Page Menu
Home
ClusterLabs Projects
Search
Configure Global Search
Log In
Files
F2823057
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Flag For Later
Award Token
Size
40 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/tests/check_ipc.c b/tests/check_ipc.c
index 873e568..5ccac6e 100644
--- a/tests/check_ipc.c
+++ b/tests/check_ipc.c
@@ -1,1695 +1,1707 @@
/*
* Copyright (c) 2010 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Angus Salkeld <asalkeld@redhat.com>
*
* This file is part of libqb.
*
* libqb is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* libqb is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with libqb. If not, see <http://www.gnu.org/licenses/>.
*/
#include "os_base.h"
#include <sys/wait.h>
#include <sys/un.h>
#include <signal.h>
#include "check_common.h"
#include <qb/qbdefs.h>
#include <qb/qblog.h>
#include <qb/qbipcc.h>
#include <qb/qbipcs.h>
#include <qb/qbloop.h>
#ifdef HAVE_FAILURE_INJECTION
#include "_failure_injection.h"
#endif
static char ipc_name[256];
#define DEFAULT_MAX_MSG_SIZE (8192*16)
#ifndef __clang__
static int CALCULATED_DGRAM_MAX_MSG_SIZE = 0;
#define DGRAM_MAX_MSG_SIZE \
(CALCULATED_DGRAM_MAX_MSG_SIZE == 0 ? \
CALCULATED_DGRAM_MAX_MSG_SIZE = qb_ipcc_verify_dgram_max_msg_size(DEFAULT_MAX_MSG_SIZE) : \
CALCULATED_DGRAM_MAX_MSG_SIZE)
#define MAX_MSG_SIZE (ipc_type == QB_IPC_SOCKET ? DGRAM_MAX_MSG_SIZE : DEFAULT_MAX_MSG_SIZE)
#else
/* because of clang's
'variable length array in structure' extension will never be supported;
assign default for SHM as we'll skip test that would use run-time
established value (via qb_ipcc_verify_dgram_max_msg_size), anyway */
static const int MAX_MSG_SIZE = DEFAULT_MAX_MSG_SIZE;
#endif
/* The size the giant msg's data field needs to be to make
* this the largests msg we can successfully send. */
#define GIANT_MSG_DATA_SIZE MAX_MSG_SIZE - sizeof(struct qb_ipc_response_header) - 8
static int enforce_server_buffer=0;
static qb_ipcc_connection_t *conn;
static enum qb_ipc_type ipc_type;
enum my_msg_ids {
IPC_MSG_REQ_TX_RX,
IPC_MSG_RES_TX_RX,
IPC_MSG_REQ_DISPATCH,
IPC_MSG_RES_DISPATCH,
IPC_MSG_REQ_BULK_EVENTS,
IPC_MSG_RES_BULK_EVENTS,
IPC_MSG_REQ_STRESS_EVENT,
IPC_MSG_RES_STRESS_EVENT,
IPC_MSG_REQ_SERVER_FAIL,
IPC_MSG_RES_SERVER_FAIL,
IPC_MSG_REQ_SERVER_DISCONNECT,
IPC_MSG_RES_SERVER_DISCONNECT,
};
/* Test Cases
*
* 1) basic send & recv different message sizes
*
* 2) send message to start dispatch (confirm receipt)
*
* 3) flow control
*
* 4) authentication
*
* 5) thread safety
*
* 6) cleanup
*
* 7) service availability
*
* 8) multiple services
*/
static qb_loop_t *my_loop;
static qb_ipcs_service_t* s1;
static int32_t turn_on_fc = QB_FALSE;
static int32_t fc_enabled = 89;
static int32_t send_event_on_created = QB_FALSE;
static int32_t disconnect_after_created = QB_FALSE;
static int32_t num_bulk_events = 10;
static int32_t num_stress_events = 30000;
static int32_t reference_count_test = QB_FALSE;
static int32_t multiple_connections = QB_FALSE;
static int32_t
exit_handler(int32_t rsignal, void *data)
{
qb_log(LOG_DEBUG, "caught signal %d", rsignal);
qb_ipcs_destroy(s1);
exit(0);
}
static void
set_ipc_name(const char *prefix)
{
FILE *f;
char process_name[256];
/* The process-unique part of the IPC name has already been decided
* and stored in the file ipc-test-name.
