Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/libknet/links_acl_ip.c b/libknet/links_acl_ip.c
index 0f269ef1..0f9c0f7e 100644
--- a/libknet/links_acl_ip.c
+++ b/libknet/links_acl_ip.c
@@ -1,310 +1,302 @@
/*
* Copyright (C) 2016-2020 Red Hat, Inc. All rights reserved.
*
* Author: Christine Caulfield <ccaulfie@redhat.com>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "internals.h"
+#include "netutils.h"
#include "logging.h"
#include "transports.h"
#include "links_acl.h"
#include "links_acl_ip.h"
struct ip_acl_match_entry {
check_type_t type;
check_acceptreject_t acceptreject;
struct sockaddr_storage addr1; /* Actual IP address, mask top or low IP */
struct sockaddr_storage addr2; /* high IP address or address bitmask */
struct ip_acl_match_entry *next;
};
-/*
- * s6_addr32 is not defined in BSD userland, only kernel.
- * definition is the same as linux and it works fine for
- * what we need.
- */
-#ifndef s6_addr32
-#define s6_addr32 __u6_addr.__u6_addr32
-#endif
-
/*
* IPv4 See if the address we have matches the current match entry
*/
static int ip_matches_v4(struct sockaddr_storage *checkip, struct ip_acl_match_entry *match_entry)
{
struct sockaddr_in *ip_to_check;
struct sockaddr_in *match1;
struct sockaddr_in *match2;
ip_to_check = (struct sockaddr_in *)checkip;
match1 = (struct sockaddr_in *)&match_entry->addr1;
match2 = (struct sockaddr_in *)&match_entry->addr2;
switch(match_entry->type) {
case CHECK_TYPE_ADDRESS:
if (ip_to_check->sin_addr.s_addr == match1->sin_addr.s_addr)
return 1;
break;
case CHECK_TYPE_MASK:
if ((ip_to_check->sin_addr.s_addr & match2->sin_addr.s_addr) ==
match1->sin_addr.s_addr)
return 1;
break;
case CHECK_TYPE_RANGE:
if ((ntohl(ip_to_check->sin_addr.s_addr) >= ntohl(match1->sin_addr.s_addr)) &&
(ntohl(ip_to_check->sin_addr.s_addr) <= ntohl(match2->sin_addr.s_addr)))
return 1;
break;
}
return 0;
}
/*
* Compare two IPv6 addresses
*/
static int ip6addr_cmp(struct in6_addr *a, struct in6_addr *b)
{
uint64_t a_high, a_low;
uint64_t b_high, b_low;
a_high = ((uint64_t)htonl(a->s6_addr32[0]) << 32) | (uint64_t)htonl(a->s6_addr32[1]);
a_low = ((uint64_t)htonl(a->s6_addr32[2]) << 32) | (uint64_t)htonl(a->s6_addr32[3]);
b_high = ((uint64_t)htonl(b->s6_addr32[0]) << 32) | (uint64_t)htonl(b->s6_addr32[1]);
b_low = ((uint64_t)htonl(b->s6_addr32[2]) << 32) | (uint64_t)htonl(b->s6_addr32[3]);
if (a_high > b_high)
return 1;
if (a_high < b_high)
return -1;
if (a_low > b_low)
return 1;
if (a_low < b_low)
return -1;
return 0;
}
/*
* IPv6 See if the address we have matches the current match entry
*/
static int ip_matches_v6(struct sockaddr_storage *checkip, struct ip_acl_match_entry *match_entry)
{
struct sockaddr_in6 *ip_to_check;
struct sockaddr_in6 *match1;
struct sockaddr_in6 *match2;
int i;
ip_to_check = (struct sockaddr_in6 *)checkip;
match1 = (struct sockaddr_in6 *)&match_entry->addr1;
match2 = (struct sockaddr_in6 *)&match_entry->addr2;
switch(match_entry->type) {
case CHECK_TYPE_ADDRESS:
if (!memcmp(ip_to_check->sin6_addr.s6_addr32, match1->sin6_addr.s6_addr32, sizeof(struct in6_addr)))
return 1;
break;
case CHECK_TYPE_MASK:
/*
* Note that this little loop will quit early if there is a non-match so the
* comparison might look backwards compared to the IPv4 one
*/
for (i=sizeof(struct in6_addr)/4-1; i>=0; i--) {
if ((ip_to_check->sin6_addr.s6_addr32[i] & match2->sin6_addr.s6_addr32[i]) !=
match1->sin6_addr.s6_addr32[i])
return 0;
}
return 1;
case CHECK_TYPE_RANGE:
if ((ip6addr_cmp(&ip_to_check->sin6_addr, &match1->sin6_addr) >= 0) &&
(ip6addr_cmp(&ip_to_check->sin6_addr, &match2->sin6_addr) <= 0))
return 1;
break;
}
return 0;
}
int ipcheck_validate(void *fd_tracker_match_entry_head, struct sockaddr_storage *checkip)
{
struct ip_acl_match_entry **match_entry_head = (struct ip_acl_match_entry **)fd_tracker_match_entry_head;
struct ip_acl_match_entry *match_entry = *match_entry_head;
int (*match_fn)(struct sockaddr_storage *checkip, struct ip_acl_match_entry *match_entry);
if (checkip->ss_family == AF_INET) {
match_fn = ip_matches_v4;
} else {
match_fn = ip_matches_v6;
}
while (match_entry) {
if (match_fn(checkip, match_entry)) {
if (match_entry->acceptreject == CHECK_ACCEPT)
return 1;
else
return 0;
}
match_entry = match_entry->next;
}
return 0; /* Default reject */
}
/*
* Routines to manuipulate access lists
*/
void ipcheck_rmall(void *fd_tracker_match_entry_head)
{
struct ip_acl_match_entry **match_entry_head = (struct ip_acl_match_entry **)fd_tracker_match_entry_head;
struct ip_acl_match_entry *next_match_entry;
struct ip_acl_match_entry *match_entry = *match_entry_head;
while (match_entry) {
next_match_entry = match_entry->next;
free(match_entry);
match_entry = next_match_entry;
}
*match_entry_head = NULL;
}
static struct ip_acl_match_entry *ipcheck_findmatch(struct ip_acl_match_entry **match_entry_head,
struct sockaddr_storage *ss1, struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject)
