agents or separate daemons. Pacemaker provides examples that can be used directly or as a basis for custom code. The +ocf:pacemaker:HealthCPU+ and +ocf:pacemaker:HealthSMART+ resource agents set node health attributes based on CPU and disk parameters. The +ipmiservicelogd+ daemon sets node health attributes based on IPMI values (the +ocf:pacemaker:SystemHealth+ resource agent can be used to manage the daemon as a cluster resource). In order to take advantage of this feature - firstly add the resource to your cluster, preferably as a cloned resource to constantly measure health on all nodes: ===== [source,XML] ------------ ------------ ===== This way attrd_updater will set proper status for each node running this resource. Any attribute matching "#health-[a-zA-z]+" will force cluster to migrate all resources from unhealthy node and place it on other nodes according to all constraints defined in your cluster. When the node is no longer faulty you can force the cluster to restart the cloned resource on faulty node and make it available to take resources, in this case since we are using HealthIOWait provider: ---- # attrd_updater -n "#health-iowait" -U "green" --node="" -d "60s" ---- == Reloading Services After a Definition Change == The cluster automatically detects changes to the definition of services it manages. The normal response is to stop the service (using the old definition) and start it again (with the new definition). This works well, but some services are smarter and can be told to use a new set of options without restarting. To take advantage of this capability, the resource agent must: . Accept the +reload+ operation and perform any required actions. _The actions here depend completely on your application!_ + .The DRBD agent's logic for supporting +reload+ ===== [source,Bash] ------- case $1 in start) drbd_start ;; stop) drbd_stop ;; reload) drbd_reload ;; monitor) drbd_monitor ;; *) drbd_usage exit $OCF_ERR_UNIMPLEMENTED ;; esac exit $? ------- ===== . Advertise the +reload+ operation in the +actions+ section of its metadata + .The DRBD Agent Advertising Support for the +reload+ Operation ===== [source,XML] ------- 1.1 Master/Slave OCF Resource Agent for DRBD ... ------- ===== . Advertise one or more parameters that can take effect using +reload+. + Any parameter with the +unique+ set to 0 is eligible to be used in this way. + .Parameter that can be changed using reload ===== [source,XML] ------- Full path to the drbd.conf file. Path to drbd.conf ------- ===== Once these requirements are satisfied, the cluster will automatically know to reload the resource (instead of restarting) when a non-unique field changes. [NOTE] ====== Metadata will not be re-read unless the resource needs to be started. This may mean that the resource will be restarted the first time, even though you changed a parameter with +unique=0+. ====== [NOTE] ====== If both a unique and non-unique field are changed simultaneously, the resource will still be restarted. ====== diff --git a/doc/Pacemaker_Explained/en-US/Ch-Options.txt b/doc/Pacemaker_Explained/en-US/Ch-Options.txt index e058d91675..f864987010 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Options.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Options.txt @@ -1,439 +1,438 @@ :compat-mode: legacy = Cluster-Wide Configuration = == Configuration Layout == The cluster is defined by the Cluster Information Base (CIB), which uses XML notation. The simplest CIB, an empty one, looks like this: .An empty configuration ====== [source,XML] ------- ------- ====== The empty configuration above contains the major sections that make up a CIB: * +cib+: The entire CIB is enclosed with a +cib+ tag. Certain fundamental settings are defined as attributes of this tag. ** +configuration+: This section -- the primary focus of this document -- contains traditional configuration information such as what resources the cluster serves and the relationships among them. *** +crm_config+: cluster-wide configuration options *** +nodes+: the machines that host the cluster *** +resources+: the services run by the cluster *** +constraints+: indications of how resources should be placed ** +status+: This section contains the history of each resource on each node. Based on this data, the cluster can construct the complete current state of the cluster. The authoritative source for this section is the local executor (pacemaker-execd process) on each cluster node, and the cluster will occasionally repopulate the entire section. For this reason, it is never written to disk, and administrators are advised against modifying it in any way. In this document, configuration settings will be described as 'properties' or 'options' based on how they are defined in the CIB: * Properties are XML attributes of an XML element. * Options are name-value pairs expressed as +nvpair+ child elements of an XML element. Normally, you will use command-line tools that abstract the XML, so the distinction will be unimportant; both properties and options are cluster settings you can tweak. == CIB Properties == Certain settings are defined by CIB properties (that is, attributes of the +cib+ tag) rather than with the rest of the cluster configuration in the +configuration+ section. The reason is simply a matter of parsing. These options are used by the configuration database which is, by design, mostly ignorant of the content it holds. So the decision was made to place them in an easy-to-find location. .CIB Properties [width="95%",cols="2m,<5",options="header",align="center"] |========================================================= |Field |Description | admin_epoch | indexterm:[Configuration Version,Cluster] indexterm:[Cluster,Option,Configuration Version] indexterm:[admin_epoch,Cluster Option] indexterm:[Cluster,Option,admin_epoch] When a node joins the cluster, the cluster performs a check to see which node has the best configuration. It asks the node with the highest (+admin_epoch+, +epoch+, +num_updates+) tuple to replace the configuration on all the nodes -- which makes setting them, and setting them correctly, very important. +admin_epoch+ is never modified by the cluster; you can use this to make the configurations on any inactive nodes obsolete. _Never set this value to zero_. In such cases, the cluster cannot tell the difference between your configuration and the "empty" one used when nothing is found on disk. | epoch | indexterm:[epoch,Cluster Option] indexterm:[Cluster,Option,epoch] The cluster increments this every time the configuration is updated (usually by the administrator). | num_updates | indexterm:[num_updates,Cluster Option] indexterm:[Cluster,Option,num_updates] The cluster increments this every time the configuration or status is updated (usually by the cluster) and resets it to 0 when epoch changes. | validate-with | indexterm:[validate-with,Cluster Option] indexterm:[Cluster,Option,validate-with] Determines the type of XML validation that will be done on the configuration. If set to +none+, the cluster will not verify that updates conform to the DTD (nor reject ones that don't). This option can be useful when operating a mixed-version cluster during an upgrade. |cib-last-written | indexterm:[cib-last-written,Cluster Property] indexterm:[Cluster,Property,cib-last-written] Indicates when the configuration was last written to disk. Maintained by the cluster; for informational purposes only. |have-quorum | indexterm:[have-quorum,Cluster Property] indexterm:[Cluster,Property,have-quorum] Indicates if the cluster has quorum. If false, this may mean that the cluster cannot start resources or fence other nodes (see +no-quorum-policy+ below). Maintained by the cluster. |dc-uuid | indexterm:[dc-uuid,Cluster Property] indexterm:[Cluster,Property,dc-uuid] Indicates which cluster node is the current leader. Used by the cluster when placing resources and determining the order of some events. Maintained by the cluster. |========================================================= [[s-cluster-options]] == Cluster Options == Cluster options, as you might expect, control how the cluster behaves when confronted with certain situations. They are grouped into sets within the +crm_config+ section, and, in advanced configurations, there may be more than one set. (This will be described later in the section on <> where we will show how to have the cluster use different sets of options during working hours than during weekends.) For now, we will describe the simple case where each option is present at most once. You can obtain an up-to-date list of cluster options, including their default values, by running the `man pacemaker-schedulerd` and `man pacemaker-controld` commands. .Cluster Options [width="95%",cols="5m,2,<11",options="header",align="center"] |========================================================= |Option |Default |Description | cluster-name | | indexterm:[cluster-name,Cluster Property] indexterm:[Cluster,Property,cluster-name] An (optional) name for the cluster as a whole. This is mostly for users' convenience for use as desired in administration, but this can be used in the Pacemaker configuration in <> (as the +#cluster-name+ <>). It may also be used by higher-level tools when displaying cluster information, and by certain resource agents (for example, the +ocf:heartbeat:GFS2+ agent stores the cluster name in filesystem meta-data). | dc-version | | indexterm:[dc-version,Cluster Property] indexterm:[Cluster,Property,dc-version] Version of Pacemaker on the cluster's DC. Determined automatically by the cluster. Often