Page MenuHomeClusterLabs Projects

totemsrp.c
No OneTemporary

totemsrp.c

/*
* Copyright (c) 2003-2006 MontaVista Software, Inc.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The first version of this code was based upon Yair Amir's PhD thesis:
* http://www.cs.jhu.edu/~yairamir/phd.ps) (ch4,5).
*
* The current version of totemsrp implements the Totem protocol specified in:
* http://citeseer.ist.psu.edu/amir95totem.html
*
* The deviations from the above published protocols are:
* - encryption of message contents with SOBER128
* - authentication of meessage contents with SHA1/HMAC
* - token hold mode where token doesn't rotate on unused ring - reduces cpu
* usage on 1.6ghz xeon from 35% to less then .1 % as measured by top
*/
#include <config.h>
#include <assert.h>
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sched.h>
#include <time.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <limits.h>
#include <corosync/swab.h>
#include <corosync/cs_queue.h>
#include <corosync/sq.h>
#include <corosync/list.h>
#include <corosync/hdb.h>
#include <corosync/totem/coropoll.h>
#define LOGSYS_UTILS_ONLY 1
#include <corosync/engine/logsys.h>
#include "totemsrp.h"
#include "totemrrp.h"
#include "totemnet.h"
#include "wthread.h"
#include "crypto.h"
#include "tlist.h"
#include "util.h"
#define LOCALHOST_IP inet_addr("127.0.0.1")
#define QUEUE_RTR_ITEMS_SIZE_MAX 16384 /* allow 16384 retransmit items */
#define RETRANS_MESSAGE_QUEUE_SIZE_MAX 16384 /* allow 500 messages to be queued */
#define RECEIVED_MESSAGE_QUEUE_SIZE_MAX 500 /* allow 500 messages to be queued */
#define MAXIOVS 5
#define RETRANSMIT_ENTRIES_MAX 30
#define TOKEN_SIZE_MAX 64000 /* bytes */
#define LEAVE_DUMMY_NODEID 0
/*
* Rollover handling:
* SEQNO_START_MSG is the starting sequence number after a new configuration
* This should remain zero, unless testing overflow in which case
* 0x7ffff000 and 0xfffff000 are good starting values.
*
* SEQNO_START_TOKEN is the starting sequence number after a new configuration
* for a token. This should remain zero, unless testing overflow in which
* case 07fffff00 or 0xffffff00 are good starting values.
*/
#define SEQNO_START_MSG 0x0
#define SEQNO_START_TOKEN 0x0
/*
* These can be used ot test different rollover points
* #define SEQNO_START_MSG 0xfffffe00
* #define SEQNO_START_TOKEN 0xfffffe00
*/
/*
* These can be used to test the error recovery algorithms
* #define TEST_DROP_ORF_TOKEN_PERCENTAGE 30
* #define TEST_DROP_COMMIT_TOKEN_PERCENTAGE 30
* #define TEST_DROP_MCAST_PERCENTAGE 50
* #define TEST_RECOVERY_MSG_COUNT 300
*/
/*
* we compare incoming messages to determine if their endian is
* different - if so convert them
*
* do not change
*/
#define ENDIAN_LOCAL 0xff22
enum message_type {
MESSAGE_TYPE_ORF_TOKEN = 0, /* Ordering, Reliability, Flow (ORF) control Token */
MESSAGE_TYPE_MCAST = 1, /* ring ordered multicast message */
MESSAGE_TYPE_MEMB_MERGE_DETECT = 2, /* merge rings if there are available rings */
MESSAGE_TYPE_MEMB_JOIN = 3, /* membership join message */
MESSAGE_TYPE_MEMB_COMMIT_TOKEN = 4, /* membership commit token */
MESSAGE_TYPE_TOKEN_HOLD_CANCEL = 5, /* cancel the holding of the token */
};
enum encapsulation_type {
MESSAGE_ENCAPSULATED = 1,
MESSAGE_NOT_ENCAPSULATED = 2
};
/*
* New membership algorithm local variables
*/
struct srp_addr {
struct totem_ip_address addr[INTERFACE_MAX];
};
struct consensus_list_item {
struct srp_addr addr;
int set;
};
struct token_callback_instance {
struct list_head list;
int (*callback_fn) (enum totem_callback_token_type type, const void *);
enum totem_callback_token_type callback_type;
int delete;
void *data;
};
struct totemsrp_socket {
int mcast;
int token;
};
struct message_header {
char type;
char encapsulated;
unsigned short endian_detector;
unsigned int nodeid;
} __attribute__((packed));
struct mcast {
struct message_header header;
struct srp_addr system_from;
unsigned int seq;
int this_seqno;
struct memb_ring_id ring_id;
unsigned int node_id;
int guarantee;
} __attribute__((packed));
struct rtr_item {
struct memb_ring_id ring_id;
unsigned int seq;
}__attribute__((packed));
struct orf_token {
struct message_header header;
unsigned int seq;
unsigned int token_seq;
unsigned int aru;
unsigned int aru_addr;
struct memb_ring_id ring_id;
unsigned int backlog;
unsigned int fcc;
int retrans_flg;
int rtr_list_entries;
struct rtr_item rtr_list[0];
}__attribute__((packed));
struct memb_join {
struct message_header header;
struct srp_addr system_from;
unsigned int proc_list_entries;
unsigned int failed_list_entries;
unsigned long long ring_seq;
unsigned char end_of_memb_join[0];
/*
* These parts of the data structure are dynamic:
* struct srp_addr proc_list[];
* struct srp_addr failed_list[];
*/
} __attribute__((packed));
struct memb_merge_detect {
struct message_header header;
struct srp_addr system_from;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct token_hold_cancel {
struct message_header header;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct memb_commit_token_memb_entry {
struct memb_ring_id ring_id;
unsigned int aru;
unsigned int high_delivered;
unsigned int received_flg;
}__attribute__((packed));
struct memb_commit_token {
struct message_header header;
unsigned int token_seq;
struct memb_ring_id ring_id;
unsigned int retrans_flg;
int memb_index;
int addr_entries;
unsigned char end_of_commit_token[0];
/*
* These parts of the data structure are dynamic:
*
* struct srp_addr addr[PROCESSOR_COUNT_MAX];
* struct memb_commit_token_memb_entry memb_list[PROCESSOR_COUNT_MAX];
*/
}__attribute__((packed));
struct message_item {
struct mcast *mcast;
unsigned int msg_len;
};
struct sort_queue_item {
struct mcast *mcast;
unsigned int msg_len;
};
enum memb_state {
MEMB_STATE_OPERATIONAL = 1,
MEMB_STATE_GATHER = 2,
MEMB_STATE_COMMIT = 3,
MEMB_STATE_RECOVERY = 4
};
struct totemsrp_instance {
int iface_changes;
int failed_to_recv;
/*
* Flow control mcasts and remcasts on last and current orf_token
*/
int fcc_remcast_last;
int fcc_mcast_last;
int fcc_remcast_current;
struct consensus_list_item consensus_list[PROCESSOR_COUNT_MAX];
int consensus_list_entries;
struct srp_addr my_id;
struct srp_addr my_proc_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_failed_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_new_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_trans_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_deliver_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_left_memb_list[PROCESSOR_COUNT_MAX];
int my_proc_list_entries;
int my_failed_list_entries;
int my_new_memb_entries;
int my_trans_memb_entries;
int my_memb_entries;
int my_deliver_memb_entries;
int my_left_memb_entries;
struct memb_ring_id my_ring_id;
struct memb_ring_id my_old_ring_id;
int my_aru_count;
int my_merge_detect_timeout_outstanding;
unsigned int my_last_aru;
int my_seq_unchanged;
int my_received_flg;
unsigned int my_high_seq_received;
unsigned int my_install_seq;
int my_rotation_counter;
int my_set_retrans_flg;
int my_retrans_flg_count;
unsigned int my_high_ring_delivered;
int heartbeat_timeout;
/*
* Queues used to order, deliver, and recover messages
*/
struct cs_queue new_message_queue;
struct cs_queue new_message_queue_trans;
struct cs_queue retrans_message_queue;
struct sq regular_sort_queue;
struct sq recovery_sort_queue;
/*
* Received up to and including
*/
unsigned int my_aru;
unsigned int my_high_delivered;
struct list_head token_callback_received_listhead;
struct list_head token_callback_sent_listhead;
char orf_token_retransmit[TOKEN_SIZE_MAX];
int orf_token_retransmit_size;
unsigned int my_token_seq;
/*
* Timers
*/
poll_timer_handle timer_pause_timeout;
poll_timer_handle timer_orf_token_timeout;
poll_timer_handle timer_orf_token_retransmit_timeout;
poll_timer_handle timer_orf_token_hold_retransmit_timeout;
poll_timer_handle timer_merge_detect_timeout;
poll_timer_handle memb_timer_state_gather_join_timeout;
poll_timer_handle memb_timer_state_gather_consensus_timeout;
poll_timer_handle memb_timer_state_commit_timeout;
poll_timer_handle timer_heartbeat_timeout;
/*
* Function and data used to log messages
*/
int totemsrp_log_level_security;
int totemsrp_log_level_error;
int totemsrp_log_level_warning;
int totemsrp_log_level_notice;
int totemsrp_log_level_debug;
int totemsrp_subsys_id;
void (*totemsrp_log_printf) (
unsigned int rec_ident,
const char *function,
const char *file,
int line,
const char *format, ...)__attribute__((format(printf, 5, 6)));;
enum memb_state memb_state;
//TODO struct srp_addr next_memb;
hdb_handle_t totemsrp_poll_handle;
struct totem_ip_address mcast_address;
void (*totemsrp_deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required);
void (*totemsrp_confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
void (*totemsrp_service_ready_fn) (void);
int global_seqno;
int my_token_held;
unsigned long long token_ring_id_seq;
unsigned int last_released;
unsigned int set_aru;
int old_ring_state_saved;
int old_ring_state_aru;
unsigned int old_ring_state_high_seq_received;
unsigned int my_last_seq;
struct timeval tv_old;
void *totemrrp_context;
struct totem_config *totem_config;
unsigned int use_heartbeat;
unsigned int my_trc;
unsigned int my_pbl;
unsigned int my_cbl;
unsigned long long int pause_timestamp;
struct memb_commit_token *commit_token;
totemsrp_stats_t stats;
uint32_t orf_token_discard;
uint32_t waiting_trans_ack;
void * token_recv_event_handle;
void * token_sent_event_handle;
char commit_token_storage[40000];
};
struct message_handlers {
int count;
int (*handler_functions[6]) (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
};
/*
* forward decls
*/
static int message_handler_orf_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_mcast (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_merge_detect (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_join (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_commit_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_token_hold_cancel (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static void totemsrp_instance_initialize (struct totemsrp_instance *instance);
static unsigned int main_msgs_missing (void);
static void main_token_seqid_get (
const void *msg,
unsigned int *seqid,
unsigned int *token_is);
static void srp_addr_copy (struct srp_addr *dest, const struct srp_addr *src);
static void srp_addr_to_nodeid (
unsigned int *nodeid_out,
struct srp_addr *srp_addr_in,
unsigned int entries);
static int srp_addr_equal (const struct srp_addr *a, const struct srp_addr *b);
static void memb_leave_message_send (struct totemsrp_instance *instance);
static void memb_ring_id_create_or_load (struct totemsrp_instance *, struct memb_ring_id *);
static void token_callbacks_execute (struct totemsrp_instance *instance, enum totem_callback_token_type type);
static void memb_state_gather_enter (struct totemsrp_instance *instance, int gather_from);
static void messages_deliver_to_app (struct totemsrp_instance *instance, int skip, unsigned int end_point);
static int orf_token_mcast (struct totemsrp_instance *instance, struct orf_token *oken,
int fcc_mcasts_allowed);
static void messages_free (struct totemsrp_instance *instance, unsigned int token_aru);
static void memb_ring_id_set_and_store (struct totemsrp_instance *instance,
const struct memb_ring_id *ring_id);
static void target_set_completed (void *context);
static void memb_state_commit_token_update (struct totemsrp_instance *instance);
static void memb_state_commit_token_target_set (struct totemsrp_instance *instance);
static int memb_state_commit_token_send (struct totemsrp_instance *instance);
static int memb_state_commit_token_send_recovery (struct totemsrp_instance *instance, struct memb_commit_token *memb_commit_token);
static void memb_state_commit_token_create (struct totemsrp_instance *instance);
static int token_hold_cancel_send (struct totemsrp_instance *instance);
static void orf_token_endian_convert (const struct orf_token *in, struct orf_token *out);
static void memb_commit_token_endian_convert (const struct memb_commit_token *in, struct memb_commit_token *out);
static void memb_join_endian_convert (const struct memb_join *in, struct memb_join *out);
static void mcast_endian_convert (const struct mcast *in, struct mcast *out);
static void memb_merge_detect_endian_convert (
const struct memb_merge_detect *in,
struct memb_merge_detect *out);
static void srp_addr_copy_endian_convert (struct srp_addr *out, const struct srp_addr *in);
static void timer_function_orf_token_timeout (void *data);
static void timer_function_pause_timeout (void *data);
static void timer_function_heartbeat_timeout (void *data);
static void timer_function_token_retransmit_timeout (void *data);
static void timer_function_token_hold_retransmit_timeout (void *data);
static void timer_function_merge_detect_timeout (void *data);
void main_deliver_fn (
void *context,
const void *msg,
unsigned int msg_len);
void main_iface_change_fn (
void *context,
const struct totem_ip_address *iface_address,
unsigned int iface_no);
struct message_handlers totemsrp_message_handlers = {
6,
{
message_handler_orf_token, /* MESSAGE_TYPE_ORF_TOKEN */
message_handler_mcast, /* MESSAGE_TYPE_MCAST */
message_handler_memb_merge_detect, /* MESSAGE_TYPE_MEMB_MERGE_DETECT */
message_handler_memb_join, /* MESSAGE_TYPE_MEMB_JOIN */
message_handler_memb_commit_token, /* MESSAGE_TYPE_MEMB_COMMIT_TOKEN */
message_handler_token_hold_cancel /* MESSAGE_TYPE_TOKEN_HOLD_CANCEL */
}
};
static const char *rundir = NULL;
#define log_printf(level, format, args...) \
do { \
instance->totemsrp_log_printf ( \
LOGSYS_ENCODE_RECID(level, \
instance->totemsrp_subsys_id, \
LOGSYS_RECID_LOG), \
__FUNCTION__, __FILE__, __LINE__, \
format, ##args); \
} while (0);
#define TRACE(recid, format, args...) do { \
instance->totemsrp_log_printf ( \
LOGSYS_ENCODE_RECID(LOGSYS_LEVEL_DEBUG, \
instance->totemsrp_subsys_id, \
recid), \
__FUNCTION__, __FILE__, __LINE__, \
format, ##args); \
} while(0)
#define TRACE1(format, args...) do { \
TRACE(LOGSYS_RECID_TRACE1, format, ##args); \