{
struct ip_acl_match_entry *match_entry = *match_entry_head;
while (match_entry) {
if ((!memcmp(&match_entry->addr1, ss1, sizeof(struct sockaddr_storage))) &&
(!memcmp(&match_entry->addr2, ss2, sizeof(struct sockaddr_storage))) &&
(match_entry->type == type) &&
(match_entry->acceptreject == acceptreject)) {
return match_entry;
}
match_entry = match_entry->next;
}
return NULL;
}
int ipcheck_rmip(void *fd_tracker_match_entry_head,
struct sockaddr_storage *ss1, struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject)
{
struct ip_acl_match_entry **match_entry_head = (struct ip_acl_match_entry **)fd_tracker_match_entry_head;
struct ip_acl_match_entry *next_match_entry = NULL;
struct ip_acl_match_entry *rm_match_entry;
struct ip_acl_match_entry *match_entry = *match_entry_head;
rm_match_entry = ipcheck_findmatch(match_entry_head, ss1, ss2, type, acceptreject);
if (!rm_match_entry) {
errno = ENOENT;
return -1;
}
while (match_entry) {
next_match_entry = match_entry->next;
/*
* we are removing the list head, be careful
*/
if (rm_match_entry == match_entry) {
*match_entry_head = next_match_entry;
free(match_entry);
break;
}
/*
* the next one is the one we need to remove
*/
if (rm_match_entry == next_match_entry) {
match_entry->next = next_match_entry->next;
free(next_match_entry);
break;
}
match_entry = next_match_entry;
}
return 0;
}
int ipcheck_addip(void *fd_tracker_match_entry_head, int index,
struct sockaddr_storage *ss1, struct sockaddr_storage *ss2,
check_type_t type, check_acceptreject_t acceptreject)
{
struct ip_acl_match_entry **match_entry_head = (struct ip_acl_match_entry **)fd_tracker_match_entry_head;
struct ip_acl_match_entry *new_match_entry;
struct ip_acl_match_entry *match_entry = *match_entry_head;
int i = 0;
if (ipcheck_findmatch(match_entry_head, ss1, ss2, type, acceptreject) != NULL) {
errno = EEXIST;
return -1;
}
new_match_entry = malloc(sizeof(struct ip_acl_match_entry));
if (!new_match_entry) {
return -1;
}
memmove(&new_match_entry->addr1, ss1, sizeof(struct sockaddr_storage));
memmove(&new_match_entry->addr2, ss2, sizeof(struct sockaddr_storage));
new_match_entry->type = type;
new_match_entry->acceptreject = acceptreject;
new_match_entry->next = NULL;
if (match_entry) {
/*
* special case for index 0, since we need to update
* the head of the list
*/
if (index == 0) {
*match_entry_head = new_match_entry;
new_match_entry->next = match_entry;
} else {
/*
* find the end of the list or stop at "index"
*/
while (match_entry->next) {
match_entry = match_entry->next;
if (i == index) {
break;
}
i++;
}
/*
* insert if there are more entries in the list
*/
if (match_entry->next) {
new_match_entry->next = match_entry->next;
}
/*
* add if we are at the end
*/
match_entry->next = new_match_entry;
}
} else {
/*
* first entry in the list
*/
*match_entry_head = new_match_entry;
}
return 0;
}
diff --git a/libknet/netutils.c b/libknet/netutils.c
index 754e1984..25bba33f 100644
--- a/libknet/netutils.c
+++ b/libknet/netutils.c
@@ -1,176 +1,133 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <errno.h>
#include <string.h>
#include "internals.h"
#include "netutils.h"
-static int is_v4_mapped(const struct sockaddr_storage *ss, socklen_t salen)
+int cmpaddr(const struct sockaddr_storage *ss1, const struct sockaddr_storage *ss2)
{
- char map[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };
- struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *) ss;
- return memcmp(&addr6->sin6_addr, map, 12);
-}
-
-int cmpaddr(const struct sockaddr_storage *ss1, socklen_t sslen1,
- const struct sockaddr_storage *ss2, socklen_t sslen2)
-{
- int ss1_offset = 0, ss2_offset = 0;
struct sockaddr_in6 *ss1_addr6 = (struct sockaddr_in6 *)ss1;
struct sockaddr_in6 *ss2_addr6 = (struct sockaddr_in6 *)ss2;
struct sockaddr_in *ss1_addr = (struct sockaddr_in *)ss1;
struct sockaddr_in *ss2_addr = (struct sockaddr_in *)ss2;
- char *addr1, *addr2;
- if (ss1->ss_family == ss2->ss_family) {
- return memcmp(ss1, ss2, sslen1);
+ if (ss1->ss_family != ss2->ss_family) {
+ return -1;
}
if (ss1->ss_family == AF_INET6) {
- if (is_v4_mapped(ss1, sslen1)) {
- return 1;
- }
- addr1 = (char *)&ss1_addr6->sin6_addr;
- ss1_offset = 12;
- } else {
- addr1 = (char *)&ss1_addr->sin_addr;
- }
-
- if (ss2->ss_family == AF_INET6) {
- if (is_v4_mapped(ss2, sslen2)) {
- return 1;
- }
- addr2 = (char *)&ss2_addr6->sin6_addr;
- ss2_offset = 12;
- } else {
- addr2 = (char *)&ss2_addr->sin_addr;
+ return memcmp(&ss1_addr6->sin6_addr.s6_addr32, &ss2_addr6->sin6_addr.s6_addr32, sizeof(struct in6_addr));
}
- return memcmp(addr1+ss1_offset, addr2+ss2_offset, 4);
-}
-
-int cpyaddrport(struct sockaddr_storage *dst, const struct sockaddr_storage *src)
-{
- struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
- struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
-
- memset(dst, 0, sizeof(struct sockaddr_storage));
