diff --git a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt
index 99540a7cd4..e9846c06c6 100644
--- a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt
+++ b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt
@@ -1,1487 +1,1522 @@
= Advanced Resource Types =
[[group-resources]]
== Groups - A Syntactic Shortcut ==
indexterm:[Group Resources]
indexterm:[Resource,Groups]
One of the most common elements of a cluster is a set of resources
that need to be located together, start sequentially, and stop in the
reverse order. To simplify this configuration, we support the concept
of groups.
.A group of two primitive resources
======
[source,XML]
-------
-------
======
Although the example above contains only two resources, there is no
limit to the number of resources a group can contain. The example is
also sufficient to explain the fundamental properties of a group:
* Resources are started in the order they appear in (+Public-IP+
first, then +Email+)
* Resources are stopped in the reverse order to which they appear in
(+Email+ first, then +Public-IP+)
If a resource in the group can't run anywhere, then nothing after that
is allowed to run, too.
* If +Public-IP+ can't run anywhere, neither can +Email+;
* but if +Email+ can't run anywhere, this does not affect +Public-IP+
in any way
The group above is logically equivalent to writing:
.How the cluster sees a group resource
======
[source,XML]
-------
-------
======
Obviously as the group grows bigger, the reduced configuration effort
can become significant.
Another (typical) example of a group is a DRBD volume, the filesystem
mount, an IP address, and an application that uses them.
=== Group Properties ===
.Properties of a Group Resource
[width="95%",cols="3m,5<",options="header",align="center"]
|=========================================================
|Field
|Description
|id
|A unique name for the group
indexterm:[id,Group Resource Property]
indexterm:[Resource,Group Property,id]
|=========================================================
=== Group Options ===
Groups inherit the +priority+, +target-role+, and +is-managed+ properties
from primitive resources. See <> for information about
those properties.
=== Group Instance Attributes ===
Groups have no instance attributes. However, any that are set for the group
object will be inherited by the group's children.
=== Group Contents ===
Groups may only contain a collection of cluster resources (see
<>). To refer to a child of a group resource, just use
the child's +id+ instead of the group's.
=== Group Constraints ===
Although it is possible to reference a group's children in
constraints, it is usually preferable to reference the group itself.
.Some constraints involving groups
======
[source,XML]
-------
-------
======
=== Group Stickiness ===
indexterm:[resource-stickiness,Groups]
Stickiness, the measure of how much a resource wants to stay where it
is, is additive in groups. Every active resource of the group will
contribute its stickiness value to the group's total. So if the
default +resource-stickiness+ is 100, and a group has seven members,
five of which are active, then the group as a whole will prefer its
current location with a score of 500.
[[s-resource-clone]]
== Clones - Resources That Get Active on Multiple Hosts ==
indexterm:[Clone Resources]
indexterm:[Resource,Clones]
Clones were initially conceived as a convenient way to start multiple
instances of an IP address resource and have them distributed throughout the
cluster for load balancing. They have turned out to quite useful for
a number of purposes including integrating with the Distributed Lock Manager
(used by many cluster filesystems), the fencing subsystem, and OCFS2.
You can clone any resource, provided the resource agent supports it.
Three types of cloned resources exist:
* Anonymous
* Globally unique
* Stateful
'Anonymous' clones are the simplest. These behave
completely identically everywhere they are running. Because of this,
there can be only one copy of an anonymous clone active per machine.
'Globally unique' clones are distinct entities. A copy of the clone
running on one machine is not equivalent to another instance on
another node, nor would any two copies on the same node be
equivalent.
'Stateful' clones are covered later in <>.
.A clone of an LSB resource
======
[source,XML]
-------
-------
======
=== Clone Properties ===
.Properties of a Clone Resource
[width="95%",cols="3m,5<",options="header",align="center"]
|=========================================================
|Field
|Description
|id
|A unique name for the clone
indexterm:[id,Clone Property]
indexterm:[Clone,Property,id]
|=========================================================
=== Clone Options ===
Options inherited from <> resources:
+priority, target-role, is-managed+
.Clone-specific configuration options
[width="95%",cols="1m,1,3<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|clone-max
|number of nodes in cluster
|How many copies of the resource to start
indexterm:[clone-max,Clone Option]
indexterm:[Clone,Option,clone-max]
|clone-node-max
|1
|How many copies of the resource can be started on a single node
indexterm:[clone-node-max,Clone Option]
indexterm:[Clone,Option,clone-node-max]
|clone-min
|1
|Require at least this number of clone instances to be runnable before allowing
resources depending on the clone to be runnable '(since 1.1.14)'
indexterm:[clone-min,Clone Option]
indexterm:[Clone,Option,clone-min]
|notify
|true
|When stopping or starting a copy of the clone, tell all the other
copies beforehand and again when the action was successful. Allowed values:
+false+, +true+
indexterm:[notify,Clone Option]
indexterm:[Clone,Option,notify]
|globally-unique
|false
|Does each copy of the clone perform a different function? Allowed
values: +false+, +true+
indexterm:[globally-unique,Clone Option]
indexterm:[Clone,Option,globally-unique]
|ordered
|false
|Should the copies be started in series (instead of in
parallel)? Allowed values: +false+, +true+
indexterm:[ordered,Clone Option]
indexterm:[Clone,Option,ordered]
|interleave
|false
|If this clone depends on another clone via an ordering constraint,
is it allowed to start after the local instance of the other clone
starts, rather than wait for all instances of the other clone to start?
Allowed values: +false+, +true+
indexterm:[interleave,Clone Option]
indexterm:[Clone,Option,interleave]
|=========================================================
=== Clone Instance Attributes ===
Clones have no instance attributes; however, any that are set here
will be inherited by the clone's children.
=== Clone Contents ===
Clones must contain exactly one primitive or group resource.
[WARNING]
You should never reference the name of a clone's child.
If you think you need to do this, you probably need to re-evaluate your design.
=== Clone Constraints ===
In most cases, a clone will have a single copy on each active cluster
node. If this is not the case, you can indicate which nodes the
cluster should preferentially assign copies to with resource location
constraints. These constraints are written no differently from those
for primitive resources except that the clone's +id+ is used.
.Some constraints involving clones
======
[source,XML]
-------
-------
======
Ordering constraints behave slightly differently for clones. In the
example above, +apache-stats+ will wait until all copies of +apache-clone+
that need to be started have done so before being started itself.
Only if _no_ copies can be started will +apache-stats+ be prevented
from being active. Additionally, the clone will wait for
+apache-stats+ to be stopped before stopping itself.
Colocation of a primitive or group resource with a clone means that
the resource can run on any machine with an active copy of the clone.
The cluster will choose a copy based on where the clone is running and
the resource's own location preferences.
Colocation between clones is also possible. If one clone +A+ is colocated
with another clone +B+, the set of allowed locations for +A+ is limited to
nodes on which +B+ is (or will be) active. Placement is then performed
normally.
[[s-clone-stickiness]]
=== Clone Stickiness ===
indexterm:[resource-stickiness,Clones]
To achieve a stable allocation pattern, clones are slightly sticky by
default. If no value for +resource-stickiness+ is provided, the clone
will use a value of 1. Being a small value, it causes minimal
disturbance to the score calculations of other resources but is enough
to prevent Pacemaker from needlessly moving copies around the cluster.