*/
f = fopen("ipc-test-name", "r");
if (f) {
fgets(process_name, sizeof(process_name), f);
fclose(f);
snprintf(ipc_name, sizeof(ipc_name), "%.44s%s", prefix, process_name);
} else {
/* This is the old code, use only as a fallback */
static char t_sec[3] = "";
if (t_sec[0] == '\0') {
const char *const found = strrchr(__TIME__, ':');
strncpy(t_sec, found ? found + 1 : "-", sizeof(t_sec) - 1);
t_sec[sizeof(t_sec) - 1] = '\0';
}
snprintf(ipc_name, sizeof(ipc_name), "%.44s%s%lX%.4x", prefix, t_sec,
(unsigned long)getpid(), (unsigned) ((long) time(NULL) % (0x10000)));
}
}
static int32_t
s1_msg_process_fn(qb_ipcs_connection_t *c,
void *data, size_t size)
{
struct qb_ipc_request_header *req_pt = (struct qb_ipc_request_header *)data;
struct qb_ipc_response_header response = { 0, };
ssize_t res;
if (req_pt->id == IPC_MSG_REQ_TX_RX) {
response.size = sizeof(struct qb_ipc_response_header);
response.id = IPC_MSG_RES_TX_RX;
response.error = 0;
res = qb_ipcs_response_send(c, &response, response.size);
if (res < 0) {
qb_perror(LOG_INFO, "qb_ipcs_response_send");
} else if (res != response.size) {
qb_log(LOG_DEBUG, "qb_ipcs_response_send %zd != %d",
res, response.size);
}
if (turn_on_fc) {
qb_ipcs_request_rate_limit(s1, QB_IPCS_RATE_OFF);
}
} else if (req_pt->id == IPC_MSG_REQ_DISPATCH) {
response.size = sizeof(struct qb_ipc_response_header);
response.id = IPC_MSG_RES_DISPATCH;
response.error = 0;
res = qb_ipcs_event_send(c, &response,
sizeof(response));
if (res < 0) {
qb_perror(LOG_INFO, "qb_ipcs_event_send");
}
} else if (req_pt->id == IPC_MSG_REQ_BULK_EVENTS) {
int32_t m;
int32_t num;
struct qb_ipcs_connection_stats_2 *stats;
uint32_t max_size = MAX_MSG_SIZE;
response.size = sizeof(struct qb_ipc_response_header);
response.error = 0;
stats = qb_ipcs_connection_stats_get_2(c, QB_FALSE);
num = stats->event_q_length;
free(stats);
/* crazy large message */
res = qb_ipcs_event_send(c, &response, max_size*10);
ck_assert_int_eq(res, -EMSGSIZE);
/* send one event before responding */
res = qb_ipcs_event_send(c, &response, sizeof(response));
ck_assert_int_eq(res, sizeof(response));
response.id++;
/* There should be one more item in the event queue now. */
stats = qb_ipcs_connection_stats_get_2(c, QB_FALSE);
ck_assert_int_eq(stats->event_q_length - num, 1);
free(stats);
/* send response */
response.id = IPC_MSG_RES_BULK_EVENTS;
res = qb_ipcs_response_send(c, &response, response.size);
ck_assert_int_eq(res, sizeof(response));
/* send the rest of the events after the response */
for (m = 1; m < num_bulk_events; m++) {
res = qb_ipcs_event_send(c, &response, sizeof(response));
if (res == -EAGAIN || res == -ENOBUFS) {
/* retry */
usleep(1000);
m--;
continue;
}
ck_assert_int_eq(res, sizeof(response));
response.id++;
}
} else if (req_pt->id == IPC_MSG_REQ_STRESS_EVENT) {
struct {
struct qb_ipc_response_header hdr __attribute__ ((aligned(8)));
char data[GIANT_MSG_DATA_SIZE] __attribute__ ((aligned(8)));
uint32_t sent_msgs __attribute__ ((aligned(8)));
} __attribute__ ((aligned(8))) giant_event_send;
int32_t m;
response.size = sizeof(struct qb_ipc_response_header);
response.error = 0;
response.id = IPC_MSG_RES_STRESS_EVENT;
res = qb_ipcs_response_send(c, &response, response.size);
ck_assert_int_eq(res, sizeof(response));
giant_event_send.hdr.error = 0;
giant_event_send.hdr.id = IPC_MSG_RES_STRESS_EVENT;
for (m = 0; m < num_stress_events; m++) {
size_t sent_len = sizeof(struct qb_ipc_response_header);
if (((m+1) % 1000) == 0) {
sent_len = sizeof(giant_event_send);
giant_event_send.sent_msgs = m + 1;
}
giant_event_send.hdr.size = sent_len;
res = qb_ipcs_event_send(c, &giant_event_send, sent_len);
if (res < 0) {
if (res == -EAGAIN || res == -ENOBUFS) {
/* yield to the receive process */
usleep(1000);
m--;
continue;
} else {
qb_perror(LOG_DEBUG, "sending stress events");
ck_assert_int_eq(res, sent_len);
}
} else if (((m+1) % 1000) == 0) {
qb_log(LOG_DEBUG, "SENT: %d stress events sent", m+1);
}
giant_event_send.hdr.id++;
}
} else if (req_pt->id == IPC_MSG_REQ_SERVER_FAIL) {
exit(0);
} else if (req_pt->id == IPC_MSG_REQ_SERVER_DISCONNECT) {
multiple_connections = QB_FALSE;
qb_ipcs_disconnect(c);
}
return 0;
}
static int32_t
my_job_add(enum qb_loop_priority p,
void *data,
qb_loop_job_dispatch_fn fn)
{
return qb_loop_job_add(my_loop, p, data, fn);
}
static int32_t
my_dispatch_add(enum qb_loop_priority p, int32_t fd, int32_t events,
void *data, qb_ipcs_dispatch_fn_t fn)
{
return qb_loop_poll_add(my_loop, p, fd, events, data, fn);
}
static int32_t
my_dispatch_mod(enum qb_loop_priority p, int32_t fd, int32_t events,
void *data, qb_ipcs_dispatch_fn_t fn)
{
return qb_loop_poll_mod(my_loop, p, fd, events, data, fn);
}
static int32_t
my_dispatch_del(int32_t fd)
{
return qb_loop_poll_del(my_loop, fd);
}
static int32_t
s1_connection_closed(qb_ipcs_connection_t *c)
{
if (multiple_connections) {
return 0;
}
qb_enter();
qb_leave();
return 0;
}
static void
outq_flush (void *data)
{
static int i = 0;
struct cs_ipcs_conn_context *cnx;
cnx = qb_ipcs_context_get(data);
qb_log(LOG_DEBUG,"iter %u\n", i);
i++;
if (i == 2) {
qb_ipcs_destroy(s1);
s1 = NULL;
}
/* if the reference counting is not working, this should fail
* for i > 1.
*/
qb_ipcs_event_send(data, "test", 4);
assert(memcmp(cnx, "test", 4) == 0);
if (i < 5) {
qb_loop_job_add(my_loop, QB_LOOP_HIGH, data, outq_flush);
} else {
/* this single unref should clean everything up.