includes the hash which identifies the exact Git changeset it was built from. Used for diagnostic purposes. | cluster-infrastructure | | indexterm:[cluster-infrastructure,Cluster Property] indexterm:[Cluster,Property,cluster-infrastructure] The messaging stack on which Pacemaker is currently running. Determined automatically by the cluster. Used for informational and diagnostic purposes. | no-quorum-policy | stop a| indexterm:[no-quorum-policy,Cluster Option] indexterm:[Cluster,Option,no-quorum-policy] What to do when the cluster does not have quorum. Allowed values: * +ignore:+ continue all resource management * +freeze:+ continue resource management, but don't recover resources from nodes not in the affected partition * +stop:+ stop all resources in the affected cluster partition * +suicide:+ fence all nodes in the affected cluster partition | batch-limit | 0 | indexterm:[batch-limit,Cluster Option] indexterm:[Cluster,Option,batch-limit] The maximum number of actions that the cluster may execute in parallel across all nodes. The "correct" value will depend on the speed and load of your network and cluster nodes. If zero, the cluster will impose a dynamically calculated limit only when any node has high load. | migration-limit | -1 | indexterm:[migration-limit,Cluster Option] indexterm:[Cluster,Option,migration-limit] The number of <> actions that the cluster is allowed to execute in parallel on a node. A value of -1 means unlimited. | symmetric-cluster | TRUE | indexterm:[symmetric-cluster,Cluster Option] indexterm:[Cluster,Option,symmetric-cluster] Can all resources run on any node by default? | stop-all-resources | FALSE | indexterm:[stop-all-resources,Cluster Option] indexterm:[Cluster,Option,stop-all-resources] Should the cluster stop all resources? | stop-orphan-resources | TRUE | indexterm:[stop-orphan-resources,Cluster Option] indexterm:[Cluster,Option,stop-orphan-resources] Should deleted resources be stopped? This value takes precedence over +is-managed+ (i.e. even unmanaged resources will be stopped if deleted from the configuration when this value is TRUE). | stop-orphan-actions | TRUE | indexterm:[stop-orphan-actions,Cluster Option] indexterm:[Cluster,Option,stop-orphan-actions] Should deleted actions be cancelled? | start-failure-is-fatal | TRUE | indexterm:[start-failure-is-fatal,Cluster Option] indexterm:[Cluster,Option,start-failure-is-fatal] Should a failure to start a resource on a particular node prevent further start attempts on that node? If FALSE, the cluster will decide whether the same node is still eligible based on the resource's current failure count and +migration-threshold+ (see <>). | enable-startup-probes | TRUE | indexterm:[enable-startup-probes,Cluster Option] indexterm:[Cluster,Option,enable-startup-probes] Should the cluster check for active resources during startup? | maintenance-mode | FALSE | indexterm:[maintenance-mode,Cluster Option] indexterm:[Cluster,Option,maintenance-mode] Should the cluster refrain from monitoring, starting and stopping resources? | stonith-enabled | TRUE | indexterm:[stonith-enabled,Cluster Option] indexterm:[Cluster,Option,stonith-enabled] Should failed nodes and nodes with resources that can't be stopped be shot? If you value your data, set up a STONITH device and enable this. If true, or unset, the cluster will refuse to start resources unless one or more STONITH resources have been configured. If false, unresponsive nodes are immediately assumed to be running no resources, and resource takeover to online nodes starts without any further protection (which means _data loss_ if the unresponsive node still accesses shared storage, for example). See also the +requires+ meta-attribute in <>. | stonith-action | reboot | indexterm:[stonith-action,Cluster Option] indexterm:[Cluster,Option,stonith-action] Action to send to STONITH device. Allowed values are +reboot+ and +off+. The value +poweroff+ is also allowed, but is only used for legacy devices. | stonith-timeout | 60s | indexterm:[stonith-timeout,Cluster Option] indexterm:[Cluster,Option,stonith-timeout] How long to wait for STONITH actions (reboot, on, off) to complete | stonith-max-attempts | 10 | indexterm:[stonith-max-attempts,Cluster Option] indexterm:[Cluster,Option,stonith-max-attempts] How many times fencing can fail for a target before the cluster will no longer immediately re-attempt it. | stonith-watchdog-timeout | 0 | indexterm:[stonith-watchdog-timeout,Cluster Option] indexterm:[Cluster,Option,stonith-watchdog-timeout] If nonzero, rely on hardware watchdog self-fencing. If positive, assume unseen nodes self-fence within this much time. If negative, and the SBD_WATCHDOG_TIMEOUT environment variable is set, use twice that value. | concurrent-fencing | FALSE | indexterm:[concurrent-fencing,Cluster Option] indexterm:[Cluster,Option,concurrent-fencing] Is the cluster allowed to initiate multiple fence actions concurrently? | fence-reaction | stop | indexterm:[fence-reaction,Cluster Option] indexterm:[Cluster,Option,fence-reaction] How should a cluster node react if notified of its own fencing? A cluster node may receive notification of its own fencing if fencing is misconfigured, or if fabric fencing is in use that doesn't cut cluster communication. Allowed values are +stop+ to attempt to immediately stop pacemaker and stay stopped, or +panic+ to attempt to immediately reboot the local node, falling back to stop on failure. The default is likely to be changed to +panic+ in a future release. '(since 2.0.3)' | cluster-delay | 60s | indexterm:[cluster-delay,Cluster Option] indexterm:[Cluster,Option,cluster-delay] Estimated maximum round-trip delay over the network (excluding action execution). If the DC requires an action to be executed on another node, it will consider the action failed if it does not get a response from the other node in this time (after considering the action's own timeout). The "correct" value will depend on the speed and load of your network and cluster nodes. | dc-deadtime | 20s | indexterm:[dc-deadtime,Cluster Option] indexterm:[Cluster,Option,dc-deadtime] How long to wait for a response from other nodes during startup. The "correct" value will depend on the speed/load of your network and the type of switches used. -| cluster-recheck-interval | 15min | -indexterm:[cluster-recheck-interval,Cluster Option] -indexterm:[Cluster,Option,cluster-recheck-interval] -Polling interval for time-based changes to options, resource parameters and constraints. - -The Cluster is primarily event-driven, but your configuration can have -elements that take effect based on the time of day. To ensure these changes -take effect, we can optionally poll the cluster's status for changes. A value -of 0 disables polling. Positive values are an interval (in seconds unless other -SI units are specified, e.g. 5min). - | cluster-ipc-limit | 500 | indexterm:[cluster-ipc-limit,Cluster Option] indexterm:[Cluster,Option,cluster-ipc-limit] The maximum IPC message backlog before one cluster daemon will disconnect another. This is of use in large clusters, for which a good value is the number of resources in the cluster multiplied by the number of nodes. The default of 500 is also the minimum. Raise this if you see "Evicting client" messages for cluster daemon PIDs in the logs. | pe-error-series-max | -1 | indexterm:[pe-error-series-max,Cluster Option] indexterm:[Cluster,Option,pe-error-series-max] The number of PE inputs resulting in ERRORs to save. Used when reporting problems. A value of -1 means unlimited (report all). | pe-warn-series-max | -1 | indexterm:[pe-warn-series-max,Cluster Option] indexterm:[Cluster,Option,pe-warn-series-max] The number of PE inputs resulting in WARNINGs to save. Used when reporting problems. A value of -1 means unlimited (report all). | pe-input-series-max | -1 | indexterm:[pe-input-series-max,Cluster Option] indexterm:[Cluster,Option,pe-input-series-max] The number of "normal" PE inputs to save. Used when reporting problems. A value of -1 means unlimited (report all). | placement-strategy | default | indexterm:[placement-strategy,Cluster Option] indexterm:[Cluster,Option,placement-strategy] How the cluster should allocate resources to nodes (see <>). Allowed values are +default+, +utilization+, +balanced+, and +minimal+. | node-health-strategy | none | indexterm:[node-health-strategy,Cluster Option] indexterm:[Cluster,Option,node-health-strategy] How the cluster should react to node health attributes (see <>). Allowed values are +none+, +migrate-on-red+, +only-green+, +progressive+, and +custom+. | enable-acl | FALSE | indexterm:[enable-acl,Cluster Option] indexterm:[Cluster,Option,enable-acl] Whether access control lists (ACLs) (see <>) can be used to authorize modifications to the CIB. | node-health-base | 0 | indexterm:[node-health-base,Cluster Option] indexterm:[Cluster,Option,node-health-base] The base health score assigned to a node. Only used when +node-health-strategy+ is +progressive+. | node-health-green | 0 | indexterm:[node-health-green,Cluster Option] indexterm:[Cluster,Option,node-health-green] The score to use for a node health attribute whose value is +green+. Only used when +node-health-strategy+ is +progressive+ or +custom+. | node-health-yellow | 0 | indexterm:[node-health-yellow,Cluster Option] indexterm:[Cluster,Option,node-health-yellow] The score to use for a node health attribute whose value is +yellow+. Only used when +node-health-strategy+ is +progressive+ or +custom+. | node-health-red | 0 | indexterm:[node-health-red,Cluster