[NOTE]
====
For globally unique clones, this may result in multiple instances of the
clone staying on a single node, even after another eligible node becomes
active (for example, after being put into standby mode then made active again).
If you do not want this behavior, specify a +resource-stickiness+ of 0
for the clone temporarily and let the cluster adjust, then set it back
to 1 if you want the default behavior to apply again.
====
=== Clone Resource Agent Requirements ===
Any resource can be used as an anonymous clone, as it requires no
additional support from the resource agent. Whether it makes sense to
do so depends on your resource and its resource agent.
Globally unique clones do require some additional support in the
resource agent. In particular, it must only respond with
+$\{OCF_SUCCESS}+ if the node has that exact instance active. All
other probes for instances of the clone should result in
+$\{OCF_NOT_RUNNING}+ (or one of the other OCF error codes if
they are failed).
Individual instances of a clone are identified by appending a colon and a
numerical offset, e.g. +apache:2+.
Resource agents can find out how many copies there are by examining
the +OCF_RESKEY_CRM_meta_clone_max+ environment variable and which
copy it is by examining +OCF_RESKEY_CRM_meta_clone+.
The resource agent must not make any assumptions (based on
+OCF_RESKEY_CRM_meta_clone+) about which numerical instances are active. In
particular, the list of active copies will not always be an unbroken
sequence, nor always start at 0.
==== Clone Notifications ====
Supporting notifications requires the +notify+ action to be
implemented. If supported, the notify action will be passed a
number of extra variables which, when combined with additional
context, can be used to calculate the current state of the cluster and
what is about to happen to it.
.Environment variables supplied with Clone notify actions
[width="95%",cols="5,3<",options="header",align="center"]
|=========================================================
|Variable
|Description
|OCF_RESKEY_CRM_meta_notify_type
|Allowed values: +pre+, +post+
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,type]
indexterm:[type,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_operation
|Allowed values: +start+, +stop+
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,operation]
indexterm:[operation,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_start_resource
|Resources to be started
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_resource]
indexterm:[start_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_stop_resource
|Resources to be stopped
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_resource]
indexterm:[stop_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_active_resource
|Resources that are running
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_resource]
indexterm:[active_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_inactive_resource
|Resources that are not running
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,inactive_resource]
indexterm:[inactive_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_start_uname
|Nodes on which resources will be started
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_uname]
indexterm:[start_uname,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_stop_uname
|Nodes on which resources will be stopped
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_uname]
indexterm:[stop_uname,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_active_uname
|Nodes on which resources are running
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_uname]
indexterm:[active_uname,Notification Environment Variable]
|=========================================================
The variables come in pairs, such as
+OCF_RESKEY_CRM_meta_notify_start_resource+ and
+OCF_RESKEY_CRM_meta_notify_start_uname+ and should be treated as an
array of whitespace-separated elements.
+OCF_RESKEY_CRM_meta_notify_inactive_resource+ is an exception as the
matching +uname+ variable does not exist since inactive resources
are not running on any node.
Thus in order to indicate that +clone:0+ will be started on +sles-1+,
+clone:2+ will be started on +sles-3+, and +clone:3+ will be started
on +sles-2+, the cluster would set
.Notification variables
======
[source,Bash]
-------
OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3"
OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"
-------
======
==== Proper Interpretation of Notification Environment Variables ====
.Pre-notification (stop):
* Active resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+
* Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
* Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
.Post-notification (stop) / Pre-notification (start):
* Active resources
** +$OCF_RESKEY_CRM_meta_notify_active_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Inactive resources
** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
.Post-notification (start):
* Active resources:
** +$OCF_RESKEY_CRM_meta_notify_active_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Inactive resources:
** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
[[s-resource-multistate]]
== Multi-state - Resources That Have Multiple Modes ==
indexterm:[Multi-state Resources]
indexterm:[Resource,Multi-state]
Multi-state resources are a specialization of clone resources; please
ensure you understand <> before continuing!
Multi-state resources allow the instances to be in one of two operating modes
(called 'roles'). The roles are called 'master' and 'slave', but can mean
whatever you wish them to mean. The only limitation is that when an instance is
started, it must come up in the slave role.
=== Multi-state Properties ===
.Properties of a Multi-State Resource
[width="95%",cols="3m,5<",options="header",align="center"]
|=========================================================
|Field
|Description
|id
|Your name for the multi-state resource
indexterm:[id,Multi-State Property]
indexterm:[Multi-State,Property,id]
|=========================================================
=== Multi-state Options ===
Options inherited from <> resources:
+priority+, +target-role+, +is-managed+
Options inherited from <> resources:
+clone-max+, +clone-node-max+, +notify+, +globally-unique+, +ordered+,
+interleave+
.Multi-state-specific resource configuration options
[width="95%",cols="1m,1,3<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|master-max
|1
|How many copies of the resource can be promoted to the +master+ role
indexterm:[master-max,Multi-State Option]
indexterm:[Multi-State,Option,master-max]
|master-node-max
|1
|How many copies of the resource can be promoted to the +master+ role on
a single node
indexterm:[master-node-max,Multi-State Option]
indexterm:[Multi-State,Option,master-node-max]
|=========================================================
=== Multi-state Instance Attributes ===
Multi-state resources have no instance attributes; however, any that
are set here will be inherited by a master's children.
=== Multi-state Contents ===
Masters must contain exactly one primitive or group resource.
[WARNING]
You should never reference the name of a master's child.
If you think you need to do this, you probably need to re-evaluate your design.
=== Monitoring Multi-State Resources ===
The usual monitor actions are insufficient to monitor a multi-state resource,
because pacemaker needs to verify not only that the resource is active, but
also that its actual role matches its intended one.
Define two monitoring actions: the usual one will cover the slave role,
and an additional one with +role="master"+ will cover the master role.
.Monitoring both states of a multi-state resource
======
[source,XML]
-------
-------
======
[IMPORTANT]
===========
It is crucial that _every_ monitor operation has a different interval!
Pacemaker currently differentiates between operations
only by resource and interval; so if (for example) a master/slave resource had
the same monitor interval for both roles, Pacemaker would ignore the
role when checking the status -- which would cause unexpected return
codes, and therefore unnecessary complications.
===========
=== Multi-state Constraints ===
In most cases, multi-state resources will have a single copy on each
active cluster node. If this is not the case, you can indicate which
nodes the cluster should preferentially assign copies to with resource
location constraints. These constraints are written no differently from
those for primitive resources except that the master's +id+ is used.
When considering multi-state resources in constraints, for most
purposes it is sufficient to treat them as clones. The exception is
that the +first-action+ and/or +then-action+ fields for ordering constraints
may be set to +promote+ or +demote+ to constrain the master role,
and colocation constraints may contain +rsc-role+ and/or +with-rsc-role+
fields.
.Additional colocation constraint options for multi-state resources
[width="95%",cols="1m,1,3<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|rsc-role
|Started
|An additional attribute of colocation constraints that specifies the
role that +rsc+ must be in. Allowed values: +Started+, +Master+,
+Slave+.
indexterm:[rsc-role,Ordering Constraints]
indexterm:[Constraints,Ordering,rsc-role]
|with-rsc-role
|Started
|An additional attribute of colocation constraints that specifies the
role that +with-rsc+ must be in. Allowed values: +Started+,
+Master+, +Slave+.
indexterm:[with-rsc-role,Ordering Constraints]
indexterm:[Constraints,Ordering,with-rsc-role]
|=========================================================
.Constraints involving multi-state resources
======
[source,XML]
-------
-------
======
In the example above, +myApp+ will wait until one of the database
copies has been started and promoted to master before being started
itself on the same node. Only if no copies can be promoted will +myApp+ be
prevented from being active. Additionally, the cluster will wait for
+myApp+ to be stopped before demoting the database.