} while(0)
static void totemsrp_instance_initialize (struct totemsrp_instance *instance)
{
memset (instance, 0, sizeof (struct totemsrp_instance));
list_init (&instance->token_callback_received_listhead);
list_init (&instance->token_callback_sent_listhead);
instance->my_received_flg = 1;
instance->my_token_seq = SEQNO_START_TOKEN - 1;
instance->memb_state = MEMB_STATE_OPERATIONAL;
instance->set_aru = -1;
instance->my_aru = SEQNO_START_MSG;
instance->my_high_seq_received = SEQNO_START_MSG;
instance->my_high_delivered = SEQNO_START_MSG;
instance->orf_token_discard = 0;
instance->commit_token = (struct memb_commit_token *)instance->commit_token_storage;
instance->waiting_trans_ack = 1;
}
static void main_token_seqid_get (
const void *msg,
unsigned int *seqid,
unsigned int *token_is)
{
const struct orf_token *token = msg;
*seqid = 0;
*token_is = 0;
if (token->header.type == MESSAGE_TYPE_ORF_TOKEN) {
*seqid = token->token_seq;
*token_is = 1;
}
}
static unsigned int main_msgs_missing (void)
{
// TODO
return (0);
}
static int pause_flush (struct totemsrp_instance *instance)
{
uint64_t now_msec;
uint64_t timestamp_msec;
int res = 0;
now_msec = (timerlist_nano_current_get () / TIMERLIST_NS_IN_MSEC);
timestamp_msec = instance->pause_timestamp / TIMERLIST_NS_IN_MSEC;
if ((now_msec - timestamp_msec) > (instance->totem_config->token_timeout / 2)) {
log_printf (instance->totemsrp_log_level_notice,
"Process pause detected for %d ms, flushing membership messages.\n", (unsigned int)(now_msec - timestamp_msec));
/*
* -1 indicates an error from recvmsg
*/
do {
res = totemrrp_mcast_recv_empty (instance->totemrrp_context);
} while (res == -1);
}
return (res);
}
static int token_event_stats_collector (enum totem_callback_token_type type, const void *void_instance)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)void_instance;
uint32_t time_now;
unsigned long long nano_secs = timerlist_nano_current_get ();
time_now = (nano_secs / TIMERLIST_NS_IN_MSEC);
if (type == TOTEM_CALLBACK_TOKEN_RECEIVED) {
/* incr latest token the index */
if (instance->stats.latest_token == (TOTEM_TOKEN_STATS_MAX - 1))
instance->stats.latest_token = 0;
else
instance->stats.latest_token++;
if (instance->stats.earliest_token == instance->stats.latest_token) {
/* we have filled up the array, start overwriting */
if (instance->stats.earliest_token == (TOTEM_TOKEN_STATS_MAX - 1))
instance->stats.earliest_token = 0;
else
instance->stats.earliest_token++;
instance->stats.token[instance->stats.earliest_token].rx = 0;
instance->stats.token[instance->stats.earliest_token].tx = 0;
instance->stats.token[instance->stats.earliest_token].backlog_calc = 0;
}
instance->stats.token[instance->stats.latest_token].rx = time_now;
instance->stats.token[instance->stats.latest_token].tx = 0; /* in case we drop the token */
} else {
instance->stats.token[instance->stats.latest_token].tx = time_now;
}
return 0;
}
/*
* Exported interfaces
*/
int totemsrp_initialize (
hdb_handle_t poll_handle,
void **srp_context,
struct totem_config *totem_config,
totemmrp_stats_t *stats,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id))
{
struct totemsrp_instance *instance;
unsigned int res;
instance = malloc (sizeof (struct totemsrp_instance));
if (instance == NULL) {
goto error_exit;
}
rundir = getenv ("COROSYNC_RUN_DIR");
if (rundir == NULL) {
rundir = LOCALSTATEDIR "/lib/corosync";
}
res = mkdir (rundir, 0700);
if (res == -1 && errno != EEXIST) {
goto error_destroy;
}
res = chdir (rundir);
if (res == -1) {
goto error_destroy;
}
totemsrp_instance_initialize (instance);
stats->srp = &instance->stats;
instance->stats.latest_token = 0;
instance->stats.earliest_token = 0;
instance->totem_config = totem_config;
/*
* Configure logging
*/
instance->totemsrp_log_level_security = totem_config->totem_logging_configuration.log_level_security;
instance->totemsrp_log_level_error = totem_config->totem_logging_configuration.log_level_error;
instance->totemsrp_log_level_warning = totem_config->totem_logging_configuration.log_level_warning;
instance->totemsrp_log_level_notice = totem_config->totem_logging_configuration.log_level_notice;
instance->totemsrp_log_level_debug = totem_config->totem_logging_configuration.log_level_debug;
instance->totemsrp_subsys_id = totem_config->totem_logging_configuration.log_subsys_id;
instance->totemsrp_log_printf = totem_config->totem_logging_configuration.log_printf;
/*
* Initialize local variables for totemsrp
*/
totemip_copy (&instance->mcast_address, &totem_config->interfaces[0].mcast_addr);
/*
* Display totem configuration
*/
log_printf (instance->totemsrp_log_level_debug,
"Token Timeout (%d ms) retransmit timeout (%d ms)\n",
totem_config->token_timeout, totem_config->token_retransmit_timeout);
log_printf (instance->totemsrp_log_level_debug,
"token hold (%d ms) retransmits before loss (%d retrans)\n",
totem_config->token_hold_timeout, totem_config->token_retransmits_before_loss_const);
log_printf (instance->totemsrp_log_level_debug,
"join (%d ms) send_join (%d ms) consensus (%d ms) merge (%d ms)\n",
totem_config->join_timeout,
totem_config->send_join_timeout,
totem_config->consensus_timeout,
totem_config->merge_timeout);
log_printf (instance->totemsrp_log_level_debug,
"downcheck (%d ms) fail to recv const (%d msgs)\n",
totem_config->downcheck_timeout, totem_config->fail_to_recv_const);
log_printf (instance->totemsrp_log_level_debug,
"seqno unchanged const (%d rotations) Maximum network MTU %d\n", totem_config->seqno_unchanged_const, totem_config->net_mtu);
log_printf (instance->totemsrp_log_level_debug,
"window size per rotation (%d messages) maximum messages per rotation (%d messages)\n",
totem_config->window_size, totem_config->max_messages);
log_printf (instance->totemsrp_log_level_debug,
"missed count const (%d messages)\n",
totem_config->miss_count_const);
log_printf (instance->totemsrp_log_level_debug,
"send threads (%d threads)\n", totem_config->threads);
log_printf (instance->totemsrp_log_level_debug,
"RRP token expired timeout (%d ms)\n",
totem_config->rrp_token_expired_timeout);
log_printf (instance->totemsrp_log_level_debug,
"RRP token problem counter (%d ms)\n",
totem_config->rrp_problem_count_timeout);
log_printf (instance->totemsrp_log_level_debug,
"RRP threshold (%d problem count)\n",
totem_config->rrp_problem_count_threshold);
log_printf (instance->totemsrp_log_level_debug,
"RRP multicast threshold (%d problem count)\n",
totem_config->rrp_problem_count_mcast_threshold);
log_printf (instance->totemsrp_log_level_debug,
"RRP automatic recovery check timeout (%d ms)\n",
totem_config->rrp_autorecovery_check_timeout);
log_printf (instance->totemsrp_log_level_debug,
"RRP mode set to %s.\n", instance->totem_config->rrp_mode);
log_printf (instance->totemsrp_log_level_debug,
"heartbeat_failures_allowed (%d)\n", totem_config->heartbeat_failures_allowed);
log_printf (instance->totemsrp_log_level_debug,
"max_network_delay (%d ms)\n", totem_config->max_network_delay);
cs_queue_init (&instance->retrans_message_queue, RETRANS_MESSAGE_QUEUE_SIZE_MAX,
sizeof (struct message_item));
sq_init (&instance->regular_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
sq_init (&instance->recovery_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
instance->totemsrp_poll_handle = poll_handle;
instance->totemsrp_deliver_fn = deliver_fn;
instance->totemsrp_confchg_fn = confchg_fn;
instance->use_heartbeat = 1;
timer_function_pause_timeout (instance);
if ( totem_config->heartbeat_failures_allowed == 0 ) {
log_printf (instance->totemsrp_log_level_debug,
"HeartBeat is Disabled. To enable set heartbeat_failures_allowed > 0\n");
instance->use_heartbeat = 0;
}
if (instance->use_heartbeat) {
instance->heartbeat_timeout
= (totem_config->heartbeat_failures_allowed) * totem_config->token_retransmit_timeout
+ totem_config->max_network_delay;
if (instance->heartbeat_timeout >= totem_config->token_timeout) {
log_printf (instance->totemsrp_log_level_debug,
"total heartbeat_timeout (%d ms) is not less than token timeout (%d ms)\n",
instance->heartbeat_timeout,
totem_config->token_timeout);
log_printf (instance->totemsrp_log_level_debug,
"heartbeat_timeout = heartbeat_failures_allowed * token_retransmit_timeout + max_network_delay\n");
log_printf (instance->totemsrp_log_level_debug,
"heartbeat timeout should be less than the token timeout. HeartBeat is Diabled !!\n");
instance->use_heartbeat = 0;
}
else {
log_printf (instance->totemsrp_log_level_debug,
"total heartbeat_timeout (%d ms)\n", instance->heartbeat_timeout);
}
}
totemrrp_initialize (
poll_handle,
&instance->totemrrp_context,
totem_config,
stats->srp,
instance,
main_deliver_fn,
main_iface_change_fn,
main_token_seqid_get,
main_msgs_missing,
target_set_completed);
/*
* Must have net_mtu adjusted by totemrrp_initialize first
*/
cs_queue_init (&instance->new_message_queue,
MESSAGE_QUEUE_MAX,
sizeof (struct message_item));
cs_queue_init (&instance->new_message_queue_trans,
MESSAGE_QUEUE_MAX,
sizeof (struct message_item));
totemsrp_callback_token_create (instance,
&instance->token_recv_event_handle,
TOTEM_CALLBACK_TOKEN_RECEIVED,
0,
token_event_stats_collector,
instance);
totemsrp_callback_token_create (instance,
&instance->token_sent_event_handle,
TOTEM_CALLBACK_TOKEN_SENT,
0,
token_event_stats_collector,
instance);
*srp_context = instance;
return (0);
error_destroy:
free (instance);
error_exit:
return (-1);
}
void totemsrp_finalize (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
memb_leave_message_send (instance);
free (srp_context);
}
int totemsrp_ifaces_get (
void *srp_context,
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res = 0;
unsigned int found = 0;
unsigned int i;
for (i = 0; i < instance->my_memb_entries; i++) {
if (instance->my_memb_list[i].addr[0].nodeid == nodeid) {
found = 1;
break;
}
}
if (found) {
memcpy (interfaces, &instance->my_memb_list[i],
sizeof (struct srp_addr));
*iface_count = instance->totem_config->interface_count;
goto finish;
}
for (i = 0; i < instance->my_left_memb_entries; i++) {
if (instance->my_left_memb_list[i].addr[0].nodeid == nodeid) {
found = 1;
break;
}
}
if (found) {
memcpy (interfaces, &instance->my_left_memb_list[i],
sizeof (struct srp_addr));
*iface_count = instance->totem_config->interface_count;
} else {
res = -1;
}
finish:
totemrrp_ifaces_get (instance->totemrrp_context, status, NULL);
return (res);
}
int totemsrp_crypto_set (
void *srp_context,
unsigned int type)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res;
res = totemrrp_crypto_set(instance->totemrrp_context, type);
return (res);
}
unsigned int totemsrp_my_nodeid_get (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
unsigned int res;
res = instance->totem_config->interfaces[0].boundto.nodeid;
return (res);
}
int totemsrp_my_family_get (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res;
res = instance->totem_config->interfaces[0].boundto.family;
return (res);
}
int totemsrp_ring_reenable (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
totemrrp_ring_reenable (instance->totemrrp_context,
instance->totem_config->interface_count);
return (0);
}
/*
* Set operations for use by the membership algorithm
*/
static int srp_addr_equal (const struct srp_addr *a, const struct srp_addr *b)
{
unsigned int i;
unsigned int res;
for (i = 0; i < 1; i++) {
res = totemip_equal (&a->addr[i], &b->addr[i]);
if (res == 0) {
return (0);
}
}
return (1);
}
static void srp_addr_copy (struct srp_addr *dest, const struct srp_addr *src)
{
unsigned int i;
for (i = 0; i < INTERFACE_MAX; i++) {
totemip_copy (&dest->addr[i], &src->addr[i]);
}
}
static void srp_addr_to_nodeid (
unsigned int *nodeid_out,
struct srp_addr *srp_addr_in,
unsigned int entries)
{
unsigned int i;
for (i = 0; i < entries; i++) {
nodeid_out[i] = srp_addr_in[i].addr[0].nodeid;
}
}
static void srp_addr_copy_endian_convert (struct srp_addr *out, const struct srp_addr *in)
{
int i;
for (i = 0; i < INTERFACE_MAX; i++) {
totemip_copy_endian_convert (&out->addr[i], &in->addr[i]);
}
}
static void memb_consensus_reset (struct totemsrp_instance *instance)
{
instance->consensus_list_entries = 0;
}
static void memb_set_subtract (
struct srp_addr *out_list, int *out_list_entries,
struct srp_addr *one_list, int one_list_entries,
struct srp_addr *two_list, int two_list_entries)
{
int found = 0;
int i;
int j;
*out_list_entries = 0;
for (i = 0; i < one_list_entries; i++) {
for (j = 0; j < two_list_entries; j++) {
if (srp_addr_equal (&one_list[i], &two_list[j])) {
found = 1;
break;
}
}
if (found == 0) {
srp_addr_copy (&out_list[*out_list_entries], &one_list[i]);
*out_list_entries = *out_list_entries + 1;
}
found = 0;
}
}
/*
* Set consensus for a specific processor
*/
static void memb_consensus_set (
struct totemsrp_instance *instance,
const struct srp_addr *addr)
{
int found = 0;
int i;
if (addr->addr[0].nodeid == LEAVE_DUMMY_NODEID)
return;
for (i = 0; i < instance->consensus_list_entries; i++) {
if (srp_addr_equal(addr, &instance->consensus_list[i].addr)) {
found = 1;
break; /* found entry */
}
}
srp_addr_copy (&instance->consensus_list[i].addr, addr);
instance->consensus_list[i].set = 1;
if (found == 0) {
instance->consensus_list_entries++;
}
return;
}
/*
* Is consensus set for a specific processor
*/
static int memb_consensus_isset (
struct totemsrp_instance *instance,
const struct srp_addr *addr)
{
int i;
for (i = 0; i < instance->consensus_list_entries; i++) {
if (srp_addr_equal (addr, &instance->consensus_list[i].addr)) {
return (instance->consensus_list[i].set);
}
}
return (0);
}
/*
* Is consensus agreed upon based upon consensus database
*/
static int memb_consensus_agreed (
struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int agreed = 1;
int i;
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
for (i = 0; i < token_memb_entries; i++) {
if (memb_consensus_isset (instance, &token_memb[i]) == 0) {
agreed = 0;
break;
}
}
if (agreed && instance->failed_to_recv == 1) {
/*
* Both nodes agreed on our failure. We don't care how many proc list items left because we
* will create single ring anyway.
