diff --git a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt index a44e21a3cf..3418881fe1 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Advanced-Resources.txt @@ -1,1029 +1,1355 @@ = Advanced Resource Types = [[group-resources]] == Groups - A Syntactic Shortcut == indexterm:[Group Resources] -indexterm:[Resources,Groups] +indexterm:[Resource,Groups] One of the most common elements of a cluster is a set of resources that need to be located together, start sequentially, and stop in the reverse order. To simplify this configuration, we support the concept of groups. .A group of two primitive resources ====== [source,XML] ------- ------- ====== Although the example above contains only two resources, there is no limit to the number of resources a group can contain. The example is also sufficient to explain the fundamental properties of a group: * Resources are started in the order they appear in (+Public-IP+ first, then +Email+) * Resources are stopped in the reverse order to which they appear in (+Email+ first, then +Public-IP+) If a resource in the group can't run anywhere, then nothing after that is allowed to run, too. * If +Public-IP+ can't run anywhere, neither can +Email+; * but if +Email+ can't run anywhere, this does not affect +Public-IP+ in any way The group above is logically equivalent to writing: .How the cluster sees a group resource ====== [source,XML] ------- ------- ====== Obviously as the group grows bigger, the reduced configuration effort can become significant. Another (typical) example of a group is a DRBD volume, the filesystem mount, an IP address, and an application that uses them. === Group Properties === .Properties of a Group Resource [width="95%",cols="3m,5<",options="header",align="center"] |========================================================= |Field |Description |id |A unique name for the group indexterm:[id,Group Resource Property] indexterm:[Resource,Group Property,id] |========================================================= === Group Options === Groups inherit the +priority+, +target-role+, and +is-managed+ properties from primitive resources. See <> for information about those properties. === Group Instance Attributes === Groups have no instance attributes. However, any that are set for the group object will be inherited by the group's children. === Group Contents === Groups may only contain a collection of cluster resources (see <>). To refer to a child of a group resource, just use the child's +id+ instead of the group's. === Group Constraints === Although it is possible to reference a group's children in constraints, it is usually preferable to reference the group itself. .Some constraints involving groups ====== [source,XML] ------- ------- ====== === Group Stickiness === indexterm:[resource-stickiness,Groups] Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every active resource of the group will contribute its stickiness value to the group's total. So if the default +resource-stickiness+ is 100, and a group has seven members, five of which are active, then the group as a whole will prefer its current location with a score of 500. [[s-resource-clone]] == Clones - Resources That Get Active on Multiple Hosts == indexterm:[Clone Resources] -indexterm:[Resources,Clones] +indexterm:[Resource,Clones] Clones were initially conceived as a convenient way to start multiple instances of an IP address resource and have them distributed throughout the cluster for load balancing. They have turned out to quite useful for a number of purposes including integrating with the Distributed Lock Manager (used by many cluster filesystems), the fencing subsystem, and OCFS2. You can clone any resource, provided the resource agent supports it. Three types of cloned resources exist: * Anonymous * Globally unique * Stateful 'Anonymous' clones are the simplest. These behave completely identically everywhere they are running. Because of this, there can be only one copy of an anonymous clone active per machine. 'Globally unique' clones are distinct entities. A copy of the clone running on one machine is not equivalent to another instance on another node, nor would any two copies on the same node be equivalent. 'Stateful' clones are covered later in <>. .A clone of an LSB resource ====== [source,XML] ------- ------- ====== === Clone Properties === .Properties of a Clone Resource [width="95%",cols="3m,5<",options="header",align="center"] |========================================================= |Field |Description |id |A unique name for the clone indexterm:[id,Clone Property] indexterm:[Clone,Property,id] |========================================================= === Clone Options === Options inherited from <> resources: +priority, target-role, is-managed+ .Clone-specific configuration options [width="95%",cols="1m,1,3<",options="header",align="center"] |========================================================= |Field |Default |Description |clone-max |number of nodes in cluster |How many copies of the resource to start indexterm:[clone-max,Clone Option] indexterm:[Clone,Option,clone-max] |clone-node-max |1 |How many copies of the resource can be started on a single node indexterm:[clone-node-max,Clone Option] indexterm:[Clone,Option,clone-node-max] |clone-min |1 |Require at least this number of clone instances to be runnable before allowing resources depending on the clone to be runnable '(since 1.1.14)' indexterm:[clone-min,Clone Option] indexterm:[Clone,Option,clone-min] |notify |true |When stopping or starting a copy of the clone, tell all the other copies beforehand and again when the action was successful. Allowed values: +false+, +true+ indexterm:[notify,Clone Option] indexterm:[Clone,Option,notify] |globally-unique |false |Does each copy of the clone perform a different function? Allowed values: +false+, +true+ indexterm:[globally-unique,Clone Option] indexterm:[Clone,Option,globally-unique] |ordered |false |Should the copies be started in series (instead of in parallel)? Allowed values: +false+, +true+ indexterm:[ordered,Clone Option] indexterm:[Clone,Option,ordered] |interleave |false |If this clone depends on another clone via an ordering constraint, is it allowed to start after the local instance of the other clone starts, rather than wait for all instances of the other clone to start? Allowed values: +false+, +true+ indexterm:[interleave,Clone Option] indexterm:[Clone,Option,interleave] |========================================================= === Clone Instance Attributes === Clones have no instance attributes; however, any that are set here will be inherited by the clone's children. === Clone Contents === Clones must contain exactly one primitive or group resource. [WARNING] You should never reference the name of a clone's child. If you think you need to do this, you probably need to re-evaluate your design. === Clone Constraints === In most cases, a clone will have a single copy on each active cluster node. If this is not the case, you can indicate which nodes the cluster should preferentially assign copies to with resource location constraints. These constraints are written no differently from those for primitive resources except that the clone's +id+ is used. .Some constraints involving clones ====== [source,XML] ------- ------- ====== Ordering constraints behave slightly differently for clones. In the example above, +apache-stats+ will wait until all copies of +apache-clone+ that need to be started have done so before being started itself. Only if _no_ copies can be started will +apache-stats+ be prevented from being active. Additionally, the clone will wait for +apache-stats+ to be stopped before stopping itself. Colocation of a primitive or group resource with a clone means that the resource can run on any machine with an active copy of the clone. The cluster will choose a copy based on where the clone is running and the resource's own location preferences. Colocation between clones is also possible. If one clone +A+ is colocated with another clone +B+, the set of allowed locations for +A+ is limited to nodes on which +B+ is (or will be) active. Placement is then performed normally. [[s-clone-stickiness]] === Clone Stickiness === indexterm:[resource-stickiness,Clones] To achieve a stable allocation pattern, clones are slightly sticky by default. If no value for +resource-stickiness+ is provided, the clone will use a value of 1. Being a small value, it causes minimal disturbance to the score calculations of other resources but is enough to prevent Pacemaker from needlessly moving copies around the cluster. [NOTE] ==== For globally unique clones, this may result in multiple instances of the clone staying on a single node, even after another eligible node becomes active (for example, after being put into standby mode then made active again). If you do not want this behavior, specify a +resource-stickiness+ of 0 for the clone temporarily and let the cluster adjust, then set it back to 1 if you want the default behavior to apply again. ==== === Clone Resource Agent Requirements === Any resource can be used as an anonymous clone, as it requires no additional support from the resource agent. Whether it makes sense to do so depends on your resource and its resource agent. Globally unique clones do require some additional support in the resource agent. In particular, it must only respond with +$\{OCF_SUCCESS}+ if the node has that exact instance active. All other probes for instances of the clone should result in +$\{OCF_NOT_RUNNING}+ (or one of the other OCF error codes if they are failed). Individual instances of a clone are identified by appending a colon and a numerical offset, e.g. +apache:2+. Resource agents can find out how many copies there are by examining the +OCF_RESKEY_CRM_meta_clone_max+ environment variable and which copy it is by examining +OCF_RESKEY_CRM_meta_clone+. The resource agent must not make any assumptions (based on +OCF_RESKEY_CRM_meta_clone+) about which numerical instances are active. In particular, the list of active copies will not always be an unbroken sequence, nor always start at 0. ==== Clone Notifications ==== Supporting notifications requires the +notify+ action to be implemented. If supported, the notify action will be passed a number of extra variables which, when combined with additional context, can be used to calculate the current state of the cluster and what is about to happen to it. .Environment variables supplied with Clone notify actions [width="95%",cols="5,3<",options="header",align="center"] |========================================================= |Variable |Description |OCF_RESKEY_CRM_meta_notify_type |Allowed values: +pre+, +post+ indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,type] indexterm:[type,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_operation |Allowed values: +start+, +stop+ indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,operation] indexterm:[operation,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_start_resource |Resources to be started indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_resource] indexterm:[start_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_stop_resource |Resources to be stopped indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_resource] indexterm:[stop_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_active_resource |Resources that are running indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_resource] indexterm:[active_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_inactive_resource |Resources that are not running indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,inactive_resource] indexterm:[inactive_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_start_uname |Nodes on which resources will be started indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_uname] indexterm:[start_uname,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_stop_uname |Nodes on which resources will be stopped indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_uname] indexterm:[stop_uname,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_active_uname |Nodes on which resources are running indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_uname] indexterm:[active_uname,Notification Environment Variable] |========================================================= The variables come in pairs, such as +OCF_RESKEY_CRM_meta_notify_start_resource+ and +OCF_RESKEY_CRM_meta_notify_start_uname+ and should be treated as an array of whitespace-separated elements. +OCF_RESKEY_CRM_meta_notify_inactive_resource+ is an exception as the matching +uname+ variable does not exist since inactive resources are not running on any node. Thus in order to indicate that +clone:0+ will be started on +sles-1+, +clone:2+ will be started on +sles-3+, and +clone:3+ will be started on +sles-2+, the cluster would set .Notification variables ====== [source,Bash] ------- OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3" OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2" ------- ====== ==== Proper Interpretation of Notification Environment Variables ==== .Pre-notification (stop): * Active resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+ * Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ .Post-notification (stop) / Pre-notification (start): * Active resources ** +$OCF_RESKEY_CRM_meta_notify_active_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Inactive resources ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ .Post-notification (start): * Active resources: ** +$OCF_RESKEY_CRM_meta_notify_active_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Inactive resources: ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ [[s-resource-multistate]] == Multi-state - Resources That Have Multiple Modes == indexterm:[Multi-state Resources] -indexterm:[Resources,Multi-state] +indexterm:[Resource,Multi-state] Multi-state resources are a specialization of clone resources; please ensure you understand <> before continuing! Multi-state resources allow the instances to be in one of two operating modes (called 'roles'). The roles are called 'master' and 'slave', but can mean whatever you wish them to mean. The only limitation is that when an instance is started, it must come up in the slave role. === Multi-state Properties === .Properties of a Multi-State Resource [width="95%",cols="3m,5<",options="header",align="center"] |========================================================= |Field |Description |id |Your name for the multi-state resource indexterm:[id,Multi-State Property] indexterm:[Multi-State,Property,id] |========================================================= === Multi-state Options === Options inherited from <> resources: +priority+, +target-role+, +is-managed+ Options inherited from <> resources: +clone-max+, +clone-node-max+, +notify+, +globally-unique+, +ordered+, +interleave+ .Multi-state-specific resource configuration options [width="95%",cols="1m,1,3<",options="header",align="center"] |========================================================= |Field |Default |Description |master-max |1 |How many copies of the resource can be promoted to the +master+ role indexterm:[master-max,Multi-State Option] indexterm:[Multi-State,Option,master-max] |master-node-max |1 |How many copies of the resource can be promoted to the +master+ role on a single node indexterm:[master-node-max,Multi-State Option] indexterm:[Multi-State,Option,master-node-max] |========================================================= === Multi-state Instance Attributes === Multi-state resources have no instance attributes; however, any that are set here will be inherited by a master's children. === Multi-state Contents === Masters must contain exactly one primitive or group resource. [WARNING] You should never reference the name of a master's child. If you think you need to do this, you probably need to re-evaluate your design. === Monitoring Multi-State Resources === The usual monitor actions are insufficient to monitor a multi-state resource, because pacemaker needs to verify not only that the resource