Colocation of a primitive or group resource with a multi-state
resource means that it can run on any machine with an active copy of
the multi-state resource that has the specified role (+master+ or
+slave+). In the example above, the cluster will choose a location based on
where database is running as a +master+, and if there are multiple
+master+ instances it will also factor in +myApp+'s own location
preferences when deciding which location to choose.
Colocation with regular clones and other multi-state resources is also
possible. In such cases, the set of allowed locations for the +rsc+
clone is (after role filtering) limited to nodes on which the
+with-rsc+ multi-state resource is (or will be) in the specified role.
Placement is then performed as normal.
==== Using Multi-state Resources in Colocation Sets ====
.Additional colocation set options relevant to multi-state resources
[width="95%",cols="1m,1,6<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|role
|Started
|The role that 'all members' of the set must be in. Allowed values: +Started+, +Master+,
+Slave+.
indexterm:[role,Ordering Constraints]
indexterm:[Constraints,Ordering,role]
|=========================================================
In the following example +B+'s master must be located on the same node as +A+'s master.
Additionally resources +C+ and +D+ must be located on the same node as +A+'s
and +B+'s masters.
.Colocate C and D with A's and B's master instances
======
[source,XML]
-------
-------
======
==== Using Multi-state Resources in Ordering Sets ====
.Additional ordered set options relevant to multi-state resources
[width="95%",cols="1m,1,3<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|action
|value of +first-action+
|An additional attribute of ordering constraint sets that specifies the
action that applies to 'all members' of the set. Allowed
values: +start+, +stop+, +promote+, +demote+.
indexterm:[action,Ordering Constraints]
indexterm:[Constraints,Ordering,action]
|=========================================================
.Start C and D after first promoting A and B
======
[source,XML]
-------
-------
======
In the above example, +B+ cannot be promoted to a master role until +A+ has
been promoted. Additionally, resources +C+ and +D+ must wait until +A+ and +B+
have been promoted before they can start.
=== Multi-state Stickiness ===
indexterm:[resource-stickiness,Multi-State]
As with regular clones, multi-state resources are
slightly sticky by default. See <> for details.
+[[s-master-scores]]
=== Which Resource Instance is Promoted ===
During the start operation, most resource agents should call
the `crm_master` utility. This tool automatically detects both the
resource and host and should be used to set a preference for being
promoted. Based on this, +master-max+, and +master-node-max+, the
instance(s) with the highest preference will be promoted.
An alternative is to create a location constraint that
indicates which nodes are most preferred as masters.
.Explicitly preferring node1 to be promoted to master
======
[source,XML]
-------
-------
======
=== Requirements for Multi-state Resource Agents ===
Since multi-state resources are an extension of cloned resources, all
the requirements for resource agents that support clones are also requirements
for resource agents that support multi-state resources.
Additionally, multi-state resources require two extra
actions, +demote+ and +promote+, which are responsible for
changing the state of the resource. Like +start+ and +stop+, they
should return +$\{OCF_SUCCESS}+ if they completed successfully or a
relevant error code if they did not.
The states can mean whatever you wish, but when the resource is
started, it must come up in the mode called +slave+. From there the
cluster will decide which instances to promote to +master+.
In addition to the clone requirements for monitor actions, agents must
also _accurately_ report which state they are in. The cluster relies
on the agent to report its status (including role) accurately and does
not indicate to the agent what role it currently believes it to be in.
.Role implications of OCF return codes
[width="95%",cols="1,1<",options="header",align="center"]
|=========================================================
|Monitor Return Code
|Description
|OCF_NOT_RUNNING
|Stopped
indexterm:[Return Code,OCF_NOT_RUNNING]
|OCF_SUCCESS
|Running (Slave)
indexterm:[Return Code,OCF_SUCCESS]
|OCF_RUNNING_MASTER
|Running (Master)
indexterm:[Return Code,OCF_RUNNING_MASTER]
|OCF_FAILED_MASTER
|Failed (Master)
indexterm:[Return Code,OCF_FAILED_MASTER]
|Other
|Failed (Slave)
|=========================================================
==== Multi-state Notifications ====
Like clones, supporting notifications requires the +notify+ action to
be implemented. If supported, the notify action will be passed a
number of extra variables which, when combined with additional
context, can be used to calculate the current state of the cluster and
what is about to happen to it.
.Environment variables supplied with multi-state notify actions footnote:[Emphasized variables are specific to +Master+ resources, and all behave in the same manner as described for Clone resources.]
[width="95%",cols="5,3<",options="header",align="center"]
|=========================================================
|Variable
|Description
|OCF_RESKEY_CRM_meta_notify_type
|Allowed values: +pre+, +post+
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,type]
indexterm:[type,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_operation
|Allowed values: +start+, +stop+
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,operation]
indexterm:[operation,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_active_resource
|Resources that are running
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_resource]
indexterm:[active_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_inactive_resource
|Resources that are not running
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,inactive_resource]
indexterm:[inactive_resource,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_master_resource_
|Resources that are running in +Master+ mode
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,master_resource]
indexterm:[master_resource,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_slave_resource_
|Resources that are running in +Slave+ mode
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,slave_resource]
indexterm:[slave_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_start_resource
|Resources to be started
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_resource]
indexterm:[start_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_stop_resource
|Resources to be stopped
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_resource]
indexterm:[stop_resource,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_promote_resource_
|Resources to be promoted
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,promote_resource]
indexterm:[promote_resource,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_demote_resource_
|Resources to be demoted
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,demote_resource]
indexterm:[demote_resource,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_start_uname
|Nodes on which resources will be started
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_uname]
indexterm:[start_uname,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_stop_uname
|Nodes on which resources will be stopped
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_uname]
indexterm:[stop_uname,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_promote_uname_
|Nodes on which resources will be promoted
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,promote_uname]
indexterm:[promote_uname,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_demote_uname_
|Nodes on which resources will be demoted
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,demote_uname]
indexterm:[demote_uname,Notification Environment Variable]
|OCF_RESKEY_CRM_meta_notify_active_uname
|Nodes on which resources are running
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_uname]
indexterm:[active_uname,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_master_uname_
|Nodes on which resources are running in +Master+ mode
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,master_uname]
indexterm:[master_uname,Notification Environment Variable]
|_OCF_RESKEY_CRM_meta_notify_slave_uname_
|Nodes on which resources are running in +Slave+ mode
indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,slave_uname]
indexterm:[slave_uname,Notification Environment Variable]
|=========================================================
==== Proper Interpretation of Multi-state Notification Environment Variables ====
.Pre-notification (demote):
* +Active+ resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+
* +Master+ resources: +$OCF_RESKEY_CRM_meta_notify_master_resource+
* +Slave+ resources: +$OCF_RESKEY_CRM_meta_notify_slave_resource+
* Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
* Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
.Post-notification (demote) / Pre-notification (stop):
* +Active+ resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+
* +Master+ resources:
** +$OCF_RESKEY_CRM_meta_notify_master_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* +Slave+ resources: +$OCF_RESKEY_CRM_meta_notify_slave_resource+
* Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
* Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
.Post-notification (stop) / Pre-notification (start)
* +Active+ resources:
** +$OCF_RESKEY_CRM_meta_notify_active_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* +Master+ resources:
** +$OCF_RESKEY_CRM_meta_notify_master_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* +Slave+ resources:
** +$OCF_RESKEY_CRM_meta_notify_slave_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Inactive resources:
** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
.Post-notification (start) / Pre-notification (promote)
* +Active+ resources:
** +$OCF_RESKEY_CRM_meta_notify_active_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* +Master+ resources:
** +$OCF_RESKEY_CRM_meta_notify_master_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* +Slave+ resources:
** +$OCF_RESKEY_CRM_meta_notify_slave_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Inactive resources:
** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
.Post-notification (promote)
* +Active+ resources:
** +$OCF_RESKEY_CRM_meta_notify_active_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* +Master+ resources:
** +$OCF_RESKEY_CRM_meta_notify_master_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* +Slave+ resources:
** +$OCF_RESKEY_CRM_meta_notify_slave_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Inactive resources:
** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+
** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+
** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
* Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+
* Resources that were promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+
* Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+
* Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+
[[s-resource-bundle]]
== Bundles - Isolated Environments ==
indexterm:[bundle]
indexterm:[Resource,bundle]
indexterm:[Docker,bundle]
indexterm:[rkt,bundle]
Pacemaker supports a special syntax for launching a
https://en.wikipedia.org/wiki/Operating-system-level_virtualization[container]
with any infrastructure it requires: the 'bundle'.