*/
return (agreed);
}
assert (token_memb_entries >= 1);
return (agreed);
}
static void memb_consensus_notset (
struct totemsrp_instance *instance,
struct srp_addr *no_consensus_list,
int *no_consensus_list_entries,
struct srp_addr *comparison_list,
int comparison_list_entries)
{
int i;
*no_consensus_list_entries = 0;
for (i = 0; i < instance->my_proc_list_entries; i++) {
if (memb_consensus_isset (instance, &instance->my_proc_list[i]) == 0) {
srp_addr_copy (&no_consensus_list[*no_consensus_list_entries], &instance->my_proc_list[i]);
*no_consensus_list_entries = *no_consensus_list_entries + 1;
}
}
}
/*
* Is set1 equal to set2 Entries can be in different orders
*/
static int memb_set_equal (
struct srp_addr *set1, int set1_entries,
struct srp_addr *set2, int set2_entries)
{
int i;
int j;
int found = 0;
if (set1_entries != set2_entries) {
return (0);
}
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (srp_addr_equal (&set1[j], &set2[i])) {
found = 1;
break;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* Is subset fully contained in fullset
*/
static int memb_set_subset (
const struct srp_addr *subset, int subset_entries,
const struct srp_addr *fullset, int fullset_entries)
{
int i;
int j;
int found = 0;
if (subset_entries > fullset_entries) {
return (0);
}
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < fullset_entries; j++) {
if (srp_addr_equal (&subset[i], &fullset[j])) {
found = 1;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* merge subset into fullset taking care not to add duplicates
*/
static void memb_set_merge (
const struct srp_addr *subset, int subset_entries,
struct srp_addr *fullset, int *fullset_entries)
{
int found = 0;
int i;
int j;
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < *fullset_entries; j++) {
if (srp_addr_equal (&fullset[j], &subset[i])) {
found = 1;
break;
}
}
if (found == 0) {
srp_addr_copy (&fullset[*fullset_entries], &subset[i]);
*fullset_entries = *fullset_entries + 1;
}
found = 0;
}
return;
}
static void memb_set_and_with_ring_id (
struct srp_addr *set1,
struct memb_ring_id *set1_ring_ids,
int set1_entries,
struct srp_addr *set2,
int set2_entries,
struct memb_ring_id *old_ring_id,
struct srp_addr *and,
int *and_entries)
{
int i;
int j;
int found = 0;
*and_entries = 0;
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (srp_addr_equal (&set1[j], &set2[i])) {
if (memcmp (&set1_ring_ids[j], old_ring_id, sizeof (struct memb_ring_id)) == 0) {
found = 1;
}
break;
}
}
if (found) {
srp_addr_copy (&and[*and_entries], &set1[j]);
*and_entries = *and_entries + 1;
}
found = 0;
}
return;
}
#ifdef CODE_COVERAGE
static void memb_set_print (
char *string,
struct srp_addr *list,
int list_entries)
{
int i;
int j;
printf ("List '%s' contains %d entries:\n", string, list_entries);
for (i = 0; i < list_entries; i++) {
for (j = 0; j < INTERFACE_MAX; j++) {
printf ("Address %d\n", i);
printf ("\tiface %d %s\n", j, totemip_print (&list[i].addr[j]));
printf ("family %d\n", list[i].addr[j].family);
}
}
}
#endif
static void reset_token_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle,
instance->timer_orf_token_retransmit_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_retransmit_timeout,
(void *)instance,
timer_function_token_retransmit_timeout,
&instance->timer_orf_token_retransmit_timeout);
}
static void start_merge_detect_timeout (struct totemsrp_instance *instance)
{
if (instance->my_merge_detect_timeout_outstanding == 0) {
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->merge_timeout,
(void *)instance,
timer_function_merge_detect_timeout,
&instance->timer_merge_detect_timeout);
instance->my_merge_detect_timeout_outstanding = 1;
}
}
static void cancel_merge_detect_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_merge_detect_timeout);
instance->my_merge_detect_timeout_outstanding = 0;
}
/*
* ring_state_* is used to save and restore the sort queue
* state when a recovery operation fails (and enters gather)
*/
static void old_ring_state_save (struct totemsrp_instance *instance)
{
if (instance->old_ring_state_saved == 0) {
instance->old_ring_state_saved = 1;
memcpy (&instance->my_old_ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
instance->old_ring_state_aru = instance->my_aru;
instance->old_ring_state_high_seq_received = instance->my_high_seq_received;
log_printf (instance->totemsrp_log_level_debug,
"Saving state aru %x high seq received %x\n",
instance->my_aru, instance->my_high_seq_received);
}
}
static void old_ring_state_restore (struct totemsrp_instance *instance)
{
instance->my_aru = instance->old_ring_state_aru;
instance->my_high_seq_received = instance->old_ring_state_high_seq_received;
log_printf (instance->totemsrp_log_level_debug,
"Restoring instance->my_aru %x my high seq received %x\n",
instance->my_aru, instance->my_high_seq_received);
}
static void old_ring_state_reset (struct totemsrp_instance *instance)
{
log_printf (instance->totemsrp_log_level_debug,
"Resetting old ring state\n");
instance->old_ring_state_saved = 0;
}
static void reset_pause_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_pause_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_timeout / 5,
(void *)instance,
timer_function_pause_timeout,
&instance->timer_pause_timeout);
}
static void reset_token_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_orf_token_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_timeout,
(void *)instance,
timer_function_orf_token_timeout,
&instance->timer_orf_token_timeout);
}
static void reset_heartbeat_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_heartbeat_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->heartbeat_timeout,
(void *)instance,
timer_function_heartbeat_timeout,
&instance->timer_heartbeat_timeout);
}
static void cancel_token_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_orf_token_timeout);
}
static void cancel_heartbeat_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_heartbeat_timeout);
}
static void cancel_token_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_orf_token_retransmit_timeout);
}
static void start_token_hold_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_hold_timeout,
(void *)instance,
timer_function_token_hold_retransmit_timeout,
&instance->timer_orf_token_hold_retransmit_timeout);
}
static void cancel_token_hold_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle,
instance->timer_orf_token_hold_retransmit_timeout);
}
static void memb_state_consensus_timeout_expired (
struct totemsrp_instance *instance)
{
struct srp_addr no_consensus_list[PROCESSOR_COUNT_MAX];
int no_consensus_list_entries;
instance->stats.consensus_timeouts++;
if (memb_consensus_agreed (instance)) {
memb_consensus_reset (instance);
memb_consensus_set (instance, &instance->my_id);
reset_token_timeout (instance); // REVIEWED
} else {
memb_consensus_notset (
instance,
no_consensus_list,
&no_consensus_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries);
memb_set_merge (no_consensus_list, no_consensus_list_entries,
instance->my_failed_list, &instance->my_failed_list_entries);
memb_state_gather_enter (instance, 0);
}
}
static void memb_join_message_send (struct totemsrp_instance *instance);
static void memb_merge_detect_transmit (struct totemsrp_instance *instance);
/*
* Timers used for various states of the membership algorithm
*/
static void timer_function_pause_timeout (void *data)
{
struct totemsrp_instance *instance = data;
instance->pause_timestamp = timerlist_nano_current_get ();
reset_pause_timeout (instance);
}
static void memb_recovery_state_token_loss (struct totemsrp_instance *instance)
{
old_ring_state_restore (instance);
memb_state_gather_enter (instance, 5);
instance->stats.recovery_token_lost++;
}
static void timer_function_orf_token_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the OPERATIONAL state.\n");
log_printf (instance->totemsrp_log_level_notice,
"A processor failed, forming new configuration.\n");
totemrrp_iface_check (instance->totemrrp_context);
memb_state_gather_enter (instance, 2);
instance->stats.operational_token_lost++;
break;
case MEMB_STATE_GATHER:
log_printf (instance->totemsrp_log_level_debug,
"The consensus timeout expired.\n");
memb_state_consensus_timeout_expired (instance);
memb_state_gather_enter (instance, 3);
instance->stats.gather_token_lost++;
break;
case MEMB_STATE_COMMIT:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the COMMIT state.\n");
memb_state_gather_enter (instance, 4);
instance->stats.commit_token_lost++;
break;
case MEMB_STATE_RECOVERY:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the RECOVERY state.\n");
memb_recovery_state_token_loss (instance);
instance->orf_token_discard = 1;
break;
}
}
static void timer_function_heartbeat_timeout (void *data)
{
struct totemsrp_instance *instance = data;
log_printf (instance->totemsrp_log_level_debug,
"HeartBeat Timer expired Invoking token loss mechanism in state %d \n", instance->memb_state);
timer_function_orf_token_timeout(data);
}
static void memb_timer_function_state_gather (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
assert (0); /* this should never happen */
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
memb_join_message_send (instance);
/*
* Restart the join timeout
`*/
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->join_timeout,
(void *)instance,
memb_timer_function_state_gather,
&instance->memb_timer_state_gather_join_timeout);
break;
}
}
static void memb_timer_function_gather_consensus_timeout (void *data)
{
struct totemsrp_instance *instance = data;
memb_state_consensus_timeout_expired (instance);
}
static void deliver_messages_from_recovery_to_regular (struct totemsrp_instance *instance)
{
unsigned int i;
struct sort_queue_item *recovery_message_item;
struct sort_queue_item regular_message_item;
unsigned int range = 0;
int res;
void *ptr;
struct mcast *mcast;
log_printf (instance->totemsrp_log_level_debug,
"recovery to regular %x-%x\n", SEQNO_START_MSG + 1, instance->my_aru);
range = instance->my_aru - SEQNO_START_MSG;
/*
* Move messages from recovery to regular sort queue
*/
// todo should i be initialized to 0 or 1 ?
for (i = 1; i <= range; i++) {
res = sq_item_get (&instance->recovery_sort_queue,
i + SEQNO_START_MSG, &ptr);
if (res != 0) {
continue;
}
recovery_message_item = ptr;
/*
* Convert recovery message into regular message
*/
mcast = recovery_message_item->mcast;
if (mcast->header.encapsulated == MESSAGE_ENCAPSULATED) {
/*
* Message is a recovery message encapsulated
* in a new ring message
*/
regular_message_item.mcast =
(struct mcast *)(((char *)recovery_message_item->mcast) + sizeof (struct mcast));
regular_message_item.msg_len =
recovery_message_item->msg_len - sizeof (struct mcast);
mcast = regular_message_item.mcast;
} else {
/*
* TODO this case shouldn't happen
*/
continue;
}
log_printf (instance->totemsrp_log_level_debug,
"comparing if ring id is for this processors old ring seqno %d\n",
mcast->seq);
/*
* Only add this message to the regular sort
* queue if it was originated with the same ring
* id as the previous ring
*/
if (memcmp (&instance->my_old_ring_id, &mcast->ring_id,
sizeof (struct memb_ring_id)) == 0) {
res = sq_item_inuse (&instance->regular_sort_queue, mcast->seq);
if (res == 0) {
sq_item_add (&instance->regular_sort_queue,
&regular_message_item, mcast->seq);
if (sq_lt_compare (instance->old_ring_state_high_seq_received, mcast->seq)) {
instance->old_ring_state_high_seq_received = mcast->seq;
}
}
} else {
log_printf (instance->totemsrp_log_level_debug,
"-not adding msg with seq no %x\n", mcast->seq);
}
}
}
/*
* Change states in the state machine of the membership algorithm
*/
static void memb_state_operational_enter (struct totemsrp_instance *instance)
{
struct srp_addr joined_list[PROCESSOR_COUNT_MAX];
int joined_list_entries = 0;
unsigned int aru_save;
unsigned int joined_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int trans_memb_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int new_memb_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int left_list[PROCESSOR_COUNT_MAX];
unsigned int i;
unsigned int res;
memb_consensus_reset (instance);
old_ring_state_reset (instance);
deliver_messages_from_recovery_to_regular (instance);
TRACE1 ("Delivering to app %x to %x\n",
instance->my_high_delivered + 1, instance->old_ring_state_high_seq_received);
aru_save = instance->my_aru;
instance->my_aru = instance->old_ring_state_aru;
messages_deliver_to_app (instance, 0, instance->old_ring_state_high_seq_received);
/*
* Calculate joined and left list
*/
memb_set_subtract (instance->my_left_memb_list,
&instance->my_left_memb_entries,
instance->my_memb_list, instance->my_memb_entries,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
memb_set_subtract (joined_list, &joined_list_entries,
instance->my_new_memb_list, instance->my_new_memb_entries,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
/*
* Install new membership
*/
instance->my_memb_entries = instance->my_new_memb_entries;
memcpy (&instance->my_memb_list, instance->my_new_memb_list,
sizeof (struct srp_addr) * instance->my_memb_entries);
instance->last_released = 0;
instance->my_set_retrans_flg = 0;
/*
* Deliver transitional configuration to application
*/
srp_addr_to_nodeid (left_list, instance->my_left_memb_list,
instance->my_left_memb_entries);
srp_addr_to_nodeid (trans_memb_list_totemip,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
instance->totemsrp_confchg_fn (TOTEM_CONFIGURATION_TRANSITIONAL,
trans_memb_list_totemip, instance->my_trans_memb_entries,
left_list, instance->my_left_memb_entries,
0, 0, &instance->my_ring_id);
instance->waiting_trans_ack = 1;
// TODO we need to filter to ensure we only deliver those
// messages which are part of instance->my_deliver_memb
messages_deliver_to_app (instance, 1, instance->old_ring_state_high_seq_received);
instance->my_aru = aru_save;
/*
* Deliver regular configuration to application
*/
srp_addr_to_nodeid (new_memb_list_totemip,
instance->my_new_memb_list, instance->my_new_memb_entries);
srp_addr_to_nodeid (joined_list_totemip, joined_list,
joined_list_entries);
instance->totemsrp_confchg_fn (TOTEM_CONFIGURATION_REGULAR,
new_memb_list_totemip, instance->my_new_memb_entries,
0, 0,
joined_list_totemip, joined_list_entries, &instance->my_ring_id);
/*
* The recovery sort queue now becomes the regular
* sort queue. It is necessary to copy the state
* into the regular sort queue.
