Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/libknet/internals.h b/libknet/internals.h
index d4826741..8976a8cc 100644
--- a/libknet/internals.h
+++ b/libknet/internals.h
@@ -1,558 +1,564 @@
/*
* Copyright (C) 2010-2019 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
* Federico Simoncelli <fsimon@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __KNET_INTERNALS_H__
#define __KNET_INTERNALS_H__
/*
* NOTE: you shouldn't need to include this header normally
*/
#include <pthread.h>
#include "libknet.h"
#include "onwire.h"
#include "compat.h"
#include "threads_common.h"
#define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE
#define KNET_DATABUFSIZE_CRYPT_PAD 1024
#define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD
#define KNET_DATABUFSIZE_COMPRESS_PAD 1024
#define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD
#define KNET_RING_RCVBUFF 8388608
#define PCKT_FRAG_MAX UINT8_MAX
#define PCKT_RX_BUFS 512
#define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX
typedef void *knet_transport_link_t; /* per link transport handle */
typedef void *knet_transport_t; /* per knet_h transport handle */
struct knet_transport_ops; /* Forward because of circular dependancy */
struct knet_mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */
};
struct knet_link {
/* required */
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
/* configurable */
unsigned int dynamic; /* see KNET_LINK_DYN_ define above */
uint8_t priority; /* higher priority == preferred for A/P */
unsigned long long ping_interval; /* interval */
unsigned long long pong_timeout; /* timeout */
unsigned long long pong_timeout_adj; /* timeout adjusted for latency */
uint8_t pong_timeout_backoff; /* see link.h for definition */
unsigned int latency_fix; /* precision */
uint8_t pong_count; /* how many ping/pong to send/receive before link is up */
uint64_t flags;
/* status */
struct knet_link_status status;
/* internals */
uint8_t link_id;
uint8_t transport; /* #defined constant from API */
knet_transport_link_t transport_link; /* link_info_t from transport */
int outsock;
unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/
unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */
unsigned int latency_exp;
uint8_t received_pong;
struct timespec ping_last;
/* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */
uint32_t proto_overhead;
struct timespec pmtud_last;
uint32_t last_ping_size;
uint32_t last_good_mtu;
uint32_t last_bad_mtu;
uint32_t last_sent_mtu;
uint32_t last_recv_mtu;
uint8_t has_valid_mtu;
};
#define KNET_CBUFFER_SIZE 4096
struct knet_host_defrag_buf {
char buf[KNET_DATABUFSIZE];
uint8_t in_use; /* 0 buffer is free, 1 is in use */
seq_num_t pckt_seq; /* identify the pckt we are receiving */
uint8_t frag_recv; /* how many frags did we receive */
uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */
uint8_t last_first; /* special case if we receive the last fragment first */
uint16_t frag_size; /* normal frag size (not the last one) */
uint16_t last_frag_size; /* the last fragment might not be aligned with MTU size */
struct timespec last_update; /* keep time of the last pckt */
};
struct knet_host {
/* required */
knet_node_id_t host_id;
/* configurable */
uint8_t link_handler_policy;
char name[KNET_MAX_HOST_LEN];
/* status */
struct knet_host_status status;
/* internals */
char circular_buffer[KNET_CBUFFER_SIZE];
seq_num_t rx_seq_num;
seq_num_t untimed_rx_seq_num;
seq_num_t timed_rx_seq_num;
uint8_t got_data;
/* defrag/reassembly buffers */
struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK];
char circular_buffer_defrag[KNET_CBUFFER_SIZE];
/* link stuff */
struct knet_link link[KNET_MAX_LINK];
uint8_t active_link_entries;
uint8_t active_links[KNET_MAX_LINK];
struct knet_host *next;
};
struct knet_sock {
int sockfd[2]; /* sockfd[0] will always be application facing
* and sockfd[1] internal if sockpair has been created by knet */
int is_socket; /* check if it's a socket for recvmmsg usage */
int is_created; /* knet created this socket and has to clean up on exit/del */
int in_use; /* set to 1 if it's use, 0 if free */
int has_error; /* set to 1 if there were errors reading from the sock
* and socket has been removed from epoll */
};
struct knet_fd_trackers {
uint8_t transport; /* transport type (UDP/SCTP...) */
uint8_t data_type; /* internal use for transport to define what data are associated
* to this fd */
void *data; /* pointer to the data */
void *access_list_match_entry_head; /* pointer to access list match_entry list head */
};
#define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4
#define KNET_MAX_COMPRESS_METHODS UINT8_MAX
struct knet_handle_stats_extra {
uint64_t tx_crypt_pmtu_packets;
uint64_t tx_crypt_pmtu_reply_packets;
uint64_t tx_crypt_ping_packets;
uint64_t tx_crypt_pong_packets;
};
struct knet_handle {
knet_node_id_t host_id;
unsigned int enabled:1;
struct knet_sock sockfd[KNET_DATAFD_MAX];
int logfd;
uint8_t log_levels[KNET_MAX_SUBSYSTEMS];
int hostsockfd[2];
int dstsockfd[2];
int send_to_links_epollfd;
int recv_from_links_epollfd;
int dst_link_handler_epollfd;
uint8_t use_access_lists; /* set to 0 for disable, 1 for enable */
unsigned int pmtud_interval;
unsigned int data_mtu; /* contains the max data size that we can send onwire
* without frags */
struct knet_host *host_head;
struct knet_host *host_index[KNET_MAX_HOST];
knet_transport_t transports[KNET_MAX_TRANSPORTS+1];
struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */
struct knet_handle_stats stats;
struct knet_handle_stats_extra stats_extra;
uint32_t reconnect_int;
knet_node_id_t host_ids[KNET_MAX_HOST];
size_t host_ids_entries;
struct knet_header *recv_from_sock_buf;
struct knet_header *send_to_links_buf[PCKT_FRAG_MAX];
struct knet_header *recv_from_links_buf[PCKT_RX_BUFS];
struct knet_header *pingbuf;
struct knet_header *pmtudbuf;
uint8_t threads_status[KNET_THREAD_MAX];
pthread_mutex_t threads_status_mutex;
pthread_t send_to_links_thread;
pthread_t recv_from_links_thread;
pthread_t heartbt_thread;
pthread_t dst_link_handler_thread;
pthread_t pmtud_link_handler_thread;
pthread_rwlock_t global_rwlock; /* global config lock */
pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */
pthread_cond_t pmtud_cond; /* conditional for above */
pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */
pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */
pthread_mutex_t backoff_mutex; /* used to protect dst_link->pong_timeout_adj */
pthread_mutex_t kmtu_mutex; /* used to protect kernel_mtu */
uint32_t kernel_mtu; /* contains the MTU detected by the kernel on a given link */
int pmtud_waiting;
int pmtud_running;
int pmtud_forcerun;
int pmtud_abort;
struct crypto_instance *crypto_instance;
size_t sec_header_size;
size_t sec_block_size;
size_t sec_hash_size;
size_t sec_salt_size;
unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX];
unsigned char *recv_from_links_buf_crypt;
unsigned char *recv_from_links_buf_decrypt;
unsigned char *pingbuf_crypt;
unsigned char *pmtudbuf_crypt;
int compress_model;
int compress_level;
size_t compress_threshold;
void *compress_int_data[KNET_MAX_COMPRESS_METHODS]; /* for compress method private data */
unsigned char *recv_from_links_buf_decompress;
unsigned char *send_to_links_buf_compress;
seq_num_t tx_seq_num;
pthread_mutex_t tx_seq_num_mutex;
uint8_t has_loop_link;
uint8_t loop_link;
void *dst_host_filter_fn_private_data;
int (*dst_host_filter_fn) (
void *private_data,
const unsigned char *outdata,
ssize_t outdata_len,
uint8_t tx_rx,
knet_node_id_t this_host_id,
knet_node_id_t src_node_id,
int8_t *channel,
knet_node_id_t *dst_host_ids,
size_t *dst_host_ids_entries);
void *pmtud_notify_fn_private_data;
void (*pmtud_notify_fn) (
void *private_data,
unsigned int data_mtu);
void *host_status_change_notify_fn_private_data;
void (*host_status_change_notify_fn) (
void *private_data,
knet_node_id_t host_id,
uint8_t reachable,
uint8_t remote,
uint8_t external);
void *sock_notify_fn_private_data;
void (*sock_notify_fn) (
void *private_data,
int datafd,
int8_t channel,
uint8_t tx_rx,
int error,
int errorno);
int fini_in_progress;
uint64_t flags;
};
extern pthread_rwlock_t shlib_rwlock; /* global shared lib load lock */
/*
* NOTE: every single operation must be implementend
* for every protocol.
*/
/*
* for now knet supports only IP protocols (udp/sctp)
* in future there might be others like ARP
* or TIPC.
* keep this around as transport information
* to use for access lists and other operations
*/
#define TRANSPORT_PROTO_LOOPBACK 0
#define TRANSPORT_PROTO_IP_PROTO 1
/*
* some transports like SCTP can filter incoming
* connections before knet has to process
* any packets.
* GENERIC_ACL -> packet has to be read and filterted
* PROTO_ACL -> transport provides filtering at lower levels
* and packet does not need to be processed
*/
typedef enum {
USE_NO_ACL,
USE_GENERIC_ACL,
USE_PROTO_ACL
} transport_acl;
/*
* make it easier to map values in transports.c
*/
#define TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED 0
#define TRANSPORT_PROTO_IS_CONNECTION_ORIENTED 1
typedef struct knet_transport_ops {
/*
* transport generic information
*/
const char *transport_name;
const uint8_t transport_id;
const uint8_t built_in;
uint8_t transport_protocol;
transport_acl transport_acl_type;
/*
* connection oriented protocols like SCTP
* don´t need dst_addr in sendto calls and
* on some OSes are considered EINVAL.
*/
uint8_t transport_is_connection_oriented;
uint32_t transport_mtu_overhead;
/*
* transport init must allocate the new transport
* and perform all internal initializations
* (threads, lists, etc).