is active, but also that its actual role matches its intended one. Define two monitoring actions: the usual one will cover the slave role, and an additional one with +role="master"+ will cover the master role. .Monitoring both states of a multi-state resource ====== [source,XML] ------- ------- ====== [IMPORTANT] =========== It is crucial that _every_ monitor operation has a different interval! Pacemaker currently differentiates between operations only by resource and interval; so if (for example) a master/slave resource had the same monitor interval for both roles, Pacemaker would ignore the role when checking the status -- which would cause unexpected return codes, and therefore unnecessary complications. =========== === Multi-state Constraints === In most cases, multi-state resources will have a single copy on each active cluster node. If this is not the case, you can indicate which nodes the cluster should preferentially assign copies to with resource location constraints. These constraints are written no differently from those for primitive resources except that the master's +id+ is used. When considering multi-state resources in constraints, for most purposes it is sufficient to treat them as clones. The exception is that the +first-action+ and/or +then-action+ fields for ordering constraints may be set to +promote+ or +demote+ to constrain the master role, and colocation constraints may contain +rsc-role+ and/or +with-rsc-role+ fields. .Additional colocation constraint options for multi-state resources [width="95%",cols="1m,1,3<",options="header",align="center"] |========================================================= |Field |Default |Description |rsc-role |Started |An additional attribute of colocation constraints that specifies the role that +rsc+ must be in. Allowed values: +Started+, +Master+, +Slave+. indexterm:[rsc-role,Ordering Constraints] indexterm:[Constraints,Ordering,rsc-role] |with-rsc-role |Started |An additional attribute of colocation constraints that specifies the role that +with-rsc+ must be in. Allowed values: +Started+, +Master+, +Slave+. indexterm:[with-rsc-role,Ordering Constraints] indexterm:[Constraints,Ordering,with-rsc-role] |========================================================= .Constraints involving multi-state resources ====== [source,XML] ------- ------- ====== In the example above, +myApp+ will wait until one of the database copies has been started and promoted to master before being started itself on the same node. Only if no copies can be promoted will +myApp+ be prevented from being active. Additionally, the cluster will wait for +myApp+ to be stopped before demoting the database. Colocation of a primitive or group resource with a multi-state resource means that it can run on any machine with an active copy of the multi-state resource that has the specified role (+master+ or +slave+). In the example above, the cluster will choose a location based on where database is running as a +master+, and if there are multiple +master+ instances it will also factor in +myApp+'s own location preferences when deciding which location to choose. Colocation with regular clones and other multi-state resources is also possible. In such cases, the set of allowed locations for the +rsc+ clone is (after role filtering) limited to nodes on which the +with-rsc+ multi-state resource is (or will be) in the specified role. Placement is then performed as normal. ==== Using Multi-state Resources in Colocation Sets ==== .Additional colocation set options relevant to multi-state resources [width="95%",cols="1m,1,6<",options="header",align="center"] |========================================================= |Field |Default |Description |role |Started |The role that 'all members' of the set must be in. Allowed values: +Started+, +Master+, +Slave+. indexterm:[role,Ordering Constraints] indexterm:[Constraints,Ordering,role] |========================================================= In the following example +B+'s master must be located on the same node as +A+'s master. Additionally resources +C+ and +D+ must be located on the same node as +A+'s and +B+'s masters. .Colocate C and D with A's and B's master instances ====== [source,XML] ------- ------- ====== ==== Using Multi-state Resources in Ordering Sets ==== .Additional ordered set options relevant to multi-state resources [width="95%",cols="1m,1,3<",options="header",align="center"] |========================================================= |Field |Default |Description |action |value of +first-action+ |An additional attribute of ordering constraint sets that specifies the action that applies to 'all members' of the set. Allowed values: +start+, +stop+, +promote+, +demote+. indexterm:[action,Ordering Constraints] indexterm:[Constraints,Ordering,action] |========================================================= .Start C and D after first promoting A and B ====== [source,XML] ------- ------- ====== In the above example, +B+ cannot be promoted to a master role until +A+ has been promoted. Additionally, resources +C+ and +D+ must wait until +A+ and +B+ have been promoted before they can start. === Multi-state Stickiness === indexterm:[resource-stickiness,Multi-State] As with regular clones, multi-state resources are slightly sticky by default. See <> for details. === Which Resource Instance is Promoted === During the start operation, most resource agents should call the `crm_master` utility. This tool automatically detects both the resource and host and should be used to set a preference for being promoted. Based on this, +master-max+, and +master-node-max+, the instance(s) with the highest preference will be promoted. An alternative is to create a location constraint that indicates which nodes are most preferred as masters. .Explicitly preferring node1 to be promoted to master ====== [source,XML] ------- ------- ====== === Requirements for Multi-state Resource Agents === Since multi-state resources are an extension of cloned resources, all the requirements for resource agents that support clones are also requirements for resource agents that support multi-state resources. Additionally, multi-state resources require two extra actions, +demote+ and +promote+, which are responsible for changing the state of the resource. Like +start+ and +stop+, they should return +$\{OCF_SUCCESS}+ if they completed successfully or a relevant error code if they did not. The states can mean whatever you wish, but when the resource is started, it must come up in the mode called +slave+. From there the cluster will decide which instances to promote to +master+. In addition to the clone requirements for monitor actions, agents must also _accurately_ report which state they are in. The cluster relies on the agent to report its status (including role) accurately and does not indicate to the agent what role it currently believes it to be in. .Role implications of OCF return codes [width="95%",cols="1,1<",options="header",align="center"] |========================================================= |Monitor Return Code |Description |OCF_NOT_RUNNING |Stopped indexterm:[Return Code,OCF_NOT_RUNNING] |OCF_SUCCESS |Running (Slave) indexterm:[Return Code,OCF_SUCCESS] |OCF_RUNNING_MASTER |Running (Master) indexterm:[Return Code,OCF_RUNNING_MASTER] |OCF_FAILED_MASTER |Failed (Master) indexterm:[Return Code,OCF_FAILED_MASTER] |Other |Failed (Slave) |========================================================= ==== Multi-state Notifications ==== Like clones, supporting notifications requires the +notify+ action to be implemented. If supported, the notify action will be passed a number of extra variables which, when combined with additional context, can be used to calculate the current state of the cluster and what is about to happen to it. .Environment variables supplied with multi-state notify actions footnote:[Emphasized variables are specific to +Master+ resources, and all behave in the same manner as described for Clone resources.] [width="95%",cols="5,3<",options="header",align="center"] |========================================================= |Variable |Description |OCF_RESKEY_CRM_meta_notify_type |Allowed values: +pre+, +post+ indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,type] indexterm:[type,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_operation |Allowed values: +start+, +stop+ indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,operation] indexterm:[operation,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_active_resource |Resources that are running indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_resource] indexterm:[active_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_inactive_resource |Resources that are not running indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,inactive_resource] indexterm:[inactive_resource,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_master_resource_ |Resources that are running in +Master+ mode indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,master_resource] indexterm:[master_resource,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_slave_resource_ |Resources that are running in +Slave+ mode indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,slave_resource] indexterm:[slave_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_start_resource |Resources to be started indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_resource] indexterm:[start_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_stop_resource |Resources to be stopped indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_resource] indexterm:[stop_resource,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_promote_resource_ |Resources to be promoted indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,promote_resource] indexterm:[promote_resource,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_demote_resource_ |Resources to be demoted indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,demote_resource] indexterm:[demote_resource,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_start_uname |Nodes on which resources will be started indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,start_uname] indexterm:[start_uname,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_stop_uname |Nodes on which resources will be stopped indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,stop_uname] indexterm:[stop_uname,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_promote_uname_ |Nodes on which resources will be promoted indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,promote_uname] indexterm:[promote_uname,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_demote_uname_ |Nodes on which resources will be demoted indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,demote_uname] indexterm:[demote_uname,Notification Environment Variable] |OCF_RESKEY_CRM_meta_notify_active_uname |Nodes on which resources are running indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,active_uname] indexterm:[active_uname,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_master_uname_ |Nodes on which resources are running in +Master+ mode indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,master_uname] indexterm:[master_uname,Notification Environment Variable] |_OCF_RESKEY_CRM_meta_notify_slave_uname_ |Nodes on which resources are running in +Slave+ mode indexterm:[Environment Variable,OCF_RESKEY_CRM_meta_notify_,slave_uname] indexterm:[slave_uname,Notification Environment Variable] |========================================================= ==== Proper Interpretation of Multi-state Notification Environment Variables ==== .Pre-notification (demote): * +Active+ resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+ * +Master+ resources: +$OCF_RESKEY_CRM_meta_notify_master_resource+ * +Slave+ resources: +$OCF_RESKEY_CRM_meta_notify_slave_resource+ * Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ .Post-notification (demote) / Pre-notification (stop): * +Active+ resources: +$OCF_RESKEY_CRM_meta_notify_active_resource+ * +Master+ resources: ** +$OCF_RESKEY_CRM_meta_notify_master_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * +Slave+ resources: +$OCF_RESKEY_CRM_meta_notify_slave_resource+ * Inactive resources: +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ .Post-notification (stop) / Pre-notification (start) * +Active+ resources: ** +$OCF_RESKEY_CRM_meta_notify_active_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * +Master+ resources: ** +$OCF_RESKEY_CRM_meta_notify_master_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * +Slave+ resources: ** +$OCF_RESKEY_CRM_meta_notify_slave_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Inactive resources: ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ .Post-notification (start) / Pre-notification (promote) * +Active+ resources: ** +$OCF_RESKEY_CRM_meta_notify_active_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * +Master+ resources: ** +$OCF_RESKEY_CRM_meta_notify_master_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * +Slave+ resources: ** +$OCF_RESKEY_CRM_meta_notify_slave_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Inactive resources: ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ .Post-notification (promote) * +Active+ resources: ** +$OCF_RESKEY_CRM_meta_notify_active_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * +Master+ resources: ** +$OCF_RESKEY_CRM_meta_notify_master_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_demote_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * +Slave+ resources: ** +$OCF_RESKEY_CRM_meta_notify_slave_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_start_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Inactive resources: ** +$OCF_RESKEY_CRM_meta_notify_inactive_resource+ ** plus +$OCF_RESKEY_CRM_meta_notify_stop_resource+ ** minus +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources to be promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Resources to be demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources to be stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ * Resources that were started: +$OCF_RESKEY_CRM_meta_notify_start_resource+ * Resources that were promoted: +$OCF_RESKEY_CRM_meta_notify_promote_resource+ * Resources that were demoted: +$OCF_RESKEY_CRM_meta_notify_demote_resource+ * Resources that were stopped: +$OCF_RESKEY_CRM_meta_notify_stop_resource+ + +[[s-resource-bundle]] +== Bundles - Isolated Environments == +indexterm:[bundle] +indexterm:[Resource,bundle] +indexterm:[Docker,bundle] + +Pacemaker (version 1.1.17 and later) supports a special syntax for combining an +isolated environment with the infrastructure support that it needs: the +'bundle'. + +The only isolation technology currently supported by Pacemaker bundles +is https://www.docker.com/[Docker] containers. +footnote:[Docker is a trademark of Docker, Inc. No endorsement by or +association with Docker, Inc. is implied.] + +.A bundle for a containerized web server +==== +[source,XML] +---- + + + + + + + + + + + +---- +==== + +=== Bundle Properties === + +.Properties of a Bundle +[width="95%",cols="3m,5<",options="header",align="center"] +|========================================================= + +|Field +|Description + +|id +|A unique name for the bundle (required) + indexterm:[id,bundle] + indexterm:[bundle,Property,id] + +|description +|Arbitrary text (not used by Pacemaker) + indexterm:[description,bundle] + indexterm:[bundle,Property,description] + +|========================================================= + +=== Docker Properties === + +A bundle must contain exactly one ++ element. + +Before configuring a bundle in Pacemaker, the user must install Docker and +supply a fully configured Docker image on every node allowed to run the bundle. + +Pacemaker will create an implicit +ocf:heartbeat:docker+ resource to manage +a bundle's Docker container. + +.Properties of a Bundle's Docker Element +[width="95%",cols="2m,1,4<",options="header",align="center"] +|========================================================= + +|Field +|Default +|Description + +|image +| +|Docker image tag (required) + indexterm:[image,Docker] + indexterm:[Docker,Property,image] + +|replicas +|Value of +masters+ if that is positive, else 1 +|A positive integer specifying the number of container instances to launch + indexterm:[replicas,Docker] + indexterm:[Docker,Property,replicas] + +|replicas-per-host +|1 +|A positive integer specifying the number of container instances allowed to run + on a single node + indexterm:[replicas-per-host,Docker] + indexterm:[Docker,Property,replicas-per-host] + +|masters +|0 +|A non-negative integer that, if positive, indicates that the containerized + service should be treated as a master/slave service, with this many master + instances allowed + indexterm:[masters,Docker] + indexterm:[Docker,Property,masters] + +|network +| +|If specified, this will be passed to +docker run+ as the + https://docs.docker.com/engine/reference/run/#network-settings[network setting] + for the Docker container. + indexterm:[network,Docker] + indexterm:[Docker,Property,network] + +|options +| +|Extra command-line options to pass to `docker run` + indexterm:[options,Docker] + indexterm:[Docker,Property,options] + +|========================================================= + +=== Bundle Network Properties === + +A bundle may optionally contain one ++ element. +indexterm:[bundle,network] + +.Properties of a Bundle's Network Element +[width="95%",cols="2m,1,4<",options="header",align="center"] +|========================================================= + +|Field +|Default +|Description + +|ip-range-start +| +|If specified, Pacemaker will create an implicit +ocf:heartbeat:IPaddr2+ + resource for each container instance, starting with this IP address, + using up to +replicas+ sequential addresses. These addresses can be used + from the host's network to reach the service inside the container, though + it is not visible within the container itself. Only IPv4 addresses are + currently supported. + indexterm:[ip-range-start,network] + indexterm:[network,Property,ip-range-start] + +|host-netmask +|32 +|If +ip-range-start+ is specified, the IP addresses are created with this + CIDR netmask (as a number of bits). + indexterm:[host-netmask,network] + indexterm:[network,Property,host-netmask] + +|host-interface +| +|If +ip-range-start+ is specified, the IP addresses are created on this + host interface (by default, it will be determined from the IP address). + indexterm:[host-interface,network] + indexterm:[network,Property,host-interface] + +|control-port +| +|If the bundle contains a +primitive+, the cluster will use this integer TCP + port for communication with Pacemaker Remote inside the container. This takes + precedence over the value of any PCMK_remote_port environment variable set + in the container image. This can allow a +primitive+ to be specified without + using +ip-start-range+, in which case +replicas-per-host+ must be 1. + indexterm:[control-port,network] + indexterm:[network,Property,control-port] + +|========================================================= + +Additionally, a ++ element may optionally contain one or more +++ elements. +indexterm:[bundle,network,port-mapping] + +.Properties of a Bundle's Port-Mapping Element +[width="95%",cols="2m,1,4<",options="header",align="center"] +|========================================================= + +|Field +|Default +|Description + +|id +| +|A unique name for the port mapping (required) + indexterm:[id,port-mapping] + indexterm:[port-mapping,Property,id] + +|port +| +|If this is specified, connections to this TCP port number on the host network + (on the container's assigned IP address, if +ip-range-start+ is specified) + will be forwarded to the container network. Exactly one of +port+ or +range+ + must be specified in a +port-mapping+. + indexterm:[port,port-mapping] + indexterm:[port-mapping,Property,port] + +|internal-port +|value of +port+ +|If +port+ and this are specified, connections to +port+ on the host's network + will be forwarded to this port on the container network. + indexterm:[internal-port,port-mapping] + indexterm:[port-mapping,Property,internal-port] + +|range +| +|If this is specified, connections to these TCP port numbers (expressed as + 'first_port'-'last_port') on the host network (on the container's assigned IP + address, if +ip-range-start+ is specified) will be forwarded to the same ports + in the container network. Exactly one of +port+ or +range+ must be specified + in a +port-mapping+. + indexterm:[range,port-mapping] + indexterm:[port-mapping,Property,range] + +|========================================================= + +[NOTE] +==== +If the bundle contains a +primitive+, Pacemaker will automatically map the ++control-port+, so it is not necessary to specify that port in a ++port-mapping+. +==== + +=== Bundle Storage Properties === + +A bundle may optionally contain one ++ element. A ++ element +has no properties of its own, but may contain one or more ++ +elements. +indexterm:[bundle,storage,storage-mapping] + +.Properties of a Bundle's Storage-Mapping Element +[width="95%",cols="2m,1,4<",options="header",align="center"] +|========================================================= + +|Field +|Default +|Description + +|id +| +|A unique name for the storage mapping (required) + indexterm:[id,storage-mapping] + indexterm:[storage-mapping,Property,id] + +|source-dir +| +|The absolute path on the host's filesystem that will be mapped into the + container. Exactly one of +source-dir+ and +source-dir-root+ must be specified + in a +storage-mapping+. + indexterm:[source-dir,storage-mapping] + indexterm:[storage-mapping,Property,source-dir] + +|source-dir-root +| +|The start of a path on the host's filesystem that will be mapped into the + container, using a different subdirectory on the host for each container + instance. Exactly one of +source-dir+ and +source-dir-root+ must be specified + in a +storage-mapping+. + indexterm:[source-dir-root,storage-mapping] + indexterm:[storage-mapping,Property,source-dir-root] + +|target-dir +| +|The path name within the container where the host storage will be mapped + (required) + indexterm:[target-dir,storage-mapping] + indexterm:[storage-mapping,Property,target-dir] + +|options +| +|File system mount options to use when mapping the storage + indexterm:[options,storage-mapping] + indexterm:[storage-mapping,Property,options] + +|========================================================= + +[NOTE] +==== +If the bundle contains a +primitive+, +Pacemaker will automatically map the equivalent of ++source-dir=/etc/pacemaker/authkey target-dir=/etc/pacemaker/authkey+ +and +source-dir-root=/var/log/container target-dir=/var/log+ into the +container, so it is not necessary to specify those paths in a ++storage-mapping+. +==== + +=== Bundle Primitive === + +A bundle may optionally contain one ++ resource +(see <>). The primitive may have operations, +instance attributes and meta-attributes defined, as usual. + +If a bundle contains a primitive resource, the container image must include +the Pacemaker Remote daemon, and either +ip-range-start+ or +control-port+ +must be configured in the bundle. Pacemaker will create an implicit ++ocf:pacemaker:remote+ resource for the connection, launch Pacemaker Remote +within the container, and monitor and manage the primitive resource via +Pacemaker Remote. + +If the bundle has more than one container instance (replica), the primitive +resource will function as an implicit clone (see <>) -- +a multistate clone if the bundle has +masters+ greater than zero +(see <>). + +[IMPORTANT] +==== +If Pacemaker Remote nodes are used in a cluster with bundle resources that +contain a +primitive+, it is strongly recommended to configure location +constraints prohibiting the bundles from running on those nodes. Running a +bundle with a +primitive+ on a Pacemaker Remote node might work if ++ip-range-start+ is used, but that configuration has not yet been tested. +==== + +=== Limitations of Bundles === + +Currently, bundles may not be cloned, or included in groups or