*/
sq_copy (&instance->regular_sort_queue, &instance->recovery_sort_queue);
instance->my_last_aru = SEQNO_START_MSG;
/* When making my_proc_list smaller, ensure that the
* now non-used entries are zero-ed out. There are some suspect
* assert's that assume that there is always 2 entries in the list.
* These fail when my_proc_list is reduced to 1 entry (and the
* valid [0] entry is the same as the 'unused' [1] entry).
*/
memset(instance->my_proc_list, 0,
sizeof (struct srp_addr) * instance->my_proc_list_entries);
instance->my_proc_list_entries = instance->my_new_memb_entries;
memcpy (instance->my_proc_list, instance->my_new_memb_list,
sizeof (struct srp_addr) * instance->my_memb_entries);
instance->my_failed_list_entries = 0;
/*
* TODO Not exactly to spec
*
* At the entry to this function all messages without a gap are
* deliered.
*
* This code throw away messages from the last gap in the sort queue
* to my_high_seq_received
*
* What should really happen is we should deliver all messages up to
* a gap, then delier the transitional configuration, then deliver
* the messages between the first gap and my_high_seq_received, then
* deliver a regular configuration, then deliver the regular
* configuration
*
* Unfortunately totempg doesn't appear to like this operating mode
* which needs more inspection
*/
i = instance->my_high_seq_received + 1;
do {
void *ptr;
i -= 1;
res = sq_item_get (&instance->regular_sort_queue, i, &ptr);
if (i == 0) {
break;
}
} while (res);
instance->my_high_delivered = i;
for (i = 0; i <= instance->my_high_delivered; i++) {
void *ptr;
res = sq_item_get (&instance->regular_sort_queue, i, &ptr);
if (res == 0) {
struct sort_queue_item *regular_message;
regular_message = ptr;
free (regular_message->mcast);
}
}
sq_items_release (&instance->regular_sort_queue, instance->my_high_delivered);
instance->last_released = instance->my_high_delivered;
log_printf (instance->totemsrp_log_level_debug,
"entering OPERATIONAL state.\n");
log_printf (instance->totemsrp_log_level_notice,
"A processor joined or left the membership and a new membership was formed.\n");
instance->memb_state = MEMB_STATE_OPERATIONAL;
instance->stats.operational_entered++;
instance->stats.continuous_gather = 0;
instance->my_received_flg = 1;
reset_pause_timeout (instance);
/*
* Save ring id information from this configuration to determine
* which processors are transitioning from old regular configuration
* in to new regular configuration on the next configuration change
*/
memcpy (&instance->my_old_ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
return;
}
static void memb_state_gather_enter (
struct totemsrp_instance *instance,
int gather_from)
{
instance->orf_token_discard = 1;
memb_set_merge (
&instance->my_id, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_join_message_send (instance);
/*
* Restart the join timeout
*/
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->join_timeout,
(void *)instance,
memb_timer_function_state_gather,
&instance->memb_timer_state_gather_join_timeout);
/*
* Restart the consensus timeout
*/
poll_timer_delete (instance->totemsrp_poll_handle,
instance->memb_timer_state_gather_consensus_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->consensus_timeout,
(void *)instance,
memb_timer_function_gather_consensus_timeout,
&instance->memb_timer_state_gather_consensus_timeout);
/*
* Cancel the token loss and token retransmission timeouts
*/
cancel_token_retransmit_timeout (instance); // REVIEWED
cancel_token_timeout (instance); // REVIEWED
cancel_merge_detect_timeout (instance);
memb_consensus_reset (instance);
memb_consensus_set (instance, &instance->my_id);
log_printf (instance->totemsrp_log_level_debug,
"entering GATHER state from %d.\n", gather_from);
instance->memb_state = MEMB_STATE_GATHER;
instance->stats.gather_entered++;
if (gather_from == 3) {
/*
* State 3 means gather, so we are continuously gathering.
*/
instance->stats.continuous_gather++;
}
return;
}
static void timer_function_token_retransmit_timeout (void *data);
static void target_set_completed (
void *context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
memb_state_commit_token_send (instance);
}
static void memb_state_commit_enter (
struct totemsrp_instance *instance)
{
old_ring_state_save (instance);
memb_state_commit_token_update (instance);
memb_state_commit_token_target_set (instance);
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
instance->memb_timer_state_gather_join_timeout = 0;
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_consensus_timeout);
instance->memb_timer_state_gather_consensus_timeout = 0;
memb_ring_id_set_and_store (instance, &instance->commit_token->ring_id);
instance->token_ring_id_seq = instance->my_ring_id.seq;
log_printf (instance->totemsrp_log_level_debug,
"entering COMMIT state.\n");
instance->memb_state = MEMB_STATE_COMMIT;
reset_token_retransmit_timeout (instance); // REVIEWED
reset_token_timeout (instance); // REVIEWED
instance->stats.commit_entered++;
instance->stats.continuous_gather = 0;
/*
* reset all flow control variables since we are starting a new ring
*/
instance->my_trc = 0;
instance->my_pbl = 0;
instance->my_cbl = 0;
/*
* commit token sent after callback that token target has been set
*/
}
static void memb_state_recovery_enter (
struct totemsrp_instance *instance,
struct memb_commit_token *commit_token)
{
int i;
int local_received_flg = 1;
unsigned int low_ring_aru;
unsigned int range = 0;
unsigned int messages_originated = 0;
const struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
struct memb_ring_id my_new_memb_ring_id_list[PROCESSOR_COUNT_MAX];
addr = (const struct srp_addr *)commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + commit_token->addr_entries);
log_printf (instance->totemsrp_log_level_debug,
"entering RECOVERY state.\n");
instance->orf_token_discard = 0;
instance->my_high_ring_delivered = 0;
sq_reinit (&instance->recovery_sort_queue, SEQNO_START_MSG);
cs_queue_reinit (&instance->retrans_message_queue);
low_ring_aru = instance->old_ring_state_high_seq_received;
memb_state_commit_token_send_recovery (instance, commit_token);
instance->my_token_seq = SEQNO_START_TOKEN - 1;
/*
* Build regular configuration
*/
totemrrp_processor_count_set (
instance->totemrrp_context,
commit_token->addr_entries);
/*
* Build transitional configuration
*/
for (i = 0; i < instance->my_new_memb_entries; i++) {
memcpy (&my_new_memb_ring_id_list[i],
&memb_list[i].ring_id,
sizeof (struct memb_ring_id));
}
memb_set_and_with_ring_id (
instance->my_new_memb_list,
my_new_memb_ring_id_list,
instance->my_new_memb_entries,
instance->my_memb_list,
instance->my_memb_entries,
&instance->my_old_ring_id,
instance->my_trans_memb_list,
&instance->my_trans_memb_entries);
for (i = 0; i < instance->my_trans_memb_entries; i++) {
log_printf (instance->totemsrp_log_level_debug,
"TRANS [%d] member %s:\n", i, totemip_print (&instance->my_trans_memb_list[i].addr[0]));
}
for (i = 0; i < instance->my_new_memb_entries; i++) {
log_printf (instance->totemsrp_log_level_debug,
"position [%d] member %s:\n", i, totemip_print (&addr[i].addr[0]));
log_printf (instance->totemsrp_log_level_debug,
"previous ring seq %llx rep %s\n",
memb_list[i].ring_id.seq,
totemip_print (&memb_list[i].ring_id.rep));
log_printf (instance->totemsrp_log_level_debug,
"aru %x high delivered %x received flag %d\n",
memb_list[i].aru,
memb_list[i].high_delivered,
memb_list[i].received_flg);
// assert (totemip_print (&memb_list[i].ring_id.rep) != 0);
}
/*
* Determine if any received flag is false
*/
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&instance->my_new_memb_list[i], 1,
instance->my_trans_memb_list, instance->my_trans_memb_entries) &&
memb_list[i].received_flg == 0) {
instance->my_deliver_memb_entries = instance->my_trans_memb_entries;
memcpy (instance->my_deliver_memb_list, instance->my_trans_memb_list,
sizeof (struct srp_addr) * instance->my_trans_memb_entries);
local_received_flg = 0;
break;
}
}
if (local_received_flg == 1) {
goto no_originate;
} /* Else originate messages if we should */
/*
* Calculate my_low_ring_aru, instance->my_high_ring_delivered for the transitional membership
*/
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&instance->my_new_memb_list[i], 1,
instance->my_deliver_memb_list,
instance->my_deliver_memb_entries) &&
memcmp (&instance->my_old_ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (memb_list[i].aru, low_ring_aru)) {
low_ring_aru = memb_list[i].aru;
}
if (sq_lt_compare (instance->my_high_ring_delivered, memb_list[i].high_delivered)) {
instance->my_high_ring_delivered = memb_list[i].high_delivered;
}
}
}
/*
* Copy all old ring messages to instance->retrans_message_queue
*/
range = instance->old_ring_state_high_seq_received - low_ring_aru;
if (range == 0) {
/*
* No messages to copy
*/
goto no_originate;
}
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
log_printf (instance->totemsrp_log_level_debug,
"copying all old ring messages from %x-%x.\n",
low_ring_aru + 1, instance->old_ring_state_high_seq_received);
for (i = 1; i <= range; i++) {
struct sort_queue_item *sort_queue_item;
struct message_item message_item;
void *ptr;
int res;
res = sq_item_get (&instance->regular_sort_queue,
low_ring_aru + i, &ptr);
if (res != 0) {
continue;
}
sort_queue_item = ptr;
messages_originated++;
memset (&message_item, 0, sizeof (struct message_item));
// TODO LEAK
message_item.mcast = malloc (FRAME_SIZE_MAX);
assert (message_item.mcast);
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
srp_addr_copy (&message_item.mcast->system_from, &instance->my_id);
message_item.mcast->header.encapsulated = MESSAGE_ENCAPSULATED;
message_item.mcast->header.nodeid = instance->my_id.addr[0].nodeid;
assert (message_item.mcast->header.nodeid);
message_item.mcast->header.endian_detector = ENDIAN_LOCAL;
memcpy (&message_item.mcast->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
message_item.msg_len = sort_queue_item->msg_len + sizeof (struct mcast);
memcpy (((char *)message_item.mcast) + sizeof (struct mcast),
sort_queue_item->mcast,
sort_queue_item->msg_len);
cs_queue_item_add (&instance->retrans_message_queue, &message_item);
}
log_printf (instance->totemsrp_log_level_debug,
"Originated %d messages in RECOVERY.\n", messages_originated);
goto originated;
no_originate:
log_printf (instance->totemsrp_log_level_debug,
"Did not need to originate any messages in recovery.\n");
originated:
instance->my_aru = SEQNO_START_MSG;
instance->my_aru_count = 0;
instance->my_seq_unchanged = 0;
instance->my_high_seq_received = SEQNO_START_MSG;
instance->my_install_seq = SEQNO_START_MSG;
instance->last_released = SEQNO_START_MSG;
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
instance->memb_state = MEMB_STATE_RECOVERY;
instance->stats.recovery_entered++;
instance->stats.continuous_gather = 0;
return;
}
void totemsrp_event_signal (void *srp_context, enum totem_event_type type, int value)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
token_hold_cancel_send (instance);
return;
}
int totemsrp_mcast (
void *srp_context,
struct iovec *iovec,
unsigned int iov_len,
int guarantee)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int i;
struct message_item message_item;
char *addr;
unsigned int addr_idx;
struct cs_queue *queue_use;
if (instance->waiting_trans_ack) {
queue_use = &instance->new_message_queue_trans;
} else {
queue_use = &instance->new_message_queue;
}
if (cs_queue_is_full (queue_use)) {
log_printf (instance->totemsrp_log_level_debug, "queue full\n");
return (-1);
}
memset (&message_item, 0, sizeof (struct message_item));
/*
* Allocate pending item
*/
message_item.mcast = malloc (FRAME_SIZE_MAX);
if (message_item.mcast == 0) {
goto error_mcast;
}
/*
* Set mcast header
*/
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
message_item.mcast->header.endian_detector = ENDIAN_LOCAL;
message_item.mcast->header.encapsulated = MESSAGE_NOT_ENCAPSULATED;
message_item.mcast->header.nodeid = instance->my_id.addr[0].nodeid;
assert (message_item.mcast->header.nodeid);
message_item.mcast->guarantee = guarantee;
srp_addr_copy (&message_item.mcast->system_from, &instance->my_id);
addr = (char *)message_item.mcast;
addr_idx = sizeof (struct mcast);
for (i = 0; i < iov_len; i++) {
memcpy (&addr[addr_idx], iovec[i].iov_base, iovec[i].iov_len);
addr_idx += iovec[i].iov_len;
}
message_item.msg_len = addr_idx;
TRACE1 ("mcasted message added to pending queue\n");
instance->stats.mcast_tx++;