*/
int (*transport_init)(knet_handle_t knet_h);
/*
* transport free must releases _all_ resources
* allocated by tranport_init
*/
int (*transport_free)(knet_handle_t knet_h);
/*
* link operations should take care of all the
* sockets and epoll management for a given link/transport set
* transport_link_disable should return err = -1 and errno = EBUSY
* if listener is still in use, and any other errno in case
* the link cannot be disabled.
*
* set_config/clear_config are invoked in global write lock context
*/
int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link);
int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link);
/*
* transport callback for incoming dynamic connections
* this is called in global read lock context
*/
int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link);
+
+/*
+ * return the fd to use for access lists
+ */
+ int (*transport_link_get_acl_fd)(knet_handle_t knet_h, struct knet_link *link);
+
/*
* per transport error handling of recvmmsg
* (see _handle_recv_from_links comments for details)
*/
/*
* transport_rx_sock_error is invoked when recvmmsg returns <= 0
*
* transport_rx_sock_error is invoked with both global_rdlock
*/
int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* transport_tx_sock_error is invoked with global_rwlock and
* it's invoked when sendto or sendmmsg returns =< 0
*
* it should return:
* -1 on internal error
* 0 ignore error and continue
* 1 retry
* any sleep or wait action should happen inside the transport code
*/
int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
/*
* this function is called on _every_ received packet
* to verify if the packet is data or internal protocol error handling
*
* it should return:
* -1 on error
* 0 packet is not data and we should continue the packet process loop
* 1 packet is not data and we should STOP the packet process loop
* 2 packet is data and should be parsed as such
*
* transport_rx_is_data is invoked with both global_rwlock
* and fd_tracker read lock (from RX thread)
*/
int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
} knet_transport_ops_t;
socklen_t sockaddr_len(const struct sockaddr_storage *ss);
struct pretty_names {
const char *name;
uint8_t val;
};
/**
* This is a kernel style list implementation.
*
* @author Steven Dake <sdake@redhat.com>
*/
struct knet_list_head {
struct knet_list_head *next;
struct knet_list_head *prev;
};
/**
* @def KNET_LIST_DECLARE()
* Declare and initialize a list head.
*/
#define KNET_LIST_DECLARE(name) \
struct knet_list_head name = { &(name), &(name) }
#define KNET_INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/**
* Initialize the list entry.
*
* Points next and prev pointers to head.
* @param head pointer to the list head
*/
static inline void knet_list_init(struct knet_list_head *head)
{
head->next = head;
head->prev = head;
}
/**
* Add this element to the list.
*
* @param element the new element to insert.
* @param head pointer to the list head
*/
static inline void knet_list_add(struct knet_list_head *element,
struct knet_list_head *head)
{
head->next->prev = element;
element->next = head->next;
element->prev = head;
head->next = element;
}
/**
* Add to the list (but at the end of the list).
*
* @param element pointer to the element to add
* @param head pointer to the list head
* @see knet_list_add()
*/
static inline void knet_list_add_tail(struct knet_list_head *element,
struct knet_list_head *head)
{
head->prev->next = element;
element->next = head;
element->prev = head->prev;
head->prev = element;
}
/**
* Delete an entry from the list.
*
* @param _remove the list item to remove
*/
static inline void knet_list_del(struct knet_list_head *_remove)
{
_remove->next->prev = _remove->prev;
_remove->prev->next = _remove->next;
}
/**
* Replace old entry by new one
* @param old: the element to be replaced
* @param new: the new element to insert
*/
static inline void knet_list_replace(struct knet_list_head *old,
struct knet_list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
/**
* Tests whether list is the last entry in list head
* @param list: the entry to test
* @param head: the head of the list
* @return boolean true/false
*/
static inline int knet_list_is_last(const struct knet_list_head *list,
const struct knet_list_head *head)
{
return list->next == head;
}
/**
* A quick test to see if the list is empty (pointing to it's self).
* @param head pointer to the list head
* @return boolean true/false
*/
static inline int32_t knet_list_empty(const struct knet_list_head *head)
{
return head->next == head;
}
/**
* Get the struct for this entry
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_entry(ptr,type,member)\
((type *)((char *)(ptr)-(char*)(&((type *)0)->member)))
/**
* Get the first element from a list
* @param ptr: the &struct list_head pointer.
* @param type: the type of the struct this is embedded in.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_first_entry(ptr, type, member) \
knet_list_entry((ptr)->next, type, member)
/**
* Iterate over a list
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* Iterate over a list backwards
* @param pos: the &struct list_head to use as a loop counter.
* @param head: the head for your list.
*/
#define knet_list_for_each_reverse(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* Iterate over a list safe against removal of list entry
* @param pos: the &struct list_head to use as a loop counter.
* @param n: another &struct list_head to use as temporary storage
* @param head: the head for your list.
*/
#define knet_list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* Iterate over list of given type
* @param pos: the type * to use as a loop counter.
* @param head: the head for your list.
* @param member: the name of the list_struct within the struct.
*/
#define knet_list_for_each_entry(pos, head, member) \
for (pos = knet_list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = knet_list_entry(pos->member.next, typeof(*pos), member))
#endif
diff --git a/libknet/transport_loopback.c b/libknet/transport_loopback.c
index bf48bb93..54129d77 100644
--- a/libknet/transport_loopback.c
+++ b/libknet/transport_loopback.c
@@ -1,75 +1,80 @@
/*
* Copyright (C) 2017-2019 Red Hat, Inc. All rights reserved.
*
* Author: Christine Caulfield <ccaulfie@redhat.com>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include "libknet.h"
#include "compat.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "common.h"
#include "transports.h"
#include "transport_loopback.h"
#include "threads_common.h"
/* This is just a file of empty calls as the actual loopback is in threads_tx.c as a special case
when receiving a packet from the localhost */
int loopback_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
kn_link->transport_connected = 1;
kn_link->status.connected = 1;
return 0;
}
int loopback_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
return 0;
}
int loopback_transport_free(knet_handle_t knet_h)
{
return 0;
}
int loopback_transport_init(knet_handle_t knet_h)
{
return 0;
}
int loopback_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
return 0;
}
int loopback_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
return 0;
}
int loopback_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
return 0;
}
int loopback_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link)
{
return 0;
}
+
+int loopback_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link)
+{
+ return 0;
+}
diff --git a/libknet/transport_loopback.h b/libknet/transport_loopback.h
index 3d072e8b..6ce3ed3f 100644
--- a/libknet/transport_loopback.h
+++ b/libknet/transport_loopback.h
@@ -1,27 +1,28 @@
/*
* Copyright (C) 2017-2019 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include "internals.h"
#ifndef __KNET_TRANSPORT_LOOPBACK_H__
#define __KNET_TRANSPORT_LOOPBACK_H__
#define KNET_PMTUD_LOOPBACK_OVERHEAD 0
int loopback_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link);
int loopback_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link);
int loopback_transport_free(knet_handle_t knet_h);
int loopback_transport_init(knet_handle_t knet_h);
int loopback_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
int loopback_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
int loopback_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
int loopback_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link);
+int loopback_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link);
#endif
diff --git a/libknet/transport_sctp.c b/libknet/transport_sctp.c
index aa0de9d5..819bc9aa 100644
--- a/libknet/transport_sctp.c
+++ b/libknet/transport_sctp.c
@@ -1,1540 +1,1547 @@
/*
* Copyright (C) 2016-2019 Red Hat, Inc. All rights reserved.