*/
qb_ipcs_connection_unref(data);
qb_log(LOG_INFO, "end of test, stopping loop");
qb_loop_stop(my_loop);
}
}
static void
s1_connection_destroyed(qb_ipcs_connection_t *c)
{
if (multiple_connections) {
return;
}
qb_enter();
if (reference_count_test) {
struct cs_ipcs_conn_context *cnx;
cnx = qb_ipcs_context_get(c);
free(cnx);
} else {
qb_loop_stop(my_loop);
}
qb_leave();
}
static void
s1_connection_created(qb_ipcs_connection_t *c)
{
uint32_t max = MAX_MSG_SIZE;
if (multiple_connections) {
return;
}
if (send_event_on_created) {
struct qb_ipc_response_header response;
int32_t res;
response.size = sizeof(struct qb_ipc_response_header);
response.id = IPC_MSG_RES_DISPATCH;
response.error = 0;
res = qb_ipcs_event_send(c, &response,
sizeof(response));
ck_assert_int_eq(res, response.size);
}
if (reference_count_test) {
struct cs_ipcs_conn_context *context;
qb_ipcs_connection_ref(c);
qb_loop_job_add(my_loop, QB_LOOP_HIGH, c, outq_flush);
context = calloc(1, 20);
memcpy(context, "test", 4);
qb_ipcs_context_set(c, context);
}
ck_assert_int_eq(max, qb_ipcs_connection_get_buffer_size(c));
}
static volatile sig_atomic_t usr1_bit;
static void usr1_bit_setter(int signal) {
if (signal == SIGUSR1) {
usr1_bit = 1;
}
}
#define READY_SIGNALLER(name, data_arg) void (name)(void *data_arg)
typedef READY_SIGNALLER(ready_signaller_fn, );
static
READY_SIGNALLER(usr1_signaller, parent_target)
{
kill(*((pid_t *) parent_target), SIGUSR1);
}
#define NEW_PROCESS_RUNNER(name, ready_signaller_arg, signaller_data_arg) \
void (name)(ready_signaller_fn ready_signaller_arg, \
void *signaller_data_arg)
typedef NEW_PROCESS_RUNNER(new_process_runner_fn, , );
static
NEW_PROCESS_RUNNER(run_ipc_server, ready_signaller, signaller_data)
{
int32_t res;
qb_loop_signal_handle handle;
struct qb_ipcs_service_handlers sh = {
.connection_accept = NULL,
.connection_created = s1_connection_created,
.msg_process = s1_msg_process_fn,
.connection_destroyed = s1_connection_destroyed,
.connection_closed = s1_connection_closed,
};
struct qb_ipcs_poll_handlers ph = {
.job_add = my_job_add,
.dispatch_add = my_dispatch_add,
.dispatch_mod = my_dispatch_mod,
.dispatch_del = my_dispatch_del,
};
uint32_t max_size = MAX_MSG_SIZE;
my_loop = qb_loop_create();
qb_loop_signal_add(my_loop, QB_LOOP_HIGH, SIGTERM,
NULL, exit_handler, &handle);
s1 = qb_ipcs_create(ipc_name, 4, ipc_type, &sh);
fail_if(s1 == 0);
if (enforce_server_buffer) {
qb_ipcs_enforce_buffer_size(s1, max_size);
}
qb_ipcs_poll_handlers_set(s1, &ph);
res = qb_ipcs_run(s1);
ck_assert_int_eq(res, 0);
if (ready_signaller != NULL) {
ready_signaller(signaller_data);
}
qb_loop_run(my_loop);
qb_log(LOG_DEBUG, "loop finished - done ...");
}
static pid_t
run_function_in_new_process(const char *role,
new_process_runner_fn new_process_runner)
{
char formatbuf[1024];
pid_t parent_target, pid1, pid2;
struct sigaction orig_sa, purpose_sa;
sigset_t orig_mask, purpose_mask, purpose_clear_mask;
sigemptyset(&purpose_mask);
sigaddset(&purpose_mask, SIGUSR1);
sigprocmask(SIG_BLOCK, &purpose_mask, &orig_mask);
purpose_clear_mask = orig_mask;
sigdelset(&purpose_clear_mask, SIGUSR1);
purpose_sa.sa_handler = usr1_bit_setter;
purpose_sa.sa_mask = purpose_mask;
purpose_sa.sa_flags = SA_RESTART;
/* Double-fork so the servers can be reaped in a timely manner */
parent_target = getpid();
pid1 = fork();
if (pid1 == 0) {
pid2 = fork();
if (pid2 == -1) {
fprintf (stderr, "Can't fork twice\n");
exit(0);
}
if (pid2 == 0) {
sigprocmask(SIG_SETMASK, &orig_mask, NULL);
if (role == NULL) {
qb_log_format_set(QB_LOG_STDERR, "lib/%f|%l[%P] %b");
} else {
snprintf(formatbuf, sizeof(formatbuf),
"lib/%%f|%%l|%s[%%P] %%b", role);
qb_log_format_set(QB_LOG_STDERR, formatbuf);
}
new_process_runner(usr1_signaller, &parent_target);
exit(0);
} else {
waitpid(pid2, NULL, 0);
exit(0);
}
}
usr1_bit = 0;
/* XXX assume never fails */
sigaction(SIGUSR1, &purpose_sa, &orig_sa);
do {
/* XXX assume never fails with EFAULT */
sigsuspend(&purpose_clear_mask);
} while (usr1_bit != 1);
usr1_bit = 0;
sigprocmask(SIG_SETMASK, &orig_mask, NULL);
/* give children a slight/non-strict scheduling advantage */
sched_yield();
return pid1;
}
static void
request_server_exit(void)
{
struct qb_ipc_request_header req_header;
struct qb_ipc_response_header res_header;
struct iovec iov[1];
int32_t res;
/*
* tell the server to exit
*/
req_header.id = IPC_MSG_REQ_SERVER_FAIL;
req_header.size = sizeof(struct qb_ipc_request_header);
iov[0].iov_len = req_header.size;
iov[0].iov_base = &req_header;
ck_assert_int_eq(QB_TRUE, qb_ipcc_is_connected(conn));