cs_queue_item_add (queue_use, &message_item);
return (0);
error_mcast:
return (-1);
}
/*
* Determine if there is room to queue a new message
*/
int totemsrp_avail (void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int avail;
struct cs_queue *queue_use;
if (instance->waiting_trans_ack) {
queue_use = &instance->new_message_queue_trans;
} else {
queue_use = &instance->new_message_queue;
}
cs_queue_avail (queue_use, &avail);
return (avail);
}
/*
* ORF Token Management
*/
/*
* Recast message to mcast group if it is available
*/
static int orf_token_remcast (
struct totemsrp_instance *instance,
int seq)
{
struct sort_queue_item *sort_queue_item;
int res;
void *ptr;
struct sq *sort_queue;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
res = sq_in_range (sort_queue, seq);
if (res == 0) {
log_printf (instance->totemsrp_log_level_debug, "sq not in range\n");
return (-1);
}
/*
* Get RTR item at seq, if not available, return
*/
res = sq_item_get (sort_queue, seq, &ptr);
if (res != 0) {
return -1;
}
sort_queue_item = ptr;
totemrrp_mcast_noflush_send (
instance->totemrrp_context,
sort_queue_item->mcast,
sort_queue_item->msg_len);
return (0);
}
/*
* Free all freeable messages from ring
*/
static void messages_free (
struct totemsrp_instance *instance,
unsigned int token_aru)
{
struct sort_queue_item *regular_message;
unsigned int i;
int res;
int log_release = 0;
unsigned int release_to;
unsigned int range = 0;
release_to = token_aru;
if (sq_lt_compare (instance->my_last_aru, release_to)) {
release_to = instance->my_last_aru;
}
if (sq_lt_compare (instance->my_high_delivered, release_to)) {
release_to = instance->my_high_delivered;
}
/*
* Ensure we dont try release before an already released point
*/
if (sq_lt_compare (release_to, instance->last_released)) {
return;
}
range = release_to - instance->last_released;
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
/*
* Release retransmit list items if group aru indicates they are transmitted
*/
for (i = 1; i <= range; i++) {
void *ptr;
res = sq_item_get (&instance->regular_sort_queue,
instance->last_released + i, &ptr);
if (res == 0) {
regular_message = ptr;
free (regular_message->mcast);
}
sq_items_release (&instance->regular_sort_queue,
instance->last_released + i);
log_release = 1;
}
instance->last_released += range;
if (log_release) {
TRACE1 ("releasing messages up to and including %x\n", release_to);
}
}
static void update_aru (
struct totemsrp_instance *instance)
{
unsigned int i;
int res;
struct sq *sort_queue;
unsigned int range;
unsigned int my_aru_saved = 0;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
range = instance->my_high_seq_received - instance->my_aru;
my_aru_saved = instance->my_aru;
for (i = 1; i <= range; i++) {
void *ptr;
res = sq_item_get (sort_queue, my_aru_saved + i, &ptr);
/*
* If hole, stop updating aru
*/
if (res != 0) {
break;
}
}
instance->my_aru += i - 1;
}
/*
* Multicasts pending messages onto the ring (requires orf_token possession)
*/
static int orf_token_mcast (
struct totemsrp_instance *instance,
struct orf_token *token,
int fcc_mcasts_allowed)
{
struct message_item *message_item = 0;
struct cs_queue *mcast_queue;
struct sq *sort_queue;
struct sort_queue_item sort_queue_item;
struct mcast *mcast;
unsigned int fcc_mcast_current;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
mcast_queue = &instance->retrans_message_queue;
sort_queue = &instance->recovery_sort_queue;
reset_token_retransmit_timeout (instance); // REVIEWED
} else {
if (instance->waiting_trans_ack) {
mcast_queue = &instance->new_message_queue_trans;
} else {
mcast_queue = &instance->new_message_queue;
}
sort_queue = &instance->regular_sort_queue;
}
for (fcc_mcast_current = 0; fcc_mcast_current < fcc_mcasts_allowed; fcc_mcast_current++) {
if (cs_queue_is_empty (mcast_queue)) {
break;
}
message_item = (struct message_item *)cs_queue_item_get (mcast_queue);
message_item->mcast->seq = ++token->seq;
message_item->mcast->this_seqno = instance->global_seqno++;
/*
* Build IO vector
*/
memset (&sort_queue_item, 0, sizeof (struct sort_queue_item));
sort_queue_item.mcast = message_item->mcast;
sort_queue_item.msg_len = message_item->msg_len;
mcast = sort_queue_item.mcast;
memcpy (&mcast->ring_id, &instance->my_ring_id, sizeof (struct memb_ring_id));
/*
* Add message to retransmit queue
*/
sq_item_add (sort_queue, &sort_queue_item, message_item->mcast->seq);
totemrrp_mcast_noflush_send (
instance->totemrrp_context,
message_item->mcast,
message_item->msg_len);
/*
* Delete item from pending queue
*/
cs_queue_item_remove (mcast_queue);
/*
* If messages mcasted, deliver any new messages to totempg
*/
instance->my_high_seq_received = token->seq;
}
update_aru (instance);
/*
* Return 1 if more messages are available for single node clusters
*/
return (fcc_mcast_current);
}
/*
* Remulticasts messages in orf_token's retransmit list (requires orf_token)
* Modify's orf_token's rtr to include retransmits required by this process
*/
static int orf_token_rtr (
struct totemsrp_instance *instance,
struct orf_token *orf_token,
unsigned int *fcc_allowed)
{
unsigned int res;
unsigned int i, j;
unsigned int found;
unsigned int total_entries;
struct sq *sort_queue;
struct rtr_item *rtr_list;
unsigned int range = 0;
char retransmit_msg[1024];
char value[64];
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
rtr_list = &orf_token->rtr_list[0];
strcpy (retransmit_msg, "Retransmit List: ");
if (orf_token->rtr_list_entries) {
log_printf (instance->totemsrp_log_level_debug,
"Retransmit List %d\n", orf_token->rtr_list_entries);
for (i = 0; i < orf_token->rtr_list_entries; i++) {
sprintf (value, "%x ", rtr_list[i].seq);
strcat (retransmit_msg, value);
}
strcat (retransmit_msg, "\n");
log_printf (instance->totemsrp_log_level_notice,
"%s", retransmit_msg);
}
total_entries = orf_token->rtr_list_entries;
/*
* Retransmit messages on orf_token's RTR list from RTR queue
*/
for (instance->fcc_remcast_current = 0, i = 0;
instance->fcc_remcast_current < *fcc_allowed && i < orf_token->rtr_list_entries;) {
/*
* If this retransmit request isn't from this configuration,
* try next rtr entry
*/
if (memcmp (&rtr_list[i].ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
i += 1;
continue;
}
res = orf_token_remcast (instance, rtr_list[i].seq);
if (res == 0) {
/*
* Multicasted message, so no need to copy to new retransmit list
*/
orf_token->rtr_list_entries -= 1;
assert (orf_token->rtr_list_entries >= 0);
memmove (&rtr_list[i], &rtr_list[i + 1],
sizeof (struct rtr_item) * (orf_token->rtr_list_entries - i));
instance->stats.mcast_retx++;
instance->fcc_remcast_current++;
} else {
i += 1;
}
}
*fcc_allowed = *fcc_allowed - instance->fcc_remcast_current;
/*
* Add messages to retransmit to RTR list
* but only retry if there is room in the retransmit list
*/
range = orf_token->seq - instance->my_aru;
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
for (i = 1; (orf_token->rtr_list_entries < RETRANSMIT_ENTRIES_MAX) &&
(i <= range); i++) {
/*
* Ensure message is within the sort queue range
*/
res = sq_in_range (sort_queue, instance->my_aru + i);
if (res == 0) {
break;
}
/*
* Find if a message is missing from this processor
*/
res = sq_item_inuse (sort_queue, instance->my_aru + i);
if (res == 0) {
/*
* Determine how many times we have missed receiving
* this sequence number. sq_item_miss_count increments
* a counter for the sequence number. The miss count
* will be returned and compared. This allows time for
* delayed multicast messages to be received before
* declaring the message is missing and requesting a
* retransmit.
*/
res = sq_item_miss_count (sort_queue, instance->my_aru + i);
if (res < instance->totem_config->miss_count_const) {
continue;
}
/*
* Determine if missing message is already in retransmit list
*/
found = 0;
for (j = 0; j < orf_token->rtr_list_entries; j++) {
if (instance->my_aru + i == rtr_list[j].seq) {
found = 1;
}
}
if (found == 0) {
/*
* Missing message not found in current retransmit list so add it
*/
memcpy (&rtr_list[orf_token->rtr_list_entries].ring_id,
&instance->my_ring_id, sizeof (struct memb_ring_id));
rtr_list[orf_token->rtr_list_entries].seq = instance->my_aru + i;
orf_token->rtr_list_entries++;
}
}
}
return (instance->fcc_remcast_current);
}
static void token_retransmit (struct totemsrp_instance *instance)
{
totemrrp_token_send (instance->totemrrp_context,
instance->orf_token_retransmit,
instance->orf_token_retransmit_size);
}
/*
* Retransmit the regular token if no mcast or token has
* been received in retransmit token period retransmit
* the token to the next processor
*/
static void timer_function_token_retransmit_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit (instance);
reset_token_retransmit_timeout (instance); // REVIEWED
break;
}
}
static void timer_function_token_hold_retransmit_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
break;
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit (instance);
break;
}
}
static void timer_function_merge_detect_timeout(void *data)
{
struct totemsrp_instance *instance = data;
instance->my_merge_detect_timeout_outstanding = 0;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0])) {
memb_merge_detect_transmit (instance);
}
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
case MEMB_STATE_RECOVERY:
break;
}
}
/*
* Send orf_token to next member (requires orf_token)
*/
static int token_send (
struct totemsrp_instance *instance,
struct orf_token *orf_token,
int forward_token)
{
int res = 0;
unsigned int orf_token_size;
orf_token_size = sizeof (struct orf_token) +
(orf_token->rtr_list_entries * sizeof (struct rtr_item));
orf_token->header.nodeid = instance->my_id.addr[0].nodeid;
memcpy (instance->orf_token_retransmit, orf_token, orf_token_size);
instance->orf_token_retransmit_size = orf_token_size;
assert (orf_token->header.nodeid);
if (forward_token == 0) {
return (0);
}
totemrrp_token_send (instance->totemrrp_context,
orf_token,
orf_token_size);
return (res);
}
static int token_hold_cancel_send (struct totemsrp_instance *instance)
{
struct token_hold_cancel token_hold_cancel;
/*
* Only cancel if the token is currently held
*/
if (instance->my_token_held == 0) {
return (0);
}
instance->my_token_held = 0;
/*
* Build message
*/
token_hold_cancel.header.type = MESSAGE_TYPE_TOKEN_HOLD_CANCEL;
token_hold_cancel.header.endian_detector = ENDIAN_LOCAL;
token_hold_cancel.header.encapsulated = 0;
token_hold_cancel.header.nodeid = instance->my_id.addr[0].nodeid;
memcpy (&token_hold_cancel.ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
assert (token_hold_cancel.header.nodeid);
instance->stats.token_hold_cancel_tx++;
totemrrp_mcast_flush_send (instance->totemrrp_context, &token_hold_cancel,
sizeof (struct token_hold_cancel));
return (0);
}
static int orf_token_send_initial (struct totemsrp_instance *instance)
{
struct orf_token orf_token;
int res;
orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN;
orf_token.header.endian_detector = ENDIAN_LOCAL;
orf_token.header.encapsulated = 0;
orf_token.header.nodeid = instance->my_id.addr[0].nodeid;
assert (orf_token.header.nodeid);
orf_token.seq = SEQNO_START_MSG;
orf_token.token_seq = SEQNO_START_TOKEN;
orf_token.retrans_flg = 1;
instance->my_set_retrans_flg = 1;
instance->stats.orf_token_tx++;
if (cs_queue_is_empty (&instance->retrans_message_queue) == 1) {
orf_token.retrans_flg = 0;
instance->my_set_retrans_flg = 0;
} else {
orf_token.retrans_flg = 1;
instance->my_set_retrans_flg = 1;
}
orf_token.aru = 0;
orf_token.aru = SEQNO_START_MSG - 1;
orf_token.aru_addr = instance->my_id.addr[0].nodeid;
memcpy (&orf_token.ring_id, &instance->my_ring_id, sizeof (struct memb_ring_id));
orf_token.fcc = 0;
orf_token.backlog = 0;
orf_token.rtr_list_entries = 0;
res = token_send (instance, &orf_token, 1);
return (res);
}
static void memb_state_commit_token_update (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int high_aru;
unsigned int i;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
memcpy (instance->my_new_memb_list, addr,
sizeof (struct srp_addr) * instance->commit_token->addr_entries);
instance->my_new_memb_entries = instance->commit_token->addr_entries;
memcpy (&memb_list[instance->commit_token->memb_index].ring_id,
&instance->my_old_ring_id, sizeof (struct memb_ring_id));
memb_list[instance->commit_token->memb_index].aru = instance->old_ring_state_aru;
/*
* TODO high delivered is really instance->my_aru, but with safe this
* could change?