*
* Author: Christine Caulfield <ccaulfie@redhat.com>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdlib.h>
#include "compat.h"
#include "host.h"
#include "links.h"
#include "links_acl.h"
#include "links_acl_ip.h"
#include "logging.h"
#include "common.h"
#include "transport_common.h"
#include "threads_common.h"
#ifdef HAVE_NETINET_SCTP_H
#include <netinet/sctp.h>
#include "transport_sctp.h"
typedef struct sctp_handle_info {
struct knet_list_head listen_links_list;
struct knet_list_head connect_links_list;
int connect_epollfd;
int connectsockfd[2];
int listen_epollfd;
int listensockfd[2];
pthread_t connect_thread;
pthread_t listen_thread;
socklen_t event_subscribe_kernel_size;
char *event_subscribe_buffer;
} sctp_handle_info_t;
/*
* use by fd_tracker data type
*/
#define SCTP_NO_LINK_INFO 0
#define SCTP_LISTENER_LINK_INFO 1
#define SCTP_ACCEPTED_LINK_INFO 2
#define SCTP_CONNECT_LINK_INFO 3
/*
* this value is per listener
*/
#define MAX_ACCEPTED_SOCKS 256
typedef struct sctp_listen_link_info {
struct knet_list_head list;
int listen_sock;
int accepted_socks[MAX_ACCEPTED_SOCKS];
struct sockaddr_storage src_address;
int on_listener_epoll;
int on_rx_epoll;
} sctp_listen_link_info_t;
typedef struct sctp_accepted_link_info {
char mread_buf[KNET_DATABUFSIZE];
ssize_t mread_len;
sctp_listen_link_info_t *link_info;
} sctp_accepted_link_info_t ;
typedef struct sctp_connect_link_info {
struct knet_list_head list;
sctp_listen_link_info_t *listener;
struct knet_link *link;
struct sockaddr_storage dst_address;
int connect_sock;
int on_connected_epoll;
int on_rx_epoll;
int close_sock;
} sctp_connect_link_info_t;
/*
* socket handling functions
*
* those functions do NOT perform locking. locking
* should be handled in the right context from callers
*/
/*
* sockets are removed from rx_epoll from callers
* see also error handling functions
*/
static int _close_connect_socket(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
sctp_connect_link_info_t *info = kn_link->transport_link;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event ev;
if (info->on_connected_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLOUT;
ev.data.fd = info->connect_sock;
if (epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_DEL, info->connect_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove connected socket from the epoll pool: %s",
strerror(errno));
goto exit_error;
}
info->on_connected_epoll = 0;
}
exit_error:
if (info->connect_sock != -1) {
if (_set_fd_tracker(knet_h, info->connect_sock, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
close(info->connect_sock);
info->connect_sock = -1;
}
errno = savederrno;
return err;
}
static int _enable_sctp_notifications(knet_handle_t knet_h, int sock, const char *type)
{
int err = 0, savederrno = 0;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
if (setsockopt(sock, IPPROTO_SCTP, SCTP_EVENTS,
handle_info->event_subscribe_buffer,
handle_info->event_subscribe_kernel_size) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to enable %s events: %s",
type, strerror(savederrno));
}
errno = savederrno;
return err;
}
static int _configure_sctp_socket(knet_handle_t knet_h, int sock, struct sockaddr_storage *address, uint64_t flags, const char *type)
{
int err = 0, savederrno = 0;
int value;
int level;
#ifdef SOL_SCTP
level = SOL_SCTP;
#else
level = IPPROTO_SCTP;
#endif
if (_configure_transport_socket(knet_h, sock, address, flags, type) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
value = 1;
if (setsockopt(sock, level, SCTP_NODELAY, &value, sizeof(value)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSPORT, "Unable to set sctp nodelay: %s",
strerror(savederrno));
goto exit_error;
}
if (_enable_sctp_notifications(knet_h, sock, type) < 0) {
savederrno = errno;
err = -1;
}
exit_error:
errno = savederrno;
return err;
}
static int _reconnect_socket(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
sctp_connect_link_info_t *info = kn_link->transport_link;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event ev;
if (connect(info->connect_sock, (struct sockaddr *)&kn_link->dst_addr, sockaddr_len(&kn_link->dst_addr)) < 0) {
if ((errno != EALREADY) && (errno != EINPROGRESS) && (errno != EISCONN)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to connect SCTP socket %d: %s",
info->connect_sock, strerror(savederrno));
goto exit_error;
}
}
if (!info->on_connected_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLOUT;
ev.data.fd = info->connect_sock;
if (epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_ADD, info->connect_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add send/recv to epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_connected_epoll = 1;
}
exit_error:
errno = savederrno;
return err;
}
static int _create_connect_socket(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
sctp_connect_link_info_t *info = kn_link->transport_link;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event ev;
int connect_sock;
connect_sock = socket(kn_link->dst_addr.ss_family, SOCK_STREAM, IPPROTO_SCTP);
if (connect_sock < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create send/recv socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_configure_sctp_socket(knet_h, connect_sock, &kn_link->dst_addr, kn_link->flags, "SCTP connect") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
if (_set_fd_tracker(knet_h, connect_sock, KNET_TRANSPORT_SCTP, SCTP_CONNECT_LINK_INFO, info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
info->connect_sock = connect_sock;
info->close_sock = 0;
if (_reconnect_socket(knet_h, kn_link) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
exit_error:
if (err) {
if (info->on_connected_epoll) {
epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_DEL, connect_sock, &ev);
}
if (connect_sock >= 0) {
close(connect_sock);
}
}
errno = savederrno;
return err;
}
int sctp_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
sctp_connect_link_info_t *connect_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_accepted_link_info_t *accepted_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_listen_link_info_t *listen_info;
if (recv_err < 0) {
switch (knet_h->knet_transport_fd_tracker[sockfd].data_type) {
case SCTP_CONNECT_LINK_INFO:
if (connect_info->link->transport_connected == 0) {
return -1;
}
break;
case SCTP_ACCEPTED_LINK_INFO:
listen_info = accepted_info->link_info;
if (listen_info->listen_sock != sockfd) {
if (listen_info->on_rx_epoll == 0) {
return -1;
}
}
break;
}
if (recv_errno == EAGAIN) {
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Sock: %d is overloaded. Slowing TX down", sockfd);
#endif
/* Don't hold onto the lock while sleeping */
pthread_rwlock_unlock(&knet_h->global_rwlock);
usleep(KNET_THREADS_TIMERES / 16);
pthread_rwlock_rdlock(&knet_h->global_rwlock);
return 1;
}
return -1;
}
return 0;
}
/*
* socket error management functions
*
* both called with global read lock.
*
* NOTE: we need to remove the fd from the epoll as soon as possible
* even before we notify the respective thread to take care of it
* because scheduling can make it so that this thread will overload
* and the threads supposed to take care of the error will never
* be able to take action.
* we CANNOT handle FDs here diretly (close/reconnect/etc) due
* to locking context. We need to delegate that to their respective
* management threads within global write lock.
*
* this function is called from:
* - RX thread with recv_err <= 0 directly on recvmmsg error
* - transport_rx_is_data when msg_len == 0 (recv_err = 1)
* - transport_rx_is_data on notification (recv_err = 2)
*
* basically this small abouse of recv_err is to detect notifications
* generated by sockets created by listen().
*/
int sctp_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
struct epoll_event ev;
sctp_connect_link_info_t *connect_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_accepted_link_info_t *accepted_info = knet_h->knet_transport_fd_tracker[sockfd].data;
sctp_listen_link_info_t *listen_info;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
switch (knet_h->knet_transport_fd_tracker[sockfd].data_type) {
case SCTP_CONNECT_LINK_INFO:
/*
* all connect link have notifications enabled
* and we accept only data from notification and
* generic recvmmsg errors.
*
* Errors generated by msg_len 0 can be ignored because
* they follow a notification (double notification)
*/
if (recv_err != 1) {
connect_info->link->transport_connected = 0;
if (connect_info->on_rx_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = sockfd;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, sockfd, &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove EOFed socket from epoll pool: %s",
strerror(errno));
return -1;
}
connect_info->on_rx_epoll = 0;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Notifying connect thread that sockfd %d received an error", sockfd);
if (sendto(handle_info->connectsockfd[1], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to notify connect thread: %s", strerror(errno));
}
}
break;
case SCTP_ACCEPTED_LINK_INFO:
listen_info = accepted_info->link_info;
if (listen_info->listen_sock != sockfd) {
if (recv_err != 1) {
if (listen_info->on_rx_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = sockfd;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, sockfd, &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove EOFed socket from epoll pool: %s",
strerror(errno));
return -1;
}
listen_info->on_rx_epoll = 0;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Notifying listen thread that sockfd %d received an error", sockfd);
if (sendto(handle_info->listensockfd[1], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL, NULL, 0) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to notify listen thread: %s", strerror(errno));
}
}
} else {
/*
* this means the listen() socket has generated
* a notification. now what? :-)
*/
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for listen() socket %d", sockfd);
}
break;
default:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received unknown notification? %d", sockfd);
break;
}
/*
* Under RX pressure we need to give time to IPC to pick up the message
*/
/* Don't hold onto the lock while sleeping */
pthread_rwlock_unlock(&knet_h->global_rwlock);
usleep(KNET_THREADS_TIMERES / 2);
pthread_rwlock_rdlock(&knet_h->global_rwlock);
return 0;
}
/*
* NOTE: sctp_transport_rx_is_data is called with global rdlock
* delegate any FD error management to sctp_transport_rx_sock_error
* and keep this code to parsing incoming data only
*/
int sctp_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
size_t i;
struct iovec *iov = msg->msg_hdr.msg_iov;
size_t iovlen = msg->msg_hdr.msg_iovlen;
struct sctp_assoc_change *sac;
union sctp_notification *snp;
sctp_accepted_link_info_t *info = knet_h->knet_transport_fd_tracker[sockfd].data;
if (!(msg->msg_hdr.msg_flags & MSG_NOTIFICATION)) {
if (msg->msg_len == 0) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "received 0 bytes len packet: %d", sockfd);
/*
* NOTE: with event notification enabled, we receive error twice:
* 1) from the event notification
* 2) followed by a 0 byte msg_len
*
* This is generally not a problem if not for causing extra
* handling for the same issue. Should we drop notifications
* and keep the code generic (handle all errors via msg_len = 0)
* or keep the duplication as safety measure, or drop msg_len = 0
* handling (what about sockets without events enabled?)
*/
sctp_transport_rx_sock_error(knet_h, sockfd, 1, 0);
return 1;
}
/*
* missing MSG_EOR has to be treated as a short read
* from the socket and we need to fill in the mread buf
* while we wait for MSG_EOR
*/
if (!(msg->msg_hdr.msg_flags & MSG_EOR)) {
/*
* copy the incoming data into mread_buf + mread_len (incremental)
* and increase mread_len
*/
memmove(info->mread_buf + info->mread_len, iov->iov_base, msg->msg_len);
info->mread_len = info->mread_len + msg->msg_len;
return 0;
}
/*
* got EOR.
