Page MenuHomeClusterLabs Projects

No OneTemporary

diff --git a/libknet/nsscrypto.c b/libknet/nsscrypto.c
index 89ac4daf..6b77c9b9 100644
--- a/libknet/nsscrypto.c
+++ b/libknet/nsscrypto.c
@@ -1,816 +1,820 @@
/*
* Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under GPL-2.0+, LGPL-2.0+
*/
#include "config.h"
#include <nss.h>
#include <nspr.h>
#include <pk11pub.h>
#include <pkcs11.h>
#include <prerror.h>
#include <blapit.h>
#include <hasht.h>
#include <pthread.h>
#include <stdlib.h>
#include <secerr.h>
#include "crypto.h"
#include "nsscrypto.h"
#include "logging.h"
static pthread_mutex_t nssdbinit_mutex = PTHREAD_MUTEX_INITIALIZER;
static int nssdbinit_done = 0;
/*
* crypto definitions and conversion tables
*/
#define SALT_SIZE 16
/*
* This are defined in new NSS. For older one, we will define our own
*/
#ifndef AES_256_KEY_LENGTH
#define AES_256_KEY_LENGTH 32
#endif
#ifndef AES_192_KEY_LENGTH
#define AES_192_KEY_LENGTH 24
#endif
#ifndef AES_128_KEY_LENGTH
#define AES_128_KEY_LENGTH 16
#endif
enum crypto_crypt_t {
CRYPTO_CIPHER_TYPE_NONE = 0,
CRYPTO_CIPHER_TYPE_AES256 = 1,
CRYPTO_CIPHER_TYPE_AES192 = 2,
CRYPTO_CIPHER_TYPE_AES128 = 3,
CRYPTO_CIPHER_TYPE_3DES = 4
};
CK_MECHANISM_TYPE cipher_to_nss[] = {
0, /* CRYPTO_CIPHER_TYPE_NONE */
CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES256 */
CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES192 */
CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES128 */
CKM_DES3_CBC_PAD /* CRYPTO_CIPHER_TYPE_3DES */
};
size_t cipher_key_len[] = {
0, /* CRYPTO_CIPHER_TYPE_NONE */
AES_256_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES256 */
AES_192_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES192 */
AES_128_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES128 */
24 /* CRYPTO_CIPHER_TYPE_3DES */
};
size_t cypher_block_len[] = {
0, /* CRYPTO_CIPHER_TYPE_NONE */
AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES256 */
AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES192 */
AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES128 */
0 /* CRYPTO_CIPHER_TYPE_3DES */
};
/*
* hash definitions and conversion tables
*/
enum crypto_hash_t {
CRYPTO_HASH_TYPE_NONE = 0,
CRYPTO_HASH_TYPE_MD5 = 1,
CRYPTO_HASH_TYPE_SHA1 = 2,
CRYPTO_HASH_TYPE_SHA256 = 3,
CRYPTO_HASH_TYPE_SHA384 = 4,
CRYPTO_HASH_TYPE_SHA512 = 5
};
CK_MECHANISM_TYPE hash_to_nss[] = {
0, /* CRYPTO_HASH_TYPE_NONE */
CKM_MD5_HMAC, /* CRYPTO_HASH_TYPE_MD5 */
CKM_SHA_1_HMAC, /* CRYPTO_HASH_TYPE_SHA1 */
CKM_SHA256_HMAC, /* CRYPTO_HASH_TYPE_SHA256 */
CKM_SHA384_HMAC, /* CRYPTO_HASH_TYPE_SHA384 */
CKM_SHA512_HMAC /* CRYPTO_HASH_TYPE_SHA512 */
};
size_t hash_len[] = {
0, /* CRYPTO_HASH_TYPE_NONE */
MD5_LENGTH, /* CRYPTO_HASH_TYPE_MD5 */
SHA1_LENGTH, /* CRYPTO_HASH_TYPE_SHA1 */
SHA256_LENGTH, /* CRYPTO_HASH_TYPE_SHA256 */
SHA384_LENGTH, /* CRYPTO_HASH_TYPE_SHA384 */
SHA512_LENGTH /* CRYPTO_HASH_TYPE_SHA512 */
};
enum sym_key_type {
SYM_KEY_TYPE_CRYPT,
SYM_KEY_TYPE_HASH
};
struct nsscrypto_instance {
PK11SymKey *nss_sym_key;
PK11SymKey *nss_sym_key_sign;
unsigned char *private_key;
unsigned int private_key_len;
int crypto_cipher_type;
int crypto_hash_type;
};
/*
* crypt/decrypt functions
*/
static int string_to_crypto_cipher_type(const char* crypto_cipher_type)
{
if (strcmp(crypto_cipher_type, "none") == 0) {
return CRYPTO_CIPHER_TYPE_NONE;