*/
instance->my_received_flg =
(instance->my_aru == instance->my_high_seq_received);
memb_list[instance->commit_token->memb_index].received_flg = instance->my_received_flg;
memb_list[instance->commit_token->memb_index].high_delivered = instance->my_high_delivered;
/*
* find high aru up to current memb_index for all matching ring ids
* if any ring id matching memb_index has aru less then high aru set
* received flag for that entry to false
*/
high_aru = memb_list[instance->commit_token->memb_index].aru;
for (i = 0; i <= instance->commit_token->memb_index; i++) {
if (memcmp (&memb_list[instance->commit_token->memb_index].ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (high_aru, memb_list[i].aru)) {
high_aru = memb_list[i].aru;
}
}
}
for (i = 0; i <= instance->commit_token->memb_index; i++) {
if (memcmp (&memb_list[instance->commit_token->memb_index].ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (memb_list[i].aru, high_aru)) {
memb_list[i].received_flg = 0;
if (i == instance->commit_token->memb_index) {
instance->my_received_flg = 0;
}
}
}
}
instance->commit_token->header.nodeid = instance->my_id.addr[0].nodeid;
instance->commit_token->memb_index += 1;
assert (instance->commit_token->memb_index <= instance->commit_token->addr_entries);
assert (instance->commit_token->header.nodeid);
}
static void memb_state_commit_token_target_set (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
unsigned int i;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
for (i = 0; i < instance->totem_config->interface_count; i++) {
totemrrp_token_target_set (
instance->totemrrp_context,
&addr[instance->commit_token->memb_index %
instance->commit_token->addr_entries].addr[i],
i);
}
}
static int memb_state_commit_token_send_recovery (
struct totemsrp_instance *instance,
struct memb_commit_token *commit_token)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int commit_token_size;
addr = (struct srp_addr *)commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + commit_token->addr_entries);
commit_token->token_seq++;
commit_token->header.nodeid = instance->my_id.addr[0].nodeid;
commit_token_size = sizeof (struct memb_commit_token) +
((sizeof (struct srp_addr) +
sizeof (struct memb_commit_token_memb_entry)) * commit_token->addr_entries);
/*
* Make a copy for retransmission if necessary
*/
memcpy (instance->orf_token_retransmit, commit_token, commit_token_size);
instance->orf_token_retransmit_size = commit_token_size;
instance->stats.memb_commit_token_tx++;
totemrrp_token_send (instance->totemrrp_context,
commit_token,
commit_token_size);
/*
* Request retransmission of the commit token in case it is lost
*/
reset_token_retransmit_timeout (instance);
return (0);
}
static int memb_state_commit_token_send (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int commit_token_size;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
instance->commit_token->token_seq++;
instance->commit_token->header.nodeid = instance->my_id.addr[0].nodeid;
commit_token_size = sizeof (struct memb_commit_token) +
((sizeof (struct srp_addr) +
sizeof (struct memb_commit_token_memb_entry)) * instance->commit_token->addr_entries);
/*
* Make a copy for retransmission if necessary
*/
memcpy (instance->orf_token_retransmit, instance->commit_token, commit_token_size);
instance->orf_token_retransmit_size = commit_token_size;
instance->stats.memb_commit_token_tx++;
totemrrp_token_send (instance->totemrrp_context,
instance->commit_token,
commit_token_size);
/*
* Request retransmission of the commit token in case it is lost
*/
reset_token_retransmit_timeout (instance);
return (0);
}
static int memb_lowest_in_config (struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int i;
struct totem_ip_address *lowest_addr;
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
/*
* find representative by searching for smallest identifier
*/
lowest_addr = &token_memb[0].addr[0];
for (i = 1; i < token_memb_entries; i++) {
if (totemip_compare(lowest_addr, &token_memb[i].addr[0]) > 0) {
totemip_copy (lowest_addr, &token_memb[i].addr[0]);
}
}
return (totemip_compare (lowest_addr, &instance->my_id.addr[0]) == 0);
}
static int srp_addr_compare (const void *a, const void *b)
{
const struct srp_addr *srp_a = (const struct srp_addr *)a;
const struct srp_addr *srp_b = (const struct srp_addr *)b;
return (totemip_compare (&srp_a->addr[0], &srp_b->addr[0]));
}
static void memb_state_commit_token_create (
struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
int token_memb_entries = 0;
log_printf (instance->totemsrp_log_level_debug,
"Creating commit token because I am the rep.\n");
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
memset (instance->commit_token, 0, sizeof (struct memb_commit_token));
instance->commit_token->header.type = MESSAGE_TYPE_MEMB_COMMIT_TOKEN;
instance->commit_token->header.endian_detector = ENDIAN_LOCAL;
instance->commit_token->header.encapsulated = 0;
instance->commit_token->header.nodeid = instance->my_id.addr[0].nodeid;
assert (instance->commit_token->header.nodeid);
totemip_copy(&instance->commit_token->ring_id.rep, &instance->my_id.addr[0]);
instance->commit_token->ring_id.seq = instance->token_ring_id_seq + 4;
/*
* This qsort is necessary to ensure the commit token traverses
* the ring in the proper order
*/
qsort (token_memb, token_memb_entries, sizeof (struct srp_addr),
srp_addr_compare);
instance->commit_token->memb_index = 0;
instance->commit_token->addr_entries = token_memb_entries;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
memcpy (addr, token_memb,
token_memb_entries * sizeof (struct srp_addr));
memset (memb_list, 0,
sizeof (struct memb_commit_token_memb_entry) * token_memb_entries);
}
static void memb_join_message_send (struct totemsrp_instance *instance)
{
char memb_join_data[40000];
struct memb_join *memb_join = (struct memb_join *)memb_join_data;
char *addr;
unsigned int addr_idx;
memb_join->header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join->header.endian_detector = ENDIAN_LOCAL;
memb_join->header.encapsulated = 0;
memb_join->header.nodeid = instance->my_id.addr[0].nodeid;
assert (memb_join->header.nodeid);
memb_join->ring_seq = instance->my_ring_id.seq;
memb_join->proc_list_entries = instance->my_proc_list_entries;
memb_join->failed_list_entries = instance->my_failed_list_entries;
srp_addr_copy (&memb_join->system_from, &instance->my_id);
/*
* This mess adds the joined and failed processor lists into the join
* message
*/
addr = (char *)memb_join;
addr_idx = sizeof (struct memb_join);
memcpy (&addr[addr_idx],
instance->my_proc_list,
instance->my_proc_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_proc_list_entries *
sizeof (struct srp_addr);
memcpy (&addr[addr_idx],
instance->my_failed_list,
instance->my_failed_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_failed_list_entries *
sizeof (struct srp_addr);
if (instance->totem_config->send_join_timeout) {
usleep (random() % (instance->totem_config->send_join_timeout * 1000));
}
instance->stats.memb_join_tx++;
totemrrp_mcast_flush_send (
instance->totemrrp_context,
memb_join,
addr_idx);
}
static void memb_leave_message_send (struct totemsrp_instance *instance)
{
char memb_join_data[40000];
struct memb_join *memb_join = (struct memb_join *)memb_join_data;
char *addr;
unsigned int addr_idx;
int active_memb_entries;
struct srp_addr active_memb[PROCESSOR_COUNT_MAX];
log_printf (instance->totemsrp_log_level_debug,
"sending join/leave message\n");
/*
* add us to the failed list, and remove us from
* the members list
*/
memb_set_merge(
&instance->my_id, 1,
instance->my_failed_list, &instance->my_failed_list_entries);
memb_set_subtract (active_memb, &active_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
&instance->my_id, 1);
memb_join->header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join->header.endian_detector = ENDIAN_LOCAL;
memb_join->header.encapsulated = 0;
memb_join->header.nodeid = LEAVE_DUMMY_NODEID;
memb_join->ring_seq = instance->my_ring_id.seq;
memb_join->proc_list_entries = active_memb_entries;
memb_join->failed_list_entries = instance->my_failed_list_entries;
srp_addr_copy (&memb_join->system_from, &instance->my_id);
memb_join->system_from.addr[0].nodeid = LEAVE_DUMMY_NODEID;
// TODO: CC Maybe use the actual join send routine.
/*
* This mess adds the joined and failed processor lists into the join
* message
*/
addr = (char *)memb_join;
addr_idx = sizeof (struct memb_join);
memcpy (&addr[addr_idx],
active_memb,
active_memb_entries *
sizeof (struct srp_addr));
addr_idx +=
active_memb_entries *
sizeof (struct srp_addr);
memcpy (&addr[addr_idx],
instance->my_failed_list,
instance->my_failed_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_failed_list_entries *
sizeof (struct srp_addr);
if (instance->totem_config->send_join_timeout) {
usleep (random() % (instance->totem_config->send_join_timeout * 1000));
}
instance->stats.memb_join_tx++;
totemrrp_mcast_flush_send (
instance->totemrrp_context,
memb_join,
addr_idx);
}
static void memb_merge_detect_transmit (struct totemsrp_instance *instance)
{
struct memb_merge_detect memb_merge_detect;
memb_merge_detect.header.type = MESSAGE_TYPE_MEMB_MERGE_DETECT;
memb_merge_detect.header.endian_detector = ENDIAN_LOCAL;
memb_merge_detect.header.encapsulated = 0;
memb_merge_detect.header.nodeid = instance->my_id.addr[0].nodeid;
srp_addr_copy (&memb_merge_detect.system_from, &instance->my_id);
memcpy (&memb_merge_detect.ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
assert (memb_merge_detect.header.nodeid);
instance->stats.memb_merge_detect_tx++;
totemrrp_mcast_flush_send (instance->totemrrp_context,
&memb_merge_detect,
sizeof (struct memb_merge_detect));
}
static void memb_ring_id_create_or_load (
struct totemsrp_instance *instance,
struct memb_ring_id *memb_ring_id)
{
int fd;
int res = 0;
char filename[PATH_MAX];
snprintf (filename, sizeof(filename), "%s/ringid_%s",
rundir, totemip_print (&instance->my_id.addr[0]));
fd = open (filename, O_RDONLY, 0700);
/*
* If file can be opened and read, read the ring id
*/
if (fd != -1) {
res = read (fd, &memb_ring_id->seq, sizeof (uint64_t));
close (fd);
}
/*
* If file could not be opened or read, create a new ring id
*/
if ((fd == -1) || (res != sizeof (uint64_t))) {
memb_ring_id->seq = 0;
umask(0);
fd = open (filename, O_CREAT|O_RDWR, 0700);
if (fd != -1) {
res = write (fd, &memb_ring_id->seq, sizeof (uint64_t));
close (fd);
if (res == -1) {
LOGSYS_PERROR (errno, instance->totemsrp_log_level_warning,
"Couldn't write ringid file '%s'", filename);
}
} else {
LOGSYS_PERROR (errno, instance->totemsrp_log_level_warning,
"Couldn't create ringid file '%s'", filename);
}
}
totemip_copy(&memb_ring_id->rep, &instance->my_id.addr[0]);
assert (!totemip_zero_check(&memb_ring_id->rep));
instance->token_ring_id_seq = memb_ring_id->seq;
}
static void memb_ring_id_set_and_store (
struct totemsrp_instance *instance,
const struct memb_ring_id *ring_id)
{
char filename[256];
int fd;
int res;
memcpy (&instance->my_ring_id, ring_id, sizeof (struct memb_ring_id));
snprintf (filename, sizeof(filename), "%s/ringid_%s",
rundir, totemip_print (&instance->my_id.addr[0]));
fd = open (filename, O_WRONLY, 0777);
if (fd == -1) {
fd = open (filename, O_CREAT|O_RDWR, 0777);
}
if (fd == -1) {
LOGSYS_PERROR(errno, instance->totemsrp_log_level_warning,
"Couldn't store new ring id %llx to stable storage",
instance->my_ring_id.seq);
assert (0);
return;
}
log_printf (instance->totemsrp_log_level_debug,
"Storing new sequence id for ring %llx\n", instance->my_ring_id.seq);
//assert (fd > 0);
res = write (fd, &instance->my_ring_id.seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
}
int totemsrp_callback_token_create (
void *srp_context,
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
struct token_callback_instance *callback_handle;
token_hold_cancel_send (instance);
callback_handle = malloc (sizeof (struct token_callback_instance));
if (callback_handle == 0) {
return (-1);
}
*handle_out = (void *)callback_handle;
list_init (&callback_handle->list);
callback_handle->callback_fn = callback_fn;
callback_handle->data = (void *) data;
callback_handle->callback_type = type;
callback_handle->delete = delete;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
list_add (&callback_handle->list, &instance->token_callback_received_listhead);
break;
case TOTEM_CALLBACK_TOKEN_SENT:
list_add (&callback_handle->list, &instance->token_callback_sent_listhead);
break;
}
return (0);
}
void totemsrp_callback_token_destroy (void *srp_context, void **handle_out)
{
struct token_callback_instance *h;
if (*handle_out) {
h = (struct token_callback_instance *)*handle_out;
list_del (&h->list);
free (h);
h = NULL;
*handle_out = 0;
}
}
static void token_callbacks_execute (
struct totemsrp_instance *instance,
enum totem_callback_token_type type)
{
struct list_head *list;
struct list_head *list_next;
struct list_head *callback_listhead = 0;
struct token_callback_instance *token_callback_instance;
int res;
int del;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
callback_listhead = &instance->token_callback_received_listhead;
break;
case TOTEM_CALLBACK_TOKEN_SENT:
callback_listhead = &instance->token_callback_sent_listhead;
break;
default:
assert (0);
}
for (list = callback_listhead->next; list != callback_listhead;
list = list_next) {
token_callback_instance = list_entry (list, struct token_callback_instance, list);
list_next = list->next;
del = token_callback_instance->delete;
if (del == 1) {
list_del (list);
}
res = token_callback_instance->callback_fn (
token_callback_instance->callback_type,
token_callback_instance->data);
/*
* This callback failed to execute, try it again on the next token
*/
if (res == -1 && del == 1) {
list_add (list, callback_listhead);
} else if (del) {
free (token_callback_instance);
}
}
}
/*
* Flow control functions
*/
static unsigned int backlog_get (struct totemsrp_instance *instance)
{
unsigned int backlog = 0;
struct cs_queue *queue_use = NULL;
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
backlog = cs_queue_used (&instance->new_message_queue);
if (instance->waiting_trans_ack) {
queue_use = &instance->new_message_queue_trans;
} else {
queue_use = &instance->new_message_queue;
}
} else
if (instance->memb_state == MEMB_STATE_RECOVERY) {
backlog = cs_queue_used (&instance->retrans_message_queue);
queue_use = &instance->retrans_message_queue;
}
backlog = cs_queue_used (queue_use);
instance->stats.token[instance->stats.latest_token].backlog_calc = backlog;
return (backlog);
}
static int fcc_calculate (
struct totemsrp_instance *instance,
struct orf_token *token)
{
unsigned int transmits_allowed;
unsigned int backlog_calc;
transmits_allowed = instance->totem_config->max_messages;
if (transmits_allowed > instance->totem_config->window_size - token->fcc) {
transmits_allowed = instance->totem_config->window_size - token->fcc;
}
instance->my_cbl = backlog_get (instance);
/*
* Only do backlog calculation if there is a backlog otherwise
* we would result in div by zero
*/
if (token->backlog + instance->my_cbl - instance->my_pbl) {
backlog_calc = (instance->totem_config->window_size * instance->my_pbl) /
(token->backlog + instance->my_cbl - instance->my_pbl);
if (backlog_calc > 0 && transmits_allowed > backlog_calc) {
transmits_allowed = backlog_calc;
}
}
return (transmits_allowed);
}
/*
* don't overflow the RTR sort queue
*/
static void fcc_rtr_limit (
struct totemsrp_instance *instance,
struct orf_token *token,
unsigned int *transmits_allowed)
{
int check = QUEUE_RTR_ITEMS_SIZE_MAX;
check -= (*transmits_allowed + instance->totem_config->window_size);
assert (check >= 0);
if (sq_lt_compare (instance->last_released +
QUEUE_RTR_ITEMS_SIZE_MAX - *transmits_allowed -
instance->totem_config->window_size,
token->seq)) {
*transmits_allowed = 0;
}
}
static void fcc_token_update (
struct totemsrp_instance *instance,
struct orf_token *token,
unsigned int msgs_transmitted)
{
token->fcc += msgs_transmitted - instance->my_trc;
token->backlog += instance->my_cbl - instance->my_pbl;
instance->my_trc = msgs_transmitted;
instance->my_pbl = instance->my_cbl;
}
/*
* Message Handlers
*/
unsigned long long int tv_old;
/*
* message handler called when TOKEN message type received
*/
static int message_handler_orf_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
char token_storage[1500];
char token_convert[1500];
struct orf_token *token = NULL;
int forward_token;
unsigned int transmits_allowed;
unsigned int mcasted_retransmit;
unsigned int mcasted_regular;
unsigned int last_aru;
#ifdef GIVEINFO
unsigned long long tv_current;
unsigned long long tv_diff;
tv_current = timerlist_nano_current_get ();
tv_diff = tv_current - tv_old;
tv_old = tv_current;
log_printf (instance->totemsrp_log_level_debug,
"Time since last token %0.4f ms\n", ((float)tv_diff) / 1000000.0);
#endif
if (instance->orf_token_discard) {
return (0);
}
#ifdef TEST_DROP_ORF_TOKEN_PERCENTAGE
if (random()%100 < TEST_DROP_ORF_TOKEN_PERCENTAGE) {
return (0);
}
#endif
if (endian_conversion_needed) {
orf_token_endian_convert ((struct orf_token *)msg,
(struct orf_token *)token_convert);
msg = (struct orf_token *)token_convert;
}
/*
* Make copy of token and retransmit list in case we have
* to flush incoming messages from the kernel queue
*/
token = (struct orf_token *)token_storage;
memcpy (token, msg, sizeof (struct orf_token));
memcpy (&token->rtr_list[0], (char *)msg + sizeof (struct orf_token),
sizeof (struct rtr_item) * RETRANSMIT_ENTRIES_MAX);
/*
* Handle merge detection timeout
*/
if (token->seq == instance->my_last_seq) {
start_merge_detect_timeout (instance);
instance->my_seq_unchanged += 1;
} else {
cancel_merge_detect_timeout (instance);
cancel_token_hold_retransmit_timeout (instance);
instance->my_seq_unchanged = 0;
}
instance->my_last_seq = token->seq;
#ifdef TEST_RECOVERY_MSG_COUNT
if (instance->memb_state == MEMB_STATE_OPERATIONAL && token->seq > TEST_RECOVERY_MSG_COUNT) {
return (0);
}
#endif
totemrrp_recv_flush (instance->totemrrp_context);
/*
* Determine if we should hold (in reality drop) the token
*/
instance->my_token_held = 0;
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0]) &&
instance->my_seq_unchanged > instance->totem_config->seqno_unchanged_const) {
instance->my_token_held = 1;
} else
if (!totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0]) &&
instance->my_seq_unchanged >= instance->totem_config->seqno_unchanged_const) {
instance->my_token_held = 1;
}
/*
* Hold onto token when there is no activity on ring and
* this processor is the ring rep
*/
forward_token = 1;
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0])) {
if (instance->my_token_held) {
forward_token = 0;
}
}
token_callbacks_execute (instance, TOTEM_CALLBACK_TOKEN_RECEIVED);
switch (instance->memb_state) {
case MEMB_STATE_COMMIT:
/* Discard token */
break;
case MEMB_STATE_OPERATIONAL:
messages_free (instance, token->aru);
/*
* Do NOT add break, this case should also execute code in gather case.