colocation +constraints. This includes the bundle's primitive and any resources +implicitly created by Pacemaker for the bundle. + +Bundles do not have instance attributes, meta-attributes, utilization +attributes, or operations of their own, though a primitive included in a bundle +may. diff --git a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt index 23912d3e8b..2beaed87d4 100644 --- a/doc/Pacemaker_Explained/en-US/Ch-Resources.txt +++ b/doc/Pacemaker_Explained/en-US/Ch-Resources.txt @@ -1,848 +1,849 @@ = Cluster Resources = +[[s-resource-primitive]] == What is a Cluster Resource? == indexterm:[Resource] A resource is a service made highly available by a cluster. The simplest type of resource, a 'primitive' resource, is described in this chapter. More complex forms, such as groups and clones, are described in later chapters. Every primitive resource has a 'resource agent'. A resource agent is an external program that abstracts the service it provides and present a consistent view to the cluster. This allows the cluster to be agnostic about the resources it manages. The cluster doesn't need to understand how the resource works because it relies on the resource agent to do the right thing when given a `start`, `stop` or `monitor` command. For this reason, it is crucial that resource agents are well-tested. Typically, resource agents come in the form of shell scripts. However, they can be written using any technology (such as C, Python or Perl) that the author is comfortable with. [[s-resource-supported]] == Resource Classes == indexterm:[Resource,class] Pacemaker supports several classes of agents: * OCF * LSB * Upstart * Systemd * Service * Fencing * Nagios Plugins === Open Cluster Framework === indexterm:[Resource,OCF] indexterm:[OCF,Resources] indexterm:[Open Cluster Framework,Resources] The OCF standard footnote:[See http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD -- at least as it relates to resource agents. The Pacemaker implementation has been somewhat extended from the OCF specs, but none of those changes are incompatible with the original OCF specification.] is basically an extension of the Linux Standard Base conventions for init scripts to: * support parameters, * make them self-describing, and * make them extensible OCF specs have strict definitions of the exit codes that actions must return. footnote:[ The resource-agents source code includes the `ocf-tester` script, which can be useful in this regard. ] The cluster follows these specifications exactly, and giving the wrong exit code will cause the cluster to behave in ways you will likely find puzzling and annoying. In particular, the cluster needs to distinguish a completely stopped resource from one which is in some erroneous and indeterminate state. Parameters are passed to the resource agent as environment variables, with the special prefix +OCF_RESKEY_+. So, a parameter which the user thinks of as +ip+ will be passed to the resource agent as +OCF_RESKEY_ip+. The number and purpose of the parameters is left to the resource agent; however, the resource agent should use the `meta-data` command to advertise any that it supports. The OCF class is the most preferred as it is an industry standard, highly flexible (allowing parameters to be passed to agents in a non-positional manner) and self-describing. For more information, see the http://www.linux-ha.org/wiki/OCF_Resource_Agents[reference] and <>. === Linux Standard Base === indexterm:[Resource,LSB] indexterm:[LSB,Resources] indexterm:[Linux Standard Base,Resources] LSB resource agents are those found in +/etc/init.d+. Generally, they are provided by the OS distribution and, in order to be used with the cluster, they must conform to the LSB Spec. footnote:[ See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec as it relates to init scripts. ] [WARNING] ==== Many distributions claim LSB compliance but ship with broken init scripts. For details on how to check whether your init script is LSB-compatible, see <>. Common problematic violations of the LSB standard include: * Not implementing the status operation at all * Not observing the correct exit status codes for `start/stop/status` actions * Starting a started resource returns an error * Stopping a stopped resource returns an error ==== [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === Systemd === indexterm:[Resource,Systemd] indexterm:[Systemd,Resources] Some newer distributions have replaced the old http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of initialization daemons and scripts with an alternative called http://www.freedesktop.org/wiki/Software/systemd[Systemd]. Pacemaker is able to manage these services _if they are present_. Instead of init scripts, systemd has 'unit files'. Generally, the services (unit files) are provided by the OS distribution, but there are online guides for converting from init scripts. footnote:[For example, http://0pointer.de/blog/projects/systemd-for-admins-3.html] [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === Upstart === indexterm:[Resource,Upstart] indexterm:[Upstart,Resources] Some newer distributions have replaced the old http://en.wikipedia.org/wiki/Init#SysV-style["SysV"] style of initialization daemons (and scripts) with an alternative called http://upstart.ubuntu.com/[Upstart]. Pacemaker is able to manage these services _if they are present_. Instead of init scripts, upstart has 'jobs'. Generally, the services (jobs) are provided by the OS distribution. [IMPORTANT] ==== Remember to make sure the computer is _not_ configured to start any services at boot time -- that should be controlled by the cluster. ==== === System Services === indexterm:[Resource,System Services] indexterm:[System Service,Resources] Since there are various types of system services (+systemd+, +upstart+, and +lsb+), Pacemaker supports a special +service+ alias which intelligently figures out which one applies to a given cluster node. This is particularly useful when the cluster contains a mix of +systemd+, +upstart+, and +lsb+. In order, Pacemaker will try to find the named service as: . an LSB init script . a Systemd unit file . an Upstart job === STONITH === indexterm:[Resource,STONITH] indexterm:[STONITH,Resources] The STONITH class is used exclusively for fencing-related resources. This is discussed later in <>. === Nagios Plugins === indexterm:[Resource,Nagios Plugins] indexterm:[Nagios Plugins,Resources] Nagios Plugins footnote:[The project has two independent forks, hosted at https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/. Output from both projects' plugins is similar, so plugins from either project can be used with pacemaker.] allow us to monitor services on remote hosts. Pacemaker is able to do remote monitoring with the plugins _if they are present_. A common use case is to configure them as resources belonging to a resource container (usually a virtual machine), and the container will be restarted if any of them has failed. Another use is to configure them as ordinary resources to be used for monitoring hosts or services via the network. The supported parameters are same as the long options of the plugin. [[primitive-resource]] == Resource Properties == These values tell the cluster which resource agent to use for the resource, where to find that resource agent and what standards it conforms to. .Properties of a Primitive Resource [width="95%",cols="1m,6<",options="header",align="center"] |========================================================= |Field |Description |id |Your name for the resource indexterm:[id,Resource] indexterm:[Resource,Property,id] |class |The standard the resource agent conforms to. Allowed values: +lsb+, +nagios+, +ocf+, +service+, +stonith+, +systemd+, +upstart+ indexterm:[class,Resource] indexterm:[Resource,Property,class] |type |The name of the Resource Agent you wish to use. E.g. +IPaddr+ or +Filesystem+ indexterm:[type,Resource] indexterm:[Resource,Property,type] |provider |The OCF spec allows multiple vendors to supply the same resource agent. To use the OCF