diff --git a/doc/Clusters_from_Scratch/en-US/Ch-Apache.txt b/doc/Clusters_from_Scratch/en-US/Ch-Apache.txt
index 5d9dbeb77d..cee112a9a7 100644
--- a/doc/Clusters_from_Scratch/en-US/Ch-Apache.txt
+++ b/doc/Clusters_from_Scratch/en-US/Ch-Apache.txt
@@ -1,430 +1,434 @@
-= Add Apache as a Cluster Service =
+= Add Apache HTTP Server as a Cluster Service =
+
+indexterm:[Apache HTTP Server]
Now that we have a basic but functional active/passive two-node cluster,
-we're ready to add some real services. We're going to start with Apache
-because it is a feature of many clusters and relatively simple to
-configure.
+we're ready to add some real services. We're going to start with
+Apache HTTP Server because it is a feature of many clusters and relatively
+simple to configure.
== Install Apache ==
Before continuing, we need to make sure Apache is installed on both
hosts. We also need the wget tool in order for the cluster to be able to check
the status of the Apache server.
----
# yum install -y httpd wget
# firewall-cmd --permanent --add-service=http
# firewall-cmd --reload
----
[IMPORTANT]
====
Do *not* enable the httpd service. Services that are intended to
be managed via the cluster software should never be managed by the OS.
It is often useful, however, to manually start the service, verify that
it works, then stop it again, before adding it to the cluster. This
allows you to resolve any non-cluster-related problems before continuing.
Since this is a simple example, we'll skip that step here.
====
== Create Website Documents ==
We need to create a page for Apache to serve. On &DISTRO; &DISTRO_VERSION;, the
default Apache document root is /var/www/html, so we'll create an index file
there. For the moment, we will simplify things by serving a static site
and manually synchronizing the data between the two nodes, so run this command
on both nodes:
-----
# cat <<-END >/var/www/html/index.html
My Test Site - $(hostname)
END
-----
== Enable the Apache status URL ==
+indexterm:[Apache HTTP Server,/server-status]
+
In order to monitor the health of your Apache instance, and recover it if
it fails, the resource agent used by Pacemaker assumes the server-status
URL is available. On both nodes, enable the URL with:
----
# cat <<-END >/etc/httpd/conf.d/status.conf
SetHandler server-status
- Order deny,allow
- Deny from all
- Allow from 127.0.0.1
+ Require local
END
----
[NOTE]
======
If you are using a different operating system, server-status may already be
-enabled or may be configurable in a different location.
+enabled or may be configurable in a different location. If you are using
+a version of Apache HTTP Server less than 2.4, the syntax will be different.
======
== Configure the Cluster ==
+indexterm:[Apache HTTP Server,Apache resource configuration]
+
At this point, Apache is ready to go, and all that needs to be done is to
add it to the cluster. Let's call the resource WebSite. We need to use
an OCF resource script called apache in the heartbeat namespace.
footnote:[Compare the key used here, *ocf:heartbeat:apache*, with the one we
used earlier for the IP address, *ocf:heartbeat:IPaddr2*]
The script's only required parameter is the path to the main Apache
configuration file, and we'll tell the cluster to check once a
minute that Apache is still running.
----
[root@pcmk-1 ~]# pcs resource create WebSite ocf:heartbeat:apache \
configfile=/etc/httpd/conf/httpd.conf \
statusurl="http://localhost/server-status" \
op monitor interval=1min
----
By default, the operation timeout for all resources' start, stop, and monitor
operations is 20 seconds. In many cases, this timeout period is less than
a particular resource's advised timeout period. For the purposes of this
tutorial, we will adjust the global operation timeout default to 240 seconds.
----
[root@pcmk-1 ~]# pcs resource op defaults timeout=240s
[root@pcmk-1 ~]# pcs resource op defaults
timeout: 240s
----
[NOTE]
======
In a production cluster, it is usually better to adjust each resource's
start, stop, and monitor timeouts to values that are appropriate to
the behavior observed in your environment, rather than adjust
the global default.
======
After a short delay, we should see the cluster start Apache.