} else if (strcmp(crypto_cipher_type, "aes256") == 0) {
return CRYPTO_CIPHER_TYPE_AES256;
} else if (strcmp(crypto_cipher_type, "aes192") == 0) {
return CRYPTO_CIPHER_TYPE_AES192;
} else if (strcmp(crypto_cipher_type, "aes128") == 0) {
return CRYPTO_CIPHER_TYPE_AES128;
} else if (strcmp(crypto_cipher_type, "3des") == 0) {
return CRYPTO_CIPHER_TYPE_3DES;
}
return -1;
}
static PK11SymKey *import_symmetric_key(knet_handle_t knet_h, enum sym_key_type key_type)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
SECItem key_item;
PK11SlotInfo *slot;
PK11SymKey *res_key;
CK_MECHANISM_TYPE cipher;
CK_ATTRIBUTE_TYPE operation;
CK_MECHANISM_TYPE wrap_mechanism;
int wrap_key_len;
PK11SymKey *wrap_key;
PK11Context *wrap_key_crypt_context;
SECItem tmp_sec_item;
SECItem wrapped_key;
int wrapped_key_len;
unsigned char wrapped_key_data[KNET_MAX_KEY_LEN];
memset(&key_item, 0, sizeof(key_item));
slot = NULL;
wrap_key = NULL;
res_key = NULL;
wrap_key_crypt_context = NULL;
key_item.type = siBuffer;
key_item.data = instance->private_key;
switch (key_type) {
case SYM_KEY_TYPE_CRYPT:
key_item.len = cipher_key_len[instance->crypto_cipher_type];
cipher = cipher_to_nss[instance->crypto_cipher_type];
operation = CKA_ENCRYPT|CKA_DECRYPT;
break;
case SYM_KEY_TYPE_HASH:
key_item.len = instance->private_key_len;
cipher = hash_to_nss[instance->crypto_hash_type];
operation = CKA_SIGN;
break;
+ default:
+ log_err(knet_h, KNET_SUB_NSSCRYPTO, "Import symmetric key failed. Unknown keyimport request");
+ goto exit_res_key;
+ break;
}
slot = PK11_GetBestSlot(cipher, NULL);
if (slot == NULL) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to find security slot (%d): %s",
PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT));
goto exit_res_key;
}
/*
* Without FIPS it would be possible to just use
* res_key = PK11_ImportSymKey(slot, cipher, PK11_OriginUnwrap, operation, &key_item, NULL);
* with FIPS NSS Level 2 certification has to be "workarounded" (so it becomes Level 1) by using
* following method:
* 1. Generate wrap key
* 2. Encrypt authkey with wrap key
* 3. Unwrap encrypted authkey using wrap key
*/
/*
* Generate wrapping key
*/
wrap_mechanism = PK11_GetBestWrapMechanism(slot);
wrap_key_len = PK11_GetBestKeyLength(slot, wrap_mechanism);
wrap_key = PK11_KeyGen(slot, wrap_mechanism, NULL, wrap_key_len, NULL);
if (wrap_key == NULL) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to generate wrapping key (%d): %s",
PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT));
goto exit_res_key;
}
/*
* Encrypt authkey with wrapping key
*/
/*
* Initialization of IV is not needed because PK11_GetBestWrapMechanism should return ECB mode
*/
memset(&tmp_sec_item, 0, sizeof(tmp_sec_item));
wrap_key_crypt_context = PK11_CreateContextBySymKey(wrap_mechanism, CKA_ENCRYPT,
wrap_key, &tmp_sec_item);
if (wrap_key_crypt_context == NULL) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to create encrypt context (%d): %s",
PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT));
goto exit_res_key;
}
wrapped_key_len = (int)sizeof(wrapped_key_data);
if (PK11_CipherOp(wrap_key_crypt_context, wrapped_key_data, &wrapped_key_len,
sizeof(wrapped_key_data), key_item.data, key_item.len) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to encrypt authkey (%d): %s",
PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT));
goto exit_res_key;
}