-
- if (src->ss_family == AF_INET6) {
- dst->ss_family = src->ss_family;
- memmove(&dst_addr6->sin6_port, &src_addr6->sin6_port, sizeof(in_port_t));
- memmove(&dst_addr6->sin6_addr, &src_addr6->sin6_addr, sizeof(struct in6_addr));
- } else {
- memmove(dst, src, sizeof(struct sockaddr_in));
- }
- return 0;
+ return memcmp(&ss1_addr->sin_addr.s_addr, &ss2_addr->sin_addr.s_addr, sizeof(struct in_addr));
}
socklen_t sockaddr_len(const struct sockaddr_storage *ss)
{
if (ss->ss_family == AF_INET) {
return sizeof(struct sockaddr_in);
} else {
return sizeof(struct sockaddr_in6);
}
}
/*
* exported APIs
*/
int knet_strtoaddr(const char *host, const char *port, struct sockaddr_storage *ss, socklen_t sslen)
{
int err;
struct addrinfo hints;
struct addrinfo *result = NULL;
if (!host) {
errno = EINVAL;
return -1;
}
if (!port) {
errno = EINVAL;
return -1;
}
if (!ss) {
errno = EINVAL;
return -1;
}
if (!sslen) {
errno = EINVAL;
return -1;
}
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_NUMERICHOST | AI_NUMERICSERV;
err = getaddrinfo(host, port, &hints, &result);
if (!err) {
memmove(ss, result->ai_addr,
(sslen < result->ai_addrlen) ? sslen : result->ai_addrlen);
freeaddrinfo(result);
}
if (!err)
errno = 0;
return err;
}
int knet_addrtostr(const struct sockaddr_storage *ss, socklen_t sslen,
char *addr_buf, size_t addr_buf_size,
char *port_buf, size_t port_buf_size)
{
int err;
if (!ss) {
errno = EINVAL;
return -1;
}
if (!sslen) {
errno = EINVAL;
return -1;
}
if (!addr_buf) {
errno = EINVAL;
return -1;
}
if (!port_buf) {
errno = EINVAL;
return -1;
}
err = getnameinfo((struct sockaddr *)ss, sockaddr_len(ss),
addr_buf, addr_buf_size,
port_buf, port_buf_size,
NI_NUMERICHOST | NI_NUMERICSERV);
if (!err)
errno = 0;
return err;
}
diff --git a/libknet/netutils.h b/libknet/netutils.h
index ee10b2b1..6395398e 100644
--- a/libknet/netutils.h
+++ b/libknet/netutils.h
@@ -1,19 +1,29 @@
/*
* Copyright (C) 2010-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#ifndef __KNET_NETUTILS_H__
#define __KNET_NETUTILS_H__
#include <sys/socket.h>
+#include <netinet/in.h>
-int cmpaddr(const struct sockaddr_storage *ss1, socklen_t sslen1, const struct sockaddr_storage *ss2, socklen_t sslen2);
-int cpyaddrport(struct sockaddr_storage *dst, const struct sockaddr_storage *src);
+/*
+ * s6_addr32 is not defined in BSD userland, only kernel.
+ * definition is the same as linux and it works fine for
+ * what we need.
+ */
+
+#ifndef s6_addr32
+#define s6_addr32 __u6_addr.__u6_addr32
+#endif
+
+int cmpaddr(const struct sockaddr_storage *ss1, const struct sockaddr_storage *ss2);
socklen_t sockaddr_len(const struct sockaddr_storage *ss);
#endif
diff --git a/libknet/threads_rx.c b/libknet/threads_rx.c
index 91f797e7..ad9d9fd3 100644
--- a/libknet/threads_rx.c
+++ b/libknet/threads_rx.c
@@ -1,1057 +1,1062 @@
/*
* Copyright (C) 2012-2020 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/uio.h>
#include <pthread.h>
#include "compat.h"
#include "compress.h"
#include "crypto.h"
#include "host.h"
#include "links.h"
#include "links_acl.h"
#include "logging.h"
#include "transports.h"
#include "transport_common.h"
#include "threads_common.h"
#include "threads_heartbeat.h"
#include "threads_rx.h"
#include "netutils.h"
/*
* RECV
*/
/*
* return 1 if a > b
* return -1 if b > a
* return 0 if they are equal
*/
static inline int timecmp(struct timespec a, struct timespec b)
{
if (a.tv_sec != b.tv_sec) {
if (a.tv_sec > b.tv_sec) {
return 1;
} else {
return -1;
}
} else {
if (a.tv_nsec > b.tv_nsec) {
return 1;
} else if (a.tv_nsec < b.tv_nsec) {
return -1;
} else {
return 0;
}
}
}
/*
* this functions needs to return an index (0 to 7)
* to a knet_host_defrag_buf. (-1 on errors)
*/
static int find_pckt_defrag_buf(knet_handle_t knet_h, struct knet_header *inbuf)
{
struct knet_host *src_host = knet_h->host_index[inbuf->kh_node];
int i, oldest;
/*
* check if there is a buffer already in use handling the same seq_num
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (src_host->defrag_buf[i].in_use) {
if (src_host->defrag_buf[i].pckt_seq == inbuf->khp_data_seq_num) {
return i;
}
}
}
/*
* If there is no buffer that's handling the current seq_num
* either it's new or it's been reclaimed already.
* check if it's been reclaimed/seen before using the defrag circular
* buffer. If the pckt has been seen before, the buffer expired (ETIME)
* and there is no point to try to defrag it again.
*/
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 1, 0)) {
errno = ETIME;
return -1;
}
/*
* register the pckt as seen
*/
_seq_num_set(src_host, inbuf->khp_data_seq_num, 1);
/*
* see if there is a free buffer
*/
for (i = 0; i < KNET_MAX_LINK; i++) {
if (!src_host->defrag_buf[i].in_use) {
return i;
}
}
/*
* at this point, there are no free buffers, the pckt is new
* and we need to reclaim a buffer, and we will take the one
* with the oldest timestamp. It's as good as any.