Pacemaker bundles support https://www.docker.com/[Docker] (since version
1.1.17) and https://coreos.com/rkt/[rkt] (coming in version 1.1.18) container
technologies.
footnote:[Docker is a trademark of Docker, Inc. No endorsement by or
association with Docker, Inc. is implied.]
.A bundle for a containerized web server
====
[source,XML]
----
----
====
=== Bundle Properties ===
.Properties of a Bundle
[width="95%",cols="3m,5<",options="header",align="center"]
|=========================================================
|Field
|Description
|id
|A unique name for the bundle (required)
indexterm:[id,bundle]
indexterm:[bundle,Property,id]
|description
|Arbitrary text (not used by Pacemaker)
indexterm:[description,bundle]
indexterm:[bundle,Property,description]
|=========================================================
A bundle must contain exactly one ++ or ++ element.
=== Docker Properties ===
Before configuring a Docker bundle in Pacemaker, the user must install Docker
and supply a fully configured Docker image on every node allowed to run the
bundle.
Pacemaker will create an implicit +ocf:heartbeat:docker+ resource to manage
a bundle's Docker container. The user must ensure that resource agent is
installed on every node allowed to run the bundle.
.Properties of a Bundle's Docker Element
[width="95%",cols="3m,4,5<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|image
|
|Docker image tag (required)
indexterm:[image,Docker]
indexterm:[Docker,Property,image]
|replicas
|Value of +masters+ if that is positive, else 1
|A positive integer specifying the number of container instances to launch
indexterm:[replicas,Docker]
indexterm:[Docker,Property,replicas]
|replicas-per-host
|1
|A positive integer specifying the number of container instances allowed to run
on a single node
indexterm:[replicas-per-host,Docker]
indexterm:[Docker,Property,replicas-per-host]
|masters
|0
|A non-negative integer that, if positive, indicates that the containerized
service should be treated as a multistate service, with this many replicas
allowed to run the service in the master role
indexterm:[masters,Docker]
indexterm:[Docker,Property,masters]
|network
|
|If specified, this will be passed to +docker run+ as the
https://docs.docker.com/engine/reference/run/#network-settings[network setting]
for the Docker container.
indexterm:[network,Docker]
indexterm:[Docker,Property,network]
|run-command
|`/usr/sbin/pacemaker_remoted` if bundle contains a +primitive+, otherwise none
|This command will be run inside the container when launching it ("PID 1"). If
the bundle contains a +primitive+, this command 'must' start pacemaker_remoted
(but could, for example, be a script that does other stuff, too).
indexterm:[run-command,Docker]
indexterm:[Docker,Property,run-command]
|options
|
|Extra command-line options to pass to `docker run`
indexterm:[options,Docker]
indexterm:[Docker,Property,options]
|=========================================================
=== rkt Properties ===
Before configuring a rkt bundle in Pacemaker, the user must install rkt
and supply a fully configured container image on every node allowed to run the
bundle.
Pacemaker will create an implicit +ocf:heartbeat:rkt+ resource to manage
a bundle's rkt container. The user must ensure that resource agent is
installed on every node allowed to run the bundle.
.Properties of a Bundle's rkt Element
[width="95%",cols="3m,4,5<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|image
|
|Container image tag (required)
indexterm:[image,rkt]
indexterm:[rkt,Property,image]
|replicas
|Value of +masters+ if that is positive, else 1
|A positive integer specifying the number of container instances to launch
indexterm:[replicas,rkt]
indexterm:[rkt,Property,replicas]
|replicas-per-host
|1
|A positive integer specifying the number of container instances allowed to run
on a single node
indexterm:[replicas-per-host,rkt]
indexterm:[rkt,Property,replicas-per-host]
|masters
|0
|A non-negative integer that, if positive, indicates that the containerized
service should be treated as a multistate service, with this many replicas
allowed to run the service in the master role
indexterm:[masters,rkt]
indexterm:[rkt,Property,masters]
|network
|
|If specified, this will be passed to +rkt run+ as the
network setting for the rkt container.
indexterm:[network,rkt]
indexterm:[rkt,Property,network]
|run-command
|`/usr/sbin/pacemaker_remoted` if bundle contains a +primitive+, otherwise none
|This command will be run inside the container when launching it ("PID 1"). If
the bundle contains a +primitive+, this command 'must' start pacemaker_remoted
(but could, for example, be a script that does other stuff, too).
indexterm:[run-command,rkt]
indexterm:[rkt,Property,run-command]
|options
|
|Extra command-line options to pass to `rkt run`
indexterm:[options,rkt]
indexterm:[rkt,Property,options]
|=========================================================
=== Bundle Network Properties ===
A bundle may optionally contain one ++ element.
indexterm:[bundle,network]
.Properties of a Bundle's Network Element
[width="95%",cols="2m,1,4<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|ip-range-start
|
|If specified, Pacemaker will create an implicit +ocf:heartbeat:IPaddr2+
resource for each container instance, starting with this IP address,
using up to +replicas+ sequential addresses. These addresses can be used
from the host's network to reach the service inside the container, though
it is not visible within the container itself. Only IPv4 addresses are
currently supported.
indexterm:[ip-range-start,network]
indexterm:[network,Property,ip-range-start]
|host-netmask
|32
|If +ip-range-start+ is specified, the IP addresses are created with this
CIDR netmask (as a number of bits).
indexterm:[host-netmask,network]
indexterm:[network,Property,host-netmask]
|host-interface
|
|If +ip-range-start+ is specified, the IP addresses are created on this
host interface (by default, it will be determined from the IP address).
indexterm:[host-interface,network]
indexterm:[network,Property,host-interface]
|control-port
|3121
|If the bundle contains a +primitive+, the cluster will use this integer TCP
port for communication with Pacemaker Remote inside the container. Changing
this is useful when the container is unable to listen on the default port,
for example, when the container uses the host's network rather than
+ip-range-start+ (in which case +replicas-per-host+ must be 1), or when the
bundle may run on a Pacemaker Remote node that is already listening on the
default port. Any PCMK_remote_port environment variable set on the host or in
the container is ignored for bundle connections.
indexterm:[control-port,network]
indexterm:[network,Property,control-port]
|=========================================================
[[s-resource-bundle-note-replica-names]]
[NOTE]
====
If +ip-range-start+ is used, Pacemaker will automatically ensure that
+/etc/hosts+ inside the containers has entries for each replica and its
assigned IP. Replicas are named by the bundle id plus a dash and an integer
counter starting with zero. For example, if a bundle named +httpd-bundle+ has
+replicas=2+, its containers will be named +httpd-bundle-0+ and
+httpd-bundle-1+.