res = qb_ipcc_sendv_recv(conn, iov, 1,
&res_header,
sizeof(struct qb_ipc_response_header), -1);
/*
* confirm we get -ENOTCONN or ECONNRESET
*/
if (res != -ECONNRESET && res != -ENOTCONN) {
qb_log(LOG_ERR, "id:%d size:%d", res_header.id, res_header.size);
ck_assert_int_eq(res, -ENOTCONN);
}
}
static void
kill_server(pid_t pid)
{
kill(pid, SIGTERM);
waitpid(pid, NULL, 0);
}
static int32_t
verify_graceful_stop(pid_t pid)
{
int wait_rc = 0;
int status = 0;
int rc = 0;
int tries;
/* We need the server to be able to exit by itself */
for (tries = 10; tries >= 0; tries--) {
sleep(1);
wait_rc = waitpid(pid, &status, WNOHANG);
if (wait_rc > 0) {
break;
}
}
ck_assert_int_eq(wait_rc, pid);
rc = WIFEXITED(status);
if (rc) {
rc = WEXITSTATUS(status);
ck_assert_int_eq(rc, 0);
} else {
fail_if(rc == 0);
}
return 0;
}
struct my_req {
struct qb_ipc_request_header hdr;
char message[1024 * 1024];
};
static struct my_req request;
static int32_t
send_and_check(int32_t req_id, uint32_t size,
int32_t ms_timeout, int32_t expect_perfection)
{
struct qb_ipc_response_header res_header;
int32_t res;
int32_t try_times = 0;
uint32_t max_size = MAX_MSG_SIZE;
request.hdr.id = req_id;
request.hdr.size = sizeof(struct qb_ipc_request_header) + size;
/* check that we can't send a message that is too big
* and we get the right return code.
*/
res = qb_ipcc_send(conn, &request, max_size*2);
ck_assert_int_eq(res, -EMSGSIZE);
repeat_send:
res = qb_ipcc_send(conn, &request, request.hdr.size);
try_times++;
if (res < 0) {
if (res == -EAGAIN && try_times < 10) {
goto repeat_send;
} else {
if (res == -EAGAIN && try_times >= 10) {
fc_enabled = QB_TRUE;
}
errno = -res;
qb_perror(LOG_INFO, "qb_ipcc_send");
return res;
}
}
if (req_id == IPC_MSG_REQ_DISPATCH) {
res = qb_ipcc_event_recv(conn, &res_header,
sizeof(struct qb_ipc_response_header),
ms_timeout);
} else {
res = qb_ipcc_recv(conn, &res_header,
sizeof(struct qb_ipc_response_header),
ms_timeout);
}
if (res == -EINTR) {
return -1;
}
if (res == -EAGAIN || res == -ETIMEDOUT) {
fc_enabled = QB_TRUE;
qb_perror(LOG_DEBUG, "qb_ipcc_recv");
return res;
}
if (expect_perfection) {
ck_assert_int_eq(res, sizeof(struct qb_ipc_response_header));
ck_assert_int_eq(res_header.id, req_id + 1);
ck_assert_int_eq(res_header.size, sizeof(struct qb_ipc_response_header));
}
return res;
}
static void
test_ipc_txrx_timeout(void)
{
struct qb_ipc_request_header req_header;
struct qb_ipc_response_header res_header;
struct iovec iov[1];
int32_t res;
int32_t c = 0;
int32_t j = 0;
pid_t pid;
uint32_t max_size = MAX_MSG_SIZE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
/* The dispatch response will only come over
* the event channel, we want to verify the receive times
* out when an event is returned with no response */
req_header.id = IPC_MSG_REQ_DISPATCH;
req_header.size = sizeof(struct qb_ipc_request_header);
iov[0].iov_len = req_header.size;
iov[0].iov_base = &req_header;
res = qb_ipcc_sendv_recv(conn, iov, 1,
&res_header,
sizeof(struct qb_ipc_response_header), 5000);
ck_assert_int_eq(res, -ETIMEDOUT);
request_server_exit();
verify_graceful_stop(pid);
/*
* this needs to free up the shared mem
*/
qb_ipcc_disconnect(conn);
}
static int32_t recv_timeout = -1;
static void
test_ipc_txrx(void)
{
int32_t j;
int32_t c = 0;
size_t size;
pid_t pid;
uint32_t max_size = MAX_MSG_SIZE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
size = QB_MIN(sizeof(struct qb_ipc_request_header), 64);
for (j = 1; j < 19; j++) {
size *= 2;
if (size >= max_size)
break;
if (send_and_check(IPC_MSG_REQ_TX_RX, size,
recv_timeout, QB_TRUE) < 0) {
break;
}
}
if (turn_on_fc) {
/* can't signal server to shutdown if flow control is on */
ck_assert_int_eq(fc_enabled, QB_TRUE);
qb_ipcc_disconnect(conn);
/* TODO - figure out why this sleep is necessary */
sleep(1);
kill_server(pid);
} else {
request_server_exit();
qb_ipcc_disconnect(conn);
verify_graceful_stop(pid);
}
}
static void
test_ipc_exit(void)
{
struct qb_ipc_request_header req_header;
struct qb_ipc_response_header res_header;
struct iovec iov[1];
int32_t res;
int32_t c = 0;
int32_t j = 0;
pid_t pid;
uint32_t max_size = MAX_MSG_SIZE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
req_header.id = IPC_MSG_REQ_TX_RX;
req_header.size = sizeof(struct qb_ipc_request_header);
iov[0].iov_len = req_header.size;
iov[0].iov_base = &req_header;
res = qb_ipcc_sendv_recv(conn, iov, 1,
&res_header,
sizeof(struct qb_ipc_response_header), -1);
ck_assert_int_eq(res, sizeof(struct qb_ipc_response_header));
request_server_exit();
verify_graceful_stop(pid);