Option] indexterm:[Cluster,Option,node-health-red] The score to use for a node health attribute whose value is +red+. Only used when +node-health-strategy+ is +progressive+ or +custom+. +| cluster-recheck-interval | 15min | +indexterm:[cluster-recheck-interval,Cluster Option] +indexterm:[Cluster,Option,cluster-recheck-interval] +Pacemaker is primarily event-driven, and looks ahead to know when to recheck +the cluster for failure timeouts and most time-based rules. However, it will +also recheck the cluster after this amount of inactivity. This has two goals: +rules with +date_spec+ are only guaranteed to be checked this often, and it +also serves as a fail-safe for certain classes of scheduler bugs. A value of 0 +disables this polling; positive values are a time interval. + | remove-after-stop | FALSE | indexterm:[remove-after-stop,Cluster Option] indexterm:[Cluster,Option,remove-after-stop] _Advanced Use Only:_ Should the cluster remove resources from the LRM after they are stopped? Values other than the default are, at best, poorly tested and potentially dangerous. | startup-fencing | TRUE | indexterm:[startup-fencing,Cluster Option] indexterm:[Cluster,Option,startup-fencing] _Advanced Use Only:_ Should the cluster shoot unseen nodes? Not using the default is very unsafe! | election-timeout | 2min | indexterm:[election-timeout,Cluster Option] indexterm:[Cluster,Option,election-timeout] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | shutdown-escalation | 20min | indexterm:[shutdown-escalation,Cluster Option] indexterm:[Cluster,Option,shutdown-escalation] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | join-integration-timeout | 3min | indexterm:[join-integration-timeout,Cluster Option] indexterm:[Cluster,Option,join-integration-timeout] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | join-finalization-timeout | 30min | indexterm:[join-finalization-timeout,Cluster Option] indexterm:[Cluster,Option,join-finalization-timeout] _Advanced Use Only:_ If you need to adjust this value, it probably indicates the presence of a bug. | transition-delay | 0s | indexterm:[transition-delay,Cluster Option] indexterm:[Cluster,Option,transition-delay] _Advanced Use Only:_ Delay cluster recovery for the configured interval to allow for additional/related events to occur. Useful if your configuration is sensitive to the order in which ping updates arrive. Enabling this option will slow down cluster recovery under all conditions. |========================================================= diff --git a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt index f5c873ad9d..d8e7115dbd 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt @@ -1,910 +1,907 @@ :compat-mode: legacy = Cluster Resources = [[s-resource-primitive]] == What is a Cluster Resource? == indexterm:[Resource] A resource is a service made highly available by a cluster. The simplest type of resource, a 'primitive' resource, is described in this chapter. More complex forms, such as groups and clones, are described in later chapters. Every primitive resource has a 'resource agent'. A resource agent is an external program that abstracts the service it provides and present a consistent view to the cluster. This allows the cluster to be agnostic about the resources it manages. The cluster doesn't need to understand how the resource works because it relies on the resource agent to do the right thing when given a `start`, `stop` or `monitor` command. For this reason, it is crucial that resource agents are well-tested. Typically, resource agents come in the form of shell scripts. However, they can be written using any technology (such as C, Python or Perl) that the author is comfortable with. [[s-resource-supported]] == Resource Classes == indexterm:[Resource,class] Pacemaker supports several classes of agents: * OCF * LSB * Upstart * Systemd * Service * Fencing * Nagios Plugins === Open Cluster Framework === indexterm:[Resource,OCF] indexterm:[OCF,Resources] indexterm:[Open Cluster Framework,Resources] The OCF standard footnote:[See https://github.com/ClusterLabs/OCF-spec/tree/master/ra . The Pacemaker implementation has been somewhat extended from the OCF specs.] is basically an extension of the Linux Standard Base conventions for init scripts to: * support parameters, * make them self-describing, and * make them extensible OCF specs have strict definitions of the exit codes that actions must return. footnote:[ The resource-agents source code includes the `ocf-tester` script, which can be useful in this regard. ] The cluster follows these specifications exactly, and giving the wrong exit code will cause the cluster to behave in ways you will likely find puzzling and annoying. In particular, the cluster needs to distinguish a completely stopped resource from one which is in some erroneous and indeterminate state. Parameters are passed to the resource agent as environment variables, with the special prefix +OCF_RESKEY_+. So, a parameter which the user thinks of as +ip+ will be passed to the resource agent as +OCF_RESKEY_ip+. The number and purpose of the parameters is left to the resource agent; however, the resource agent should use the `meta-data` command to advertise any that it supports. The OCF class is the most preferred as it is an industry standard, highly flexible (allowing parameters to be passed to agents in a non-positional manner) and self-describing. For more information, see the http://www.linux-ha.org/wiki/OCF_Resource_Agents[reference] and the 'Resource Agents' chapter of 'Pacemaker Administration'. === Linux Standard Base === indexterm:[Resource,LSB] indexterm:[LSB,Resources] indexterm:[Linux Standard Base,Resources] 'LSB' resource agents are more commonly known as 'init scripts'. If a full path is not given, they are assumed to be located in +/etc/init.d+. Commonly, they are provided by the OS distribution. In order to be used with a Pacemaker cluster, they must conform to the LSB specification. footnote:[ See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec as it relates to init scripts. ] [WARNING] ==== Many distributions or particular software packages claim LSB compliance but ship with broken init scripts. For details on how to check whether your init script is LSB-compatible, see the 'Resource Agents' chapter of 'Pacemaker Administration'. Common problematic violations of the LSB standard include: * Not implementing the +status+ operation at all * Not observing the correct exit status codes for +start+/+stop+/+status+ actions * Starting a started resource returns an error * Stopping a stopped resource returns an error ==== [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== [[s-resource-supported-systemd]] === Systemd === indexterm:[Resource,Systemd] indexterm:[Systemd,Resources] Some newer distributions have replaced the old http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of initialization daemons and scripts with an alternative called http://www.freedesktop.org/wiki/Software/systemd[Systemd]. Pacemaker is able to manage these services _if they are present_. Instead of init scripts, systemd has 'unit files'. Generally, the services (unit files) are provided by the OS distribution, but there are online guides for converting from init scripts. footnote:[For example, http://0pointer.de/blog/projects/systemd-for-admins-3.html] [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === Upstart === indexterm:[Resource,Upstart] indexterm:[Upstart,Resources] Some newer distributions have replaced the old http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of initialization daemons (and scripts) with an alternative called http://upstart.ubuntu.com/[Upstart]. Pacemaker is able to manage these services _if they are present_. Instead of init scripts, upstart has 'jobs'. Generally, the services (jobs) are provided by the OS distribution. [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === System Services === indexterm:[Resource,System Services] indexterm:[System Service,Resources] Since there are various types of system services (+systemd+, +upstart+, and +lsb+), Pacemaker supports a special +service+ alias which intelligently figures out which one applies to a given cluster node. This is particularly useful when the cluster contains a mix of +systemd+, +upstart+, and +lsb+. In order, Pacemaker will try to find the named service as: . an LSB init script . a Systemd unit file . an Upstart job === STONITH === indexterm:[Resource,STONITH] indexterm:[STONITH,Resources] The STONITH class is used exclusively for fencing-related resources. This is discussed later in <>. === Nagios Plugins === indexterm:[Resource,Nagios Plugins] indexterm:[Nagios Plugins,Resources] Nagios Plugins footnote:[The project has two independent forks, hosted at https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/. Output from both projects' plugins is similar, so plugins from either project can be used with pacemaker.] allow us to monitor services on remote hosts. Pacemaker is able to do remote monitoring with the plugins _if they are present_. A common use case is to configure them as resources belonging to a resource container (usually a virtual machine), and the container will be restarted if any of them has failed. Another use is to configure them as ordinary resources to be used for monitoring hosts or services via the network. The supported parameters are same as the long options of the plugin. [[primitive-resource]] == Resource Properties == These values tell the cluster which resource agent to use for the resource, where to find that resource