-----
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Last updated: Wed Dec 17 12:40:41 2014
Last change: Wed Dec 17 12:40:05 2014
Stack: corosync
Current DC: pcmk-2 (2) - partition with quorum
Version: 1.1.12-a14efad
2 Nodes configured
2 Resources configured
Online: [ pcmk-1 pcmk-2 ]
Full list of resources:
ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-2
WebSite (ocf::heartbeat:apache): Started pcmk-1
PCSD Status:
pcmk-1: Online
pcmk-2: Online
Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled
-----
Wait a moment, the WebSite resource isn't running on the same host as our
IP address!
[NOTE]
======
If, in the `pcs status` output, you see the WebSite resource has
failed to start, then you've likely not enabled the status URL correctly.
You can check whether this is the problem by running:
....
-wget -O - http://127.0.0.1/server-status
+wget -O - http://localhost/server-status
....
-If you see *Connection refused* in the output, then this is likely the
-problem. Ensure that *Allow from 127.0.0.1* is present for
-the ** block.
+If you see *Not Found* or *Forbidden* in the output, then this is likely the
+problem. Ensure that the ** block is correct.
======
== Ensure Resources Run on the Same Host ==
To reduce the load on any one machine, Pacemaker will generally try to
spread the configured resources across the cluster nodes. However, we
can tell the cluster that two resources are related and need to run on
the same host (or not at all). Here, we instruct the cluster that
WebSite can only run on the host that ClusterIP is active on.
To achieve this, we use a _colocation constraint_ that indicates it is
mandatory for WebSite to run on the same node as ClusterIP. The
"mandatory" part of the colocation constraint is indicated by using a
score of INFINITY. The INFINITY score also means that if ClusterIP is not
active anywhere, WebSite will not be permitted to run.
[NOTE]
=======
If ClusterIP is not active anywhere, WebSite will not be permitted to run
anywhere.
=======
[IMPORTANT]
===========
Colocation constraints are "directional", in that they imply certain
things about the order in which the two resources will have a location
chosen. In this case, we're saying that *WebSite* needs to be placed on the
same machine as *ClusterIP*, which implies that the cluster must know the
location of *ClusterIP* before choosing a location for *WebSite*.
===========
-----
[root@pcmk-1 ~]# pcs constraint colocation add WebSite with ClusterIP INFINITY
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Ordering Constraints:
Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Last updated: Wed Dec 17 13:57:58 2014
Last change: Wed Dec 17 13:57:22 2014
Stack: corosync
Current DC: pcmk-2 (2) - partition with quorum
Version: 1.1.12-a14efad
2 Nodes configured
2 Resources configured
Online: [ pcmk-1 pcmk-2 ]
Full list of resources:
ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-2
WebSite (ocf::heartbeat:apache): Started pcmk-2
PCSD Status:
pcmk-1: Online
pcmk-2: Online
Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled
-----
== Ensure Resources Start and Stop in Order ==
Like many services, Apache can be configured to bind to specific
IP addresses on a host or to the wildcard IP address. If Apache
binds to the wildcard, it doesn't matter whether an IP address
is added before or after Apache starts; Apache will respond on
that IP just the same. However, if Apache binds only to certain IP
address(es), the order matters: If the address is added after Apache
starts, Apache won't respond on that address.
To be sure our WebSite responds regardless of Apache's address configuration,
we need to make sure ClusterIP not only runs on the same node,
but starts before WebSite. A colocation constraint only ensures the
resources run together, not the order in which they are started and stopped.
We do this by adding an ordering constraint. By default, all order constraints
are mandatory, which means that the recovery of ClusterIP will also trigger the
recovery of WebSite.
-----
[root@pcmk-1 ~]# pcs constraint order ClusterIP then WebSite
Adding ClusterIP WebSite (kind: Mandatory) (Options: first-action=start then-action=start)
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Ordering Constraints:
start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
-----
== Prefer One Node Over Another ==
Pacemaker does not rely on any sort of hardware symmetry between nodes,
so it may well be that one machine is more powerful than the other. In
such cases, it makes sense to host the resources on the more powerful node if
it is available. To do this, we create a location constraint.
In the location constraint below, we are saying the WebSite resource
prefers the node pcmk-1 with a score of 50. Here, the score indicates
how badly we'd like the resource to run at this location.