/*
* this needs to free up the shared mem
*/
qb_ipcc_disconnect(conn);
}
START_TEST(test_ipc_exit_us)
{
qb_enter();
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
recv_timeout = 5000;
test_ipc_exit();
qb_leave();
}
END_TEST
START_TEST(test_ipc_exit_shm)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
recv_timeout = 1000;
test_ipc_exit();
qb_leave();
}
END_TEST
START_TEST(test_ipc_txrx_shm_timeout)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_txrx_timeout();
qb_leave();
}
END_TEST
START_TEST(test_ipc_txrx_us_timeout)
{
qb_enter();
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_txrx_timeout();
qb_leave();
}
END_TEST
START_TEST(test_ipc_txrx_shm_tmo)
{
qb_enter();
turn_on_fc = QB_FALSE;
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
recv_timeout = 1000;
test_ipc_txrx();
qb_leave();
}
END_TEST
START_TEST(test_ipc_txrx_shm_block)
{
qb_enter();
turn_on_fc = QB_FALSE;
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
recv_timeout = -1;
test_ipc_txrx();
qb_leave();
}
END_TEST
START_TEST(test_ipc_fc_shm)
{
qb_enter();
turn_on_fc = QB_TRUE;
ipc_type = QB_IPC_SHM;
recv_timeout = 500;
set_ipc_name(__func__);
test_ipc_txrx();
qb_leave();
}
END_TEST
START_TEST(test_ipc_txrx_us_block)
{
qb_enter();
turn_on_fc = QB_FALSE;
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
recv_timeout = -1;
test_ipc_txrx();
qb_leave();
}
END_TEST
START_TEST(test_ipc_txrx_us_tmo)
{
qb_enter();
turn_on_fc = QB_FALSE;
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
recv_timeout = 1000;
test_ipc_txrx();
qb_leave();
}
END_TEST
START_TEST(test_ipc_fc_us)
{
qb_enter();
turn_on_fc = QB_TRUE;
ipc_type = QB_IPC_SOCKET;
recv_timeout = 500;
set_ipc_name(__func__);
test_ipc_txrx();
qb_leave();
}
END_TEST
struct my_res {
struct qb_ipc_response_header hdr;
char message[1024 * 1024];
};
-static void
-test_ipc_dispatch(void)
+static inline
+NEW_PROCESS_RUNNER(client_dispatch, ready_signaller, signaller_data)
{
- int32_t j;
- int32_t c = 0;
- pid_t pid;
- int32_t size;
uint32_t max_size = MAX_MSG_SIZE;
-
- pid = run_function_in_new_process("server", run_ipc_server);
- fail_if(pid == -1);
+ int32_t size;
+ int32_t c = 0;
+ int32_t j;
+ pid_t server_pid = *((pid_t *) signaller_data);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
- j = waitpid(pid, NULL, WNOHANG);
+ j = waitpid(server_pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
+ if (ready_signaller != NULL) {
+ ready_signaller(signaller_data);
+ }
+
size = QB_MIN(sizeof(struct qb_ipc_request_header), 64);
for (j = 1; j < 19; j++) {
size *= 2;
if (size >= max_size)
break;
if (send_and_check(IPC_MSG_REQ_DISPATCH, size,
- recv_timeout, QB_TRUE) < 0) {
+ recv_timeout, QB_TRUE) < 0) {
break;
}
}
+}
+
+static void
+test_ipc_dispatch(void)
+{
+ pid_t pid;
+
+ pid = run_function_in_new_process(NULL, run_ipc_server);
+ fail_if(pid == -1);
+
+ client_dispatch(NULL, (void *) &pid);
request_server_exit();
qb_ipcc_disconnect(conn);
verify_graceful_stop(pid);
}
START_TEST(test_ipc_dispatch_us)
{
qb_enter();
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_dispatch();
qb_leave();
}
END_TEST
static int32_t events_received;
static int32_t
count_stress_events(int32_t fd, int32_t revents, void *data)
{
struct {
struct qb_ipc_response_header hdr __attribute__ ((aligned(8)));
char data[GIANT_MSG_DATA_SIZE] __attribute__ ((aligned(8)));
uint32_t sent_msgs __attribute__ ((aligned(8)));
} __attribute__ ((aligned(8))) giant_event_recv;
qb_loop_t *cl = (qb_loop_t*)data;
int32_t res;
res = qb_ipcc_event_recv(conn, &giant_event_recv,
sizeof(giant_event_recv),
-1);
if (res > 0) {
events_received++;
if ((events_received % 1000) == 0) {
qb_log(LOG_DEBUG, "RECV: %d stress events processed", events_received);
if (res != sizeof(giant_event_recv)) {
qb_log(LOG_DEBUG, "Unexpected recv size, expected %d got %d",
res, sizeof(giant_event_recv));
ck_assert_int_eq(res, sizeof(giant_event_recv));
} else if (giant_event_recv.sent_msgs != events_received) {
qb_log(LOG_DEBUG, "Server event mismatch. Server thinks we got %d msgs, but we only received %d",
giant_event_recv.sent_msgs, events_received);
/* This indicates that data corruption is occurring. Since the events
* received is placed at the end of the giant msg, it is possible
* that buffers were not allocated correctly resulting in us
* reading/writing to uninitialized memeory at some point. */
ck_assert_int_eq(giant_event_recv.sent_msgs, events_received);
}
}
} else if (res != -EAGAIN) {
qb_perror(LOG_DEBUG, "count_stress_events");
qb_loop_stop(cl);
return -1;
}