agent and what standards it conforms to. .Properties of a Primitive Resource [width="95%",cols="1m,<6",options="header",align="center"] |========================================================= |Field |Description |id |Your name for the resource indexterm:[id,Resource] indexterm:[Resource,Property,id] |class |The standard the resource agent conforms to. Allowed values: +lsb+, +nagios+, +ocf+, +service+, +stonith+, +systemd+, +upstart+ indexterm:[class,Resource] indexterm:[Resource,Property,class] |type |The name of the Resource Agent you wish to use. E.g. +IPaddr+ or +Filesystem+ indexterm:[type,Resource] indexterm:[Resource,Property,type] |provider |The OCF spec allows multiple vendors to supply the same resource agent. To use the OCF resource agents supplied by the Heartbeat project, you would specify +heartbeat+ here. indexterm:[provider,Resource] indexterm:[Resource,Property,provider] |========================================================= The XML definition of a resource can be queried with the `crm_resource` tool. For example: ---- # crm_resource --resource Email --query-xml ---- might produce: .A system resource definition ===== [source,XML] ===== [NOTE] ===== One of the main drawbacks to system services (LSB, systemd or Upstart) resources is that they do not allow any parameters! ===== //// See https://tools.ietf.org/html/rfc5737 for choice of example IP address //// .An OCF resource definition ===== [source,XML] ------- ------- ===== [[s-resource-options]] == Resource Options == Resources have two types of options: 'meta-attributes' and 'instance attributes'. Meta-attributes apply to any type of resource, while instance attributes are specific to each resource agent. === Resource Meta-Attributes === Meta-attributes are used by the cluster to decide how a resource should behave and can be easily set using the `--meta` option of the `crm_resource` command. .Meta-attributes of a Primitive Resource [width="95%",cols="2m,2,<5",options="header",align="center"] |========================================================= |Field |Default |Description |priority |0 |If not all resources can be active, the cluster will stop lower priority resources in order to keep higher priority ones active. indexterm:[priority,Resource Option] indexterm:[Resource,Option,priority] |target-role |Started a|What state should the cluster attempt to keep this resource in? Allowed values: * +Stopped:+ Force the resource to be stopped * +Started:+ Allow the resource to be started (and in the case of <>, promoted to master if appropriate) * +Slave:+ Allow the resource to be started, but only in Slave mode if the resource is <> * +Master:+ Equivalent to +Started+ indexterm:[target-role,Resource Option] indexterm:[Resource,Option,target-role] |is-managed |TRUE |Is the cluster allowed to start and stop the resource? Allowed values: +true+, +false+ indexterm:[is-managed,Resource Option] indexterm:[Resource,Option,is-managed] |maintenance |FALSE |Similar to the +maintenance-mode+ <>, but for a single resource. If true, the resource will not be started, stopped, or monitored on any node. This differs from +is-managed+ in that monitors will not be run. Allowed values: +true+, +false+ indexterm:[maintenance,Resource Option] indexterm:[Resource,Option,maintenance] |resource-stickiness |1 for individual clone instances, 0 for all other resources |A score that will be added to the current node when a resource is already active. This allows running resources to stay where they are, even if they would be placed elsewhere if they were being started from a stopped state. indexterm:[resource-stickiness,Resource Option] indexterm:[Resource,Option,resource-stickiness] |requires |+quorum+ for resources with a +class+ of +stonith+, otherwise +unfencing+ if unfencing is active in the cluster, otherwise +fencing+ if +stonith-enabled+ is true, otherwise +quorum+ a|Conditions under which the resource can be started Allowed values: * +nothing:+ can always be started * +quorum:+ The cluster can only start this resource if a majority of the configured nodes are active * +fencing:+ The cluster can only start this resource if a majority of the configured nodes are active _and_ any failed or unknown nodes have been <> * +unfencing:+ The cluster can only start this resource if a majority of the configured nodes are active _and_ any failed or unknown nodes have been fenced _and_ only on nodes that have been <> indexterm:[requires,Resource Option] indexterm:[Resource,Option,requires] |migration-threshold |INFINITY |How many failures may occur for this resource on a node, before this node is marked ineligible to host this resource. A value of 0 indicates that this feature is disabled (the node will never be marked ineligible); by constrast, the cluster treats INFINITY (the default) as a very large but finite number. This option has an effect only if the failed operation specifies +on-fail+ as +restart+ (the default), and additionally for failed +start+ operations, if the cluster property +start-failure-is-fatal+ is +false+. indexterm:[migration-threshold,Resource Option] indexterm:[Resource,Option,migration-threshold] |failure-timeout |0 |How many seconds to wait before acting as if the failure had not occurred, and potentially allowing the resource back to the node on which it failed. A value of 0 indicates that this feature is disabled. - As with any time-based actions, this is not guaranteed to be checked more - frequently than the value of +cluster-recheck-interval+ (see - <>). indexterm:[failure-timeout,Resource Option] indexterm:[Resource,Option,failure-timeout] |multiple-active |stop_start a|What should the cluster do if it ever finds the resource active on more than one node? Allowed values: * +block:+ mark the resource as unmanaged * +stop_only:+ stop all active instances and leave them that way * +stop_start:+ stop all active instances and start the resource in one location only indexterm:[multiple-active,Resource Option] indexterm:[Resource,Option,multiple-active] |allow-migrate |TRUE for ocf:pacemaker:remote resources, FALSE otherwise |Whether the cluster should try to "live migrate" this resource when it needs to be moved (see <>) |container-attribute-target | |Specific to bundle resources; see <> |remote-node | |The name of the Pacemaker Remote guest node this resource is associated with, if any. If specified, this both enables the resource as a guest node and defines the unique name used to identify the guest node. The guest must be configured to run the Pacemaker Remote daemon when it is started. +WARNING:+ This value cannot overlap with any resource or node IDs. |remote-port |3121 |If +remote-node+ is specified, the port on the guest used for its Pacemaker Remote connection. The Pacemaker Remote daemon on the guest must be configured to listen on this port. |remote-addr |value of +remote-node+ |If +remote-node+ is specified, the IP address or hostname used to connect to the guest via Pacemaker Remote. The Pacemaker Remote daemon on the guest must be configured to accept connections on this address. |remote-connect-timeout |60s |If +remote-node+ is specified, how long before a pending guest connection will time out. |========================================================= As an example of setting resource options, if you performed the following commands on an LSB Email resource: ------- # crm_resource --meta --resource Email --set-parameter priority --parameter-value 100 # crm_resource -m -r Email -p multiple-active -v block ------- the resulting resource definition might be: .An LSB resource with cluster options ===== [source,XML] ------- ------- ===== In addition to the cluster-defined meta-attributes described above, you may also configure arbitrary meta-attributes of your own choosing. Most commonly, this would be done for use in <>. For example, an IT department might define a custom meta-attribute to indicate which company department each resource is intended for. To reduce the chance of name collisions with cluster-defined meta-attributes added in the future, it is recommended to use a unique, organization-specific prefix for such attributes. [[s-resource-defaults]] === Setting Global Defaults for Resource Meta-Attributes === To set a default value for a resource option, add it to the +rsc_defaults+ section with `crm_attribute`. For example, ---- # crm_attribute --type rsc_defaults --name is-managed --update false ---- would prevent the cluster from starting or stopping any of the resources in the configuration (unless of course the individual resources were specifically enabled by having their +is-managed+ set to +true+). === Resource Instance Attributes === The resource agents of some resource classes (lsb, systemd and upstart 'not' among them) can be given parameters which determine how they behave and which instance of a service they control. If your resource agent supports parameters, you can add them with the `crm_resource` command. For example, ---- # crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2 ---- would create an entry in the resource like this: .An example OCF resource with instance attributes ===== [source,XML] ------- ------- ===== For an OCF resource, the result would be an environment variable called +OCF_RESKEY_ip+ with a value of +192.0.2.2+. The list of instance attributes supported by an OCF resource agent can be found by calling the resource agent with the `meta-data` command. The output contains an XML description of all the supported attributes, their purpose and default values. .Displaying the metadata for the