*/
oldest = 0;
for (i = 0; i < KNET_MAX_LINK; i++) {
if (timecmp(src_host->defrag_buf[i].last_update, src_host->defrag_buf[oldest].last_update) < 0) {
oldest = i;
}
}
src_host->defrag_buf[oldest].in_use = 0;
return oldest;
}
static int pckt_defrag(knet_handle_t knet_h, struct knet_header *inbuf, ssize_t *len)
{
struct knet_host_defrag_buf *defrag_buf;
int defrag_buf_idx;
defrag_buf_idx = find_pckt_defrag_buf(knet_h, inbuf);
if (defrag_buf_idx < 0) {
return 1;
}
defrag_buf = &knet_h->host_index[inbuf->kh_node]->defrag_buf[defrag_buf_idx];
/*
* if the buf is not is use, then make sure it's clean
*/
if (!defrag_buf->in_use) {
memset(defrag_buf, 0, sizeof(struct knet_host_defrag_buf));
defrag_buf->in_use = 1;
defrag_buf->pckt_seq = inbuf->khp_data_seq_num;
}
/*
* update timestamp on the buffer
*/
clock_gettime(CLOCK_MONOTONIC, &defrag_buf->last_update);
/*
* check if we already received this fragment
*/
if (defrag_buf->frag_map[inbuf->khp_data_frag_seq]) {
/*
* if we have received this fragment and we didn't clear the buffer
* it means that we don't have all fragments yet
*/
return 1;
}
/*
* we need to handle the last packet with gloves due to its different size
*/
if (inbuf->khp_data_frag_seq == inbuf->khp_data_frag_num) {
defrag_buf->last_frag_size = *len;
/*
* in the event when the last packet arrives first,
* we still don't know the offset vs the other fragments (based on MTU),
* so we store the fragment at the end of the buffer where it's safe
* and take a copy of the len so that we can restore its offset later.
* remember we can't use the local MTU for this calculation because pMTU
* can be asymettric between the same hosts.
*/
if (!defrag_buf->frag_size) {
defrag_buf->last_first = 1;
memmove(defrag_buf->buf + (KNET_MAX_PACKET_SIZE - *len),
inbuf->khp_data_userdata,
*len);
}
} else {
defrag_buf->frag_size = *len;
}
if (defrag_buf->frag_size) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_seq - 1) * defrag_buf->frag_size),
inbuf->khp_data_userdata, *len);
}
defrag_buf->frag_recv++;
defrag_buf->frag_map[inbuf->khp_data_frag_seq] = 1;
/*
* check if we received all the fragments
*/
if (defrag_buf->frag_recv == inbuf->khp_data_frag_num) {
/*
* special case the last pckt
*/
if (defrag_buf->last_first) {
memmove(defrag_buf->buf + ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size),
defrag_buf->buf + (KNET_MAX_PACKET_SIZE - defrag_buf->last_frag_size),
defrag_buf->last_frag_size);
}
/*
* recalculate packet lenght
*/
*len = ((inbuf->khp_data_frag_num - 1) * defrag_buf->frag_size) + defrag_buf->last_frag_size;
/*
* copy the pckt back in the user data
*/
memmove(inbuf->khp_data_userdata, defrag_buf->buf, *len);
/*
* free this buffer
*/
defrag_buf->in_use = 0;
return 0;
}
return 1;
}
static void _parse_recv_from_links(knet_handle_t knet_h, int sockfd, const struct knet_mmsghdr *msg)
{
int err = 0, savederrno = 0, stats_err = 0;
ssize_t outlen;
struct knet_host *src_host;
struct knet_link *src_link;
unsigned long long latency_last;
knet_node_id_t dst_host_ids[KNET_MAX_HOST];
size_t dst_host_ids_entries = 0;
int bcast = 1;
uint64_t decrypt_time = 0;
struct timespec recvtime;
struct knet_header *inbuf = msg->msg_hdr.msg_iov->iov_base;
unsigned char *outbuf = (unsigned char *)msg->msg_hdr.msg_iov->iov_base;
ssize_t len = msg->msg_len;
struct knet_hostinfo *knet_hostinfo;
struct iovec iov_out[1];
int8_t channel;
- struct sockaddr_storage pckt_src;
seq_num_t recv_seq_num;
int wipe_bufs = 0;
- int try_decrypt = 0, decrypted = 0, i;
+ int try_decrypt = 0, decrypted = 0, i, found_link = 0;
for (i = 1; i <= KNET_MAX_CRYPTO_INSTANCES; i++) {
if (knet_h->crypto_instance[i]) {
try_decrypt = 1;
break;
}
}
if ((!try_decrypt) && (knet_h->crypto_only == KNET_CRYPTO_RX_DISALLOW_CLEAR_TRAFFIC)) {
log_debug(knet_h, KNET_SUB_RX, "RX thread configured to accept only crypto packets, but no crypto configs are configured!");
return;
}
if (try_decrypt) {
struct timespec start_time;
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
if (crypto_authenticate_and_decrypt(knet_h,
(unsigned char *)inbuf,
len,
knet_h->recv_from_links_buf_decrypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to decrypt/auth packet");
if (knet_h->crypto_only == KNET_CRYPTO_RX_DISALLOW_CLEAR_TRAFFIC) {
return;
}
log_debug(knet_h, KNET_SUB_RX, "Attempting to process packet as clear data");
} else {
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &decrypt_time);
len = outlen;
inbuf = (struct knet_header *)knet_h->recv_from_links_buf_decrypt;
decrypted = 1;
}
}
if (len < (ssize_t)(KNET_HEADER_SIZE + 1)) {
log_debug(knet_h, KNET_SUB_RX, "Packet is too short: %ld", (long)len);
return;
}
if (inbuf->kh_version != KNET_HEADER_VERSION) {
log_debug(knet_h, KNET_SUB_RX, "Packet version does not match");
return;
}
inbuf->kh_node = ntohs(inbuf->kh_node);
src_host = knet_h->host_index[inbuf->kh_node];
if (src_host == NULL) { /* host not found */
log_debug(knet_h, KNET_SUB_RX, "Unable to find source host for this packet");
return;
}
- src_link = src_host->link +
- (inbuf->khp_ping_link % KNET_MAX_LINK);
if ((inbuf->kh_type & KNET_HEADER_TYPE_PMSK) != 0) {
+ /* be aware this works only for PING / PONG and PMTUd packets! */
+ src_link = src_host->link +
+ (inbuf->khp_ping_link % KNET_MAX_LINK);
if (src_link->dynamic == KNET_LINK_DYNIP) {
- /*
- * cpyaddrport will only copy address and port of the incoming
- * packet and strip extra bits such as flow and scopeid