*/
case MEMB_STATE_GATHER:
/*
* DO NOT add break, we use different free mechanism in recovery state
*/
case MEMB_STATE_RECOVERY:
/*
* Discard tokens from another configuration
*/
if (memcmp (&token->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0); /* discard token */
}
/*
* Discard retransmitted tokens
*/
if (sq_lte_compare (token->token_seq, instance->my_token_seq)) {
return (0); /* discard token */
}
last_aru = instance->my_last_aru;
instance->my_last_aru = token->aru;
transmits_allowed = fcc_calculate (instance, token);
mcasted_retransmit = orf_token_rtr (instance, token, &transmits_allowed);
fcc_rtr_limit (instance, token, &transmits_allowed);
mcasted_regular = orf_token_mcast (instance, token, transmits_allowed);
/*
if (mcasted_regular) {
printf ("mcasted regular %d\n", mcasted_regular);
printf ("token seq %d\n", token->seq);
}
*/
fcc_token_update (instance, token, mcasted_retransmit +
mcasted_regular);
if (sq_lt_compare (instance->my_aru, token->aru) ||
instance->my_id.addr[0].nodeid == token->aru_addr ||
token->aru_addr == 0) {
token->aru = instance->my_aru;
if (token->aru == token->seq) {
token->aru_addr = 0;
} else {
token->aru_addr = instance->my_id.addr[0].nodeid;
}
}
if (token->aru == last_aru && token->aru_addr != 0) {
instance->my_aru_count += 1;
} else {
instance->my_aru_count = 0;
}
/*
* We really don't follow specification there. In specification, OTHER nodes
* detect failure of one node (based on aru_count) and my_id IS NEVER added
* to failed list (so node never mark itself as failed)
*/
if (instance->my_aru_count > instance->totem_config->fail_to_recv_const &&
token->aru_addr == instance->my_id.addr[0].nodeid) {
log_printf (instance->totemsrp_log_level_error,
"FAILED TO RECEIVE\n");
instance->failed_to_recv = 1;
memb_set_merge (&instance->my_id, 1,
instance->my_failed_list,
&instance->my_failed_list_entries);
memb_state_gather_enter (instance, 6);
} else {
instance->my_token_seq = token->token_seq;
token->token_seq += 1;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
/*
* instance->my_aru == instance->my_high_seq_received means this processor
* has recovered all messages it can recover
* (ie: its retrans queue is empty)
*/
if (cs_queue_is_empty (&instance->retrans_message_queue) == 0) {
if (token->retrans_flg == 0) {
token->retrans_flg = 1;
instance->my_set_retrans_flg = 1;
}
} else
if (token->retrans_flg == 1 && instance->my_set_retrans_flg) {
token->retrans_flg = 0;
instance->my_set_retrans_flg = 0;
}
log_printf (instance->totemsrp_log_level_debug,
"token retrans flag is %d my set retrans flag%d retrans queue empty %d count %d, aru %x\n",
token->retrans_flg, instance->my_set_retrans_flg,
cs_queue_is_empty (&instance->retrans_message_queue),
instance->my_retrans_flg_count, token->aru);
if (token->retrans_flg == 0) {
instance->my_retrans_flg_count += 1;
} else {
instance->my_retrans_flg_count = 0;
}
if (instance->my_retrans_flg_count == 2) {
instance->my_install_seq = token->seq;
}
log_printf (instance->totemsrp_log_level_debug,
"install seq %x aru %x high seq received %x\n",
instance->my_install_seq, instance->my_aru, instance->my_high_seq_received);
if (instance->my_retrans_flg_count >= 2 &&
instance->my_received_flg == 0 &&
sq_lte_compare (instance->my_install_seq, instance->my_aru)) {
instance->my_received_flg = 1;
instance->my_deliver_memb_entries = instance->my_trans_memb_entries;
memcpy (instance->my_deliver_memb_list, instance->my_trans_memb_list,
sizeof (struct totem_ip_address) * instance->my_trans_memb_entries);
}
if (instance->my_retrans_flg_count >= 3 &&
sq_lte_compare (instance->my_install_seq, token->aru)) {
instance->my_rotation_counter += 1;
} else {
instance->my_rotation_counter = 0;
}
if (instance->my_rotation_counter == 2) {
log_printf (instance->totemsrp_log_level_debug,
"retrans flag count %x token aru %x install seq %x aru %x %x\n",
instance->my_retrans_flg_count, token->aru, instance->my_install_seq,
instance->my_aru, token->seq);
memb_state_operational_enter (instance);
instance->my_rotation_counter = 0;
instance->my_retrans_flg_count = 0;
}
}
totemrrp_send_flush (instance->totemrrp_context);
token_send (instance, token, forward_token);
#ifdef GIVEINFO
tv_current = timerlist_nano_current_get ();
tv_diff = tv_current - tv_old;
tv_old = tv_current;
log_printf (instance->totemsrp_log_level_debug,
"I held %0.4f ms\n",
((float)tv_diff) / 1000000.0);
#endif
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (instance, 0,
instance->my_high_seq_received);
}
/*
* Deliver messages after token has been transmitted
* to improve performance
*/
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
if (totemip_equal(&instance->my_id.addr[0], &instance->my_ring_id.rep) &&
instance->my_token_held == 1) {
start_token_hold_retransmit_timeout (instance);
}
token_callbacks_execute (instance, TOTEM_CALLBACK_TOKEN_SENT);
}
break;
}
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0);
}
static void messages_deliver_to_app (
struct totemsrp_instance *instance,
int skip,
unsigned int end_point)
{
struct sort_queue_item *sort_queue_item_p;
unsigned int i;
int res;
struct mcast *mcast_in;
struct mcast mcast_header;
unsigned int range = 0;
int endian_conversion_required;
unsigned int my_high_delivered_stored = 0;
range = end_point - instance->my_high_delivered;
if (range) {
TRACE1 ("Delivering %x to %x\n", instance->my_high_delivered,
end_point);
}
assert (range < QUEUE_RTR_ITEMS_SIZE_MAX);
my_high_delivered_stored = instance->my_high_delivered;
/*
* Deliver messages in order from rtr queue to pending delivery queue
*/
for (i = 1; i <= range; i++) {
void *ptr = 0;
/*
* If out of range of sort queue, stop assembly
*/
res = sq_in_range (&instance->regular_sort_queue,
my_high_delivered_stored + i);
if (res == 0) {
break;
}
res = sq_item_get (&instance->regular_sort_queue,
my_high_delivered_stored + i, &ptr);
/*
* If hole, stop assembly
*/
if (res != 0 && skip == 0) {
break;
}
instance->my_high_delivered = my_high_delivered_stored + i;
if (res != 0) {
continue;
}
sort_queue_item_p = ptr;
mcast_in = sort_queue_item_p->mcast;
assert (mcast_in != (struct mcast *)0xdeadbeef);
endian_conversion_required = 0;
if (mcast_in->header.endian_detector != ENDIAN_LOCAL) {
endian_conversion_required = 1;
mcast_endian_convert (mcast_in, &mcast_header);
} else {
memcpy (&mcast_header, mcast_in, sizeof (struct mcast));
}
/*
* Skip messages not originated in instance->my_deliver_memb
*/
if (skip &&
memb_set_subset (&mcast_header.system_from,
1,
instance->my_deliver_memb_list,
instance->my_deliver_memb_entries) == 0) {
instance->my_high_delivered = my_high_delivered_stored + i;
continue;
}
/*
* Message found
*/
TRACE1 ("Delivering MCAST message with seq %x to pending delivery queue\n",
mcast_header.seq);
/*
* Message is locally originated multicast
*/
instance->totemsrp_deliver_fn (
mcast_header.header.nodeid,
((char *)sort_queue_item_p->mcast) + sizeof (struct mcast),
sort_queue_item_p->msg_len - sizeof (struct mcast),
endian_conversion_required);
}
}
/*
* recv message handler called when MCAST message type received
*/
static int message_handler_mcast (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct sort_queue_item sort_queue_item;
struct sq *sort_queue;
struct mcast mcast_header;
if (endian_conversion_needed) {
mcast_endian_convert (msg, &mcast_header);
} else {
memcpy (&mcast_header, msg, sizeof (struct mcast));
}
if (mcast_header.header.encapsulated == MESSAGE_ENCAPSULATED) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
assert (msg_len <= FRAME_SIZE_MAX);
#ifdef TEST_DROP_MCAST_PERCENTAGE
if (random()%100 < TEST_DROP_MCAST_PERCENTAGE) {
return (0);
}
#endif
/*
* If the message is foreign execute the switch below
*/
if (memcmp (&instance->my_ring_id, &mcast_header.ring_id,
sizeof (struct memb_ring_id)) != 0) {
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (
&mcast_header.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 7);
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (
&mcast_header.system_from,
1,
instance->my_proc_list,
instance->my_proc_list_entries)) {
memb_set_merge (&mcast_header.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 8);
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* discard message */
instance->stats.rx_msg_dropped++;
break;
case MEMB_STATE_RECOVERY:
/* discard message */
instance->stats.rx_msg_dropped++;
break;
}
return (0);
}
TRACE1 ("Received ringid(%s:%lld) seq %x\n",
totemip_print (&mcast_header.ring_id.rep),
mcast_header.ring_id.seq,
mcast_header.seq);
/*
* Add mcast message to rtr queue if not already in rtr queue
* otherwise free io vectors
*/
if (msg_len > 0 && msg_len <= FRAME_SIZE_MAX &&
sq_in_range (sort_queue, mcast_header.seq) &&
sq_item_inuse (sort_queue, mcast_header.seq) == 0) {
/*
* Allocate new multicast memory block
*/
// TODO LEAK
sort_queue_item.mcast = malloc (msg_len);
if (sort_queue_item.mcast == NULL) {
return (-1); /* error here is corrected by the algorithm */
}
memcpy (sort_queue_item.mcast, msg, msg_len);
sort_queue_item.msg_len = msg_len;
if (sq_lt_compare (instance->my_high_seq_received,
mcast_header.seq)) {
instance->my_high_seq_received = mcast_header.seq;
}
sq_item_add (sort_queue, &sort_queue_item, mcast_header.seq);
}
update_aru (instance);
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (instance, 0, instance->my_high_seq_received);
}
/* TODO remove from retrans message queue for old ring in recovery state */
return (0);
}
static int message_handler_memb_merge_detect (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct memb_merge_detect memb_merge_detect;
if (endian_conversion_needed) {
memb_merge_detect_endian_convert (msg, &memb_merge_detect);
} else {
memcpy (&memb_merge_detect, msg,
sizeof (struct memb_merge_detect));
}
/*
* do nothing if this is a merge detect from this configuration
*/
if (memcmp (&instance->my_ring_id, &memb_merge_detect.ring_id,
sizeof (struct memb_ring_id)) == 0) {
return (0);
}
/*
* Execute merge operation
*/
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (&memb_merge_detect.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 9);
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (
&memb_merge_detect.system_from,
1,
instance->my_proc_list,
instance->my_proc_list_entries)) {
memb_set_merge (&memb_merge_detect.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 10);
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* do nothing in commit */
break;
case MEMB_STATE_RECOVERY:
/* do nothing in recovery */
break;
}
return (0);
}
static void memb_join_process (
struct totemsrp_instance *instance,
const struct memb_join *memb_join)
{
struct srp_addr *proc_list;
struct srp_addr *failed_list;
int gather_entered = 0;
int fail_minus_memb_entries = 0;
struct srp_addr fail_minus_memb[PROCESSOR_COUNT_MAX];
proc_list = (struct srp_addr *)memb_join->end_of_memb_join;
failed_list = proc_list + memb_join->proc_list_entries;
/*
memb_set_print ("proclist", proc_list, memb_join->proc_list_entries);
memb_set_print ("faillist", failed_list, memb_join->failed_list_entries);
memb_set_print ("my_proclist", instance->my_proc_list, instance->my_proc_list_entries);
memb_set_print ("my_faillist", instance->my_failed_list, instance->my_failed_list_entries);
-*/
if (memb_set_equal (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries) &&
memb_set_equal (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list,
instance->my_failed_list_entries)) {
memb_consensus_set (instance, &memb_join->system_from);
if (memb_consensus_agreed (instance) && instance->failed_to_recv == 1) {
instance->failed_to_recv = 0;
srp_addr_copy (&instance->my_proc_list[0],
&instance->my_id);
instance->my_proc_list_entries = 1;
instance->my_failed_list_entries = 0;
memb_state_commit_token_create (instance);
memb_state_commit_enter (instance);
return;
}
if (memb_consensus_agreed (instance) &&
memb_lowest_in_config (instance)) {
memb_state_commit_token_create (instance);
memb_state_commit_enter (instance);
} else {
goto out;
}
} else
if (memb_set_subset (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries) &&
memb_set_subset (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list,
instance->my_failed_list_entries)) {
goto out;
} else
if (memb_set_subset (&memb_join->system_from, 1,
instance->my_failed_list, instance->my_failed_list_entries)) {