Dummy resource agent template ===== ---- # export OCF_ROOT=/usr/lib/ocf # $OCF_ROOT/resource.d/pacemaker/Dummy meta-data ---- [source,XML] ------- 1.0 This is a Dummy Resource Agent. It does absolutely nothing except keep track of whether its running or not. Its purpose in life is for testing and to serve as a template for RA writers. NB: Please pay attention to the timeouts specified in the actions section below. They should be meaningful for the kind of resource the agent manages. They should be the minimum advised timeouts, but they shouldn't/cannot cover _all_ possible resource instances. So, try to be neither overly generous nor too stingy, but moderate. The minimum timeouts should never be below 10 seconds. Example stateless resource agent Location to store the resource state in. State file Fake attribute that can be changed to cause a reload Fake attribute that can be changed to cause a reload Number of seconds to sleep during operations. This can be used to test how the cluster reacts to operation timeouts. Operation sleep duration in seconds. ------- ===== == Resource Operations == indexterm:[Resource,Action] 'Operations' are actions the cluster can perform on a resource by calling the resource agent. Resource agents must support certain common operations such as start, stop, and monitor, and may implement any others. Operations may be explicitly configured for two purposes: to override defaults for options (such as timeout) that the cluster will use whenever it initiates the operation, and to run an operation on a recurring basis (for example, to monitor the resource for failure). .An OCF resource with a non-default start timeout ===== [source,XML] ------- ------- ===== Pacemaker identifies operations by a combination of name and interval, so this combination must be unique for each resource. That is, you should not configure two operations for the same resource with the same name and interval. [[s-operation-properties]] === Operation Properties === Operation properties may be specified directly in the +op+ element as XML attributes, or in a separate +meta_attributes+ block as +nvpair+ elements. XML attributes take precedence over +nvpair+ elements if both are specified. .Properties of an Operation [width="95%",cols="2m,3,<6",options="header",align="center"] |========================================================= |Field |Default |Description |id | |A unique name for the operation. indexterm:[id,Action Property] indexterm:[Action,Property,id] |name | |The action to perform. This can be any action supported by the agent; common values include +monitor+, +start+, and +stop+. indexterm:[name,Action Property] indexterm:[Action,Property,name] |interval |0 |How frequently (in seconds) to perform the operation. A value of 0 means "when needed". A positive value defines a 'recurring action', which is typically used with <>. indexterm:[interval,Action Property] indexterm:[Action,Property,interval] |timeout | |How long to wait before declaring the action has failed indexterm:[timeout,Action Property] indexterm:[Action,Property,timeout] |on-fail |restart '(except for +stop+ operations, which default to' fence 'when STONITH is enabled and' block 'otherwise)' a|The action to take if this action ever fails. Allowed values: * +ignore:+ Pretend the resource did not fail. * +block:+ Don't perform any further operations on the resource. * +stop:+ Stop the resource and do not start it elsewhere. * +restart:+ Stop the resource and start it again (possibly on a different node). * +fence:+ STONITH the node on which the resource failed. * +standby:+ Move _all_ resources away from the node on which the resource failed. indexterm:[on-fail,Action Property] indexterm:[Action,Property,on-fail] |enabled |TRUE |If +false+, ignore this operation definition. This is typically used to pause a particular recurring +monitor+ operation; for instance, it can complement the respective resource being unmanaged (+is-managed=false+), as this alone will <>. Disabling the operation does not suppress all actions of the given type. Allowed values: +true+, +false+. indexterm:[enabled,Action Property] indexterm:[Action,Property,enabled] |record-pending |TRUE |If +true+, the intention to perform the operation is recorded so that GUIs and CLI tools can indicate that an operation is in progress. This is best set as an _operation default_ (see <>). Allowed values: +true+, +false+. indexterm:[enabled,Action Property] indexterm:[Action,Property,enabled] |role | |Run the operation only on node(s) that the cluster thinks should be in the specified role. This only makes sense for recurring +monitor+ operations. Allowed (case-sensitive) values: +Stopped+, +Started+, and in the case of <>, +Slave+ and +Master+. indexterm:[role,Action Property] indexterm:[Action,Property,role] |========================================================= [[s-resource-monitoring]] === Monitoring Resources for Failure === When Pacemaker first starts a resource, it runs one-time +monitor+ operations (referred to as 'probes') to ensure the resource is running where it's supposed to be, and not running where it's not supposed to be. (This behavior can be affected by the +resource-discovery+ location constraint property.) Other than those initial probes, Pacemaker will 'not' (by default) check that the resource continues to stay healthy. footnote:[Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.] You must configure +monitor+ operations explicitly to perform these checks. .An OCF resource with a recurring health check ===== [source,XML] ------- ------- ===== By default, a +monitor+ operation will ensure that the resource is running where it is supposed to. The +target-role+ property can be used for further checking. For example, if a resource has one +monitor+ operation with +interval=10 role=Started+ and a second +monitor+ operation with +interval=11 role=Stopped+, the cluster will run the first monitor on any nodes it thinks 'should' be running the resource, and the second monitor on any nodes that it thinks 'should not' be running the resource (for the truly paranoid, who want to know when an administrator manually starts a service by mistake). [NOTE] ==== Currently, monitors with +role=Stopped+ are not implemented for <> resources. ==== [[s-monitoring-unmanaged]] === Monitoring Resources When Administration is Disabled === Recurring +monitor+ operations behave differently under various administrative settings: * When a resource is unmanaged (by setting +is-managed=false+): No monitors will be stopped. + If the unmanaged resource is stopped on a node where the cluster thinks it should be running, the cluster will detect and report that it is not, but it will not consider the monitor failed, and will not try to start the resource until it is managed again. + Starting the unmanaged resource on a different node is strongly discouraged and will at least cause the cluster to consider the resource failed, and may require the resource's +target-role+ to be set to +Stopped+ then +Started+ to be recovered. * When a node is put into standby: All resources will be moved away from the node, and all +monitor+ operations will be stopped on the node, except those specifying +role+ as +Stopped+ (which will be newly initiated if appropriate). * When the cluster is put into maintenance mode: All resources will be marked as unmanaged. All monitor operations will be stopped, except those specifying +role+ as +Stopped+ (which will be newly initiated if appropriate). As with single unmanaged resources, starting a resource on a node other than where the cluster expects it to be will cause problems. [[s-operation-defaults]] === Setting Global Defaults for Operations === You can change the global default values for operation properties in a given cluster. These are defined in an +op_defaults+ section of the CIB's +configuration+ section, and can be set with `crm_attribute`. For example, ---- # crm_attribute --type op_defaults --name timeout --update 20s ---- would default each operation's +timeout+ to 20 seconds. If an operation's definition also includes a value for +timeout+, then that value would be used for that operation instead. === When Implicit Operations Take a Long Time === The cluster will always perform a number of implicit operations: +start+, +stop+ and a non-recurring +monitor+ operation used at startup to check whether the resource is already active. If one of these is taking too long, then you can create an entry for them and specify a longer timeout. .An OCF resource with custom timeouts for its implicit actions ===== [source,XML] ------- ------- ===== === Multiple Monitor Operations === Provided no two operations (for a single resource) have the same name and interval, you can have as many +monitor+ operations as you like. In this way, you can do a superficial health check every minute and progressively more intense ones at higher intervals. To tell the resource agent what kind of check to perform, you need to provide each monitor with a different value for a common parameter. The OCF standard creates a special parameter called +OCF_CHECK_LEVEL+ for this purpose and dictates that it is "made available to the resource agent without the normal +OCF_RESKEY+ prefix". Whatever name you choose, you can specify it by adding an +instance_attributes+ block to the +op+ tag. It is up to each resource agent to look for the parameter and decide how to use it. .An OCF resource with two recurring health checks, performing different levels of checks specified via +OCF_CHECK_LEVEL+. ===== [source,XML] ------- ------- ===== === Disabling a Monitor Operation === The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you only want to disable it temporarily. In such cases, simply add +enabled=false+ to the operation's definition. .Example of an OCF resource with a disabled health check ===== [source,XML] ------- ------- ===== This can be achieved from the command line by executing: ---- # cibadmin --modify --xml-text '' ---- Once you've done whatever you needed to do, you can then re-enable it with ---- # cibadmin --modify --xml-text '' ---- diff --git a/doc/Pacemaker_Explained/en-US/Ch-Rules.txt b/doc/Pacemaker_Explained/en-US/Ch-Rules.txt index a2f8b87cef..9d617f601c 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Rules.