Page Menu
Home
ClusterLabs Projects
Search
Configure Global Search
Log In
Files
F1841590
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Flag For Later
Award Token
Size
20 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/libknet/threads_tx.c b/libknet/threads_tx.c
index 455a1f88..41bc2dee 100644
--- a/libknet/threads_tx.c
+++ b/libknet/threads_tx.c
@@ -1,732 +1,736 @@
/*
* Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <math.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "transports.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_tx.h"
#include "netutils.h"
/*
* SEND
*/
static int _dispatch_to_links(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_mmsghdr *msg, int msgs_to_send)
{
int link_idx, msg_idx, sent_msgs, prev_sent, progress;
int err = 0, savederrno = 0;
unsigned int i;
struct knet_mmsghdr *cur;
struct knet_link *cur_link;
for (link_idx = 0; link_idx < dst_host->active_link_entries; link_idx++) {
sent_msgs = 0;
prev_sent = 0;
progress = 1;
cur_link = &dst_host->link[dst_host->active_links[link_idx]];
if (cur_link->transport_type == KNET_TRANSPORT_LOOPBACK) {
continue;
}
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_name = &cur_link->dst_addr;
/* Cast for Linux/BSD compatibility */
for (i=0; i<(unsigned int)msg[msg_idx].msg_hdr.msg_iovlen; i++) {
cur_link->status.stats.tx_data_bytes += msg[msg_idx].msg_hdr.msg_iov[i].iov_len;
}
cur_link->status.stats.tx_data_packets++;
msg_idx++;
}
retry:
cur = &msg[prev_sent];
sent_msgs = _sendmmsg(dst_host->link[dst_host->active_links[link_idx]].outsock,
&cur[0], msgs_to_send - prev_sent, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
err = knet_h->transport_ops[dst_host->link[dst_host->active_links[link_idx]].transport_type]->transport_tx_sock_error(knet_h, dst_host->link[dst_host->active_links[link_idx]].outsock, sent_msgs, savederrno);
switch(err) {
case -1: /* unrecoverable error */
cur_link->status.stats.tx_data_errors++;
goto out_unlock;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
cur_link->status.stats.tx_data_retries++;
goto retry;
break;
}
prev_sent = prev_sent + sent_msgs;
if ((sent_msgs >= 0) && (prev_sent < msgs_to_send)) {
if ((sent_msgs) || (progress)) {
if (sent_msgs) {
progress = 1;
} else {
progress = 0;
}
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TX, "Unable to send all (%d/%d) data packets to host %s (%u) link %s:%s (%u)",
sent_msgs, msg_idx,
dst_host->name, dst_host->host_id,
dst_host->link[dst_host->active_links[link_idx]].status.dst_ipaddr,
dst_host->link[dst_host->active_links[link_idx]].status.dst_port,
dst_host->link[dst_host->active_links[link_idx]].link_id);
#endif
goto retry;
}
if (!progress) {
savederrno = EAGAIN;
err = -1;
goto out_unlock;
}
}
if ((dst_host->link_handler_policy == KNET_LINK_POLICY_RR) &&
(dst_host->active_link_entries > 1)) {
uint8_t cur_link_id = dst_host->active_links[0];
memmove(&dst_host->active_links[0], &dst_host->active_links[1], KNET_MAX_LINK - 1);
dst_host->active_links[dst_host->active_link_entries - 1] = cur_link_id;
break;
}
}
out_unlock:
errno = savederrno;
return err;
}
static int _parse_recv_from_sock(knet_handle_t knet_h, size_t inlen, int8_t channel, int is_sync)
{
size_t outlen, frag_len;
struct knet_host *dst_host;
knet_node_id_t dst_host_ids_temp[KNET_MAX_HOST];