-----
[root@pcmk-1 ~]# pcs constraint location WebSite prefers pcmk-1=50
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Resource: WebSite
Enabled on: pcmk-1 (score:50)
Ordering Constraints:
start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Last updated: Wed Dec 17 14:11:49 2014
Last change: Wed Dec 17 14:11:20 2014
Stack: corosync
Current DC: pcmk-2 (2) - partition with quorum
Version: 1.1.12-a14efad
2 Nodes configured
2 Resources configured
Online: [ pcmk-1 pcmk-2 ]
Full list of resources:
ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-2
WebSite (ocf::heartbeat:apache): Started pcmk-2
PCSD Status:
pcmk-1: Online
pcmk-2: Online
Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled
-----
Wait a minute, the resources are still on pcmk-2!
Even though WebSite now prefers to run on pcmk-1, that preference is
(intentionally) less than the resource stickiness (how much we
preferred not to have unnecessary downtime).
To see the current placement scores, you can use a tool called crm_simulate.
----
[root@pcmk-1 ~]# crm_simulate -sL
Current cluster status:
Online: [ pcmk-1 pcmk-2 ]
ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-2
WebSite (ocf::heartbeat:apache): Started pcmk-2
Allocation scores:
native_color: ClusterIP allocation score on pcmk-1: 50
native_color: ClusterIP allocation score on pcmk-2: 200
native_color: WebSite allocation score on pcmk-1: -INFINITY
native_color: WebSite allocation score on pcmk-2: 100
Transition Summary:
----
== Move Resources Manually ==
There are always times when an administrator needs to override the
cluster and force resources to move to a specific location. In this example,
we will force the WebSite to move to pcmk-1 by
updating our previous location constraint with a score of INFINITY.
-----
[root@pcmk-1 ~]# pcs constraint location WebSite prefers pcmk-1=INFINITY
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Resource: WebSite
Enabled on: pcmk-1 (score:INFINITY)
Ordering Constraints:
start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
[root@pcmk-1 ~]# pcs status
Cluster name: mycluster
Last updated: Wed Dec 17 14:19:34 2014
Last change: Wed Dec 17 14:18:37 2014
Stack: corosync
Current DC: pcmk-2 (2) - partition with quorum
Version: 1.1.12-a14efad
2 Nodes configured
2 Resources configured
Online: [ pcmk-1 pcmk-2 ]
Full list of resources:
ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-1
WebSite (ocf::heartbeat:apache): Started pcmk-1
PCSD Status:
pcmk-1: Online
pcmk-2: Online
Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled
-----
Once we've finished whatever activity required us to move the
resources to pcmk-1 (in our case nothing), we can then allow the cluster
to resume normal operation by removing the new constraint. Since we previously
configured a default stickiness, the resources will remain on pcmk-1.
First, use the `--full` option to get the constraint's ID:
-----
[root@pcmk-1 ~]# pcs constraint --full
Location Constraints:
Resource: WebSite
Enabled on: pcmk-1 (score:INFINITY) (id:location-WebSite-pcmk-1-INFINITY)
Ordering Constraints:
start ClusterIP then start WebSite (kind:Mandatory) (id:order-ClusterIP-WebSite-mandatory)
Colocation Constraints:
WebSite with ClusterIP (score:INFINITY) (id:colocation-WebSite-ClusterIP-INFINITY)
-----
Then remove the desired contraint using its ID:
-----
[root@pcmk-1 ~]# pcs constraint remove location-WebSite-pcmk-1-INFINITY
[root@pcmk-1 ~]# pcs constraint
Location Constraints:
Ordering Constraints:
start ClusterIP then start WebSite (kind:Mandatory)
Colocation Constraints:
WebSite with ClusterIP (score:INFINITY)
-----
Note that the location constraint is now gone. If we check the cluster
status, we can also see that (as expected) the resources are still active
on pcmk-1.
-----
# pcs status
Cluster name: mycluster
Last updated: Wed Dec 17 14:25:21 2014
Last change: Wed Dec 17 14:24:29 2014
Stack: corosync
Current DC: pcmk-2 (2) - partition with quorum
Version: 1.1.12-a14efad
2 Nodes configured
2 Resources configured
Online: [ pcmk-1 pcmk-2 ]
Full list of resources:
ClusterIP (ocf::heartbeat:IPaddr2): Started pcmk-1
WebSite (ocf::heartbeat:apache): Started pcmk-1
PCSD Status:
pcmk-1: Online
pcmk-2: Online
Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled
-----