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Rules.txt @@ -1,757 +1,754 @@ :compat-mode: legacy = Rules = //// We prefer [[ch-rules]], but older versions of asciidoc don't deal well with that construct for chapter headings //// anchor:ch-rules[Chapter 8, Rules] indexterm:[Constraint,Rule] Rules can be used to make your configuration more dynamic, allowing values to change depending on the time or the value of a node attribute. Examples of things rules are useful for: * Set a higher value for <> during working hours, to minimize downtime, and a lower value on weekends, to allow resources to move to their most preferred locations when people aren't around to notice. * Automatically place the cluster into maintenance mode during a scheduled maintenance window. * Assign certain nodes and resources to a particular department via custom node attributes and meta-attributes, and add a single location constraint that restricts the department's resources to run only on those nodes. Each constraint type or property set that supports rules may contain one or more +rule+ elements specifying conditions under which the constraint or properties take effect. Examples later in this chapter will make this clearer. == Rule Properties == indexterm:[XML element,rule element] .Attributes of a rule Element [width="95%",cols="2m,1,<5",options="header",align="center"] |========================================================= |Attribute |Default |Description |id | |A unique name for the rule (required) indexterm:[XML attribute,id attribute,rule element] indexterm:[XML element,rule element,id attribute] |role |+Started+ |The rule is in effect only when the resource is in the specified role. Allowed values are +Started+, +Slave+, and +Master+. A rule with +role="Master"+ cannot determine the initial location of a clone instance and will only affect which of the active instances will be promoted. indexterm:[XML attribute,role attribute,rule element] indexterm:[XML element,rule element,role attribute] |score | |If this rule is used in a location constraint and evaluates to true, apply this score to the constraint. Only one of +score+ and +score-attribute+ may be used. indexterm:[XML attribute,score attribute,rule element] indexterm:[XML element,rule element,score attribute] |score-attribute | |If this rule is used in a location constraint and evaluates to true, use the value of this node attribute as the score to apply to the constraint. Only one of +score+ and +score-attribute+ may be used. indexterm:[XML attribute,score-attribute attribute,rule element] indexterm:[XML element,rule element,score-attribute attribute] |boolean-op |+and+ |If this rule contains more than one condition, a value of +and+ specifies that the rule evaluates to true only if all conditions are true, and a value of +or+ specifies that the rule evaluates to true if any condition is true. indexterm:[XML attribute,boolean-op attribute,rule element] indexterm:[XML element,rule element,boolean-op attribute] |========================================================= A +rule+ element must contain one or more conditions. A condition may be an +expression+ element, a +date_expression+ element, or another +rule+ element. == Node Attribute Expressions == [[node-attribute-expressions]] indexterm:[Rule,Node Attribute Expression] indexterm:[XML element,expression element] Expressions are rule conditions based on the values of node attributes. .Attributes of an expression Element [width="95%",cols="2m,1,<5",options="header",align="center"] |========================================================= |Field |Default |Description |id | |A unique name for the expression (required) indexterm:[XML attribute,id attribute,expression element] indexterm:[XML element,expression element,id attribute] |attribute | |The node attribute to test (required) indexterm:[XML attribute,attribute attribute,expression element] indexterm:[XML element,expression element,attribute attribute] |type |+string+ |How the node attributes should be compared. Allowed values are +string+, +integer+, and +version+. indexterm:[XML attribute,type attribute,expression element] indexterm:[XML element,expression element,type attribute] |operation | a|The comparison to perform (required). Allowed values: * +lt:+ True if the node attribute value is less than the comparison value * +gt:+ True if the node attribute value is greater than the comparison value * +lte:+ True if the node attribute value is less than or equal to the comparison value * +gte:+ True if the node attribute value is greater than or equal to the comparison value * +eq:+ True if the node attribute value is equal to the comparison value * +ne:+ True if the node attribute value is not equal to the comparison value * +defined:+ True if the node has the named attribute * +not_defined:+ True if the node does not have the named attribute indexterm:[XML attribute,operation attribute,expression element] indexterm:[XML element,expression element,operation attribute] |value | |User-supplied value for comparison (required for operations other than +defined+ and +not_defined+) indexterm:[XML attribute,value attribute,expression element] indexterm:[XML element,expression element,value attribute] |value-source |+literal+ a|How the +value+ is derived. Allowed values: * +literal+: +value+ is a literal string to compare against * +param+: +value+ is the name of a resource parameter to compare against (only valid in location constraints) * +meta+: +value+ is the name of a resource meta-attribute to compare against (only valid in location constraints) indexterm:[XML attribute,value-source attribute,expression element] indexterm:[XML element,expression element,value-source attribute] |========================================================= [[node-attribute-expressions-special]] In addition to custom node attributes defined by the administrator, the cluster defines special, built-in node attributes for each node that can also be used in rule expressions. .Built-in Node Attributes [width="95%",cols="1m,<5",options="header",align="center"] |========================================================= |Name |Value |#uname |Node <> |#id |Node ID |#kind |Node type. Possible values are +cluster+, +remote+, and +container+. Kind is +remote+ for Pacemaker Remote nodes created with the +ocf:pacemaker:remote+ resource, and +container+ for Pacemaker Remote guest nodes and bundle nodes |#is_dc |"true" if this node is a Designated Controller (DC), "false" otherwise |#cluster-name |The value of the +cluster-name+ cluster property, if set |#site-name |The value of the +site-name+ node attribute, if set, otherwise identical to +#cluster-name+ |#role a|The role the relevant promotable clone resource has on this node. Valid only within a rule for a location constraint for a promotable clone resource. //// // if uncommenting, put a pipe in front of first two lines #ra-version The installed version of the resource agent on the node, as defined by the +version+ attribute of the +resource-agent+ tag in the agent's metadata. Valid only within rules controlling resource options. This can be useful during rolling upgrades of a backward-incompatible resource agent. '(coming in x.x.x)' //// |========================================================= == Date/Time Expressions == indexterm:[Rule,Date/Time Expression] indexterm:[XML element,date_expression element] Date/time expressions are rule conditions based (as the name suggests) on the current date and time. A +date_expression+ element may optionally contain a +date_spec+ or +duration+ element depending on the context. .Attributes of a date_expression Element [width="95%",cols="2m,<5",options="header",align="center"] |========================================================= |Field |Description |id |A unique name for the expression (required) indexterm:[XML attribute,id attribute,date_expression element] indexterm:[XML element,date_expression element,id attribute] |start |A date/time conforming to the http://en.wikipedia.org/wiki/ISO_8601[ISO8601] specification. May be used when +operation+ is +in_range+ (in which case at least one of +start+ or +end+ must be specified) or +gt+ (in which case +start+ is required). indexterm:[XML attribute,start attribute,date_expression element] indexterm:[XML element,date_expression element,start attribute] |end |A date/time conforming to the http://en.wikipedia.org/wiki/ISO_8601[ISO8601] specification. May be used when +operation+ is +in_range+ (in which case at least one of +start+ or +end+ must be specified) or +lt+ (in which case +end+ is required). indexterm:[XML attribute,end attribute,date_expression element] indexterm:[XML element,date_expression element,end attribute] |operation a|Compares the current date/time with the start and/or end date, depending on the context. Allowed