size_t dst_host_ids_entries_temp = 0;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[PCKT_FRAG_MAX][2];
int iovcnt_out = 2;
uint8_t frag_idx;
unsigned int temp_data_mtu;
size_t host_idx;
int send_mcast = 0;
struct knet_header *inbuf;
int savederrno = 0;
int err = 0;
seq_num_t tx_seq_num;
struct knet_mmsghdr msg[PCKT_FRAG_MAX];
int msgs_to_send, msg_idx;
unsigned int i;
int j;
int send_local = 0;
int data_compressed = 0;
size_t uncrypted_frag_size;
inbuf = knet_h->recv_from_sock_buf;
if ((knet_h->enabled != 1) &&
(inbuf->kh_type != KNET_HEADER_TYPE_HOST_INFO)) { /* data forward is disabled */
log_debug(knet_h, KNET_SUB_TX, "Received data packet but forwarding is disabled");
savederrno = ECANCELED;
err = -1;
goto out_unlock;
}
/*
* move this into a separate function to expand on
* extra switching rules
*/
switch(inbuf->kh_type) {
case KNET_HEADER_TYPE_DATA:
if (knet_h->dst_host_filter_fn) {
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
inlen,
KNET_NOTIFY_TX,
knet_h->host_id,
knet_h->host_id,
&channel,
dst_host_ids_temp,
&dst_host_ids_entries_temp);
if (bcast < 0) {
log_debug(knet_h, KNET_SUB_TX, "Error from dst_host_filter_fn: %d", bcast);
savederrno = EFAULT;
err = -1;
goto out_unlock;
}
if ((!bcast) && (!dst_host_ids_entries_temp)) {
log_debug(knet_h, KNET_SUB_TX, "Message is unicast but no dst_host_ids_entries");
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
}
/* Send to localhost if appropriate and enabled */
if (knet_h->has_loop_link) {
send_local = 0;
if (bcast) {
send_local = 1;
} else {
for (i=0; i< dst_host_ids_entries_temp; i++) {
if (dst_host_ids_temp[i] == knet_h->host_id) {
send_local = 1;
}
}
}
if (send_local) {
const unsigned char *buf = inbuf->khp_data_userdata;
ssize_t buflen = inlen;
struct knet_link *local_link;
local_link = knet_h->host_index[knet_h->host_id]->link;
local_retry:
err = write(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], buf, buflen);
if (err < 0) {
log_err(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local failed. error=%s\n", strerror(errno));
local_link->status.stats.tx_data_errors++;
}
if (err > 0 && err < buflen) {
log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %zu\n", err, inlen);
local_link->status.stats.tx_data_retries++;
buf += err;
buflen -= err;
usleep(KNET_THREADS_TIMERES / 16);
goto local_retry;
}
if (err == buflen) {
local_link->status.stats.tx_data_packets++;
local_link->status.stats.tx_data_bytes += inlen;
}
}
}
break;
case KNET_HEADER_TYPE_HOST_INFO:
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
bcast = 0;
dst_host_ids_temp[0] = knet_hostinfo->khi_dst_node_id;
dst_host_ids_entries_temp = 1;
knet_hostinfo->khi_dst_node_id = htons(knet_hostinfo->khi_dst_node_id);
}
break;
default:
log_warn(knet_h, KNET_SUB_TX, "Receiving unknown messages from socket");
savederrno = ENOMSG;
err = -1;
goto out_unlock;
break;
}
if (is_sync) {
if ((bcast) ||
((!bcast) && (dst_host_ids_entries_temp > 1))) {
log_debug(knet_h, KNET_SUB_TX, "knet_send_sync is only supported with unicast packets for one destination");
savederrno = E2BIG;
err = -1;
goto out_unlock;
}
}
/*
* check destinations hosts before spending time
* in fragmenting/encrypting packets to save
* time processing data for unreachable hosts.
* for unicast, also remap the destination data
* to skip unreachable hosts.