if (events_received >= num_stress_events) {
qb_loop_stop(cl);
return -1;
}
return 0;
}
static int32_t
count_bulk_events(int32_t fd, int32_t revents, void *data)
{
qb_loop_t *cl = (qb_loop_t*)data;
struct qb_ipc_response_header res_header;
int32_t res;
res = qb_ipcc_event_recv(conn, &res_header,
sizeof(struct qb_ipc_response_header),
-1);
if (res > 0) {
events_received++;
}
if (events_received >= num_bulk_events) {
qb_loop_stop(cl);
return -1;
}
return 0;
}
static void
test_ipc_stress_connections(void)
{
int32_t c = 0;
int32_t j = 0;
uint32_t max_size = MAX_MSG_SIZE;
int32_t connections = 0;
pid_t pid;
multiple_connections = QB_TRUE;
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_CLEAR_ALL,
QB_LOG_FILTER_FILE, "*", LOG_TRACE);
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_ADD,
QB_LOG_FILTER_FILE, "*", LOG_INFO);
qb_log_ctl(QB_LOG_STDERR, QB_LOG_CONF_ENABLED, QB_TRUE);
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
for (connections = 1; connections < 70000; connections++) {
if (conn) {
qb_ipcc_disconnect(conn);
conn = NULL;
}
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
sleep(1);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
if (((connections+1) % 1000) == 0) {
qb_log(LOG_INFO, "%d ipc connections made", connections+1);
}
}
multiple_connections = QB_FALSE;
request_server_exit();
verify_graceful_stop(pid);
qb_ipcc_disconnect(conn);
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_CLEAR_ALL,
QB_LOG_FILTER_FILE, "*", LOG_TRACE);
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_ADD,
QB_LOG_FILTER_FILE, "*", LOG_TRACE);
qb_log_ctl(QB_LOG_STDERR, QB_LOG_CONF_ENABLED, QB_TRUE);
}
static void
test_ipc_bulk_events(void)
{
int32_t c = 0;
int32_t j = 0;
pid_t pid;
int32_t res;
qb_loop_t *cl;
int32_t fd;
uint32_t max_size = MAX_MSG_SIZE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
events_received = 0;
cl = qb_loop_create();
res = qb_ipcc_fd_get(conn, &fd);
ck_assert_int_eq(res, 0);
res = qb_loop_poll_add(cl, QB_LOOP_MED,
fd, POLLIN,
cl, count_bulk_events);
ck_assert_int_eq(res, 0);
res = send_and_check(IPC_MSG_REQ_BULK_EVENTS,
0,
recv_timeout, QB_TRUE);
ck_assert_int_eq(res, sizeof(struct qb_ipc_response_header));
qb_loop_run(cl);
ck_assert_int_eq(events_received, num_bulk_events);
request_server_exit();
qb_ipcc_disconnect(conn);
verify_graceful_stop(pid);
}
static void
test_ipc_stress_test(void)
{
struct {
struct qb_ipc_request_header hdr __attribute__ ((aligned(8)));
char data[GIANT_MSG_DATA_SIZE] __attribute__ ((aligned(8)));
uint32_t sent_msgs __attribute__ ((aligned(8)));
} __attribute__ ((aligned(8))) giant_req;
struct qb_ipc_response_header res_header;
struct iovec iov[1];
int32_t c = 0;
int32_t j = 0;
pid_t pid;
int32_t res;
qb_loop_t *cl;
int32_t fd;
uint32_t max_size = MAX_MSG_SIZE;
/* This looks strange, but it serves an important purpose.
* This test forces the server to enforce the MAX_MSG_SIZE
* limit from the server side, which overrides the client's
* buffer limit. To verify this functionality is working
* we set the client limit lower than what the server
* is enforcing. */
int32_t client_buf_size = max_size - 1024;
int32_t real_buf_size;
enforce_server_buffer = 1;
pid = run_function_in_new_process("server", run_ipc_server);
enforce_server_buffer = 0;
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, client_buf_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
real_buf_size = qb_ipcc_get_buffer_size(conn);
ck_assert_int_eq(real_buf_size, max_size);
qb_log(LOG_DEBUG, "Testing %d iterations of EVENT msg passing.", num_stress_events);
events_received = 0;
cl = qb_loop_create();
res = qb_ipcc_fd_get(conn, &fd);
ck_assert_int_eq(res, 0);
res = qb_loop_poll_add(cl, QB_LOOP_MED,
fd, POLLIN,
cl, count_stress_events);
ck_assert_int_eq(res, 0);
res = send_and_check(IPC_MSG_REQ_STRESS_EVENT, 0, recv_timeout, QB_TRUE);
qb_loop_run(cl);
ck_assert_int_eq(events_received, num_stress_events);
giant_req.hdr.id = IPC_MSG_REQ_SERVER_FAIL;
giant_req.hdr.size = sizeof(giant_req);
if (giant_req.hdr.size <= client_buf_size) {
ck_assert_int_eq(1, 0);
}
iov[0].iov_len = giant_req.hdr.size;
iov[0].iov_base = &giant_req;
res = qb_ipcc_sendv_recv(conn, iov, 1,
&res_header,
sizeof(struct qb_ipc_response_header), -1);
if (res != -ECONNRESET && res != -ENOTCONN) {
qb_log(LOG_ERR, "id:%d size:%d", res_header.id, res_header.size);
ck_assert_int_eq(res, -ENOTCONN);
}
qb_ipcc_disconnect(conn);
verify_graceful_stop(pid);
}
#ifndef __clang__ /* see variable length array in structure' at the top */
START_TEST(test_ipc_stress_test_us)