* if mread_len is > 0 we are completing a packet from short reads
* complete reassembling the packet in mread_buf, copy it back in the iov
* and set the iov/msg len numbers (size) correctly
*/
if (info->mread_len) {
/*
* add last fragment to mread_buf
*/
memmove(info->mread_buf + info->mread_len, iov->iov_base, msg->msg_len);
info->mread_len = info->mread_len + msg->msg_len;
/*
* move all back into the iovec
*/
memmove(iov->iov_base, info->mread_buf, info->mread_len);
msg->msg_len = info->mread_len;
info->mread_len = 0;
}
return 2;
}
if (!(msg->msg_hdr.msg_flags & MSG_EOR)) {
return 1;
}
for (i=0; i< iovlen; i++) {
snp = iov[i].iov_base;
switch (snp->sn_header.sn_type) {
case SCTP_ASSOC_CHANGE:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change");
sac = &snp->sn_assoc_change;
if (sac->sac_state == SCTP_COMM_LOST) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp assoc change: comm_lost");
sctp_transport_rx_sock_error(knet_h, sockfd, 2, 0);
}
break;
case SCTP_SHUTDOWN_EVENT:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp shutdown event");
sctp_transport_rx_sock_error(knet_h, sockfd, 2, 0);
break;
case SCTP_SEND_FAILED:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp send failed");
break;
case SCTP_PEER_ADDR_CHANGE:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp peer addr change");
break;
case SCTP_REMOTE_ERROR:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] sctp remote error");
break;
default:
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "[event] unknown sctp event type: %hu\n", snp->sn_header.sn_type);
break;
}
}
return 0;
}
/*
* connect / outgoing socket management thread
*/
/*
* _handle_connected_sctp* are called with a global write lock
* from the connect_thread
*/
static void _handle_connected_sctp(knet_handle_t knet_h, int connect_sock)
{
int err;
struct epoll_event ev;
unsigned int status, len = sizeof(status);
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
sctp_connect_link_info_t *info = knet_h->knet_transport_fd_tracker[connect_sock].data;
struct knet_link *kn_link = info->link;
err = getsockopt(connect_sock, SOL_SOCKET, SO_ERROR, &status, &len);
if (err) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP getsockopt() on connecting socket %d failed: %s",
connect_sock, strerror(errno));
return;
}
if (info->close_sock) {
if (_close_connect_socket(knet_h, kn_link) < 0) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to close sock %d from _handle_connected_sctp: %s", connect_sock, strerror(errno));
return;
}
info->close_sock = 0;
if (_create_connect_socket(knet_h, kn_link) < 0) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to recreate connecting sock! %s", strerror(errno));
return;
}
}
if (status) {
log_info(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP connect on %d to %s port %s failed: %s",
connect_sock, kn_link->status.dst_ipaddr, kn_link->status.dst_port,
strerror(status));
/*
* No need to create a new socket if connect failed,
* just retry connect
*/
_reconnect_socket(knet_h, info->link);
return;
}
/*
* Connected - Remove us from the connect epoll
*/
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLOUT;
ev.data.fd = connect_sock;
if (epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_DEL, connect_sock, &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove connected socket %d from epoll pool: %s",
connect_sock, strerror(errno));
}
info->on_connected_epoll = 0;
kn_link->transport_connected = 1;
kn_link->outsock = info->connect_sock;
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = connect_sock;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_ADD, connect_sock, &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add connected socket to epoll pool: %s",
strerror(errno));
}
info->on_rx_epoll = 1;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP handler fd %d now connected to %s port %s",
connect_sock,
kn_link->status.dst_ipaddr, kn_link->status.dst_port);
}
static void _handle_connected_sctp_errors(knet_handle_t knet_h)
{
int sockfd = -1;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
sctp_connect_link_info_t *info;
if (recv(handle_info->connectsockfd[0], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Short read on connectsockfd");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for connected socket fd error");
return;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Processing connected error on socket: %d", sockfd);
info = knet_h->knet_transport_fd_tracker[sockfd].data;
info->close_sock = 1;
info->link->transport_connected = 0;
_reconnect_socket(knet_h, info->link);
}
static void *_sctp_connect_thread(void *data)
{
int savederrno;
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
set_thread_status(knet_h, KNET_THREAD_SCTP_CONN, KNET_THREAD_STARTED);
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(handle_info->connect_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
if (nev < 0) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP connect handler EPOLL ERROR: %s",
strerror(errno));
continue;
}
/*
* Sort out which FD has a connection
*/
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to get write lock: %s",
strerror(savederrno));
continue;
}
/*
* minor optimization: deduplicate events
*
* in some cases we can receive multiple notifcations
* of the same FD having issues or need handling.
* It's enough to process it once even tho it's safe
* to handle them multiple times.
*/
for (i = 0; i < nev; i++) {
if (events[i].data.fd == handle_info->connectsockfd[0]) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received notification from rx_error for connected socket");
_handle_connected_sctp_errors(knet_h);
} else {
if (_is_valid_fd(knet_h, events[i].data.fd) == 1) {
_handle_connected_sctp(knet_h, events[i].data.fd);
} else {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for dead fd %d\n", events[i].data.fd);
}
}
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
/*
* this thread can generate events for itself.
* we need to sleep in between loops to allow other threads
* to be scheduled
*/
usleep(knet_h->reconnect_int * 1000);
}
set_thread_status(knet_h, KNET_THREAD_SCTP_CONN, KNET_THREAD_STOPPED);
return NULL;
}
/*
* listen/incoming connections management thread
*/
/*
* Listener received a new connection
* called with a write lock from main thread
*/
static void _handle_incoming_sctp(knet_handle_t knet_h, int listen_sock)
{
int err = 0, savederrno = 0;
int new_fd;
int i = -1;
sctp_listen_link_info_t *info = knet_h->knet_transport_fd_tracker[listen_sock].data;
struct epoll_event ev;
struct sockaddr_storage ss;
socklen_t sock_len = sizeof(ss);
char addr_str[KNET_MAX_HOST_LEN];
char port_str[KNET_MAX_PORT_LEN];
sctp_accepted_link_info_t *accept_info = NULL;
new_fd = accept(listen_sock, (struct sockaddr *)&ss, &sock_len);
if (new_fd < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: accept error: %s", strerror(errno));
goto exit_error;
}
if (knet_addrtostr(&ss, sizeof(ss),
addr_str, KNET_MAX_HOST_LEN,
port_str, KNET_MAX_PORT_LEN) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: unable to gather socket info");
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: received connection from: %s port: %s",
addr_str, port_str);
if (knet_h->use_access_lists) {
if (!check_validate(knet_h, listen_sock, KNET_TRANSPORT_SCTP, &ss)) {
savederrno = EINVAL;
err = -1;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Connection rejected from %s/%s", addr_str, port_str);
close(new_fd);
errno = savederrno;
return;
}
}
/*
* Keep a track of all accepted FDs
*/
for (i=0; i<MAX_ACCEPTED_SOCKS; i++) {
if (info->accepted_socks[i] == -1) {
info->accepted_socks[i] = new_fd;
break;
}
}
if (i == MAX_ACCEPTED_SOCKS) {
errno = EBUSY;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: too many connections!");
goto exit_error;
}
if (_configure_common_socket(knet_h, new_fd, 0, "SCTP incoming") < 0) { /* Inherit flags from listener? */
savederrno = errno;
err = -1;
goto exit_error;
}
if (_enable_sctp_notifications(knet_h, new_fd, "Incoming connection") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
accept_info = malloc(sizeof(sctp_accepted_link_info_t));
if (!accept_info) {
savederrno = errno;
err = -1;
goto exit_error;
}
memset(accept_info, 0, sizeof(sctp_accepted_link_info_t));
accept_info->link_info = info;
if (_set_fd_tracker(knet_h, new_fd, KNET_TRANSPORT_SCTP, SCTP_ACCEPTED_LINK_INFO, accept_info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(errno));
goto exit_error;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = new_fd;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_ADD, new_fd, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: unable to add accepted socket %d to epoll pool: %s",
new_fd, strerror(errno));
goto exit_error;
}
info->on_rx_epoll = 1;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Incoming: accepted new fd %d for %s/%s (listen fd: %d). index: %d",
new_fd, addr_str, port_str, info->listen_sock, i);
exit_error:
if (err) {
if ((i >= 0) || (i < MAX_ACCEPTED_SOCKS)) {
info->accepted_socks[i] = -1;
}
_set_fd_tracker(knet_h, new_fd, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL);
free(accept_info);
close(new_fd);
}
errno = savederrno;
return;
}
/*
* Listen thread received a notification of a bad socket that needs closing
* called with a write lock from main thread
*/
static void _handle_listen_sctp_errors(knet_handle_t knet_h)
{
int sockfd = -1;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
sctp_accepted_link_info_t *accept_info;
sctp_listen_link_info_t *info;
struct knet_host *host;
int link_idx;
int i;
if (recv(handle_info->listensockfd[0], &sockfd, sizeof(int), MSG_DONTWAIT | MSG_NOSIGNAL) != sizeof(int)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Short read on listensockfd");
return;
}
if (_is_valid_fd(knet_h, sockfd) < 1) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received stray notification for listen socket fd error");
return;
}
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Processing listen error on socket: %d", sockfd);
accept_info = knet_h->knet_transport_fd_tracker[sockfd].data;
info = accept_info->link_info;
/*
* clear all links using this accepted socket as
* outbound dynamically connected socket
*/
for (host = knet_h->host_head; host != NULL; host = host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if ((host->link[link_idx].dynamic == KNET_LINK_DYNIP) &&
(host->link[link_idx].outsock == sockfd)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Found dynamic connection on host %d link %d (%d)",
host->host_id, link_idx, sockfd);
host->link[link_idx].status.dynconnected = 0;
host->link[link_idx].transport_connected = 0;
host->link[link_idx].outsock = 0;
memset(&host->link[link_idx].dst_addr, 0, sizeof(struct sockaddr_storage));
}
}
}
for (i=0; i<MAX_ACCEPTED_SOCKS; i++) {
if (sockfd == info->accepted_socks[i]) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Closing accepted socket %d", sockfd);
_set_fd_tracker(knet_h, sockfd, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL);
info->accepted_socks[i] = -1;
free(accept_info);
close(sockfd);
}
}
}
static void *_sctp_listen_thread(void *data)
{
int savederrno;
int i, nev;
knet_handle_t knet_h = (knet_handle_t) data;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
struct epoll_event events[KNET_EPOLL_MAX_EVENTS];
set_thread_status(knet_h, KNET_THREAD_SCTP_LISTEN, KNET_THREAD_STARTED);
while (!shutdown_in_progress(knet_h)) {
nev = epoll_wait(handle_info->listen_epollfd, events, KNET_EPOLL_MAX_EVENTS, KNET_THREADS_TIMERES / 1000);
/*
* we use timeout to detect if thread is shutting down
*/
if (nev == 0) {
continue;
}
if (nev < 0) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP listen handler EPOLL ERROR: %s",
strerror(errno));
continue;
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to get write lock: %s",
strerror(savederrno));
continue;
}
/*
* Sort out which FD has an incoming connection
*/
for (i = 0; i < nev; i++) {
if (events[i].data.fd == handle_info->listensockfd[0]) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received notification from rx_error for listener/accepted socket");
_handle_listen_sctp_errors(knet_h);
} else {
if (_is_valid_fd(knet_h, events[i].data.fd) == 1) {
_handle_incoming_sctp(knet_h, events[i].data.fd);
} else {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Received listen notification from invalid socket");
}
}
}
pthread_rwlock_unlock(&knet_h->global_rwlock);
}
set_thread_status(knet_h, KNET_THREAD_SCTP_LISTEN, KNET_THREAD_STOPPED);
return NULL;
}
/*
* sctp_link_listener_start/stop are called in global write lock
* context from set_config and clear_config.