- */
- cpyaddrport(&pckt_src, msg->msg_hdr.msg_name);
-
- if (cmpaddr(&src_link->dst_addr, sockaddr_len(&src_link->dst_addr),
- &pckt_src, sockaddr_len(&pckt_src)) != 0) {
+ if (cmpaddr(&src_link->dst_addr, msg->msg_hdr.msg_name) != 0) {
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u appears to have changed ip address",
src_host->host_id, src_link->link_id);
- memmove(&src_link->dst_addr, &pckt_src, sizeof(struct sockaddr_storage));
- if (knet_addrtostr(&src_link->dst_addr, sockaddr_len(msg->msg_hdr.msg_name),
+ memmove(&src_link->dst_addr, msg->msg_hdr.msg_name, sizeof(struct sockaddr_storage));
+ if (knet_addrtostr(&src_link->dst_addr, sockaddr_len(&src_link->dst_addr),
src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN,
src_link->status.dst_port, KNET_MAX_PORT_LEN) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to resolve ???");
snprintf(src_link->status.dst_ipaddr, KNET_MAX_HOST_LEN - 1, "Unknown!!!");
snprintf(src_link->status.dst_port, KNET_MAX_PORT_LEN - 1, "??");
} else {
log_info(knet_h, KNET_SUB_RX,
"host: %u link: %u new connection established from: %s %s",
src_host->host_id, src_link->link_id,
src_link->status.dst_ipaddr, src_link->status.dst_port);
}
}
/*
* transport has already accepted the connection here
* otherwise we would not be receiving packets
*/
transport_link_dyn_connect(knet_h, sockfd, src_link);
}
+ } else { /* data packet */
+ for (i = 0; i < KNET_MAX_LINK; i++) {
+ src_link = &src_host->link[i];
+ if (cmpaddr(&src_link->dst_addr, msg->msg_hdr.msg_name) == 0) {
+ found_link = 1;
+ break;
+ }
+ }
+ if (!found_link) {
+ log_debug(knet_h, KNET_SUB_RX, "Unable to determine source link for data packet. Discarding packet.");
+ return;
+ }
}
stats_err = pthread_mutex_lock(&src_link->link_stats_mutex);
if (stats_err) {
log_err(knet_h, KNET_SUB_RX, "Unable to get stats mutex lock for host %u link %u: %s",
src_host->host_id, src_link->link_id, strerror(savederrno));
return;
}
switch (inbuf->kh_type) {
case KNET_HEADER_TYPE_HOST_INFO:
case KNET_HEADER_TYPE_DATA:
if (!src_host->status.reachable) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Source host %u not reachable yet. Discarding packet.", src_host->host_id);
return;
}
inbuf->khp_data_seq_num = ntohs(inbuf->khp_data_seq_num);
channel = inbuf->khp_data_channel;
src_host->got_data = 1;
src_link->status.stats.rx_data_packets++;
src_link->status.stats.rx_data_bytes += len;
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
if (src_host->link_handler_policy != KNET_LINK_POLICY_ACTIVE) {
log_debug(knet_h, KNET_SUB_RX, "Packet has already been delivered");
}
return;
}
if (inbuf->khp_data_frag_num > 1) {
/*
* len as received from the socket also includes extra stuff
* that the defrag code doesn't care about. So strip it
* here and readd only for repadding once we are done
* defragging
*/
len = len - KNET_HEADER_DATA_SIZE;
if (pckt_defrag(knet_h, inbuf, &len)) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
len = len + KNET_HEADER_DATA_SIZE;
}
if (inbuf->khp_data_compress) {
ssize_t decmp_outlen = KNET_DATABUFSIZE_COMPRESS;
struct timespec start_time;
struct timespec end_time;
uint64_t compress_time;
clock_gettime(CLOCK_MONOTONIC, &start_time);
err = decompress(knet_h, inbuf->khp_data_compress,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
knet_h->recv_from_links_buf_decompress,
&decmp_outlen);
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
return;
}
clock_gettime(CLOCK_MONOTONIC, &end_time);
timespec_diff(start_time, end_time, &compress_time);
if (!err) {
/* Collect stats */
if (compress_time < knet_h->stats.rx_compress_time_min) {
knet_h->stats.rx_compress_time_min = compress_time;
}
if (compress_time > knet_h->stats.rx_compress_time_max) {
knet_h->stats.rx_compress_time_max = compress_time;
}
knet_h->stats.rx_compress_time_ave =
(knet_h->stats.rx_compress_time_ave * knet_h->stats.rx_compressed_packets +
compress_time) / (knet_h->stats.rx_compressed_packets+1);
knet_h->stats.rx_compressed_packets++;
knet_h->stats.rx_compressed_original_bytes += decmp_outlen;
knet_h->stats.rx_compressed_size_bytes += len - KNET_HEADER_SIZE;
memmove(inbuf->khp_data_userdata, knet_h->recv_from_links_buf_decompress, decmp_outlen);
len = decmp_outlen + KNET_HEADER_DATA_SIZE;
} else {
knet_h->stats.rx_failed_to_decompress++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_warn(knet_h, KNET_SUB_COMPRESS, "Unable to decompress packet (%d): %s",
err, strerror(errno));
return;
}
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
if (decrypted) {
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
return;
}
/* Only update the crypto overhead for data packets. Mainly to be
consistent with TX */
if (decrypt_time < knet_h->stats.rx_crypt_time_min) {
knet_h->stats.rx_crypt_time_min = decrypt_time;
}
if (decrypt_time > knet_h->stats.rx_crypt_time_max) {
knet_h->stats.rx_crypt_time_max = decrypt_time;
}
knet_h->stats.rx_crypt_time_ave =
(knet_h->stats.rx_crypt_time_ave * knet_h->stats.rx_crypt_packets +
decrypt_time) / (knet_h->stats.rx_crypt_packets+1);
knet_h->stats.rx_crypt_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
if (knet_h->enabled != 1) /* data forward is disabled */
break;
if (knet_h->dst_host_filter_fn) {
size_t host_idx;
int found = 0;
bcast = knet_h->dst_host_filter_fn(
knet_h->dst_host_filter_fn_private_data,
(const unsigned char *)inbuf->khp_data_userdata,
len - KNET_HEADER_DATA_SIZE,