*/
if (!bcast) {
dst_host_ids_entries = 0;
for (host_idx = 0; host_idx < dst_host_ids_entries_temp; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids_temp[host_idx]];
if (!dst_host) {
continue;
}
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
dst_host_ids[dst_host_ids_entries] = dst_host_ids_temp[host_idx];
dst_host_ids_entries++;
}
}
if (!dst_host_ids_entries) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
} else {
send_mcast = 0;
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (!(dst_host->host_id == knet_h->host_id &&
knet_h->has_loop_link) &&
dst_host->status.reachable) {
send_mcast = 1;
break;
}
}
if (!send_mcast) {
savederrno = EHOSTDOWN;
err = -1;
goto out_unlock;
}
}
if (!knet_h->data_mtu) {
/*
* using MIN_MTU_V4 for data mtu is not completely accurate but safe enough
*/
log_debug(knet_h, KNET_SUB_TX,
"Received data packet but data MTU is still unknown."
" Packet might not be delivered."
" Assuming mininum IPv4 mtu (%d)",
KNET_PMTUD_MIN_MTU_V4);
temp_data_mtu = KNET_PMTUD_MIN_MTU_V4;
} else {
/*
* take a copy of the mtu to avoid value changing under
* our feet while we are sending a fragmented pckt
*/
temp_data_mtu = knet_h->data_mtu;
}
/*
* compress data
*/
if ((knet_h->compress_model > 0) && (inlen > knet_h->compress_threshold)) {
size_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = compress(knet_h,
(const unsigned char *)inbuf->khp_data_userdata, inlen,
knet_h->send_to_links_buf_compress, (ssize_t *)&cmp_outlen);
if (err < 0) {
log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(errno));
} else {
/* Collect stats */
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &compress_time);
if (compress_time < knet_h->stats.tx_compress_time_min) {
knet_h->stats.tx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.tx_compress_time_max) {
knet_h->stats.tx_compress_time_max = compress_time;
}
knet_h->stats.tx_compress_time_ave =
(unsigned long long)(knet_h->stats.tx_compress_time_ave * knet_h->stats.tx_compressed_packets +
compress_time) / (knet_h->stats.tx_compressed_packets+1);
knet_h->stats.tx_compressed_packets++;
knet_h->stats.tx_compressed_original_bytes += inlen;
knet_h->stats.tx_compressed_size_bytes += cmp_outlen;
if (cmp_outlen < inlen) {
memmove(inbuf->khp_data_userdata, knet_h->send_to_links_buf_compress, cmp_outlen);
inlen = cmp_outlen;
data_compressed = 1;
}
}
}
if ((knet_h->compress_model > 0) && (inlen <= knet_h->compress_threshold)) {
knet_h->stats.tx_uncompressed_packets++;
}
/*
* prepare the outgoing buffers
*/
frag_len = inlen;
frag_idx = 0;
inbuf->khp_data_bcast = bcast;
inbuf->khp_data_frag_num = ceil((float)inlen / temp_data_mtu);
inbuf->khp_data_channel = channel;
if (data_compressed) {
inbuf->khp_data_compress = knet_h->compress_model;
} else {
inbuf->khp_data_compress = 0;
}
if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get seq mutex lock");
goto out_unlock;
}
knet_h->tx_seq_num++;
/*
* force seq_num 0 to detect a node that has crashed and rejoining
* the knet instance. seq_num 0 will clear the buffers in the RX
* thread
*/
if (knet_h->tx_seq_num == 0) {
knet_h->tx_seq_num++;
}
/*
* cache the value in locked context
*/
tx_seq_num = knet_h->tx_seq_num;
inbuf->khp_data_seq_num = htons(knet_h->tx_seq_num);
pthread_mutex_unlock(&knet_h->tx_seq_num_mutex);
/*
* forcefully broadcast a ping to all nodes every SEQ_MAX / 8
* pckts.