====
Additionally, a ++ element may optionally contain one or more
++ elements.
indexterm:[bundle,network,port-mapping]
.Properties of a Bundle's Port-Mapping Element
[width="95%",cols="2m,1,4<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|id
|
|A unique name for the port mapping (required)
indexterm:[id,port-mapping]
indexterm:[port-mapping,Property,id]
|port
|
|If this is specified, connections to this TCP port number on the host network
(on the container's assigned IP address, if +ip-range-start+ is specified)
will be forwarded to the container network. Exactly one of +port+ or +range+
must be specified in a +port-mapping+.
indexterm:[port,port-mapping]
indexterm:[port-mapping,Property,port]
|internal-port
|value of +port+
|If +port+ and this are specified, connections to +port+ on the host's network
will be forwarded to this port on the container network.
indexterm:[internal-port,port-mapping]
indexterm:[port-mapping,Property,internal-port]
|range
|
|If this is specified, connections to these TCP port numbers (expressed as
'first_port'-'last_port') on the host network (on the container's assigned IP
address, if +ip-range-start+ is specified) will be forwarded to the same ports
in the container network. Exactly one of +port+ or +range+ must be specified
in a +port-mapping+.
indexterm:[range,port-mapping]
indexterm:[port-mapping,Property,range]
|=========================================================
[NOTE]
====
If the bundle contains a +primitive+, Pacemaker will automatically map the
+control-port+, so it is not necessary to specify that port in a
+port-mapping+.
====
=== Bundle Storage Properties ===
A bundle may optionally contain one ++ element. A ++ element
has no properties of its own, but may contain one or more ++
elements.
indexterm:[bundle,storage,storage-mapping]
.Properties of a Bundle's Storage-Mapping Element
[width="95%",cols="2m,1,4<",options="header",align="center"]
|=========================================================
|Field
|Default
|Description
|id
|
|A unique name for the storage mapping (required)
indexterm:[id,storage-mapping]
indexterm:[storage-mapping,Property,id]
|source-dir
|
|The absolute path on the host's filesystem that will be mapped into the
container. Exactly one of +source-dir+ and +source-dir-root+ must be specified
in a +storage-mapping+.
indexterm:[source-dir,storage-mapping]
indexterm:[storage-mapping,Property,source-dir]
|source-dir-root
|
|The start of a path on the host's filesystem that will be mapped into the
container, using a different subdirectory on the host for each container
instance. The subdirectory will be named the same as the bundle host name,
as described in
<>.
Exactly one of +source-dir+ and +source-dir-root+ must be specified in a
+storage-mapping+.
indexterm:[source-dir-root,storage-mapping]
indexterm:[storage-mapping,Property,source-dir-root]
|target-dir
|
|The path name within the container where the host storage will be mapped
(required)
indexterm:[target-dir,storage-mapping]
indexterm:[storage-mapping,Property,target-dir]
|options
|
|File system mount options to use when mapping the storage
indexterm:[options,storage-mapping]
indexterm:[storage-mapping,Property,options]
|=========================================================
[NOTE]
====
Pacemaker does not define the behavior if the source directory does not already
exist on the host. However, it is expected that the container technology and/or
its resource agent will create the source directory in that case.
====
[NOTE]
====
If the bundle contains a +primitive+,
Pacemaker will automatically map the equivalent of
+source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey+
and +source-dir-root=/var/log/pacemaker/bundles target-dir=/var/log+ into the
container, so it is not necessary to specify those paths in a
+storage-mapping+. (If the DC node has the PCMK_authkey_location variable set,
that will be used as the source instead of `/etc/pacemaker/authkey`; the value
should be identical on all nodes, if used. The user should not set the
PCMK_authkey_location environment variable inside the container.)
====
=== Bundle Primitive ===
A bundle may optionally contain one ++ resource
(see <>). The primitive may have operations,
instance attributes and meta-attributes defined, as usual.
If a bundle contains a primitive resource, the container image must include
the Pacemaker Remote daemon, and at least one of +ip-range-start+ or
+control-port+ must be configured in the bundle. Pacemaker will create an
implicit +ocf:pacemaker:remote+ resource for the connection, launch
Pacemaker Remote within the container, and monitor and manage the primitive
resource via Pacemaker Remote.
If the bundle has more than one container instance (replica), the primitive
resource will function as an implicit clone (see <>) --
a multistate clone if the bundle has +masters+ greater than zero
(see <>).
[IMPORTANT]
====
Containers in bundles with a +primitive+ must have an accessible networking
environment, so that Pacemaker on the cluster nodes can contact
Pacemaker Remote inside the container. For example, the Docker option
`--net=none` should not be used with a +primitive+. The default (using a
distinct network space inside the container) works in combination with
+ip-range-start+. If the Docker option `--net=host` is used (making the
container share the host's network space), a unique +control-port+ should be
specified for each bundle. Any firewall must allow access to the
+control-port+.
====
+[[s-bundle-attributes]]
+=== Bundle Node Attributes ===
+
+If the bundle has a +primitive+, the primitive's resource agent may want to set
+node attributes such as <>. However, with
+containers, it is not apparent which node should get the attribute.
+
+If the container uses shared storage that is the same no matter which node the
+container is hosted on, then it is appropriate to use the master score on the
+bundle node itself.
+
+On the other hand, if the container uses storage exported from the underlying host,
+then it may be more appropriate to use the master score on the underlying host.
+
+Since this depends on the particular situation, the
++container-attribute-target+ resource meta-attribute allows the user to specify
+which approach to use. If it is set to +host+, then user-defined node attributes
+will be checked on the underlying host. If it is anything else, the local node
+(in this case the bundle node) is used as usual.
+
+This only applies to user-defined attributes; the cluster will always check the
+local node for cluster-defined attributes such as +#uname+.
+
+If +container-attribute-target+ is +host+, the cluster will pass additional
+environment variables to the primitive's resource agent that allow it to set
+node attributes appropriately: +container_attribute_target+ (identical to the
+meta-attribute value) and +physical_host+ (the name of the underlying host).
+
+[NOTE]
+====
+It is up to the resource agent to check for the additional variables and use
+them when setting node attributes.
+====
+
=== Bundle Meta-Attributes ===
Any meta-attribute set on a bundle will be inherited by the bundle's
primitive and any resources implicitly created by Pacemaker for the bundle.
This includes options such as +priority+, +target-role+, and +is-managed+. See
<> for more information.