if (PK11_Finalize(wrap_key_crypt_context) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to finalize encryption of authkey (%d): %s",
PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT));
goto exit_res_key;
}
/*
* Finally unwrap sym key
*/
memset(&tmp_sec_item, 0, sizeof(tmp_sec_item));
wrapped_key.data = wrapped_key_data;
wrapped_key.len = wrapped_key_len;
res_key = PK11_UnwrapSymKey(wrap_key, wrap_mechanism, &tmp_sec_item, &wrapped_key,
cipher, operation, key_item.len);
if (res_key == NULL) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to import key into NSS (%d): %s",
PR_GetError(), PR_ErrorToString(PR_GetError(), PR_LANGUAGE_I_DEFAULT));
if (PR_GetError() == SEC_ERROR_BAD_DATA) {
/*
* Maximum key length for FIPS enabled softtoken is limited to
* MAX_KEY_LEN (pkcs11i.h - 256) and checked in NSC_UnwrapKey. Returned
* error is CKR_TEMPLATE_INCONSISTENT which is mapped to SEC_ERROR_BAD_DATA.
*/
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Secret key is probably too long. "
"Try reduce it to 256 bytes");
}
goto exit_res_key;
}
exit_res_key:
if (wrap_key_crypt_context != NULL) {
PK11_DestroyContext(wrap_key_crypt_context, PR_TRUE);
}
if (wrap_key != NULL) {
PK11_FreeSymKey(wrap_key);
}
if (slot != NULL) {
PK11_FreeSlot(slot);
}
return (res_key);
}
static int init_nss_crypto(knet_handle_t knet_h)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
if (!cipher_to_nss[instance->crypto_cipher_type]) {
return 0;
}
instance->nss_sym_key = import_symmetric_key(knet_h, SYM_KEY_TYPE_CRYPT);
if (instance->nss_sym_key == NULL) {
return -1;
}
return 0;
}
static int encrypt_nss(
knet_handle_t knet_h,
const struct iovec *iov,
int iovcnt,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
PK11Context* crypt_context = NULL;
SECItem crypt_param;
SECItem *nss_sec_param = NULL;
int tmp_outlen = 0, tmp1_outlen = 0;
unsigned int tmp2_outlen = 0;
unsigned char *salt = buf_out;
unsigned char *data = buf_out + SALT_SIZE;
int err = -1;
int i;
if (PK11_GenerateRandom (salt, SALT_SIZE) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to generate a random number %d",
PR_GetError());
goto out;
}
crypt_param.type = siBuffer;
crypt_param.data = salt;
crypt_param.len = SALT_SIZE;
nss_sec_param = PK11_ParamFromIV(cipher_to_nss[instance->crypto_cipher_type],
&crypt_param);
if (nss_sec_param == NULL) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to set up PKCS11 param (err %d)",
PR_GetError());
goto out;
}
/*
* Create cipher context for encryption
*/
crypt_context = PK11_CreateContextBySymKey(cipher_to_nss[instance->crypto_cipher_type],
CKA_ENCRYPT,
instance->nss_sym_key,
nss_sec_param);
if (!crypt_context) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (encrypt) crypt_type=%d (err %d)",
(int)cipher_to_nss[instance->crypto_cipher_type],
PR_GetError());
goto out;
}
for (i=0; i<iovcnt; i++) {
if (PK11_CipherOp(crypt_context, data,
&tmp_outlen,
KNET_DATABUFSIZE_CRYPT,
(unsigned char *)iov[i].iov_base, iov[i].iov_len) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CipherOp failed (encrypt) crypt_type=%d (err %d)",
(int)cipher_to_nss[instance->crypto_cipher_type],
PR_GetError());
goto out;
}
tmp1_outlen = tmp1_outlen + tmp_outlen;
}
if (PK11_DigestFinal(crypt_context, data + tmp1_outlen,
&tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal failed (encrypt) crypt_type=%d (err %d)",