KNET_NOTIFY_RX,
knet_h->host_id,
inbuf->kh_node,
&channel,
dst_host_ids,
&dst_host_ids_entries);
if (bcast < 0) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Error from dst_host_filter_fn: %d", bcast);
return;
}
if ((!bcast) && (!dst_host_ids_entries)) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Message is unicast but no dst_host_ids_entries");
return;
}
/* check if we are dst for this packet */
if (!bcast) {
if (dst_host_ids_entries > KNET_MAX_HOST) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "dst_host_filter_fn returned too many destinations");
return;
}
for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) {
if (dst_host_ids[host_idx] == knet_h->host_id) {
found = 1;
break;
}
}
if (!found) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX, "Packet is not for us");
return;
}
}
}
}
if (inbuf->kh_type == KNET_HEADER_TYPE_DATA) {
if (!knet_h->sockfd[channel].in_use) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
log_debug(knet_h, KNET_SUB_RX,
"received packet for channel %d but there is no local sock connected",
channel);
return;
}
outlen = 0;
memset(iov_out, 0, sizeof(iov_out));
retry:
iov_out[0].iov_base = (void *) inbuf->khp_data_userdata + outlen;
iov_out[0].iov_len = len - (outlen + KNET_HEADER_DATA_SIZE);
outlen = writev(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], iov_out, 1);
if ((outlen > 0) && (outlen < (ssize_t)iov_out[0].iov_len)) {
log_debug(knet_h, KNET_SUB_RX,
"Unable to send all data to the application in one go. Expected: %zu Sent: %zd\n",
iov_out[0].iov_len, outlen);
goto retry;
}
if (outlen <= 0) {
knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data,
knet_h->sockfd[channel].sockfd[0],
channel,
KNET_NOTIFY_RX,
outlen,
errno);
pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
if ((size_t)outlen == iov_out[0].iov_len) {
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
}
} else { /* HOSTINFO */
knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata;
if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) {
knet_hostinfo->khi_dst_node_id = ntohs(knet_hostinfo->khi_dst_node_id);
}
if (!_seq_num_lookup(src_host, inbuf->khp_data_seq_num, 0, 0)) {
pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
_seq_num_set(src_host, inbuf->khp_data_seq_num, 0);
switch(knet_hostinfo->khi_type) {
case KNET_HOSTINFO_TYPE_LINK_UP_DOWN:
break;
case KNET_HOSTINFO_TYPE_LINK_TABLE:
break;
default:
log_warn(knet_h, KNET_SUB_RX, "Receiving unknown host info message from host %u", src_host->host_id);
break;
}
}
break;
case KNET_HEADER_TYPE_PING:
outlen = KNET_HEADER_PING_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PONG;
inbuf->kh_node = htons(knet_h->host_id);
recv_seq_num = ntohs(inbuf->khp_ping_seq_num);
src_link->status.stats.rx_ping_packets++;
src_link->status.stats.rx_ping_bytes += len;
wipe_bufs = 0;
if (!inbuf->khp_ping_timed) {
/*
* we might be receiving this message from all links, but we want
* to process it only the first time
*/
if (recv_seq_num != src_host->untimed_rx_seq_num) {
/*
* cache the untimed seq num
*/
src_host->untimed_rx_seq_num = recv_seq_num;
/*
* if the host has received data in between
* untimed ping, then we don't need to wipe the bufs
*/
if (src_host->got_data) {
src_host->got_data = 0;
wipe_bufs = 0;
} else {
wipe_bufs = 1;
}
}
_seq_num_lookup(src_host, recv_seq_num, 0, wipe_bufs);
} else {
/*
* pings always arrives in bursts over all the link
* catch the first of them to cache the seq num and
* avoid duplicate processing
*/
if (recv_seq_num != src_host->timed_rx_seq_num) {
src_host->timed_rx_seq_num = recv_seq_num;
if (recv_seq_num == 0) {
_seq_num_lookup(src_host, recv_seq_num, 0, 1);
}
}
}
if (knet_h->crypto_in_use_config) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt pong packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
break;
}
knet_h->stats_extra.tx_crypt_pong_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
retry_pong:
if (src_link->transport_connected) {
if (transport_get_connection_oriented(knet_h, src_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport, src_link->outsock, len, savederrno);
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send pong reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pong_errors++;
break;
case 0: /* ignore error and continue */
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pong_retries++;
goto retry_pong;
break;
}
}
src_link->status.stats.tx_pong_packets++;
src_link->status.stats.tx_pong_bytes += outlen;
}
break;
case KNET_HEADER_TYPE_PONG:
src_link->status.stats.rx_pong_packets++;
src_link->status.stats.rx_pong_bytes += len;
clock_gettime(CLOCK_MONOTONIC, &src_link->status.pong_last);
memmove(&recvtime, &inbuf->khp_ping_time[0], sizeof(struct timespec));
timespec_diff(recvtime,
src_link->status.pong_last, &latency_last);
if ((latency_last / 1000llu) > src_link->pong_timeout) {
log_debug(knet_h, KNET_SUB_RX,
"Incoming pong packet from host: %u link: %u has higher latency than pong_timeout. Discarding",
src_host->host_id, src_link->link_id);
} else {
/*
* in words : ('previous mean' * '(count -1)') + 'new value') / 'count'
*/
src_link->status.stats.latency_samples++;
/*
* limit to max_samples (precision)
*/
if (src_link->status.stats.latency_samples >= src_link->latency_max_samples) {
src_link->status.stats.latency_samples = src_link->latency_max_samples;
}
src_link->status.stats.latency_ave =