*/
static sctp_listen_link_info_t *sctp_link_listener_start(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
int listen_sock = -1;
struct epoll_event ev;
sctp_listen_link_info_t *info = NULL;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
/*
* Only allocate a new listener if src address is different
*/
knet_list_for_each_entry(info, &handle_info->listen_links_list, list) {
if (memcmp(&info->src_address, &kn_link->src_addr, sizeof(struct sockaddr_storage)) == 0) {
if ((check_add(knet_h, info->listen_sock, KNET_TRANSPORT_SCTP,
&kn_link->dst_addr, &kn_link->dst_addr, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != EEXIST)) {
return NULL;
}
return info;
}
}
info = malloc(sizeof(sctp_listen_link_info_t));
if (!info) {
err = -1;
goto exit_error;
}
memset(info, 0, sizeof(sctp_listen_link_info_t));
memset(info->accepted_socks, -1, sizeof(info->accepted_socks));
memmove(&info->src_address, &kn_link->src_addr, sizeof(struct sockaddr_storage));
listen_sock = socket(kn_link->src_addr.ss_family, SOCK_STREAM, IPPROTO_SCTP);
if (listen_sock < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_configure_sctp_socket(knet_h, listen_sock, &kn_link->src_addr, kn_link->flags, "SCTP listener") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
if (bind(listen_sock, (struct sockaddr *)&kn_link->src_addr, sockaddr_len(&kn_link->src_addr)) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to bind listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (listen(listen_sock, 5) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to listen on listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_set_fd_tracker(knet_h, listen_sock, KNET_TRANSPORT_SCTP, SCTP_LISTENER_LINK_INFO, info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
if ((check_add(knet_h, listen_sock, KNET_TRANSPORT_SCTP,
&kn_link->dst_addr, &kn_link->dst_addr, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != EEXIST)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to configure default access lists: %s",
strerror(savederrno));
goto exit_error;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = listen_sock;
if (epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_ADD, listen_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add listener to epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_listener_epoll = 1;
info->listen_sock = listen_sock;
knet_list_add(&info->list, &handle_info->listen_links_list);
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Listening on fd %d for %s:%s", listen_sock, kn_link->status.src_ipaddr, kn_link->status.src_port);
exit_error:
if (err) {
if (info->on_listener_epoll) {
epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_DEL, listen_sock, &ev);
}
check_rmall(knet_h, listen_sock, KNET_TRANSPORT_SCTP);
if (listen_sock >= 0) {
close(listen_sock);
}
if (info) {
free(info);
info = NULL;
}
}
errno = savederrno;
return info;
}
static int sctp_link_listener_stop(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
int found = 0, i;
struct knet_host *host;
int link_idx;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
sctp_connect_link_info_t *this_link_info = kn_link->transport_link;
sctp_listen_link_info_t *info = this_link_info->listener;
sctp_connect_link_info_t *link_info;
struct epoll_event ev;
for (host = knet_h->host_head; host != NULL; host = host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if (&host->link[link_idx] == kn_link)
continue;
link_info = host->link[link_idx].transport_link;
if ((link_info) &&
(link_info->listener == info)) {
found = 1;
break;
}
}
}
if ((check_rm(knet_h, info->listen_sock, KNET_TRANSPORT_SCTP,
&kn_link->dst_addr, &kn_link->dst_addr, CHECK_TYPE_ADDRESS, CHECK_ACCEPT) < 0) && (errno != ENOENT)) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove default access lists for %d", info->listen_sock);
}
if (found) {
this_link_info->listener = NULL;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP listener socket %d still in use", info->listen_sock);
savederrno = EBUSY;
err = -1;
goto exit_error;
}
if (info->on_listener_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->listen_sock;
if (epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_DEL, info->listen_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove listener to epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_listener_epoll = 0;
}
if (_set_fd_tracker(knet_h, info->listen_sock, KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
check_rmall(knet_h, info->listen_sock, KNET_TRANSPORT_SCTP);
close(info->listen_sock);
for (i=0; i< MAX_ACCEPTED_SOCKS; i++) {
if (info->accepted_socks[i] > -1) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->accepted_socks[i];
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, info->accepted_socks[i], &ev)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove EOFed socket from epoll pool: %s",
strerror(errno));
}
info->on_rx_epoll = 0;
free(knet_h->knet_transport_fd_tracker[info->accepted_socks[i]].data);
close(info->accepted_socks[i]);
if (_set_fd_tracker(knet_h, info->accepted_socks[i], KNET_MAX_TRANSPORTS, SCTP_NO_LINK_INFO, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
info->accepted_socks[i] = -1;
}
}
knet_list_del(&info->list);
free(info);
this_link_info->listener = NULL;
exit_error:
errno = savederrno;
return err;
}
/*
* Links config/clear. Both called with global wrlock from link_set_config/clear_config
*/
int sctp_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
int savederrno = 0, err = 0;
sctp_connect_link_info_t *info;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
info = malloc(sizeof(sctp_connect_link_info_t));
if (!info) {
goto exit_error;
}
memset(info, 0, sizeof(sctp_connect_link_info_t));
kn_link->transport_link = info;
info->link = kn_link;
memmove(&info->dst_address, &kn_link->dst_addr, sizeof(struct sockaddr_storage));
info->on_connected_epoll = 0;
info->connect_sock = -1;
info->listener = sctp_link_listener_start(knet_h, kn_link);
if (!info->listener) {
savederrno = errno;
err = -1;
goto exit_error;
}
if (kn_link->dynamic == KNET_LINK_STATIC) {
if (_create_connect_socket(knet_h, kn_link) < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
kn_link->outsock = info->connect_sock;
}
knet_list_add(&info->list, &handle_info->connect_links_list);
exit_error:
if (err) {
if (info) {
if (info->connect_sock) {
close(info->connect_sock);
}
if (info->listener) {
sctp_link_listener_stop(knet_h, kn_link);
}
kn_link->transport_link = NULL;
free(info);
}
}
errno = savederrno;
return err;
}
/*
* called with global wrlock
*/
int sctp_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
sctp_connect_link_info_t *info;
struct epoll_event ev;
if (!kn_link) {
errno = EINVAL;
return -1;
}
info = kn_link->transport_link;
if (!info) {
errno = EINVAL;
return -1;
}
if ((sctp_link_listener_stop(knet_h, kn_link) <0) && (errno != EBUSY)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove listener trasport: %s",
strerror(savederrno));
goto exit_error;
}
if (info->on_rx_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->connect_sock;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, info->connect_sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to remove connected socket from epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_rx_epoll = 0;
}
if (_close_connect_socket(knet_h, kn_link) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to close connected socket: %s",
strerror(savederrno));
goto exit_error;
}
knet_list_del(&info->list);
free(info);
kn_link->transport_link = NULL;
exit_error:
errno = savederrno;
return err;
}
/*
* transport_free and transport_init are
* called only from knet_handle_new and knet_handle_free.
* all resources (hosts/links) should have been already freed at this point
* and they are called in a write locked context, hence they
* don't need their own locking.
*/
int sctp_transport_free(knet_handle_t knet_h)
{
sctp_handle_info_t *handle_info;
void *thread_status;
struct epoll_event ev;
if (!knet_h->transports[KNET_TRANSPORT_SCTP]) {
errno = EINVAL;
return -1;
}
handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
/*
* keep it here while we debug list usage and such
*/
if (!knet_list_empty(&handle_info->listen_links_list)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Internal error. listen links list is not empty");
}
if (!knet_list_empty(&handle_info->connect_links_list)) {
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Internal error. connect links list is not empty");
}
if (handle_info->listen_thread) {
pthread_cancel(handle_info->listen_thread);
pthread_join(handle_info->listen_thread, &thread_status);
}
if (handle_info->connect_thread) {
pthread_cancel(handle_info->connect_thread);
pthread_join(handle_info->connect_thread, &thread_status);
}
if (handle_info->listensockfd[0] >= 0) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->listensockfd[0];
epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_DEL, handle_info->listensockfd[0], &ev);
}
if (handle_info->connectsockfd[0] >= 0) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->connectsockfd[0];
epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_DEL, handle_info->connectsockfd[0], &ev);
}
_close_socketpair(knet_h, handle_info->connectsockfd);
_close_socketpair(knet_h, handle_info->listensockfd);
if (handle_info->listen_epollfd >= 0) {
close(handle_info->listen_epollfd);
}
if (handle_info->connect_epollfd >= 0) {
close(handle_info->connect_epollfd);
}
free(handle_info->event_subscribe_buffer);
free(handle_info);
knet_h->transports[KNET_TRANSPORT_SCTP] = NULL;
return 0;
}
static int _sctp_subscribe_init(knet_handle_t knet_h)
{
int test_socket, savederrno;
sctp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_SCTP];
char dummy_events[100];
struct sctp_event_subscribe *events;
/* Below we set the first 6 fields of this expanding struct.