(int)cipher_to_nss[instance->crypto_cipher_type],
PR_GetError());
goto out;
}
*buf_out_len = tmp1_outlen + tmp2_outlen + SALT_SIZE;
err = 0;
out:
if (crypt_context) {
PK11_DestroyContext(crypt_context, PR_TRUE);
}
if (nss_sec_param) {
SECITEM_FreeItem(nss_sec_param, PR_TRUE);
}
return err;
}
static int decrypt_nss (
knet_handle_t knet_h,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
PK11Context* decrypt_context = NULL;
SECItem decrypt_param;
int tmp1_outlen = 0;
unsigned int tmp2_outlen = 0;
unsigned char *salt = (unsigned char *)buf_in;
unsigned char *data = salt + SALT_SIZE;
int datalen = buf_in_len - SALT_SIZE;
int err = -1;
/* Create cipher context for decryption */
decrypt_param.type = siBuffer;
decrypt_param.data = salt;
decrypt_param.len = SALT_SIZE;
decrypt_context = PK11_CreateContextBySymKey(cipher_to_nss[instance->crypto_cipher_type],
CKA_DECRYPT,
instance->nss_sym_key, &decrypt_param);
if (!decrypt_context) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext (decrypt) failed (err %d)",
PR_GetError());
goto out;
}
if (PK11_CipherOp(decrypt_context, buf_out, &tmp1_outlen,
KNET_DATABUFSIZE_CRYPT, data, datalen) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CipherOp (decrypt) failed (err %d)",
PR_GetError());
goto out;
}
if (PK11_DigestFinal(decrypt_context, buf_out + tmp1_outlen, &tmp2_outlen,
KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal (decrypt) failed (err %d)",
PR_GetError());
goto out;
}
*buf_out_len = tmp1_outlen + tmp2_outlen;
err = 0;
out:
if (decrypt_context) {
PK11_DestroyContext(decrypt_context, PR_TRUE);
}
return err;
}
/*
* hash/hmac/digest functions
*/
static int string_to_crypto_hash_type(const char* crypto_hash_type)
{
if (strcmp(crypto_hash_type, "none") == 0) {
return CRYPTO_HASH_TYPE_NONE;
} else if (strcmp(crypto_hash_type, "md5") == 0) {
return CRYPTO_HASH_TYPE_MD5;
} else if (strcmp(crypto_hash_type, "sha1") == 0) {
return CRYPTO_HASH_TYPE_SHA1;
} else if (strcmp(crypto_hash_type, "sha256") == 0) {
return CRYPTO_HASH_TYPE_SHA256;
} else if (strcmp(crypto_hash_type, "sha384") == 0) {
return CRYPTO_HASH_TYPE_SHA384;
} else if (strcmp(crypto_hash_type, "sha512") == 0) {
return CRYPTO_HASH_TYPE_SHA512;
}
return -1;
}
static int init_nss_hash(knet_handle_t knet_h)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
if (!hash_to_nss[instance->crypto_hash_type]) {
return 0;
}
instance->nss_sym_key_sign = import_symmetric_key(knet_h, SYM_KEY_TYPE_HASH);
if (instance->nss_sym_key_sign == NULL) {
return -1;
}
return 0;
}
static int calculate_nss_hash(
knet_handle_t knet_h,
const unsigned char *buf,
const size_t buf_len,
unsigned char *hash)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
PK11Context* hash_context = NULL;
SECItem hash_param;
unsigned int hash_tmp_outlen = 0;
int err = -1;
/* Now do the digest */
hash_param.type = siBuffer;
hash_param.data = 0;
hash_param.len = 0;
hash_context = PK11_CreateContextBySymKey(hash_to_nss[instance->crypto_hash_type],
CKA_SIGN,
instance->nss_sym_key_sign,
&hash_param);
if (!hash_context) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (hash) hash_type=%d (err %d)",
(int)hash_to_nss[instance->crypto_hash_type],
PR_GetError());
goto out;
}
if (PK11_DigestBegin(hash_context) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestBegin failed (hash) hash_type=%d (err %d)",