(((src_link->status.stats.latency_ave * (src_link->status.stats.latency_samples - 1)) + (latency_last / 1000llu)) / src_link->status.stats.latency_samples);
if (src_link->status.stats.latency_ave < src_link->pong_timeout_adj) {
if (!src_link->status.connected) {
if (src_link->received_pong >= src_link->pong_count) {
log_info(knet_h, KNET_SUB_RX, "host: %u link: %u is up",
src_host->host_id, src_link->link_id);
_link_updown(knet_h, src_host->host_id, src_link->link_id, src_link->status.enabled, 1, 0);
} else {
src_link->received_pong++;
log_debug(knet_h, KNET_SUB_RX, "host: %u link: %u received pong: %u",
src_host->host_id, src_link->link_id, src_link->received_pong);
}
}
}
/* Calculate latency stats */
if (src_link->status.stats.latency_ave > src_link->status.stats.latency_max) {
src_link->status.stats.latency_max = src_link->status.stats.latency_ave;
}
if (src_link->status.stats.latency_ave < src_link->status.stats.latency_min) {
src_link->status.stats.latency_min = src_link->status.stats.latency_ave;
}
}
break;
case KNET_HEADER_TYPE_PMTUD:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
outlen = KNET_HEADER_PMTUD_SIZE;
inbuf->kh_type = KNET_HEADER_TYPE_PMTUD_REPLY;
inbuf->kh_node = htons(knet_h->host_id);
if (knet_h->crypto_in_use_config) {
if (crypto_encrypt_and_sign(knet_h,
(const unsigned char *)inbuf,
outlen,
knet_h->recv_from_links_buf_crypt,
&outlen) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to encrypt PMTUd reply packet");
break;
}
outbuf = knet_h->recv_from_links_buf_crypt;
stats_err = pthread_mutex_lock(&knet_h->handle_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
break;
}
knet_h->stats_extra.tx_crypt_pmtu_reply_packets++;
pthread_mutex_unlock(&knet_h->handle_stats_mutex);
}
/* Unlock so we don't deadlock with tx_mutex */
pthread_mutex_unlock(&src_link->link_stats_mutex);
savederrno = pthread_mutex_lock(&knet_h->tx_mutex);
if (savederrno) {
log_err(knet_h, KNET_SUB_RX, "Unable to get TX mutex lock: %s", strerror(savederrno));
goto out_pmtud;
}
retry_pmtud:
if (src_link->transport_connected) {
if (transport_get_connection_oriented(knet_h, src_link->transport) == TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED) {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *) &src_link->dst_addr, sizeof(struct sockaddr_storage));
} else {
len = sendto(src_link->outsock, outbuf, outlen, MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0);
}
savederrno = errno;
if (len != outlen) {
err = transport_tx_sock_error(knet_h, src_link->transport, src_link->outsock, len, savederrno);
stats_err = pthread_mutex_lock(&src_link->link_stats_mutex);
if (stats_err < 0) {
log_err(knet_h, KNET_SUB_RX, "Unable to get mutex lock: %s", strerror(stats_err));
break;
}
switch(err) {
case -1: /* unrecoverable error */
log_debug(knet_h, KNET_SUB_RX,
"Unable to send PMTUd reply (sock: %d) packet (sendto): %d %s. recorded src ip: %s src port: %s dst ip: %s dst port: %s",
src_link->outsock, errno, strerror(errno),
src_link->status.src_ipaddr, src_link->status.src_port,
src_link->status.dst_ipaddr, src_link->status.dst_port);
src_link->status.stats.tx_pmtu_errors++;
break;
case 0: /* ignore error and continue */
src_link->status.stats.tx_pmtu_errors++;
break;
case 1: /* retry to send those same data */
src_link->status.stats.tx_pmtu_retries++;
pthread_mutex_unlock(&src_link->link_stats_mutex);
goto retry_pmtud;
break;
}
pthread_mutex_unlock(&src_link->link_stats_mutex);
}
}
pthread_mutex_unlock(&knet_h->tx_mutex);
out_pmtud:
return; /* Don't need to unlock link_stats_mutex */
case KNET_HEADER_TYPE_PMTUD_REPLY:
src_link->status.stats.rx_pmtu_packets++;
src_link->status.stats.rx_pmtu_bytes += len;
/* pmtud_mutex can't be acquired while we hold a link_stats_mutex (ordering) */
pthread_mutex_unlock(&src_link->link_stats_mutex);
if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get mutex lock");
break;
}
src_link->last_recv_mtu = inbuf->khp_pmtud_size;
pthread_cond_signal(&knet_h->pmtud_cond);
pthread_mutex_unlock(&knet_h->pmtud_mutex);
return;
default:
pthread_mutex_unlock(&src_link->link_stats_mutex);
return;
}
pthread_mutex_unlock(&src_link->link_stats_mutex);
}
static void _handle_recv_from_links(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
int err, savederrno;
int i, msg_recv, transport;
if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) {
log_debug(knet_h, KNET_SUB_RX, "Unable to get global read lock");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
/*
* this is normal if a fd got an event and before we grab the read lock
* and the link is removed by another thread
*/
goto exit_unlock;
}
transport = knet_h->knet_transport_fd_tracker[sockfd].transport;
/*
* reset msg_namelen to buffer size because after recvmmsg
* each msg_namelen will contain sizeof sockaddr_in or sockaddr_in6
*/
for (i = 0; i < PCKT_RX_BUFS; i++) {
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
}
msg_recv = _recvmmsg(sockfd, &msg[0], PCKT_RX_BUFS, MSG_DONTWAIT | MSG_NOSIGNAL);
savederrno = errno;
/*
* WARNING: man page for recvmmsg is wrong. Kernel implementation here:
* recvmmsg can return:
* -1 on error
* 0 if the previous run of recvmmsg recorded an error on the socket
* N number of messages (see exception below).
*
* If there is an error from recvmsg after receiving a frame or more, the recvmmsg
* loop is interrupted, error recorded in the socket (getsockopt(SO_ERROR) and
* it will be visibile in the next run.