{
qb_enter();
send_event_on_created = QB_FALSE;
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_stress_test();
qb_leave();
}
END_TEST
#endif
START_TEST(test_ipc_stress_connections_us)
{
qb_enter();
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_stress_connections();
qb_leave();
}
END_TEST
START_TEST(test_ipc_bulk_events_us)
{
qb_enter();
send_event_on_created = QB_FALSE;
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_bulk_events();
qb_leave();
}
END_TEST
static void
test_ipc_event_on_created(void)
{
int32_t c = 0;
int32_t j = 0;
pid_t pid;
int32_t res;
qb_loop_t *cl;
int32_t fd;
uint32_t max_size = MAX_MSG_SIZE;
num_bulk_events = 1;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
events_received = 0;
cl = qb_loop_create();
res = qb_ipcc_fd_get(conn, &fd);
ck_assert_int_eq(res, 0);
res = qb_loop_poll_add(cl, QB_LOOP_MED,
fd, POLLIN,
cl, count_bulk_events);
ck_assert_int_eq(res, 0);
qb_loop_run(cl);
ck_assert_int_eq(events_received, num_bulk_events);
request_server_exit();
qb_ipcc_disconnect(conn);
verify_graceful_stop(pid);
}
START_TEST(test_ipc_event_on_created_us)
{
qb_enter();
send_event_on_created = QB_TRUE;
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_event_on_created();
qb_leave();
}
END_TEST
static void
test_ipc_disconnect_after_created(void)
{
struct qb_ipc_request_header req_header;
struct qb_ipc_response_header res_header;
struct iovec iov[1];
int32_t c = 0;
int32_t j = 0;
pid_t pid;
int32_t res;
uint32_t max_size = MAX_MSG_SIZE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
ck_assert_int_eq(QB_TRUE, qb_ipcc_is_connected(conn));
req_header.id = IPC_MSG_REQ_SERVER_DISCONNECT;
req_header.size = sizeof(struct qb_ipc_request_header);
iov[0].iov_len = req_header.size;
iov[0].iov_base = &req_header;
res = qb_ipcc_sendv_recv(conn, iov, 1,
&res_header,
sizeof(struct qb_ipc_response_header), -1);
/*
* confirm we get -ENOTCONN or -ECONNRESET
*/
if (res != -ECONNRESET && res != -ENOTCONN) {
qb_log(LOG_ERR, "id:%d size:%d", res_header.id, res_header.size);
ck_assert_int_eq(res, -ENOTCONN);
}
ck_assert_int_eq(QB_FALSE, qb_ipcc_is_connected(conn));
qb_ipcc_disconnect(conn);
kill_server(pid);
}
START_TEST(test_ipc_disconnect_after_created_us)
{
qb_enter();
disconnect_after_created = QB_TRUE;
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_disconnect_after_created();
qb_leave();
}
END_TEST
static void
test_ipc_server_fail(void)
{
int32_t j;
int32_t c = 0;
pid_t pid;
uint32_t max_size = MAX_MSG_SIZE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
request_server_exit();
if (_fi_unlink_inject_failure == QB_TRUE) {
_fi_truncate_called = _fi_openat_called = 0;
}
ck_assert_int_eq(QB_FALSE, qb_ipcc_is_connected(conn));
qb_ipcc_disconnect(conn);
if (_fi_unlink_inject_failure == QB_TRUE) {
ck_assert_int_ne(_fi_truncate_called + _fi_openat_called, 0);
}
verify_graceful_stop(pid);
}
START_TEST(test_ipc_server_fail_soc)
{
qb_enter();
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_server_fail();
qb_leave();
}
END_TEST
START_TEST(test_ipc_dispatch_shm)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_dispatch();
qb_leave();
}
END_TEST
START_TEST(test_ipc_stress_test_shm)
{
qb_enter();
send_event_on_created = QB_FALSE;
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_stress_test();
qb_leave();
}
END_TEST
START_TEST(test_ipc_stress_connections_shm)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_stress_connections();
qb_leave();
}
END_TEST
START_TEST(test_ipc_bulk_events_shm)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_bulk_events();
qb_leave();
}
END_TEST
START_TEST(test_ipc_event_on_created_shm)
{
qb_enter();
send_event_on_created = QB_TRUE;
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_event_on_created();
qb_leave();
}
END_TEST
START_TEST(test_ipc_server_fail_shm)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_server_fail();
qb_leave();
}
END_TEST
#ifdef HAVE_FAILURE_INJECTION
START_TEST(test_ipcc_truncate_when_unlink_fails_shm)
{
char sock_file[PATH_MAX];
struct sockaddr_un socka;
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
sprintf(sock_file, "%s/%s", SOCKETDIR, ipc_name);
sock_file[sizeof(socka.sun_path)] = '\0';
/* If there's an old socket left from a previous run this test will fail
unexpectedly, so try to remove it first */
unlink(sock_file);
_fi_unlink_inject_failure = QB_TRUE;
test_ipc_server_fail();
_fi_unlink_inject_failure = QB_FALSE;
unlink(sock_file);
qb_leave();
}
END_TEST
#endif
static void
test_ipc_service_ref_count(void)
{
int32_t c = 0;