* this solves 2 problems:
* 1) on TX socket overloads we generate extra pings to keep links alive
* 2) in 3+ nodes setup, where all the traffic is flowing between node 1 and 2,
* node 3+ will be able to keep in sync on the TX seq_num even without
* receiving traffic or pings in betweens. This avoids issues with
* rollover of the circular buffer
*/
if (tx_seq_num % (SEQ_MAX / 8) == 0) {
_send_pings(knet_h, 0);
}
if (inbuf->khp_data_frag_num > 1) {
while (frag_idx < inbuf->khp_data_frag_num) {
/*
* set the iov_base
*/
iov_out[frag_idx][0].iov_base = (void *)knet_h->send_to_links_buf[frag_idx];
iov_out[frag_idx][0].iov_len = KNET_HEADER_DATA_SIZE;
iov_out[frag_idx][1].iov_base = inbuf->khp_data_userdata + (temp_data_mtu * frag_idx);
/*
* set the len
*/
if (frag_len > temp_data_mtu) {
iov_out[frag_idx][1].iov_len = temp_data_mtu;
} else {
iov_out[frag_idx][1].iov_len = frag_len;
}
/*
* copy the frag info on all buffers
*/
knet_h->send_to_links_buf[frag_idx]->kh_type = inbuf->kh_type;
knet_h->send_to_links_buf[frag_idx]->khp_data_seq_num = inbuf->khp_data_seq_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_frag_num = inbuf->khp_data_frag_num;
knet_h->send_to_links_buf[frag_idx]->khp_data_bcast = inbuf->khp_data_bcast;
knet_h->send_to_links_buf[frag_idx]->khp_data_channel = inbuf->khp_data_channel;
knet_h->send_to_links_buf[frag_idx]->khp_data_compress = inbuf->khp_data_compress;
frag_len = frag_len - temp_data_mtu;
frag_idx++;
}
iovcnt_out = 2;
} else {
iov_out[frag_idx][0].iov_base = (void *)inbuf;
iov_out[frag_idx][0].iov_len = frag_len + KNET_HEADER_DATA_SIZE;
iovcnt_out = 1;
}
if (knet_h->crypto_instance) {
struct timespec start_time;
struct timespec end_time;
uint64_t crypt_time;
frag_idx = 0;
while (frag_idx < inbuf->khp_data_frag_num) {
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_encrypt_and_signv(
knet_h,
iov_out[frag_idx], iovcnt_out,
knet_h->send_to_links_buf_crypt[frag_idx],
(ssize_t *)&outlen) < 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to encrypt packet");
savederrno = ECHILD;
err = -1;
goto out_unlock;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &crypt_time);
if (crypt_time < knet_h->stats.tx_crypt_time_min) {
knet_h->stats.tx_crypt_time_min = crypt_time;
}
if (crypt_time > knet_h->stats.tx_crypt_time_max) {
knet_h->stats.tx_crypt_time_max = crypt_time;
}
knet_h->stats.tx_crypt_time_ave =
(knet_h->stats.tx_crypt_time_ave * knet_h->stats.tx_crypt_packets +
crypt_time) / (knet_h->stats.tx_crypt_packets+1);
uncrypted_frag_size = 0;
for (j=0; j < iovcnt_out; j++) {
uncrypted_frag_size += iov_out[frag_idx][j].iov_len;
}
knet_h->stats.tx_crypt_byte_overhead += (outlen - uncrypted_frag_size);
knet_h->stats.tx_crypt_packets++;
iov_out[frag_idx][0].iov_base = knet_h->send_to_links_buf_crypt[frag_idx];
iov_out[frag_idx][0].iov_len = outlen;
frag_idx++;
}
iovcnt_out = 1;
}
memset(&msg, 0, sizeof(msg));
msgs_to_send = inbuf->khp_data_frag_num;
msg_idx = 0;
while (msg_idx < msgs_to_send) {
msg[msg_idx].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[msg_idx].msg_hdr.msg_iov = &iov_out[msg_idx][0];
msg[msg_idx].msg_hdr.msg_iovlen = iovcnt_out;
msg_idx++;
}
if (!bcast) {
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
dst_host = knet_h->host_index[dst_host_ids[host_idx]];
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
} else {
for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) {
if (dst_host->status.reachable) {
err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send);
savederrno = errno;
if (err) {
goto out_unlock;
}
}
}
}
out_unlock:
errno = savederrno;
return err;
}
int knet_send_sync(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0, err = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out;