resource agents supplied by the Heartbeat project, you would specify +heartbeat+ here. indexterm:[provider,Resource] indexterm:[Resource,Property,provider] |========================================================= The XML definition of a resource can be queried with the `crm_resource` tool. For example: ---- # crm_resource --resource Email --query-xml ---- might produce: .A system resource definition ===== [source,XML] ===== [NOTE] ===== One of the main drawbacks to system services (LSB, systemd or Upstart) resources is that they do not allow any parameters! ===== //// See https://tools.ietf.org/html/rfc5737 for choice of example IP address //// .An OCF resource definition ===== [source,XML] ------- ------- ===== [[s-resource-options]] == Resource Options == Resources have two types of options: 'meta-attributes' and 'instance attributes'. Meta-attributes apply to any type of resource, while instance attributes are specific to each resource agent. === Resource Meta-Attributes === Meta-attributes are used by the cluster to decide how a resource should behave and can be easily set using the `--meta` option of the `crm_resource` command. .Meta-attributes of a Primitive Resource [width="95%",cols="2m,2,5> resources, promoted to master if appropriate) * +Slave:+ Allow the resource to be started, but only in Slave mode if the resource is <> * +Master:+ Equivalent to +Started+ indexterm:[target-role,Resource Option] indexterm:[Resource,Option,target-role] |is-managed |TRUE |Is the cluster allowed to start and stop the resource? Allowed values: +true+, +false+ indexterm:[is-managed,Resource Option] indexterm:[Resource,Option,is-managed] |resource-stickiness |value of +resource-stickiness+ in the +rsc_defaults+ section |How much does the resource prefer to stay where it is? indexterm:[resource-stickiness,Resource Option] indexterm:[Resource,Option,resource-stickiness] |requires |fencing (unless +stonith-enabled+ is +false+ or +class+ is +stonith+, in which case it defaults to quorum) |Conditions under which the resource can be started '(since 1.1.8)' Allowed values: * +nothing:+ can always be started * +quorum:+ The cluster can only start this resource if a majority of the configured nodes are active * +fencing:+ The cluster can only start this resource if a majority of the configured nodes are active _and_ any failed or unknown nodes have been powered off * +unfencing:+ The cluster can only start this resource if a majority of the configured nodes are active _and_ any failed or unknown nodes have been powered off _and_ only on nodes that have been 'unfenced' '(since 1.1.9)' indexterm:[requires,Resource Option] indexterm:[Resource,Option,requires] |migration-threshold |INFINITY |How many failures may occur for this resource on a node, before this node is marked ineligible to host this resource. A value of 0 indicates that this feature is disabled (the node will never be marked ineligible); by constrast, the cluster treats INFINITY (the default) as a very large but finite number. This option has an effect only if the failed operation has on-fail=restart (the default), and additionally for failed start operations, if the cluster property start-failure-is-fatal is false. indexterm:[migration-threshold,Resource Option] indexterm:[Resource,Option,migration-threshold] |failure-timeout |0 |How many seconds to wait before acting as if the failure had not occurred, and potentially allowing the resource back to the node on which it failed. A value of 0 indicates that this feature is disabled. As with any time-based actions, this is not guaranteed to be checked more frequently than the value of +cluster-recheck-interval+ (see <>). indexterm:[failure-timeout,Resource Option] indexterm:[Resource,Option,failure-timeout] |multiple-active |stop_start |What should the cluster do if it ever finds the resource active on more than one node? Allowed values: * +block:+ mark the resource as unmanaged * +stop_only:+ stop all active instances and leave them that way * +stop_start:+ stop all active instances and start the resource in one location only indexterm:[multiple-active,Resource Option] indexterm:[Resource,Option,multiple-active] |allow-migrate |TRUE for ocf:pacemaker:remote resources, FALSE otherwise |Whether the cluster should try to "live migrate" this resource when it needs to be moved (see <>) |remote-node | |The name of the Pacemaker Remote guest node this resource is associated with, if any. If specified, this both enables the resource as a guest node and defines the unique name used to identify the guest node. The guest must be configured to run the Pacemaker Remote daemon when it is started. +WARNING:+ This value cannot overlap with any resource or node IDs. '(since 1.1.9)' |remote-port |3121 |If +remote-node+ is specified, the port on the guest used for its Pacemaker Remote connection. The Pacemaker Remote daemon on the guest must be configured to listen on this port. '(since 1.1.9)' |remote-addr |value of +remote-node+ |If +remote-node+ is specified, the IP address or hostname used to connect to the guest via Pacemaker Remote. The Pacemaker Remote daemon on the guest must be configured to accept connections on this address. '(since 1.1.9)' |remote-connect-timeout |60s |If +remote-node+ is specified, how long before a pending guest connection will time out. '(since 1.1.10)' |========================================================= As an example of setting resource options, if you performed the following commands on an LSB Email resource: ------- # crm_resource --meta --resource Email --set-parameter priority --parameter-value 100 # crm_resource -m -r Email -p multiple-active -v block ------- the resulting resource definition might be: .An LSB resource with cluster options ===== [source,XML] ------- ------- ===== [[s-resource-defaults]] === Setting Global Defaults for Resource Meta-Attributes === To set a default value for a resource option, add it to the +rsc_defaults+ section with `crm_attribute`. For example, ---- # crm_attribute --type rsc_defaults --name is-managed --update false ---- would prevent the cluster from starting or stopping any of the resources in the configuration (unless of course the individual resources were specifically enabled by having their +is-managed+ set to +true+). === Resource Instance Attributes === The resource agents of some resource classes (lsb, systemd and upstart 'not' among them) can be given parameters which determine how they behave and which instance of a service they control. If your resource agent supports parameters, you can add them with the `crm_resource` command. For example, ---- # crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2 ---- would create an entry in the resource like this: .An example OCF resource with instance attributes ===== [source,XML] ------- ------- ===== For an OCF resource, the result would be an environment variable called +OCF_RESKEY_ip+ with a value of +192.0.2.2+. The list of instance attributes supported by an OCF resource agent can be found by calling the resource agent with the `meta-data` command. The output contains an XML description of all the supported attributes, their purpose and default values. .Displaying the metadata for the Dummy resource agent template ===== ---- # export OCF_ROOT=/usr/lib/ocf # $OCF_ROOT/resource.d/pacemaker/Dummy meta-data ---- [source,XML] ------- 1.0 This is a Dummy Resource Agent. It does absolutely nothing except keep track of whether its running or not. Its purpose in life is for testing and to serve as a template for RA writers. NB: Please pay attention to the timeouts specified in the actions section below. They should be meaningful for the kind of resource the agent manages. They should be the minimum advised timeouts, but they shouldn't/cannot cover _all_ possible resource instances. So, try to be neither overly generous nor too stingy, but moderate. The minimum timeouts should never be below 10 seconds. Example stateless resource agent Location to store the resource state in. State file Fake attribute that can be changed to cause a