int32_t j = 0;
pid_t pid;
uint32_t max_size = MAX_MSG_SIZE;
reference_count_test = QB_TRUE;
pid = run_function_in_new_process("server", run_ipc_server);
fail_if(pid == -1);
do {
conn = qb_ipcc_connect(ipc_name, max_size);
if (conn == NULL) {
j = waitpid(pid, NULL, WNOHANG);
ck_assert_int_eq(j, 0);
poll(NULL, 0, 400);
c++;
}
} while (conn == NULL && c < 5);
fail_if(conn == NULL);
sleep(5);
kill_server(pid);
}
START_TEST(test_ipc_service_ref_count_shm)
{
qb_enter();
ipc_type = QB_IPC_SHM;
set_ipc_name(__func__);
test_ipc_service_ref_count();
qb_leave();
}
END_TEST
START_TEST(test_ipc_service_ref_count_us)
{
qb_enter();
ipc_type = QB_IPC_SOCKET;
set_ipc_name(__func__);
test_ipc_service_ref_count();
qb_leave();
}
END_TEST
#if 0
static void test_max_dgram_size(void)
{
/* most implementations will not let you set a dgram buffer
* of 1 million bytes. This test verifies that the we can detect
* the max dgram buffersize regardless, and that the value we detect
* is consistent. */
int32_t init;
int32_t i;
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_REMOVE,
QB_LOG_FILTER_FILE, "*", LOG_TRACE);
init = qb_ipcc_verify_dgram_max_msg_size(1000000);
fail_if(init <= 0);
for (i = 0; i < 100; i++) {
int try = qb_ipcc_verify_dgram_max_msg_size(1000000);
#if 0
ck_assert_int_eq(init, try);
#else
/* extra troubleshooting, report also on i and errno variables;
related: https://github.com/ClusterLabs/libqb/issues/234 */
if (init != try) {
#ifdef ci_dump_shm_usage
system("df -h | grep -e /shm >/tmp/_shm_usage");
#endif
ck_abort_msg("Assertion 'init==try' failed:"
" init==%#x, try==%#x, i=%d, errno=%d",
init, try, i, errno);
}
#endif
}
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_ADD,
QB_LOG_FILTER_FILE, "*", LOG_TRACE);
}
START_TEST(test_ipc_max_dgram_size)
{
qb_enter();
test_max_dgram_size();
qb_leave();
}
END_TEST
#endif
static Suite *
make_shm_suite(void)
{
TCase *tc;
Suite *s = suite_create("shm");
add_tcase(s, tc, test_ipc_txrx_shm_timeout, 28);
add_tcase(s, tc, test_ipc_server_fail_shm, 7);
add_tcase(s, tc, test_ipc_txrx_shm_block, 7);
add_tcase(s, tc, test_ipc_txrx_shm_tmo, 7);
add_tcase(s, tc, test_ipc_fc_shm, 7);
add_tcase(s, tc, test_ipc_dispatch_shm, 15);
add_tcase(s, tc, test_ipc_stress_test_shm, 15);
add_tcase(s, tc, test_ipc_bulk_events_shm, 15);
add_tcase(s, tc, test_ipc_exit_shm, 6);
add_tcase(s, tc, test_ipc_event_on_created_shm, 9);
add_tcase(s, tc, test_ipc_service_ref_count_shm, 9);
add_tcase(s, tc, test_ipc_stress_connections_shm, 3600 /* ? */);
#ifdef HAVE_FAILURE_INJECTION
add_tcase(s, tc, test_ipcc_truncate_when_unlink_fails_shm, 8);
#endif
return s;
}
static Suite *
make_soc_suite(void)
{
Suite *s = suite_create("socket");
TCase *tc;
add_tcase(s, tc, test_ipc_txrx_us_timeout, 28);
/* Commented out for the moment as space in /dev/shm on the CI machines
causes random failures */
/* add_tcase(s, tc, test_ipc_max_dgram_size, 30); */
add_tcase(s, tc, test_ipc_server_fail_soc, 7);
add_tcase(s, tc, test_ipc_txrx_us_block, 7);
add_tcase(s, tc, test_ipc_txrx_us_tmo, 7);
add_tcase(s, tc, test_ipc_fc_us, 7);
add_tcase(s, tc, test_ipc_exit_us, 6);
add_tcase(s, tc, test_ipc_dispatch_us, 15);
#ifndef __clang__ /* see variable length array in structure' at the top */
add_tcase(s, tc, test_ipc_stress_test_us, 58);
#endif
add_tcase(s, tc, test_ipc_bulk_events_us, 15);
add_tcase(s, tc, test_ipc_event_on_created_us, 9);
add_tcase(s, tc, test_ipc_disconnect_after_created_us, 9);
add_tcase(s, tc, test_ipc_service_ref_count_us, 9);
add_tcase(s, tc, test_ipc_stress_connections_us, 3600 /* ? */);
return s;
}
int32_t
main(void)
{
int32_t number_failed;
SRunner *sr;
Suite *s;
int32_t do_shm_tests = QB_TRUE;
set_ipc_name("ipc_test");
#ifdef DISABLE_IPC_SHM
do_shm_tests = QB_FALSE;
#endif /* DISABLE_IPC_SHM */
s = make_soc_suite();
sr = srunner_create(s);
if (do_shm_tests) {
srunner_add_suite(sr, make_shm_suite());
}
qb_log_init("check", LOG_USER, LOG_EMERG);
atexit(qb_log_fini);
qb_log_ctl(QB_LOG_SYSLOG, QB_LOG_CONF_ENABLED, QB_FALSE);
qb_log_filter_ctl(QB_LOG_STDERR, QB_LOG_FILTER_ADD,
QB_LOG_FILTER_FILE, "*", LOG_TRACE);
qb_log_ctl(QB_LOG_STDERR, QB_LOG_CONF_ENABLED, QB_TRUE);
qb_log_format_set(QB_LOG_STDERR, "lib/%f|%l| %b");
srunner_run_all(sr, CK_VERBOSE);
number_failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (number_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Jan 25, 7:08 AM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1321615
Default Alt Text
(40 KB)
Attached To
Mode
rQ LibQB
Attached
Detach File
Event Timeline
Log In to Comment