=== Limitations of Bundles ===
Bundle support is considered experimental. Cleaning up a running bundle, or
restarting pacemaker while a bundle is unmanaged or the cluster is in
maintenance mode, may cause the bundle to fail. The feature is believed to
be otherwise production-ready as of version 1.1.18.
Bundles may not be cloned or included in groups. This includes the bundle's
primitive and any resources implicitly created by Pacemaker for the bundle.
Bundles do not have instance attributes, utilization attributes, or operations,
though a bundle's primitive may have them.
A bundle with a primitive can run on a Pacemaker Remote node only if the bundle
uses a distinct +control-port+.
Interacting directly with any resource or guest node implicitly created by
Pacemaker for the bundle is strongly discouraged and likely to cause problems.
diff --git a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt
index 2beaed87d4..1f7ed5b9cf 100644
--- a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt
+++ b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt
@@ -1,849 +1,853 @@
= Cluster Resources =
[[s-resource-primitive]]
== What is a Cluster Resource? ==
indexterm:[Resource]
A resource is a service made highly available by a cluster.
The simplest type of resource, a 'primitive' resource, is described
in this chapter. More complex forms, such as groups and clones,
are described in later chapters.
Every primitive resource has a 'resource agent'. A resource agent is an
external program that abstracts the service it provides and present a
consistent view to the cluster.
This allows the cluster to be agnostic about the resources it manages.
The cluster doesn't need to understand how the resource works because
it relies on the resource agent to do the right thing when given a
`start`, `stop` or `monitor` command. For this reason, it is crucial that
resource agents are well-tested.
Typically, resource agents come in the form of shell scripts. However,
they can be written using any technology (such as C, Python or Perl)
that the author is comfortable with.
[[s-resource-supported]]
== Resource Classes ==
indexterm:[Resource,class]
Pacemaker supports several classes of agents:
* OCF
* LSB
* Upstart
* Systemd
* Service
* Fencing
* Nagios Plugins
=== Open Cluster Framework ===
indexterm:[Resource,OCF]
indexterm:[OCF,Resources]
indexterm:[Open Cluster Framework,Resources]
The OCF standard
footnote:[See
http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD
-- at least as it relates to resource agents. The Pacemaker implementation has
been somewhat extended from the OCF specs, but none of those changes are
incompatible with the original OCF specification.]
is basically an extension of the Linux Standard Base conventions for
init scripts to:
* support parameters,
* make them self-describing, and
* make them extensible
OCF specs have strict definitions of the exit codes that actions must return.
footnote:[
The resource-agents source code includes the `ocf-tester` script, which
can be useful in this regard.
]
The cluster follows these specifications exactly, and giving the wrong
exit code will cause the cluster to behave in ways you will likely
find puzzling and annoying. In particular, the cluster needs to
distinguish a completely stopped resource from one which is in some
erroneous and indeterminate state.
Parameters are passed to the resource agent as environment variables, with the
special prefix +OCF_RESKEY_+. So, a parameter which the user thinks
of as +ip+ will be passed to the resource agent as +OCF_RESKEY_ip+. The
number and purpose of the parameters is left to the resource agent; however,
the resource agent should use the `meta-data` command to advertise any that it
supports.
The OCF class is the most preferred as it is an industry standard,
highly flexible (allowing parameters to be passed to agents in a
non-positional manner) and self-describing.
For more information, see the
http://www.linux-ha.org/wiki/OCF_Resource_Agents[reference] and
<>.
=== Linux Standard Base ===
indexterm:[Resource,LSB]
indexterm:[LSB,Resources]
indexterm:[Linux Standard Base,Resources]
LSB resource agents are those found in +/etc/init.d+.
Generally, they are provided by the OS distribution and, in order to be used
with the cluster, they must conform to the LSB Spec.
footnote:[
See
http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
for the LSB Spec as it relates to init scripts.
]
[WARNING]
====
Many distributions claim LSB compliance but ship with broken init
scripts. For details on how to check whether your init script is
LSB-compatible, see <>. Common problematic violations of
the LSB standard include:
* Not implementing the status operation at all
* Not observing the correct exit status codes for `start/stop/status` actions
* Starting a started resource returns an error
* Stopping a stopped resource returns an error
====
[IMPORTANT]
====
Remember to make sure the computer is _not_ configured to start any
services at boot time -- that should be controlled by the cluster.
====
=== Systemd ===
indexterm:[Resource,Systemd]
indexterm:[Systemd,Resources]
Some newer distributions have replaced the old
http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of
initialization daemons and scripts with an alternative called
http://www.freedesktop.org/wiki/Software/systemd[Systemd].
Pacemaker is able to manage these services _if they are present_.
Instead of init scripts, systemd has 'unit files'. Generally, the
services (unit files) are provided by the OS distribution, but there
are online guides for converting from init scripts.
footnote:[For example,
http://0pointer.de/blog/projects/systemd-for-admins-3.html]
[IMPORTANT]
====
Remember to make sure the computer is _not_ configured to start any
services at boot time -- that should be controlled by the cluster.
====
=== Upstart ===
indexterm:[Resource,Upstart]
indexterm:[Upstart,Resources]
Some newer distributions have replaced the old
http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of
initialization daemons (and scripts) with an alternative called
http://upstart.ubuntu.com/[Upstart].
Pacemaker is able to manage these services _if they are present_.
Instead of init scripts, upstart has 'jobs'. Generally, the
services (jobs) are provided by the OS distribution.
[IMPORTANT]
====
Remember to make sure the computer is _not_ configured to start any
services at boot time -- that should be controlled by the cluster.
====
=== System Services ===
indexterm:[Resource,System Services]
indexterm:[System Service,Resources]
Since there are various types of system services (+systemd+,
+upstart+, and +lsb+), Pacemaker supports a special +service+ alias which
intelligently figures out which one applies to a given cluster node.
This is particularly useful when the cluster contains a mix of
+systemd+, +upstart+, and +lsb+.
In order, Pacemaker will try to find the named service as:
. an LSB init script
. a Systemd unit file
. an Upstart job
=== STONITH ===
indexterm:[Resource,STONITH]
indexterm:[STONITH,Resources]
The STONITH class is used exclusively for fencing-related resources. This is
discussed later in <>.
=== Nagios Plugins ===
indexterm:[Resource,Nagios Plugins]
indexterm:[Nagios Plugins,Resources]
Nagios Plugins
footnote:[The project has two independent forks, hosted at
https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/. Output
from both projects' plugins is similar, so plugins from either project can be
used with pacemaker.]
allow us to monitor services on remote hosts.
Pacemaker is able to do remote monitoring with the plugins _if they are
present_.
A common use case is to configure them as resources belonging to a resource
container (usually a virtual machine), and the container will be restarted
if any of them has failed. Another use is to configure them as ordinary
resources to be used for monitoring hosts or services via the network.
The supported parameters are same as the long options of the plugin.
[[primitive-resource]]
== Resource Properties ==
These values tell the cluster which resource agent to use for the resource,
where to find that resource agent and what standards it conforms to.