(int)hash_to_nss[instance->crypto_hash_type],
PR_GetError());
goto out;
}
if (PK11_DigestOp(hash_context, buf, buf_len) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestOp failed (hash) hash_type=%d (err %d)",
(int)hash_to_nss[instance->crypto_hash_type],
PR_GetError());
goto out;
}
if (PK11_DigestFinal(hash_context, hash,
&hash_tmp_outlen, hash_len[instance->crypto_hash_type]) != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinale failed (hash) hash_type=%d (err %d)",
(int)hash_to_nss[instance->crypto_hash_type],
PR_GetError());
goto out;
}
err = 0;
out:
if (hash_context) {
PK11_DestroyContext(hash_context, PR_TRUE);
}
return err;
}
/*
* global/glue nss functions
*/
static void nss_atexit_handler(void)
{
NSS_Shutdown();
PL_ArenaFinish();
PR_Cleanup();
}
static int init_nss_db(knet_handle_t knet_h)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
int err = 0;
if ((!cipher_to_nss[instance->crypto_cipher_type]) &&
(!hash_to_nss[instance->crypto_hash_type])) {
return 0;
}
err = pthread_mutex_lock(&nssdbinit_mutex);
if (err) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "NSS DB unable to get mutex lock (%d)", err);
return -1;
}
if (nssdbinit_done) {
err = 0;
goto out_unlock;
}
PR_Init(PR_USER_THREAD, PR_PRIORITY_URGENT, 0);
if (NSS_NoDB_Init(".") != SECSuccess) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "NSS DB initialization failed (err %d)",
PR_GetError());
err = -1;
goto out_unlock;
}
if (atexit(&nss_atexit_handler) != 0) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "NSS DB unable to register atexit handler");
err = -1;
goto out_unlock;
}
nssdbinit_done = 1;
out_unlock:
pthread_mutex_unlock(&nssdbinit_mutex);
return err;
}
static int init_nss(knet_handle_t knet_h)
{
if (init_nss_db(knet_h) < 0) {
return -1;
}
if (init_nss_crypto(knet_h) < 0) {
return -1;
}
if (init_nss_hash(knet_h) < 0) {
return -1;
}
return 0;
}
/*
* exported API
*/
int nsscrypto_encrypt_and_sign (
knet_handle_t knet_h,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct iovec iov_in;
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (unsigned char *)buf_in;
iov_in.iov_len = buf_in_len;
return nsscrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len);
}
int nsscrypto_encrypt_and_signv (
knet_handle_t knet_h,
const struct iovec *iov_in,
int iovcnt_in,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
int i;
if (cipher_to_nss[instance->crypto_cipher_type]) {
if (encrypt_nss(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) {
return -1;
}
} else {
*buf_out_len = 0;
for (i=0; i<iovcnt_in; i++) {
memmove(buf_out + *buf_out_len, iov_in[i].iov_base, iov_in[i].iov_len);
*buf_out_len = *buf_out_len + iov_in[i].iov_len;
}
}
if (hash_to_nss[instance->crypto_hash_type]) {
if (calculate_nss_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) {
return -1;
}
*buf_out_len = *buf_out_len + hash_len[instance->crypto_hash_type];
}
return 0;
}
int nsscrypto_authenticate_and_decrypt (
knet_handle_t knet_h,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance;
ssize_t temp_len = buf_in_len;
if (hash_to_nss[instance->crypto_hash_type]) {
unsigned char tmp_hash[hash_len[instance->crypto_hash_type]];
ssize_t temp_buf_len = buf_in_len - hash_len[instance->crypto_hash_type];
if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Incorrect packet size.");
return -1;
}