* SCTP_EVENTS is deprecated, but SCTP_EVENT is not available
* on Linux; on the other hand, FreeBSD and old Linux does not
* accept small transfers, so we can't simply use this minimum
* everywhere. Thus we query and store the native size. */
const unsigned int subscribe_min = 6;
test_socket = socket(PF_INET, SOCK_STREAM, IPPROTO_SCTP);
if (test_socket < 0) {
if (errno == EPROTONOSUPPORT) {
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "SCTP not supported, skipping initialization");
return 0;
}
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create test socket: %s",
strerror(savederrno));
return savederrno;
}
handle_info->event_subscribe_kernel_size = sizeof dummy_events;
if (getsockopt(test_socket, IPPROTO_SCTP, SCTP_EVENTS, &dummy_events,
&handle_info->event_subscribe_kernel_size)) {
close(test_socket);
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to query kernel size of struct sctp_event_subscribe: %s",
strerror(savederrno));
return savederrno;
}
close(test_socket);
if (handle_info->event_subscribe_kernel_size < subscribe_min) {
savederrno = ERANGE;
log_err(knet_h, KNET_SUB_TRANSP_SCTP,
"No kernel support for the necessary notifications: struct sctp_event_subscribe is %u bytes, %u needed",
handle_info->event_subscribe_kernel_size, subscribe_min);
return savederrno;
}
events = malloc(handle_info->event_subscribe_kernel_size);
if (!events) {
savederrno = errno;
log_err(knet_h, KNET_SUB_TRANSP_SCTP,
"Failed to allocate event subscribe buffer: %s", strerror(savederrno));
return savederrno;
}
memset(events, 0, handle_info->event_subscribe_kernel_size);
events->sctp_data_io_event = 1;
events->sctp_association_event = 1;
events->sctp_address_event = 1;
events->sctp_send_failure_event = 1;
events->sctp_peer_error_event = 1;
events->sctp_shutdown_event = 1;
handle_info->event_subscribe_buffer = (char *)events;
log_debug(knet_h, KNET_SUB_TRANSP_SCTP, "Size of struct sctp_event_subscribe is %u in kernel, %zu in user space",
handle_info->event_subscribe_kernel_size, sizeof(struct sctp_event_subscribe));
return 0;
}
int sctp_transport_init(knet_handle_t knet_h)
{
int err = 0, savederrno = 0;
sctp_handle_info_t *handle_info;
struct epoll_event ev;
if (knet_h->transports[KNET_TRANSPORT_SCTP]) {
errno = EEXIST;
return -1;
}
handle_info = malloc(sizeof(sctp_handle_info_t));
if (!handle_info) {
return -1;
}
memset(handle_info, 0,sizeof(sctp_handle_info_t));
knet_h->transports[KNET_TRANSPORT_SCTP] = handle_info;
savederrno = _sctp_subscribe_init(knet_h);
if (savederrno) {
err = -1;
goto exit_fail;
}
knet_list_init(&handle_info->listen_links_list);
knet_list_init(&handle_info->connect_links_list);
handle_info->listen_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (handle_info->listen_epollfd < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create epoll listen fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(handle_info->listen_epollfd)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set CLOEXEC on listen_epollfd: %s",
strerror(savederrno));
goto exit_fail;
}
handle_info->connect_epollfd = epoll_create(KNET_EPOLL_MAX_EVENTS + 1);
if (handle_info->connect_epollfd < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to create epoll connect fd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_fdset_cloexec(handle_info->connect_epollfd)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to set CLOEXEC on connect_epollfd: %s",
strerror(savederrno));
goto exit_fail;
}
if (_init_socketpair(knet_h, handle_info->connectsockfd) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to init connect socketpair: %s",
strerror(savederrno));
goto exit_fail;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->connectsockfd[0];
if (epoll_ctl(handle_info->connect_epollfd, EPOLL_CTL_ADD, handle_info->connectsockfd[0], &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add connectsockfd[0] to connect epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
if (_init_socketpair(knet_h, handle_info->listensockfd) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to init listen socketpair: %s",
strerror(savederrno));
goto exit_fail;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = handle_info->listensockfd[0];
if (epoll_ctl(handle_info->listen_epollfd, EPOLL_CTL_ADD, handle_info->listensockfd[0], &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to add listensockfd[0] to listen epoll pool: %s",
strerror(savederrno));
goto exit_fail;
}
/*
* Start connect & listener threads
*/
set_thread_status(knet_h, KNET_THREAD_SCTP_LISTEN, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&handle_info->listen_thread, 0, _sctp_listen_thread, (void *) knet_h);
if (savederrno) {
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to start sctp listen thread: %s",
strerror(savederrno));
goto exit_fail;
}
set_thread_status(knet_h, KNET_THREAD_SCTP_CONN, KNET_THREAD_REGISTERED);
savederrno = pthread_create(&handle_info->connect_thread, 0, _sctp_connect_thread, (void *) knet_h);
if (savederrno) {
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_SCTP, "Unable to start sctp connect thread: %s",
strerror(savederrno));
goto exit_fail;
}
exit_fail:
if (err < 0) {
sctp_transport_free(knet_h);
}
errno = savederrno;
return err;
}
int sctp_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link)
{
kn_link->outsock = sockfd;
kn_link->status.dynconnected = 1;
kn_link->transport_connected = 1;
return 0;
}
+
+int sctp_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link)
+{
+ sctp_connect_link_info_t *this_link_info = kn_link->transport_link;
+ sctp_listen_link_info_t *info = this_link_info->listener;
+ return info->listen_sock;
+}
#endif
diff --git a/libknet/transport_sctp.h b/libknet/transport_sctp.h
index f27bcf1e..83a638bc 100644
--- a/libknet/transport_sctp.h
+++ b/libknet/transport_sctp.h
@@ -1,37 +1,38 @@
/*
* Copyright (C) 2017-2019 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include "internals.h"
#ifndef __KNET_TRANSPORT_SCTP_H__
#define __KNET_TRANSPORT_SCTP_H__
/*
* https://en.wikipedia.org/wiki/SCTP_packet_structure
*/
#define KNET_PMTUD_SCTP_OVERHEAD_COMMON 12
#define KNET_PMTUD_SCTP_OVERHEAD_DATA_CHUNK 16
#define KNET_PMTUD_SCTP_OVERHEAD KNET_PMTUD_SCTP_OVERHEAD_COMMON + KNET_PMTUD_SCTP_OVERHEAD_DATA_CHUNK
#ifdef HAVE_NETINET_SCTP_H
int sctp_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link);
int sctp_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link);
int sctp_transport_free(knet_handle_t knet_h);
int sctp_transport_init(knet_handle_t knet_h);
int sctp_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
int sctp_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
int sctp_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
int sctp_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link);
+int sctp_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link);
#endif
#endif
diff --git a/libknet/transport_udp.c b/libknet/transport_udp.c
index e4f6fdb9..e243a913 100644
--- a/libknet/transport_udp.c
+++ b/libknet/transport_udp.c
@@ -1,440 +1,445 @@
/*
* Copyright (C) 2016-2019 Red Hat, Inc. All rights reserved.
*
* Author: Christine Caulfield <ccaulfie@redhat.com>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#if defined (IP_RECVERR) || defined (IPV6_RECVERR)
#include <linux/errqueue.h>
#endif
#include "libknet.h"
#include "compat.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "common.h"
#include "transport_common.h"
#include "transport_udp.h"
#include "threads_common.h"
typedef struct udp_handle_info {
struct knet_list_head links_list;
} udp_handle_info_t;
typedef struct udp_link_info {
struct knet_list_head list;
struct sockaddr_storage local_address;
int socket_fd;
int on_epoll;
} udp_link_info_t;
int udp_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
int sock = -1;
struct epoll_event ev;
udp_link_info_t *info;
udp_handle_info_t *handle_info = knet_h->transports[KNET_TRANSPORT_UDP];
#if defined (IP_RECVERR) || defined (IPV6_RECVERR)
int value;
#endif
/*
* Only allocate a new link if the local address is different
*/
knet_list_for_each_entry(info, &handle_info->links_list, list) {
if (memcmp(&info->local_address, &kn_link->src_addr, sizeof(struct sockaddr_storage)) == 0) {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Re-using existing UDP socket for new link");
kn_link->outsock = info->socket_fd;
kn_link->transport_link = info;
kn_link->transport_connected = 1;
return 0;
}
}
info = malloc(sizeof(udp_link_info_t));
if (!info) {
err = -1;
goto exit_error;
}
sock = socket(kn_link->src_addr.ss_family, SOCK_DGRAM, 0);
if (sock < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to create listener socket: %s",
strerror(savederrno));
goto exit_error;
}
if (_configure_transport_socket(knet_h, sock, &kn_link->src_addr, kn_link->flags, "UDP") < 0) {
savederrno = errno;
err = -1;
goto exit_error;
}
#ifdef IP_RECVERR
if (kn_link->src_addr.ss_family == AF_INET) {
value = 1;
if (setsockopt(sock, SOL_IP, IP_RECVERR, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to set RECVERR on socket: %s",
strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "IP_RECVERR enabled on socket: %i", sock);
}
#else
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "IP_RECVERR not available in this build/platform");
#endif
#ifdef IPV6_RECVERR
if (kn_link->src_addr.ss_family == AF_INET6) {
value = 1;
if (setsockopt(sock, SOL_IPV6, IPV6_RECVERR, &value, sizeof(value)) <0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to set RECVERR on socket: %s",