reload Fake attribute that can be changed to cause a reload Number of seconds to sleep during operations. This can be used to test how the cluster reacts to operation timeouts. Operation sleep duration in seconds. ------- ===== == Resource Operations == indexterm:[Resource,Action] 'Operations' are actions the cluster can perform on a resource by calling the resource agent. Resource agents must support certain common operations such as start, stop and monitor, and may implement any others. Some operations are generated by the cluster itself, for example, stopping and starting resources as needed. You can configure operations in the cluster configuration. As an example, by default the cluster will 'not' ensure your resources stay healthy once they are started. footnote:[Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.] To instruct the cluster to do this, you need to add a +monitor+ operation to the resource's definition. .An OCF resource with a recurring health check ===== [source,XML] ------- ------- ===== .Properties of an Operation [width="95%",cols="2m,3,6>. indexterm:[interval,Action Property] indexterm:[Action,Property,interval] |timeout | |How long to wait before declaring the action has failed indexterm:[timeout,Action Property] indexterm:[Action,Property,timeout] |on-fail |restart '(except for stop operations, which default to' fence 'when STONITH is enabled and' block 'otherwise)' |The action to take if this action ever fails. Allowed values: * +ignore:+ Pretend the resource did not fail. * +block:+ Don't perform any further operations on the resource. * +stop:+ Stop the resource and do not start it elsewhere. * +restart:+ Stop the resource and start it again (possibly on a different node). * +fence:+ STONITH the node on which the resource failed. * +standby:+ Move _all_ resources away from the node on which the resource failed. indexterm:[on-fail,Action Property] indexterm:[Action,Property,on-fail] |enabled |TRUE |If +false+, ignore this operation definition. This is typically used to pause a particular recurring monitor operation; for instance, it can complement the respective resource being unmanaged (+is-managed=false+), as this alone will <>. Disabling the operation does not suppress all actions of the given type. Allowed values: +true+, +false+. indexterm:[enabled,Action Property] indexterm:[Action,Property,enabled] |record-pending |FALSE |If +true+, the intention to perform the operation is recorded so that GUIs and CLI tools can indicate that an operation is in progress. This is best set as an _operation default_ (see next section). Allowed values: +true+, +false+. indexterm:[enabled,Action Property] indexterm:[Action,Property,enabled] |role | |Run the operation only on node(s) that the cluster thinks should be in the specified role. This only makes sense for recurring monitor operations. Allowed (case-sensitive) values: +Stopped+, +Started+, and in the case of <> resources, +Slave+ and +Master+. indexterm:[role,Action Property] indexterm:[Action,Property,role] |========================================================= [[s-resource-monitoring]] === Monitoring Resources for Failure === When Pacemaker first starts a resource, it runs one-time monitor operations (referred to as 'probes') to ensure the resource is running where it's supposed to be, and not running where it's not supposed to be. (This behavior can be affected by the +resource-discovery+ location constraint property.) Other than those initial probes, Pacemaker will not (by default) check that the resource continues to stay healthy. As in the example above, you must configure monitor operations explicitly to perform these checks. By default, a monitor operation will ensure that the resource is running where it is supposed to. The +target-role+ property can be used for further checking. For example, if a resource has one monitor operation with +interval=10 role=Started+ and a second monitor operation with +interval=11 role=Stopped+, the cluster will run the first monitor on any nodes it thinks 'should' be running the resource, and the second monitor on any nodes that it thinks 'should not' be running the resource (for the truly paranoid, who want to know when an administrator manually starts a service by mistake). [[s-monitoring-unmanaged]] === Monitoring Resources When Administration is Disabled === Recurring monitor operations behave differently under various administrative settings: * When a resource is unmanaged (by setting +is-managed=false+): No monitors will be stopped. + If the unmanaged resource is stopped on a node where the cluster thinks it should be running, the cluster will detect and report that it is not, but it will not consider the monitor failed, and will not try to start the resource until it is managed again. + Starting the unmanaged resource on a different node is strongly discouraged and will at least cause the cluster to consider the resource failed, and may require the resource's +target-role+ to be set to +Stopped+ then +Started+ to be recovered. * When a node is put into standby: All resources will be moved away from the node, and all monitor operations will be stopped on the node, except those with +role=Stopped+. Monitor operations with +role=Stopped+ will be started on the node if appropriate. * When the cluster is put into maintenance mode: All resources will be marked as unmanaged. All monitor operations will be stopped, except those with +role=Stopped+. As with single unmanaged resources, starting a resource on a node other than where the cluster expects it to be will cause problems. [[s-operation-defaults]] === Setting Global Defaults for Operations === You can change the global default values for operation properties in a given cluster. These are defined in an +op_defaults+ section of the CIB's +configuration+ section, and can be set with `crm_attribute`. For example, ---- # crm_attribute --type op_defaults --name timeout --update 20s ---- would default each operation's +timeout+ to 20 seconds. If an operation's definition also includes a value for +timeout+, then that value would be used for that operation instead. === When Implicit Operations Take a Long Time === The cluster will always perform a number of implicit operations: +start+, +stop+ and a non-recurring +monitor+ operation used at startup to check whether the resource is already active. If one of these is taking too long, then you can create an entry for them and specify a longer timeout. .An OCF resource with custom timeouts for its implicit actions ===== [source,XML] ------- ------- ===== === Multiple Monitor Operations === Provided no two operations (for a single resource) have the same name and interval, you can have as many monitor operations as you like. In this way, you can do a superficial health check every minute and progressively more intense ones at higher intervals. To tell the resource agent what kind of check to perform, you need to provide each monitor with a different value for a common parameter. The OCF standard creates a special parameter called +OCF_CHECK_LEVEL+ for this purpose and dictates that it is "made available to the resource agent without the normal +OCF_RESKEY+ prefix". Whatever name you choose, you can specify it by adding an +instance_attributes+ block to the +op+ tag. It is up to each resource agent to look for the parameter and decide how to use it. .An OCF resource with two recurring health checks, performing different levels of checks specified via +OCF_CHECK_LEVEL+. ===== [source,XML] ------- ------- ===== === Disabling a Monitor Operation === The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you only want to disable it temporarily. In such cases, simply add +enabled="false"+ to the operation's definition. .Example of an OCF resource with a disabled health check ===== [source,XML] ------- ------- ===== This can be achieved from the command line by executing: ---- # cibadmin --modify --xml-text '' ---- Once you've done whatever you needed to do, you can then re-enable it with ---- # cibadmin --modify --xml-text '' ----