.Properties of a Primitive Resource
[width="95%",cols="1m,6<",options="header",align="center"]
|=========================================================
|Field
|Description
|id
|Your name for the resource
indexterm:[id,Resource]
indexterm:[Resource,Property,id]
|class
|The standard the resource agent conforms to. Allowed values:
+lsb+, +nagios+, +ocf+, +service+, +stonith+, +systemd+, +upstart+
indexterm:[class,Resource]
indexterm:[Resource,Property,class]
|type
|The name of the Resource Agent you wish to use. E.g. +IPaddr+ or +Filesystem+
indexterm:[type,Resource]
indexterm:[Resource,Property,type]
|provider
|The OCF spec allows multiple vendors to supply the same
resource agent. To use the OCF resource agents supplied by
the Heartbeat project, you would specify +heartbeat+ here.
indexterm:[provider,Resource]
indexterm:[Resource,Property,provider]
|=========================================================
The XML definition of a resource can be queried with the `crm_resource` tool.
For example:
----
# crm_resource --resource Email --query-xml
----
might produce:
.A system resource definition
=====
[source,XML]
=====
[NOTE]
=====
One of the main drawbacks to system services (LSB, systemd or
Upstart) resources is that they do not allow any parameters!
=====
////
See https://tools.ietf.org/html/rfc5737 for choice of example IP address
////
.An OCF resource definition
=====
[source,XML]
-------
-------
=====
[[s-resource-options]]
== Resource Options ==
Resources have two types of options: 'meta-attributes' and 'instance attributes'.
Meta-attributes apply to any type of resource, while instance attributes
are specific to each resource agent.
=== Resource Meta-Attributes ===
Meta-attributes are used by the cluster to decide how a resource should
behave and can be easily set using the `--meta` option of the
`crm_resource` command.
.Meta-attributes of a Primitive Resource
[width="95%",cols="2m,2,5> resources, promoted to master if
appropriate)
* +Slave:+ Allow the resource to be started, but only in Slave mode if
the resource is <>
* +Master:+ Equivalent to +Started+
indexterm:[target-role,Resource Option]
indexterm:[Resource,Option,target-role]
|is-managed
|TRUE
|Is the cluster allowed to start and stop the resource? Allowed
values: +true+, +false+
indexterm:[is-managed,Resource Option]
indexterm:[Resource,Option,is-managed]
|resource-stickiness
|value of +resource-stickiness+ in the +rsc_defaults+ section
|How much does the resource prefer to stay where it is?
indexterm:[resource-stickiness,Resource Option]
indexterm:[Resource,Option,resource-stickiness]
|requires
|fencing (unless +stonith-enabled+ is +false+ or +class+ is
+stonith+, in which case it defaults to quorum)
|Conditions under which the resource can be started '(since 1.1.8)'
Allowed values:
* +nothing:+ can always be started
* +quorum:+ The cluster can only start this resource if a majority of
the configured nodes are active
* +fencing:+ The cluster can only start this resource if a majority
of the configured nodes are active _and_ any failed or unknown nodes
have been powered off
* +unfencing:+
The cluster can only start this resource if a majority
of the configured nodes are active _and_ any failed or unknown nodes
have been powered off _and_ only on nodes that have been 'unfenced'
'(since 1.1.9)'
indexterm:[requires,Resource Option]
indexterm:[Resource,Option,requires]
|migration-threshold
|INFINITY
|How many failures may occur for this resource on a node, before this
node is marked ineligible to host this resource. A value of 0 indicates that
this feature is disabled (the node will never be marked ineligible); by
constrast, the cluster treats INFINITY (the default) as a very large but
finite number. This option has an effect only if the failed operation has
on-fail=restart (the default), and additionally for failed start operations,
if the cluster property start-failure-is-fatal is false.
indexterm:[migration-threshold,Resource Option]
indexterm:[Resource,Option,migration-threshold]
|failure-timeout
|0
|How many seconds to wait before acting as if the failure had not
occurred, and potentially allowing the resource back to the node on
which it failed. A value of 0 indicates that this feature is disabled.
As with any time-based actions, this is not guaranteed to be checked more
frequently than the value of +cluster-recheck-interval+ (see
<>).
indexterm:[failure-timeout,Resource Option]
indexterm:[Resource,Option,failure-timeout]
|multiple-active
|stop_start
|What should the cluster do if it ever finds the resource active on
more than one node? Allowed values:
* +block:+ mark the resource as unmanaged
* +stop_only:+ stop all active instances and leave them that way
* +stop_start:+ stop all active instances and start the resource in
one location only
indexterm:[multiple-active,Resource Option]
indexterm:[Resource,Option,multiple-active]
|allow-migrate
|TRUE for ocf:pacemaker:remote resources, FALSE otherwise
|Whether the cluster should try to "live migrate" this resource when it needs
to be moved (see <>)
+|container-attribute-target
+|
+|Specific to bundle resources; see <>
+
|remote-node
|
|The name of the Pacemaker Remote guest node this resource is associated with,
if any. If specified, this both enables the resource as a guest node and
defines the unique name used to identify the guest node. The guest must be
configured to run the Pacemaker Remote daemon when it is started. +WARNING:+
This value cannot overlap with any resource or node IDs. '(since 1.1.9)'
|remote-port
|3121
|If +remote-node+ is specified, the port on the guest used for its
Pacemaker Remote connection. The Pacemaker Remote daemon on the guest must be
configured to listen on this port. '(since 1.1.9)'
|remote-addr
|value of +remote-node+
|If +remote-node+ is specified, the IP address or hostname used to connect to
the guest via Pacemaker Remote. The Pacemaker Remote daemon on the guest
must be configured to accept connections on this address. '(since 1.1.9)'
|remote-connect-timeout
|60s
|If +remote-node+ is specified, how long before a pending guest connection will
time out. '(since 1.1.10)'
|=========================================================
As an example of setting resource options, if you performed the following
commands on an LSB Email resource:
-------
# crm_resource --meta --resource Email --set-parameter priority --parameter-value 100
# crm_resource -m -r Email -p multiple-active -v block
-------
the resulting resource definition might be:
.An LSB resource with cluster options
=====
[source,XML]
-------
-------
=====
[[s-resource-defaults]]
=== Setting Global Defaults for Resource Meta-Attributes ===
To set a default value for a resource option, add it to the
+rsc_defaults+ section with `crm_attribute`. For example,
----
# crm_attribute --type rsc_defaults --name is-managed --update false
----
would prevent the cluster from starting or stopping any of the
resources in the configuration (unless of course the individual
resources were specifically enabled by having their +is-managed+ set to
+true+).
=== Resource Instance Attributes ===
The resource agents of some resource classes (lsb, systemd and upstart 'not' among them)
can be given parameters which determine how they behave and which instance
of a service they control.
If your resource agent supports parameters, you can add them with the
`crm_resource` command. For example,
----
# crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2
----
would create an entry in the resource like this:
.An example OCF resource with instance attributes
=====
[source,XML]
-------
-------
=====
For an OCF resource, the result would be an environment variable
called +OCF_RESKEY_ip+ with a value of +192.0.2.2+.
The list of instance attributes supported by an OCF resource agent can be
found by calling the resource agent with the `meta-data` command.
The output contains an XML description of all the supported
attributes, their purpose and default values.
.Displaying the metadata for the Dummy resource agent template
=====
----
# export OCF_ROOT=/usr/lib/ocf
# $OCF_ROOT/resource.d/pacemaker/Dummy meta-data
----
[source,XML]
-------
1.0
This is a Dummy Resource Agent. It does absolutely nothing except
keep track of whether its running or not.
Its purpose in life is for testing and to serve as a template for RA writers.