values: * +gt:+ True if the current date/time is after +start+ * +lt:+ True if the current date/time is before +end+ * +in_range:+ True if the current date/time is after +start+ (if specified) and before either +end+ (if specified) or +start+ plus the value of the +duration+ element (if one is contained in the +date_expression+) * +date_spec:+ True if the current date/time matches the specification given in the contained +date_spec+ element (described below) indexterm:[XML attribute,operation attribute,date_expression element] indexterm:[XML element,date_expression element,operation attribute] |========================================================= [NOTE] ====== There is no +eq+, +neq+, +gte+, or +lte+ operation, since they would be valid only for a single second. ====== === Date Specifications === indexterm:[Rule,Date/Time Expression,Date Specification] indexterm:[XML element,date_spec element] A +date_spec+ element is used to create a cron-like expression relating to time. Each field can contain a single number or range. Any field not supplied is ignored. .Attributes of a date_spec Element [width="95%",cols="2m,<5",options="header",align="center"] |========================================================= |Field |Description |id |A unique name for the object (required) indexterm:[XML attribute,id attribute,date_spec element] indexterm:[XML element,date_spec element,id attribute] |hours |Allowed values: 0-23 (where 0 is midnight and 23 is 11 p.m.) indexterm:[XML attribute,hours attribute,date_spec element] indexterm:[XML element,date_spec element,hours attribute] |monthdays |Allowed values: 1-31 (depending on month and year) indexterm:[XML attribute,monthdays attribute,date_spec element] indexterm:[XML element,date_spec element,monthdays attribute] |weekdays |Allowed values: 1-7 (where 1 is Monday and 7 is Sunday) indexterm:[XML attribute,weekdays attribute,date_spec element] indexterm:[XML element,date_spec element,weekdays attribute] |yeardays |Allowed values: 1-366 (depending on the year) indexterm:[XML attribute,yeardays attribute,date_spec element] indexterm:[XML element,date_spec element,yeardays attribute] |months |Allowed values: 1-12 indexterm:[XML attribute,months attribute,date_spec element] indexterm:[XML element,date_spec element,months attribute] |weeks |Allowed values: 1-53 (depending on weekyear) indexterm:[XML attribute,weeks attribute,date_spec element] indexterm:[XML element,date_spec element,weeks attribute] |years |Year according to the Gregorian calendar indexterm:[XML attribute,years attribute,date_spec element] indexterm:[XML element,date_spec element,years attribute] |weekyears |Year in which the week started; for example, 1 January 2005 can be specified in ISO 8601 as '2005-001 Ordinal', '2005-01-01 Gregorian' or '2004-W53-6 Weekly' and thus would match +years="2005"+ or +weekyears="2004"+ indexterm:[XML attribute,weekyears attribute,date_spec element] indexterm:[XML element,date_spec element,weekyears attribute] |moon |Allowed values are 0-7 (where 0 is the new moon and 4 is full moon). Seriously, you can use this. This was implemented to demonstrate the ease with which new comparisons could be added. indexterm:[XML attribute,moon attribute,date_spec element] indexterm:[XML element,date_spec element,moon attribute] |========================================================= For example, +monthdays="1"+ matches the first day of every month, and +hours="09-17"+ matches the hours between 9 a.m. and 5 p.m. (inclusive). At this time, multiple ranges (e.g. +weekdays="1,2"+ or +weekdays="1-2,5-6"+) are not supported. +[NOTE] +==== +Pacemaker can calculate when evaluation of a +date_expression+ with an ++operation+ of +gt+, +lt+, or +in_range+ will next change, and schedule a +cluster re-check for that time. However, it does not do this for +date_spec+. +Instead, it evaluates the +date_spec+ whenever a cluster re-check naturally +happens via a cluster event or the +cluster-recheck-interval+ cluster option. +For example, if you have a +date_spec+ enabling a resource from 9 a.m. to 5 p.m., +and +cluster-recheck-interval+ has been set to 5 minutes, then sometime between +9 a.m. and 9:05 a.m. the cluster would notice that it needs to start the +resource, and sometime between 5 p.m. and 5:05 p.m. it would realize that it +needs to stop the resource. The timing of the actual start and stop actions +will further depend on factors such as any other actions the cluster may need +to perform first, and the load of the machine. +==== + === Durations === indexterm:[Rule,Date/Time Expression,Duration] indexterm:[XML element,duration element] A +duration+ is used to calculate a value for +end+ when one is not supplied to +in_range+ operations. It contains one or more attributes each containing a single number. Any attribute not supplied is ignored. .Attributes of a duration Element [width="95%",cols="2m,<5",options="header",align="center"] |========================================================= |Field |Description |id |A unique name for this duration element (required) indexterm:[XML attribute,id attribute,duration element] indexterm:[XML element,duration element,id attribute] |seconds |This many seconds will be added to the total duration indexterm:[XML attribute,seconds attribute,duration element] indexterm:[XML element,duration element,seconds attribute] |minutes |This many minutes will be added to the total duration indexterm:[XML attribute,minutes attribute,duration element] indexterm:[XML element,duration element,minutes attribute] |hours |This many hours will be added to the total duration indexterm:[XML attribute,hours attribute,duration element] indexterm:[XML element,duration element,hours attribute] |weeks |This many weeks will be added to the total duration indexterm:[XML attribute,weeks attribute,duration element] indexterm:[XML element,duration element,weeks attribute] |months |This many months will be added to the total duration indexterm:[XML attribute,months attribute,duration element] indexterm:[XML element,duration element,months attribute] |years |This many years will be added to the total duration indexterm:[XML attribute,years attribute,duration element] indexterm:[XML element,duration element,years attribute] |========================================================= === Example Time-Based Expressions === A small sample of how time-based expressions can be used: .True if now is any time in the year 2005 ==== [source,XML] ---- ---- ==== .Equivalent expression ==== [source,XML] ---- ---- ==== .9am-5pm Monday-Friday ==== [source,XML] ------- ------- ==== Please note that the +16+ matches up to +16:59:59+, as the numeric value (hour) still matches! .9am-6pm Monday through Friday or anytime Saturday ==== [source,XML] ------- ------- ==== .9am-5pm or 9pm-12am Monday through Friday ==== [source,XML] ------- ------- ==== .Mondays in March 2005 ==== [source,XML] ------- ------- ==== [NOTE] ====== Because no time is specified with the above dates, 00:00:00 is implied. This means that the range includes all of 2005-03-01 but none of 2005-04-01. You may wish to write +end="2005-03-31T23:59:59"+ to avoid confusion. ====== .A full moon on Friday the 13th ===== [source,XML] ------- ------- ===== -[[s-rules-recheck]] -=== Ensuring Time-Based Rules Take Effect === - -A Pacemaker cluster is an event-driven system. As such, it won't -recalculate the best place for resources to run unless something -(like a resource failure or configuration change) happens. This can -mean that a location constraint that only allows resource X to run -between 9am and 5pm is not enforced. - -If you rely on time-based rules, the +cluster-recheck-interval+ cluster option -(which defaults to 15 minutes) is essential. This tells the cluster to -periodically recalculate the ideal state of the cluster. - -For example, if you set +cluster-recheck-interval="5m"+, then sometime between -09:00 and 09:05 the cluster would notice that it needs to start resource X, -and between 17:00 and 17:05 it would realize that X needed to be stopped. -The timing of the actual start and stop actions depends on what other actions -the cluster may need to perform first. - == Using Rules to Determine Resource Location == indexterm:[Rule,Determine Resource Location] indexterm:[Resource,Location,Determine by Rules] A location constraint may contain one or more top-level rules. The cluster will act as if there is a separate location constraint for each rule that evaluates as true. Consider the following simple location constraint: .Prevent resource "webserver" from running on node3 ===== [source,XML] ------- ------- ===== The constraint can be more verbosely written using a rule: .Prevent resource "webserver" from running on node3 using rule ===== [source,XML] ------- ------- ===== The advantage of using the expanded form is that one could add more expressions (for example, limiting the constraint to certain days of the week), or activate the constraint by some node attribute other than node name. === Location Rules Based on Other Node Properties === The expanded form allows us to match on node properties other than its name. If we rated each machine's CPU power such that the cluster had the following nodes section: .A sample nodes section for use with score-attribute ===== [source,XML] ------- ------- ===== then we could prevent resources from running on underpowered machines with this rule: [source,XML] ------- ------- === Using +score-attribute+ Instead of +score+ === When using +score-attribute+ instead of +score+, each node matched by the rule