strerror(savederrno));
goto exit_error;
}
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "IPV6_RECVERR enabled on socket: %i", sock);
}
#else
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "IPV6_RECVERR not available in this build/platform");
#endif
if (bind(sock, (struct sockaddr *)&kn_link->src_addr, sockaddr_len(&kn_link->src_addr))) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to bind listener socket: %s",
strerror(savederrno));
goto exit_error;
}
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = sock;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_ADD, sock, &ev)) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to add listener to epoll pool: %s",
strerror(savederrno));
goto exit_error;
}
info->on_epoll = 1;
if (_set_fd_tracker(knet_h, sock, KNET_TRANSPORT_UDP, 0, info) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
memmove(&info->local_address, &kn_link->src_addr, sizeof(struct sockaddr_storage));
info->socket_fd = sock;
knet_list_add(&info->list, &handle_info->links_list);
kn_link->outsock = sock;
kn_link->transport_link = info;
kn_link->transport_connected = 1;
exit_error:
if (err) {
if (info) {
if (info->on_epoll) {
epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, sock, &ev);
}
free(info);
}
if (sock >= 0) {
close(sock);
}
}
errno = savederrno;
return err;
}
int udp_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
int err = 0, savederrno = 0;
int found = 0;
struct knet_host *host;
int link_idx;
udp_link_info_t *info = kn_link->transport_link;
struct epoll_event ev;
for (host = knet_h->host_head; host != NULL; host = host->next) {
for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) {
if (&host->link[link_idx] == kn_link)
continue;
if (host->link[link_idx].transport_link == info) {
found = 1;
break;
}
}
}
if (found) {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "UDP socket %d still in use", info->socket_fd);
savederrno = EBUSY;
err = -1;
goto exit_error;
}
if (info->on_epoll) {
memset(&ev, 0, sizeof(struct epoll_event));
ev.events = EPOLLIN;
ev.data.fd = info->socket_fd;
if (epoll_ctl(knet_h->recv_from_links_epollfd, EPOLL_CTL_DEL, info->socket_fd, &ev) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to remove UDP socket from epoll poll: %s",
strerror(errno));
goto exit_error;
}
info->on_epoll = 0;
}
if (_set_fd_tracker(knet_h, info->socket_fd, KNET_MAX_TRANSPORTS, 0, NULL) < 0) {
savederrno = errno;
err = -1;
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Unable to set fd tracker: %s",
strerror(savederrno));
goto exit_error;
}
close(info->socket_fd);
knet_list_del(&info->list);
free(kn_link->transport_link);
exit_error:
errno = savederrno;
return err;
}
int udp_transport_free(knet_handle_t knet_h)
{
udp_handle_info_t *handle_info;
if (!knet_h->transports[KNET_TRANSPORT_UDP]) {
errno = EINVAL;
return -1;
}
handle_info = knet_h->transports[KNET_TRANSPORT_UDP];
/*
* keep it here while we debug list usage and such
*/
if (!knet_list_empty(&handle_info->links_list)) {
log_err(knet_h, KNET_SUB_TRANSP_UDP, "Internal error. handle list is not empty");
return -1;
}
free(handle_info);
knet_h->transports[KNET_TRANSPORT_UDP] = NULL;
return 0;
}
int udp_transport_init(knet_handle_t knet_h)
{
udp_handle_info_t *handle_info;
if (knet_h->transports[KNET_TRANSPORT_UDP]) {
errno = EEXIST;
return -1;
}
handle_info = malloc(sizeof(udp_handle_info_t));
if (!handle_info) {
return -1;
}
memset(handle_info, 0, sizeof(udp_handle_info_t));
knet_h->transports[KNET_TRANSPORT_UDP] = handle_info;
knet_list_init(&handle_info->links_list);
return 0;
}
#if defined (IP_RECVERR) || defined (IPV6_RECVERR)
static int read_errs_from_sock(knet_handle_t knet_h, int sockfd)
{
int err = 0, savederrno = 0;
int got_err = 0;
char buffer[1024];
struct iovec iov;
struct msghdr msg;
struct cmsghdr *cmsg;
struct sock_extended_err *sock_err;
struct icmphdr icmph;
struct sockaddr_storage remote;
struct sockaddr_storage *origin;
char addr_str[KNET_MAX_HOST_LEN];
char port_str[KNET_MAX_PORT_LEN];
char addr_remote_str[KNET_MAX_HOST_LEN];
char port_remote_str[KNET_MAX_PORT_LEN];
iov.iov_base = &icmph;
iov.iov_len = sizeof(icmph);
msg.msg_name = (void*)&remote;
msg.msg_namelen = sizeof(remote);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = buffer;
msg.msg_controllen = sizeof(buffer);
for (;;) {
err = recvmsg(sockfd, &msg, MSG_ERRQUEUE);
savederrno = errno;
if (err < 0) {
if (!got_err) {
errno = savederrno;
return -1;
} else {
return 0;
}
}
got_err = 1;
for (cmsg = CMSG_FIRSTHDR(&msg);cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (((cmsg->cmsg_level == SOL_IP) && (cmsg->cmsg_type == IP_RECVERR)) ||
((cmsg->cmsg_level == SOL_IPV6 && (cmsg->cmsg_type == IPV6_RECVERR)))) {
sock_err = (struct sock_extended_err*)(void *)CMSG_DATA(cmsg);
if (sock_err) {
switch (sock_err->ee_origin) {
case SO_EE_ORIGIN_NONE: /* no origin */
case SO_EE_ORIGIN_LOCAL: /* local source (EMSGSIZE) */
if (sock_err->ee_errno == EMSGSIZE) {
if (pthread_mutex_lock(&knet_h->kmtu_mutex) != 0) {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Unable to get mutex lock");
knet_h->kernel_mtu = 0;
break;
} else {
knet_h->kernel_mtu = sock_err->ee_info;
pthread_mutex_unlock(&knet_h->kmtu_mutex);
}
/*
* we can only try to take a lock here. This part of the code
* can be invoked by any thread, including PMTUd that is already
* holding a lock at that stage.
* If PMTUd is holding the lock, most likely it is already running
* and we don't need to notify it back.
*/
if (!pthread_mutex_trylock(&knet_h->pmtud_mutex)) {
if (!knet_h->pmtud_running) {
if (!knet_h->pmtud_forcerun) {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Notifying PMTUd to rerun");
knet_h->pmtud_forcerun = 1;
}
}
pthread_mutex_unlock(&knet_h->pmtud_mutex);
}
}
/*
* those errors are way too noisy
*/
break;
case SO_EE_ORIGIN_ICMP: /* ICMP */
case SO_EE_ORIGIN_ICMP6: /* ICMP6 */
origin = (struct sockaddr_storage *)(void *)SO_EE_OFFENDER(sock_err);
if (knet_addrtostr(origin, sizeof(origin),
addr_str, KNET_MAX_HOST_LEN,
port_str, KNET_MAX_PORT_LEN) < 0) {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Received ICMP error from unknown source: %s", strerror(sock_err->ee_errno));
} else {
if (knet_addrtostr(&remote, sizeof(remote),
addr_remote_str, KNET_MAX_HOST_LEN,
port_remote_str, KNET_MAX_PORT_LEN) < 0) {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Received ICMP error from %s: %s destination unknown", addr_str, strerror(sock_err->ee_errno));
} else {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Received ICMP error from %s: %s %s", addr_str, strerror(sock_err->ee_errno), addr_remote_str);
}
}
break;
}
} else {
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "No data in MSG_ERRQUEUE");
}
}
}
}
}
#else
static int read_errs_from_sock(knet_handle_t knet_h, int sockfd)
{
return 0;
}
#endif
int udp_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
if (recv_errno == EAGAIN) {
read_errs_from_sock(knet_h, sockfd);
}
return 0;
}
int udp_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno)
{
if (recv_err < 0) {
if (recv_errno == EMSGSIZE) {
read_errs_from_sock(knet_h, sockfd);
return 0;
}
if (recv_errno == EINVAL || recv_errno == EPERM) {
return -1;
}
if ((recv_errno == ENOBUFS) || (recv_errno == EAGAIN)) {
#ifdef DEBUG
log_debug(knet_h, KNET_SUB_TRANSP_UDP, "Sock: %d is overloaded. Slowing TX down", sockfd);
#endif
usleep(KNET_THREADS_TIMERES / 16);
} else {
read_errs_from_sock(knet_h, sockfd);
}
return 1;
}
return 0;
}
int udp_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg)
{
if (msg->msg_len == 0)
return 0;
return 2;
}
int udp_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link)
{
kn_link->status.dynconnected = 1;
return 0;
}
+
+int udp_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link)
+{
+ return kn_link->outsock;
+}
diff --git a/libknet/transport_udp.h b/libknet/transport_udp.h
index bbb6ec95..6de18e3f 100644
--- a/libknet/transport_udp.h
+++ b/libknet/transport_udp.h
@@ -1,27 +1,28 @@
/*
* Copyright (C) 2017-2019 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include "internals.h"
#ifndef __KNET_TRANSPORT_UDP_H__
#define __KNET_TRANSPORT_UDP_H__
#define KNET_PMTUD_UDP_OVERHEAD 8
int udp_transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link);
int udp_transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link);
int udp_transport_free(knet_handle_t knet_h);
int udp_transport_init(knet_handle_t knet_h);
int udp_transport_rx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
int udp_transport_tx_sock_error(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno);
int udp_transport_rx_is_data(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg);
int udp_transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link);
+int udp_transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link);
#endif
diff --git a/libknet/transports.c b/libknet/transports.c
index 6ded6759..5181db90 100644
--- a/libknet/transports.c
+++ b/libknet/transports.c
@@ -1,287 +1,292 @@
/*
* Copyright (C) 2017-2019 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include "libknet.h"
#include "compat.h"
#include "host.h"
#include "link.h"
#include "logging.h"
#include "common.h"
#include "transports.h"
#include "transport_loopback.h"
#include "transport_udp.h"
#include "transport_sctp.h"
#include "threads_common.h"
-#define empty_module -1, -1, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL },
+#define empty_module -1, -1, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL },
static knet_transport_ops_t transport_modules_cmd[KNET_MAX_TRANSPORTS] = {
- { "LOOPBACK", KNET_TRANSPORT_LOOPBACK, 1, TRANSPORT_PROTO_LOOPBACK, USE_NO_ACL, TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED, KNET_PMTUD_LOOPBACK_OVERHEAD, loopback_transport_init, loopback_transport_free, loopback_transport_link_set_config, loopback_transport_link_clear_config, loopback_transport_link_dyn_connect, loopback_transport_rx_sock_error, loopback_transport_tx_sock_error, loopback_transport_rx_is_data },
- { "UDP", KNET_TRANSPORT_UDP, 1, TRANSPORT_PROTO_IP_PROTO, USE_GENERIC_ACL, TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED, KNET_PMTUD_UDP_OVERHEAD, udp_transport_init, udp_transport_free, udp_transport_link_set_config, udp_transport_link_clear_config, udp_transport_link_dyn_connect, udp_transport_rx_sock_error, udp_transport_tx_sock_error, udp_transport_rx_is_data },
+ { "LOOPBACK", KNET_TRANSPORT_LOOPBACK, 1, TRANSPORT_PROTO_LOOPBACK, USE_NO_ACL, TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED, KNET_PMTUD_LOOPBACK_OVERHEAD, loopback_transport_init, loopback_transport_free, loopback_transport_link_set_config, loopback_transport_link_clear_config, loopback_transport_link_dyn_connect, loopback_transport_link_get_acl_fd, loopback_transport_rx_sock_error, loopback_transport_tx_sock_error, loopback_transport_rx_is_data },
+ { "UDP", KNET_TRANSPORT_UDP, 1, TRANSPORT_PROTO_IP_PROTO, USE_GENERIC_ACL, TRANSPORT_PROTO_NOT_CONNECTION_ORIENTED,KNET_PMTUD_UDP_OVERHEAD, udp_transport_init, udp_transport_free, udp_transport_link_set_config, udp_transport_link_clear_config, udp_transport_link_dyn_connect, udp_transport_link_get_acl_fd, udp_transport_rx_sock_error, udp_transport_tx_sock_error, udp_transport_rx_is_data },
{ "SCTP", KNET_TRANSPORT_SCTP,
#ifdef HAVE_NETINET_SCTP_H
- 1, TRANSPORT_PROTO_IP_PROTO, USE_PROTO_ACL, TRANSPORT_PROTO_IS_CONNECTION_ORIENTED, KNET_PMTUD_SCTP_OVERHEAD, sctp_transport_init, sctp_transport_free, sctp_transport_link_set_config, sctp_transport_link_clear_config, sctp_transport_link_dyn_connect, sctp_transport_rx_sock_error, sctp_transport_tx_sock_error, sctp_transport_rx_is_data },
+ 1, TRANSPORT_PROTO_IP_PROTO, USE_PROTO_ACL, TRANSPORT_PROTO_IS_CONNECTION_ORIENTED, KNET_PMTUD_SCTP_OVERHEAD, sctp_transport_init, sctp_transport_free, sctp_transport_link_set_config, sctp_transport_link_clear_config, sctp_transport_link_dyn_connect, sctp_transport_link_get_acl_fd, sctp_transport_rx_sock_error, sctp_transport_tx_sock_error, sctp_transport_rx_is_data },
#else
empty_module
#endif
{ NULL, KNET_MAX_TRANSPORTS, empty_module
};
/*
* transport wrappers
*/
int start_all_transports(knet_handle_t knet_h)
{
int idx = 0, savederrno = 0, err = 0;
while (transport_modules_cmd[idx].transport_name != NULL) {
if (transport_modules_cmd[idx].built_in) {
if (transport_modules_cmd[idx].transport_init(knet_h) < 0) {
savederrno = errno;
log_err(knet_h, KNET_SUB_HANDLE,
"Failed to allocate transport handle for %s: %s",
transport_modules_cmd[idx].transport_name,
strerror(savederrno));
err = -1;
goto out;
}
}
idx++;
}
out:
errno = savederrno;
return err;
}
void stop_all_transports(knet_handle_t knet_h)
{
int idx = 0;
while (transport_modules_cmd[idx].transport_name != NULL) {
if (transport_modules_cmd[idx].built_in) {
transport_modules_cmd[idx].transport_free(knet_h);
}
idx++;
}
}
int transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link, uint8_t transport)
{
if (!transport_modules_cmd[transport].built_in) {
errno = EINVAL;
return -1;
}
kn_link->transport_connected = 0;
kn_link->transport = transport;
kn_link->proto_overhead = transport_modules_cmd[transport].transport_mtu_overhead;
return transport_modules_cmd[transport].transport_link_set_config(knet_h, kn_link);
}
int transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link)
{
return transport_modules_cmd[kn_link->transport].transport_link_clear_config(knet_h, kn_link);
}
int transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link)
{
return transport_modules_cmd[kn_link->transport].transport_link_dyn_connect(knet_h, sockfd, kn_link);
}
+int transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link)
+{
+ return transport_modules_cmd[kn_link->transport].transport_link_get_acl_fd(knet_h, kn_link);
+}
+
int transport_rx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno)
{
return transport_modules_cmd[transport].transport_rx_sock_error(knet_h, sockfd, recv_err, recv_errno);
}
int transport_tx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno)
{
return transport_modules_cmd[transport].transport_tx_sock_error(knet_h, sockfd, recv_err, recv_errno);
}
int transport_rx_is_data(knet_handle_t knet_h, uint8_t transport, int sockfd, struct knet_mmsghdr *msg)
{
return transport_modules_cmd[transport].transport_rx_is_data(knet_h, sockfd, msg);
}
int transport_get_proto(knet_handle_t knet_h, uint8_t transport)
{
return transport_modules_cmd[transport].transport_protocol;
}
int transport_get_acl_type(knet_handle_t knet_h, uint8_t transport)
{
return transport_modules_cmd[transport].transport_acl_type;
}
int transport_get_connection_oriented(knet_handle_t knet_h, uint8_t transport)
{
return transport_modules_cmd[transport].transport_is_connection_oriented;
}
/*
* public api
*/
int knet_get_transport_list(struct knet_transport_info *transport_list,
size_t *transport_list_entries)
{
int err = 0;
int idx = 0;
int outidx = 0;
if (!transport_list_entries) {
errno = EINVAL;
return -1;
}
while (transport_modules_cmd[idx].transport_name != NULL) {
if (transport_modules_cmd[idx].built_in) {
if (transport_list) {
transport_list[outidx].name = transport_modules_cmd[idx].transport_name;
transport_list[outidx].id = transport_modules_cmd[idx].transport_id;
}
outidx++;
}
idx++;
}
*transport_list_entries = outidx;
if (!err)
errno = 0;
return err;
}
const char *knet_get_transport_name_by_id(uint8_t transport)
{
int savederrno = 0;
const char *name = NULL;
if (transport == KNET_MAX_TRANSPORTS) {
errno = EINVAL;
return name;
}
if ((transport_modules_cmd[transport].transport_name) &&
(transport_modules_cmd[transport].built_in)) {
name = transport_modules_cmd[transport].transport_name;
} else {
savederrno = ENOENT;
}
errno = name ? 0 : savederrno;
return name;
}
uint8_t knet_get_transport_id_by_name(const char *name)
{
int savederrno = 0;
uint8_t err = KNET_MAX_TRANSPORTS;
int i, found;
if (!name) {
errno = EINVAL;
return err;
}
i = 0;
found = 0;
while (transport_modules_cmd[i].transport_name != NULL) {
if (transport_modules_cmd[i].built_in) {
if (!strcmp(transport_modules_cmd[i].transport_name, name)) {
err = transport_modules_cmd[i].transport_id;
found = 1;
break;
}
}
i++;
}
if (!found) {
savederrno = EINVAL;
}
errno = err == KNET_MAX_TRANSPORTS ? savederrno : 0;
return err;
}
int knet_handle_set_transport_reconnect_interval(knet_handle_t knet_h, uint32_t msecs)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!msecs) {
errno = EINVAL;
return -1;
}
if (msecs < 1000) {
log_warn(knet_h, KNET_SUB_HANDLE, "reconnect internval below 1 sec (%u msecs) might be too aggressive", msecs);
}
if (msecs > 60000) {
log_warn(knet_h, KNET_SUB_HANDLE, "reconnect internval above 1 minute (%u msecs) could cause long delays in network convergiance", msecs);
}
savederrno = get_global_wrlock(knet_h);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
knet_h->reconnect_int = msecs;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
int knet_handle_get_transport_reconnect_interval(knet_handle_t knet_h, uint32_t *msecs)
{
int savederrno = 0;
if (!knet_h) {
errno = EINVAL;
return -1;
}
if (!msecs) {
errno = EINVAL;
return -1;
}
savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock);
if (savederrno) {
log_err(knet_h, KNET_SUB_HANDLE, "Unable to get read lock: %s",
strerror(savederrno));
errno = savederrno;
return -1;
}
*msecs = knet_h->reconnect_int;
pthread_rwlock_unlock(&knet_h->global_rwlock);
errno = 0;
return 0;
}
diff --git a/libknet/transports.h b/libknet/transports.h
index 6338140e..38f69bac 100644
--- a/libknet/transports.h
+++ b/libknet/transports.h
@@ -1,25 +1,26 @@
/*
* Copyright (C) 2016-2019 Red Hat, Inc. All rights reserved.
*
* Authors: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#ifndef __KNET_TRANSPORTS_H__
#define __KNET_TRANSPORTS_H__
int start_all_transports(knet_handle_t knet_h);
void stop_all_transports(knet_handle_t knet_h);
int transport_link_set_config(knet_handle_t knet_h, struct knet_link *kn_link, uint8_t transport);
int transport_link_clear_config(knet_handle_t knet_h, struct knet_link *kn_link);
int transport_link_dyn_connect(knet_handle_t knet_h, int sockfd, struct knet_link *kn_link);
+int transport_link_get_acl_fd(knet_handle_t knet_h, struct knet_link *kn_link);
int transport_rx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno);
int transport_tx_sock_error(knet_handle_t knet_h, uint8_t transport, int sockfd, int recv_err, int recv_errno);
int transport_rx_is_data(knet_handle_t knet_h, uint8_t transport, int sockfd, struct knet_mmsghdr *msg);
int transport_get_proto(knet_handle_t knet_h, uint8_t transport);
int transport_get_acl_type(knet_handle_t knet_h, uint8_t transport);
int transport_get_connection_oriented(knet_handle_t knet_h, uint8_t transport);
#endif

File Metadata

Mime Type
text/x-diff
Expires
Mon, Feb 24, 5:23 PM (14 m, 9 s)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1464366
Default Alt Text
(93 KB)

Event Timeline