NB: Please pay attention to the timeouts specified in the actions
section below. They should be meaningful for the kind of resource
the agent manages. They should be the minimum advised timeouts,
but they shouldn't/cannot cover _all_ possible resource
instances. So, try to be neither overly generous nor too stingy,
but moderate. The minimum timeouts should never be below 10 seconds.
Example stateless resource agent
Location to store the resource state in.
State file
Fake attribute that can be changed to cause a reload
Fake attribute that can be changed to cause a reload
Number of seconds to sleep during operations. This can be used to test how
the cluster reacts to operation timeouts.
Operation sleep duration in seconds.
-------
=====
== Resource Operations ==
indexterm:[Resource,Action]
'Operations' are actions the cluster can perform on a resource by calling the
resource agent. Resource agents must support certain common operations such as
start, stop and monitor, and may implement any others.
Some operations are generated by the cluster itself, for example, stopping and
starting resources as needed.
You can configure operations in the cluster configuration. As an example, by
default the cluster will 'not' ensure your resources stay healthy once they are
started. footnote:[Currently, anyway. Automatic monitoring operations may be
added in a future version of Pacemaker.] To instruct the cluster to do this,
you need to add a +monitor+ operation to the resource's definition.
.An OCF resource with a recurring health check
=====
[source,XML]
-------
-------
=====
.Properties of an Operation
[width="95%",cols="2m,3,6>.
indexterm:[interval,Action Property]
indexterm:[Action,Property,interval]
|timeout
|
|How long to wait before declaring the action has failed
indexterm:[timeout,Action Property]
indexterm:[Action,Property,timeout]
|on-fail
|restart '(except for stop operations, which default to' fence 'when
STONITH is enabled and' block 'otherwise)'
|The action to take if this action ever fails. Allowed values:
* +ignore:+ Pretend the resource did not fail.
* +block:+ Don't perform any further operations on the resource.
* +stop:+ Stop the resource and do not start it elsewhere.
* +restart:+ Stop the resource and start it again (possibly on a different node).
* +fence:+ STONITH the node on which the resource failed.
* +standby:+ Move _all_ resources away from the node on which the resource failed.
indexterm:[on-fail,Action Property]
indexterm:[Action,Property,on-fail]
|enabled
|TRUE
|If +false+, ignore this operation definition. This is typically used to pause
a particular recurring monitor operation; for instance, it can complement
the respective resource being unmanaged (+is-managed=false+), as this alone
will <>.
Disabling the operation does not suppress all actions of the given type.
Allowed values: +true+, +false+.
indexterm:[enabled,Action Property]
indexterm:[Action,Property,enabled]
|record-pending
|FALSE
|If +true+, the intention to perform the operation is recorded so that
GUIs and CLI tools can indicate that an operation is in progress.
This is best set as an _operation default_ (see next section).
Allowed values: +true+, +false+.
indexterm:[enabled,Action Property]
indexterm:[Action,Property,enabled]
|role
|
|Run the operation only on node(s) that the cluster thinks should be in
the specified role. This only makes sense for recurring monitor operations.
Allowed (case-sensitive) values: +Stopped+, +Started+, and in the
case of <> resources, +Slave+ and +Master+.
indexterm:[role,Action Property]
indexterm:[Action,Property,role]
|=========================================================
[[s-resource-monitoring]]
=== Monitoring Resources for Failure ===
When Pacemaker first starts a resource, it runs one-time monitor operations
(referred to as 'probes') to ensure the resource is running where it's
supposed to be, and not running where it's not supposed to be. (This behavior
can be affected by the +resource-discovery+ location constraint property.)
Other than those initial probes, Pacemaker will not (by default) check that
the resource continues to stay healthy. As in the example above, you must
configure monitor operations explicitly to perform these checks.
By default, a monitor operation will ensure that the resource is running
where it is supposed to. The +target-role+ property can be used for further
checking.
For example, if a resource has one monitor operation with
+interval=10 role=Started+ and a second monitor operation with
+interval=11 role=Stopped+, the cluster will run the first monitor on any nodes
it thinks 'should' be running the resource, and the second monitor on any nodes
that it thinks 'should not' be running the resource (for the truly paranoid,
who want to know when an administrator manually starts a service by mistake).
[[s-monitoring-unmanaged]]
=== Monitoring Resources When Administration is Disabled ===
Recurring monitor operations behave differently under various administrative
settings:
* When a resource is unmanaged (by setting +is-managed=false+): No monitors
will be stopped.
+
If the unmanaged resource is stopped on a node where the cluster thinks it
should be running, the cluster will detect and report that it is not, but it
will not consider the monitor failed, and will not try to start the resource
until it is managed again.
+
Starting the unmanaged resource on a different node is strongly discouraged
and will at least cause the cluster to consider the resource failed, and
may require the resource's +target-role+ to be set to +Stopped+ then +Started+
to be recovered.
* When a node is put into standby: All resources will be moved away from the
node, and all monitor operations will be stopped on the node, except those
with +role=Stopped+. Monitor operations with +role=Stopped+ will be started
on the node if appropriate.
* When the cluster is put into maintenance mode: All resources will be marked
as unmanaged. All monitor operations will be stopped, except those with
+role=Stopped+. As with single unmanaged resources, starting a resource
on a node other than where the cluster expects it to be will cause problems.
[[s-operation-defaults]]
=== Setting Global Defaults for Operations ===
You can change the global default values for operation properties
in a given cluster. These are defined in an +op_defaults+ section
of the CIB's +configuration+ section, and can be set with `crm_attribute`.
For example,
----
# crm_attribute --type op_defaults --name timeout --update 20s
----
would default each operation's +timeout+ to 20 seconds. If an
operation's definition also includes a value for +timeout+, then that
value would be used for that operation instead.
=== When Implicit Operations Take a Long Time ===
The cluster will always perform a number of implicit operations: +start+,
+stop+ and a non-recurring +monitor+ operation used at startup to check
whether the resource is already active. If one of these is taking too long,
then you can create an entry for them and specify a longer timeout.
.An OCF resource with custom timeouts for its implicit actions
=====
[source,XML]
-------
-------
=====
=== Multiple Monitor Operations ===
Provided no two operations (for a single resource) have the same name
and interval, you can have as many monitor operations as you like. In
this way, you can do a superficial health check every minute and
progressively more intense ones at higher intervals.
To tell the resource agent what kind of check to perform, you need to
provide each monitor with a different value for a common parameter.
The OCF standard creates a special parameter called +OCF_CHECK_LEVEL+
for this purpose and dictates that it is "made available to the
resource agent without the normal +OCF_RESKEY+ prefix".
Whatever name you choose, you can specify it by adding an
+instance_attributes+ block to the +op+ tag. It is up to each
resource agent to look for the parameter and decide how to use it.
.An OCF resource with two recurring health checks, performing different levels of checks specified via +OCF_CHECK_LEVEL+.
=====
[source,XML]
-------
-------
=====
=== Disabling a Monitor Operation ===
The easiest way to stop a recurring monitor is to just delete it.
However, there can be times when you only want to disable it
temporarily. In such cases, simply add +enabled="false"+ to the
operation's definition.
.Example of an OCF resource with a disabled health check
=====
[source,XML]
-------
-------
=====
This can be achieved from the command line by executing:
----
# cibadmin --modify --xml-text ''
----
Once you've done whatever you needed to do, you can then re-enable it with
----
# cibadmin --modify --xml-text ''
----