has its score adjusted differently, according to its value for the named node attribute. Thus, in the previous example, if a rule used +score-attribute="cpu_mips"+, +c001n01+ would have its preference to run the resource increased by +1234+ whereas +c001n02+ would have its preference increased by +5678+. == Using Rules to Define Options == Rules may be used to control a variety of options: * <> (+cluster_property_set+ elements) * <> (as +instance_attributes+ or +utilization+ elements inside a +node+ element) * <> (as +utilization+, +meta_attributes+, or +instance_attributes+ elements inside a resource definition element or +op+ , +rsc_defaults+, +op_defaults+, or +template+ element) * <> (+meta_attributes+ inside an +op+ or +op_defaults+ element) === Using Rules to Control Resource Options === Often some cluster nodes will be different from their peers. Sometimes, these differences -- e.g. the location of a binary or the names of network interfaces -- require resources to be configured differently depending on the machine they're hosted on. By defining multiple +instance_attributes+ objects for the resource and adding a rule to each, we can easily handle these special cases. In the example below, +mySpecialRsc+ will use eth1 and port 9999 when run on +node1+, eth2 and port 8888 on +node2+ and default to eth0 and port 9999 for all other nodes. .Defining different resource options based on the node name ===== [source,XML] ------- ------- ===== The order in which +instance_attributes+ objects are evaluated is determined by their score (highest to lowest). If not supplied, score defaults to zero, and objects with an equal score are processed in listed order. If the +instance_attributes+ object has no rule or a +rule+ that evaluates to +true+, then for any parameter the resource does not yet have a value for, the resource will use the parameter values defined by the +instance_attributes+. For example, given the configuration above, if the resource is placed on node1: . +special-node1+ has the highest score (3) and so is evaluated first; its rule evaluates to +true+, so +interface+ is set to +eth1+. . +special-node2+ is evaluated next with score 2, but its rule evaluates to +false+, so it is ignored. . +defaults+ is evaluated last with score 1, and has no rule, so its values are examined; +interface+ is already defined, so the value here is not used, but +port+ is not yet defined, so +port+ is set to +9999+. === Using Rules to Control Resource Defaults === Rules can be used for resource and operation defaults. The following example illustrates how to set a different +resource-stickiness+ value during and outside work hours. This allows resources to automatically move back to their most preferred hosts, but at a time that (in theory) does not interfere with business activities. .Change +resource-stickiness+ during working hours ===== [source,XML] ------- ------- ===== Rules may be used similarly in +instance_attributes+ or +utilization+ blocks. Any single block may directly contain only a single rule, but that rule may itself contain any number of rules. === Using Rules to Control Cluster Options === indexterm:[Rule,Controlling Cluster Options] indexterm:[Cluster,Setting Options with Rules] Controlling cluster options is achieved in much the same manner as specifying different resource options on different nodes. The difference is that because they are cluster options, one cannot (or should not, because they won't work) use attribute-based expressions. The following example illustrates how to set +maintenance_mode+ during a scheduled maintenance window. This will keep the cluster running but not monitor, start, or stop resources during this time. .Schedule a maintenance window for 9 to 11 p.m. CDT Sept. 20, 2019 ===== [source,XML] ------- ------- ===== [IMPORTANT] ==== The +cluster_property_set+ with an +id+ set to "cib-bootstrap-options" will 'always' have the highest priority, regardless of any scores. Therefore, rules in another +cluster_property_set+ can never take effect for any properties listed in the bootstrap set. ==== diff --git a/doc/Pacemaker_Remote/en-US/Ch-Options.txt b/doc/Pacemaker_Remote/en-US/Ch-Options.txt index f238e0da1b..288bc9f27d 100644 --- a/doc/Pacemaker_Remote/en-US/Ch-Options.txt +++ b/doc/Pacemaker_Remote/en-US/Ch-Options.txt @@ -1,137 +1,134 @@ :compat-mode: legacy = Configuration Explained = The walk-through examples use some of these options, but don't explain exactly what they mean or do. This section is meant to be the go-to resource for all the options available for configuring pacemaker_remote-based nodes. (((configuration))) == Resource Meta-Attributes for Guest Nodes == When configuring a virtual machine as a guest node, the virtual machine is created using one of the usual resource agents for that purpose (for example, ocf:heartbeat:VirtualDomain or ocf:heartbeat:Xen), with additional metadata parameters. No restrictions are enforced on what agents may be used to create a guest node, but obviously the agent must create a distinct environment capable of running the pacemaker_remote daemon and cluster resources. An additional requirement is that fencing the host running the guest node resource must be sufficient for ensuring the guest node is stopped. This means, for example, that not all hypervisors supported by VirtualDomain may be used to create guest nodes; if the guest can survive the hypervisor being fenced, it may not be used as a guest node. Below are the metadata options available to enable a resource as a guest node and define its connection parameters. .Meta-attributes for configuring VM resources as guest nodes [width="95%",cols="2m,1,<4",options="header",align="center"] |========================================================= |Option |Default |Description |remote-node |'none' |The node name of the guest node this resource defines. This both enables the resource as a guest node and defines the unique name used to identify the guest node. If no other parameters are set, this value will also be assumed as the hostname to use when connecting to pacemaker_remote on the VM. This value *must not* overlap with any resource or node IDs. |remote-port |3121 |The port on the virtual machine that the cluster will use to connect to pacemaker_remote. |remote-addr |'value of' +remote-node+ |The IP address or hostname to use when connecting to pacemaker_remote on the VM. |remote-connect-timeout |60s |How long before a pending guest connection will time out. |========================================================= == Connection Resources for Remote Nodes == A remote node is defined by a connection resource. That connection resource has instance attributes that define where the remote node is located on the network and how to communicate with it. Descriptions of these instance attributes can be retrieved using the following `pcs` command: ---- # pcs resource describe remote ocf:pacemaker:remote - remote resource agent Resource options: server: Server location to connect to. This can be an ip address or hostname. port: tcp port to connect to. reconnect_interval: Interval in seconds at which Pacemaker will attempt to reconnect to a remote node after an active connection to the remote node has been severed. When this value is nonzero, Pacemaker will retry the connection - indefinitely, at the specified interval. As with any - time-based actions, this is not guaranteed to be checked - more frequently than the value of the - cluster-recheck-interval cluster option. + indefinitely, at the specified interval. ---- When defining a remote node's connection resource, it is common and recommended to name the connection resource the same as the remote node's hostname. By default, if no *server* option is provided, the cluster will attempt to contact the remote node using the resource name as the hostname. Example defining a remote node with the hostname *remote1*: ---- # pcs resource create remote1 remote ---- Example defining a remote node to connect to a specific IP address and port: ---- # pcs resource create remote1 remote server=192.168.122.200 port=8938 ---- == Environment Variables for Daemon Start-up == Authentication and encryption of the connection between cluster nodes and nodes running pacemaker_remote is achieved using with https://en.wikipedia.org/wiki/TLS-PSK[TLS-PSK] encryption/authentication over TCP (port 3121 by default). This means that both the cluster node and remote node must share the same private key. By default, this key is placed at +/etc/pacemaker/authkey+ on each node. You can change the default port and/or key location for Pacemaker and pacemaker_remote via environment variables. How these variables are set varies by OS, but usually they are set in the +/etc/sysconfig/pacemaker+ or +/etc/default/pacemaker+ file. ---- #==#==# Pacemaker Remote # Use a custom directory for finding the authkey. PCMK_authkey_location=/etc/pacemaker/authkey # # Specify a custom port for Pacemaker Remote connections PCMK_remote_port=3121 ---- == Removing Remote Nodes and Guest Nodes == If the resource creating a guest node, or the *ocf:pacemaker:remote* resource creating a connection to a remote node, is removed from the configuration, the affected node will continue to show up in output as an offline node. If you want to get rid of that output, run (replacing $NODE_NAME appropriately): ---- # crm_node --force --remove $NODE_NAME ---- [WARNING] ========= Be absolutely sure that there are no references to the node's resource in the configuration before running the above command. =========