goto out;
} else {
memb_set_merge (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list, &instance->my_proc_list_entries);
if (memb_set_subset (
&instance->my_id, 1,
failed_list, memb_join->failed_list_entries)) {
memb_set_merge (
&memb_join->system_from, 1,
instance->my_failed_list, &instance->my_failed_list_entries);
} else {
if (memb_set_subset (
&memb_join->system_from, 1,
instance->my_memb_list,
instance->my_memb_entries)) {
if (memb_set_subset (
&memb_join->system_from, 1,
instance->my_failed_list,
instance->my_failed_list_entries) == 0) {
memb_set_merge (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list, &instance->my_failed_list_entries);
} else {
memb_set_subtract (fail_minus_memb,
&fail_minus_memb_entries,
failed_list,
memb_join->failed_list_entries,
instance->my_memb_list,
instance->my_memb_entries);
memb_set_merge (fail_minus_memb,
fail_minus_memb_entries,
instance->my_failed_list,
&instance->my_failed_list_entries);
}
}
}
memb_state_gather_enter (instance, 11);
gather_entered = 1;
}
out:
if (gather_entered == 0 &&
instance->memb_state == MEMB_STATE_OPERATIONAL) {
memb_state_gather_enter (instance, 12);
}
}
static void memb_join_endian_convert (const struct memb_join *in, struct memb_join *out)
{
int i;
struct srp_addr *in_proc_list;
struct srp_addr *in_failed_list;
struct srp_addr *out_proc_list;
struct srp_addr *out_failed_list;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
srp_addr_copy_endian_convert (&out->system_from, &in->system_from);
out->proc_list_entries = swab32 (in->proc_list_entries);
out->failed_list_entries = swab32 (in->failed_list_entries);
out->ring_seq = swab64 (in->ring_seq);
in_proc_list = (struct srp_addr *)in->end_of_memb_join;
in_failed_list = in_proc_list + out->proc_list_entries;
out_proc_list = (struct srp_addr *)out->end_of_memb_join;
out_failed_list = out_proc_list + out->proc_list_entries;
for (i = 0; i < out->proc_list_entries; i++) {
srp_addr_copy_endian_convert (&out_proc_list[i], &in_proc_list[i]);
}
for (i = 0; i < out->failed_list_entries; i++) {
srp_addr_copy_endian_convert (&out_failed_list[i], &in_failed_list[i]);
}
}
static void memb_commit_token_endian_convert (const struct memb_commit_token *in, struct memb_commit_token *out)
{
int i;
struct srp_addr *in_addr = (struct srp_addr *)in->end_of_commit_token;
struct srp_addr *out_addr = (struct srp_addr *)out->end_of_commit_token;
struct memb_commit_token_memb_entry *in_memb_list;
struct memb_commit_token_memb_entry *out_memb_list;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
out->token_seq = swab32 (in->token_seq);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->retrans_flg = swab32 (in->retrans_flg);
out->memb_index = swab32 (in->memb_index);
out->addr_entries = swab32 (in->addr_entries);
in_memb_list = (struct memb_commit_token_memb_entry *)(in_addr + out->addr_entries);
out_memb_list = (struct memb_commit_token_memb_entry *)(out_addr + out->addr_entries);
for (i = 0; i < out->addr_entries; i++) {
srp_addr_copy_endian_convert (&out_addr[i], &in_addr[i]);
/*
* Only convert the memb entry if it has been set
*/
if (in_memb_list[i].ring_id.rep.family != 0) {
totemip_copy_endian_convert (&out_memb_list[i].ring_id.rep,
&in_memb_list[i].ring_id.rep);
out_memb_list[i].ring_id.seq =
swab64 (in_memb_list[i].ring_id.seq);
out_memb_list[i].aru = swab32 (in_memb_list[i].aru);
out_memb_list[i].high_delivered = swab32 (in_memb_list[i].high_delivered);
out_memb_list[i].received_flg = swab32 (in_memb_list[i].received_flg);
}
}
}
static void orf_token_endian_convert (const struct orf_token *in, struct orf_token *out)
{
int i;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
out->seq = swab32 (in->seq);
out->token_seq = swab32 (in->token_seq);
out->aru = swab32 (in->aru);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->aru_addr = swab32(in->aru_addr);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->fcc = swab32 (in->fcc);
out->backlog = swab32 (in->backlog);
out->retrans_flg = swab32 (in->retrans_flg);
out->rtr_list_entries = swab32 (in->rtr_list_entries);
for (i = 0; i < out->rtr_list_entries; i++) {
totemip_copy_endian_convert(&out->rtr_list[i].ring_id.rep, &in->rtr_list[i].ring_id.rep);
out->rtr_list[i].ring_id.seq = swab64 (in->rtr_list[i].ring_id.seq);
out->rtr_list[i].seq = swab32 (in->rtr_list[i].seq);
}
}
static void mcast_endian_convert (const struct mcast *in, struct mcast *out)
{
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
out->header.encapsulated = in->header.encapsulated;
out->seq = swab32 (in->seq);
out->this_seqno = swab32 (in->this_seqno);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->node_id = swab32 (in->node_id);
out->guarantee = swab32 (in->guarantee);
srp_addr_copy_endian_convert (&out->system_from, &in->system_from);
}
static void memb_merge_detect_endian_convert (
const struct memb_merge_detect *in,
struct memb_merge_detect *out)
{
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
srp_addr_copy_endian_convert (&out->system_from, &in->system_from);
}
static int message_handler_memb_join (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct memb_join *memb_join;
struct memb_join *memb_join_convert = alloca (msg_len);
if (endian_conversion_needed) {
memb_join = memb_join_convert;
memb_join_endian_convert (msg, memb_join_convert);
} else {
memb_join = msg;
}
/*
* If the process paused because it wasn't scheduled in a timely
* fashion, flush the join messages because they may be queued
* entries
*/
if (pause_flush (instance)) {
return (0);
}
if (instance->token_ring_id_seq < memb_join->ring_seq) {
instance->token_ring_id_seq = memb_join->ring_seq;
}
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_join_process (instance, memb_join);
break;
case MEMB_STATE_GATHER:
memb_join_process (instance, memb_join);
break;
case MEMB_STATE_COMMIT:
if (memb_set_subset (&memb_join->system_from,
1,
instance->my_new_memb_list,
instance->my_new_memb_entries) &&
memb_join->ring_seq >= instance->my_ring_id.seq) {
memb_join_process (instance, memb_join);
memb_state_gather_enter (instance, 13);
}
break;
case MEMB_STATE_RECOVERY:
if (memb_set_subset (&memb_join->system_from,
1,
instance->my_new_memb_list,
instance->my_new_memb_entries) &&
memb_join->ring_seq >= instance->my_ring_id.seq) {
memb_join_process (instance, memb_join);
memb_recovery_state_token_loss (instance);
memb_state_gather_enter (instance, 14);
}
break;
}
return (0);
}
static int message_handler_memb_commit_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct memb_commit_token *memb_commit_token_convert = alloca (msg_len);
struct memb_commit_token *memb_commit_token;
struct srp_addr sub[PROCESSOR_COUNT_MAX];
int sub_entries;
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
log_printf (instance->totemsrp_log_level_debug,
"got commit token\n");
if (endian_conversion_needed) {
memb_commit_token_endian_convert (msg, memb_commit_token_convert);
} else {
memcpy (memb_commit_token_convert, msg, msg_len);
}
memb_commit_token = memb_commit_token_convert;
addr = (struct srp_addr *)memb_commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + memb_commit_token->addr_entries);
#ifdef TEST_DROP_COMMIT_TOKEN_PERCENTAGE
if (random()%100 < TEST_DROP_COMMIT_TOKEN_PERCENTAGE) {
return (0);
}
#endif
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
/* discard token */
break;
case MEMB_STATE_GATHER:
memb_set_subtract (sub, &sub_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
if (memb_set_equal (addr,
memb_commit_token->addr_entries,
sub,
sub_entries) &&
memb_commit_token->ring_id.seq > instance->my_ring_id.seq) {
memcpy (instance->commit_token, memb_commit_token, msg_len);
memb_state_commit_enter (instance);
}
break;
case MEMB_STATE_COMMIT:
/*
* If retransmitted commit tokens are sent on this ring
* filter them out and only enter recovery once the
* commit token has traversed the array. This is
* determined by :
* memb_commit_token->memb_index == memb_commit_token->addr_entries) {
*/
if (memb_commit_token->ring_id.seq == instance->my_ring_id.seq &&
memb_commit_token->memb_index == memb_commit_token->addr_entries) {
memb_state_recovery_enter (instance, memb_commit_token);
}
break;
case MEMB_STATE_RECOVERY:
if (totemip_equal (&instance->my_id.addr[0], &instance->my_ring_id.rep)) {
log_printf (instance->totemsrp_log_level_debug,
"Sending initial ORF token\n");
// TODO convert instead of initiate
orf_token_send_initial (instance);
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
}
break;
}
return (0);
}
static int message_handler_token_hold_cancel (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct token_hold_cancel *token_hold_cancel = msg;
if (memcmp (&token_hold_cancel->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) == 0) {
instance->my_seq_unchanged = 0;
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0])) {
timer_function_token_retransmit_timeout (instance);
}
}
return (0);
}
void main_deliver_fn (
void *context,
const void *msg,
unsigned int msg_len)
{
struct totemsrp_instance *instance = context;
const struct message_header *message_header = msg;
if (msg_len < sizeof (struct message_header)) {
log_printf (instance->totemsrp_log_level_security,
"Received message is too short... ignoring %u.\n",
(unsigned int)msg_len);
return;
}
switch (message_header->type) {
case MESSAGE_TYPE_ORF_TOKEN:
instance->stats.orf_token_rx++;
break;
case MESSAGE_TYPE_MCAST:
instance->stats.mcast_rx++;
break;
case MESSAGE_TYPE_MEMB_MERGE_DETECT:
instance->stats.memb_merge_detect_rx++;
break;
case MESSAGE_TYPE_MEMB_JOIN:
instance->stats.memb_join_rx++;
break;
case MESSAGE_TYPE_MEMB_COMMIT_TOKEN:
instance->stats.memb_commit_token_rx++;
break;
case MESSAGE_TYPE_TOKEN_HOLD_CANCEL:
instance->stats.token_hold_cancel_rx++;
break;
default:
log_printf (instance->totemsrp_log_level_security, "Type of received message is wrong... ignoring %d.\n", (int)message_header->type);
printf ("wrong message type\n");
instance->stats.rx_msg_dropped++;
return;
}
/*
* Handle incoming message
*/
totemsrp_message_handlers.handler_functions[(int)message_header->type] (
instance,
msg,
msg_len,
message_header->endian_detector != ENDIAN_LOCAL);
}
void main_iface_change_fn (
void *context,
const struct totem_ip_address *iface_addr,
unsigned int iface_no)
{
struct totemsrp_instance *instance = context;
int i;
totemip_copy (&instance->my_id.addr[iface_no], iface_addr);
assert (instance->my_id.addr[iface_no].nodeid);
totemip_copy (&instance->my_memb_list[0].addr[iface_no], iface_addr);
if (instance->iface_changes++ == 0) {
memb_ring_id_create_or_load (instance, &instance->my_ring_id);
log_printf (
instance->totemsrp_log_level_debug,
"Created or loaded sequence id %llx.%s for this ring.\n",
instance->my_ring_id.seq,
totemip_print (&instance->my_ring_id.rep));
if (instance->totemsrp_service_ready_fn) {
instance->totemsrp_service_ready_fn ();
}
}
for (i = 0; i < instance->totem_config->interfaces[iface_no].member_count; i++) {
totemsrp_member_add (instance,
&instance->totem_config->interfaces[iface_no].member_list[i],
iface_no);
}
if (instance->iface_changes >= instance->totem_config->interface_count) {
memb_state_gather_enter (instance, 15);
}
}
void totemsrp_net_mtu_adjust (struct totem_config *totem_config) {
totem_config->net_mtu -= sizeof (struct mcast);
}
void totemsrp_service_ready_register (
void *context,
void (*totem_service_ready) (void))
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
instance->totemsrp_service_ready_fn = totem_service_ready;
}
int totemsrp_member_add (
void *context,
const struct totem_ip_address *member,
int ring_no)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
int res;
res = totemrrp_member_add (instance->totemrrp_context, member, ring_no);
return (res);
}
int totemsrp_member_remove (
void *context,
const struct totem_ip_address *member,
int ring_no)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
int res;
res = totemrrp_member_remove (instance->totemrrp_context, member, ring_no);
return (res);
}
void totemsrp_trans_ack (void *context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
instance->waiting_trans_ack = 0;
}

File Metadata

Mime Type
text/x-c
Expires
Sat, Jan 25, 7:08 AM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1321613
Default Alt Text
totemsrp.c (123 KB)

Event Timeline