}
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_TX, "Unable to get TX mutex lock: %s",
strerror(savederrno));
err = -1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = KNET_HEADER_TYPE_DATA;
memmove(knet_h->recv_from_sock_buf->khp_data_userdata, buff, buff_len);
err = _parse_recv_from_sock(knet_h, buff_len, channel, 1);
savederrno = errno;
pthread_mutex_unlock(&knet_h->tx_mutex);
out:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = savederrno;
return err;
}
static void _handle_send_to_links(knet_handle_t knet_h, struct msghdr *msg, int sockfd, int8_t channel, int type)
{
ssize_t inlen = 0;
int savederrno = 0, docallback = 0;
if ((channel >= 0) &&
(channel < KNET_DATAFD_MAX) &&
(!knet_h->sockfd[channel].is_socket)) {
inlen = readv(sockfd, msg->msg_iov, 1);
} else {
inlen = recvmsg(sockfd, msg, MSG_DONTWAIT | MSG_NOSIGNAL);
}
if (inlen == 0) {
savederrno = 0;
docallback = 1;
goto out;
}
if (inlen < 0) {
savederrno = errno;
docallback = 1;
goto out;
}
knet_h->recv_from_sock_buf->kh_type = type;
_parse_recv_from_sock(knet_h, inlen, channel, 0);
out:
if (inlen < 0) {
struct epoll_event ev;
memset(&ev, 0, sizeof(struct epoll_event));
if (epoll_ctl(knet_h->send_to_links_epollfd,
EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) {
log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s",
knet_h->sockfd[channel].sockfd[0], strerror(savederrno));
} else {
knet_h->sockfd[channel].has_error = 1;
}
}
if (docallback) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_TX,
inlen,
savederrno);
}
}
void *_handle_send_to_links_thread(void *data)
{
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
int i, nev, type;
int8_t channel;
struct iovec iov_in;
struct msghdr msg;
struct sockaddr_storage address;
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)knet_h->recv_from_sock_buf->khp_data_userdata;
iov_in.iov_len = KNET_MAX_PACKET_SIZE;
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = &address;
msg.msg_namelen = sizeof(struct sockaddr_storage);
msg.msg_iov = &iov_in;
msg.msg_iovlen = 1;
knet_h->recv_from_sock_buf->kh_version = KNET_HEADER_VERSION;
knet_h->recv_from_sock_buf->khp_data_frag_seq = 0;
knet_h->recv_from_sock_buf->kh_node = htons(knet_h->host_id);
for (i = 0; i < PCKT_FRAG_MAX; i++) {
knet_h->send_to_links_buf[i]->kh_version = KNET_HEADER_VERSION;
knet_h->send_to_links_buf[i]->khp_data_frag_seq = i + 1;
knet_h->send_to_links_buf[i]->kh_node = htons(knet_h->host_id);
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->send_to_links_epollfd, events, KNET_EPOLL_MAX_EVENTS + 1, -1);
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get read lock");
continue;
}
for (i = 0; i < nev; i++) {
if (events[i].data.fd == knet_h->hostsockfd[0]) {
type = KNET_HEADER_TYPE_HOST_INFO;
channel = -1;
} else {
type = KNET_HEADER_TYPE_DATA;
for (channel = 0; channel < KNET_DATAFD_MAX; channel++) {
if ((knet_h->sockfd[channel].in_use) &&
(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) {
break;
}
}
+ if (channel >= KNET_DATAFD_MAX) {
+ log_debug(knet_h, KNET_SUB_TX, "No available channels");
+ continue; /* channel not found */
+ }
}
if (pthread_mutex_lock(&knet_h->tx_mutex) != 0) {
log_debug(knet_h, KNET_SUB_TX, "Unable to get mutex lock");
continue;
}
_handle_send_to_links(knet_h, &msg, events[i].data.fd, channel, type);
pthread_mutex_unlock(&knet_h->tx_mutex);
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
return NULL;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Nov 23, 6:27 AM (11 h, 32 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1006218
Default Alt Text
(20 KB)
Attached To
Mode
rK kronosnet
Attached
Detach File
Event Timeline
Log In to Comment