*
* Need to be careful how we handle errors at this stage.
*
* error messages need to be handled on a per transport/protocol base
* at this point we have different layers of error handling
* - msg_recv < 0 -> error from this run
* msg_recv = 0 -> error from previous run and error on socket needs to be cleared
* - per-transport message data
* example: msg[i].msg_hdr.msg_flags & MSG_NOTIFICATION or msg_len for SCTP == EOF,
* but for UDP it is perfectly legal to receive a 0 bytes message.. go figure
* - NOTE: on SCTP MSG_NOTIFICATION we get msg_recv == PCKT_FRAG_MAX messages and no
* errno set. That means the error api needs to be able to abort the loop below.
*/
if (msg_recv <= 0) {
transport_rx_sock_error(knet_h, transport, sockfd, msg_recv, savederrno);
goto exit_unlock;
}
for (i = 0; i < msg_recv; i++) {
err = transport_rx_is_data(knet_h, transport, sockfd, &msg[i]);
/*
* TODO: make this section silent once we are confident
* all protocols packet handlers are good
*/
switch(err) {
case KNET_TRANSPORT_RX_ERROR: /* on error */
log_debug(knet_h, KNET_SUB_RX, "Transport reported error parsing packet");
goto exit_unlock;
break;
case KNET_TRANSPORT_RX_NOT_DATA_CONTINUE: /* packet is not data and we should continue the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, continue");
break;
case KNET_TRANSPORT_RX_NOT_DATA_STOP: /* packet is not data and we should STOP the packet process loop */
log_debug(knet_h, KNET_SUB_RX, "Transport reported no data, stop");
goto exit_unlock;
break;
case KNET_TRANSPORT_RX_IS_DATA: /* packet is data and should be parsed as such */
/*
* processing incoming packets vs access lists
*/
if ((knet_h->use_access_lists) &&
(transport_get_acl_type(knet_h, transport) == USE_GENERIC_ACL)) {
if (!check_validate(knet_h, sockfd, transport, msg[i].msg_hdr.msg_name)) {
char src_ipaddr[KNET_MAX_HOST_LEN];
char src_port[KNET_MAX_PORT_LEN];
memset(src_ipaddr, 0, KNET_MAX_HOST_LEN);
memset(src_port, 0, KNET_MAX_PORT_LEN);
if (knet_addrtostr(msg[i].msg_hdr.msg_name, sockaddr_len(msg[i].msg_hdr.msg_name),
src_ipaddr, KNET_MAX_HOST_LEN,
src_port, KNET_MAX_PORT_LEN) < 0) {
log_debug(knet_h, KNET_SUB_RX, "Packet rejected: unable to resolve host/port");
} else {
log_debug(knet_h, KNET_SUB_RX, "Packet rejected from %s/%s", src_ipaddr, src_port);
}
/*
* continue processing the other packets
*/
continue;
}
}
_parse_recv_from_links(knet_h, sockfd, &msg[i]);
break;
case KNET_TRANSPORT_RX_OOB_DATA_CONTINUE:
log_debug(knet_h, KNET_SUB_RX, "Transport is processing sock OOB data, continue");
break;
case KNET_TRANSPORT_RX_OOB_DATA_STOP:
log_debug(knet_h, KNET_SUB_RX, "Transport has completed processing sock OOB data, stop");
goto exit_unlock;
break;
}
}
exit_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
void *_handle_recv_from_links_thread(void *data)
{
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
struct sockaddr_storage address[PCKT_RX_BUFS];
struct knet_mmsghdr msg[PCKT_RX_BUFS];
struct iovec iov_in[PCKT_RX_BUFS];
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STARTED);
memset(&msg, 0, sizeof(msg));
memset(&events, 0, sizeof(events));
for (i = 0; i < PCKT_RX_BUFS; i++) {
iov_in[i].iov_base = (void *)knet_h->recv_from_links_buf[i];
iov_in[i].iov_len = KNET_DATABUFSIZE;
memset(&msg[i].msg_hdr, 0, sizeof(struct msghdr));
msg[i].msg_hdr.msg_name = &address[i];
msg[i].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage);
msg[i].msg_hdr.msg_iov = &iov_in[i];
msg[i].msg_hdr.msg_iovlen = 1;
}
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(knet_h->recv_from_links_epollfd, events, KNET_EPOLL_MAX_EVENTS, knet_h->threads_timer_res / 1000);
/*
* the RX threads only need to notify that there has been at least
* one successful run after queue flush has been requested.
* See setfwd in handle.c
*/
if (get_thread_flush_queue(knet_h, KNET_THREAD_RX) == KNET_THREAD_QUEUE_FLUSH) {
set_thread_flush_queue(knet_h, KNET_THREAD_RX, KNET_THREAD_QUEUE_FLUSHED);
}
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
for (i = 0; i < nev; i++) {
_handle_recv_from_links(knet_h, events[i].data.fd, msg);
}
}
set_thread_status(knet_h, KNET_THREAD_RX, KNET_THREAD_STOPPED);
return NULL;
}
ssize_t knet_recv(knet_handle_t knet_h, char *buff, const size_t buff_len, const int8_t channel)
{
int savederrno = 0;
ssize_t err = 0;
struct iovec iov_in;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (buff == NULL) {
errno = EINVAL;
return -1;
}
if (buff_len <= 0) {
errno = EINVAL;
return -1;
}
if (buff_len > KNET_MAX_PACKET_SIZE) {
errno = EINVAL;
return -1;
}
if (channel < 0) {
errno = EINVAL;
return -1;
}
if (channel >= KNET_DATAFD_MAX) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
if (!knet_h->sockfd[channel].in_use) {
savederrno = EINVAL;
err = -1;
goto out_unlock;
}
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (void *)buff;
iov_in.iov_len = buff_len;
err = readv(knet_h->sockfd[channel].sockfd[0], &iov_in, 1);
savederrno = errno;
out_unlock:
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = err ? savederrno : 0;
return err;
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Jan 25, 12:13 PM (12 h, 52 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1322518
Default Alt Text
(48 KB)

Event Timeline