if (calculate_nss_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) {
return -1;
}
if (memcmp(tmp_hash, buf_in + temp_buf_len, hash_len[instance->crypto_hash_type]) != 0) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Digest does not match");
return -1;
}
temp_len = temp_len - hash_len[instance->crypto_hash_type];
*buf_out_len = temp_len;
}
if (cipher_to_nss[instance->crypto_cipher_type]) {
if (decrypt_nss(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) {
return -1;
}
} else {
memmove(buf_out, buf_in, temp_len);
*buf_out_len = temp_len;
}
return 0;
}
int nsscrypto_init(
knet_handle_t knet_h,
struct knet_handle_crypto_cfg *knet_handle_crypto_cfg)
{
struct nsscrypto_instance *nsscrypto_instance = NULL;
log_debug(knet_h, KNET_SUB_NSSCRYPTO,
"Initizializing nss crypto module [%s/%s]",
knet_handle_crypto_cfg->crypto_cipher_type,
knet_handle_crypto_cfg->crypto_hash_type);
knet_h->crypto_instance->model_instance = malloc(sizeof(struct nsscrypto_instance));
if (!knet_h->crypto_instance->model_instance) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to allocate memory for nss model instance");
return -1;
}
nsscrypto_instance = knet_h->crypto_instance->model_instance;
memset(nsscrypto_instance, 0, sizeof(struct nsscrypto_instance));
nsscrypto_instance->crypto_cipher_type = string_to_crypto_cipher_type(knet_handle_crypto_cfg->crypto_cipher_type);
if (nsscrypto_instance->crypto_cipher_type < 0) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto cipher type requested");
goto out_err;
}
nsscrypto_instance->crypto_hash_type = string_to_crypto_hash_type(knet_handle_crypto_cfg->crypto_hash_type);
if (nsscrypto_instance->crypto_hash_type < 0) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto hash type requested");
goto out_err;
}
if ((nsscrypto_instance->crypto_cipher_type > 0) &&
(nsscrypto_instance->crypto_hash_type == 0)) {
log_err(knet_h, KNET_SUB_NSSCRYPTO, "crypto communication requires hash specified");
goto out_err;
}
nsscrypto_instance->private_key = knet_handle_crypto_cfg->private_key;
nsscrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len;
if (init_nss(knet_h) < 0) {
goto out_err;
}
knet_h->sec_header_size = 0;
if (nsscrypto_instance->crypto_hash_type > 0) {
knet_h->sec_header_size += hash_len[nsscrypto_instance->crypto_hash_type];
knet_h->sec_hash_size = hash_len[nsscrypto_instance->crypto_hash_type];
}
if (nsscrypto_instance->crypto_cipher_type > 0) {
int block_size;
if (cypher_block_len[nsscrypto_instance->crypto_cipher_type]) {
block_size = cypher_block_len[nsscrypto_instance->crypto_cipher_type];
} else {
block_size = PK11_GetBlockSize(nsscrypto_instance->crypto_cipher_type, NULL);
if (block_size < 0) {
goto out_err;
}
}
knet_h->sec_header_size += (block_size * 2);
knet_h->sec_header_size += SALT_SIZE;
knet_h->sec_salt_size = SALT_SIZE;
knet_h->sec_block_size = block_size;
}
return 0;
out_err:
nsscrypto_fini(knet_h);
return -1;
}
void nsscrypto_fini(
knet_handle_t knet_h)
{
struct nsscrypto_instance *nsscrypto_instance = knet_h->crypto_instance->model_instance;
if (nsscrypto_instance) {
if (nsscrypto_instance->nss_sym_key) {
PK11_FreeSymKey(nsscrypto_instance->nss_sym_key);
nsscrypto_instance->nss_sym_key = NULL;
}
if (nsscrypto_instance->nss_sym_key_sign) {
PK11_FreeSymKey(nsscrypto_instance->nss_sym_key_sign);
nsscrypto_instance->nss_sym_key_sign = NULL;
}
free(nsscrypto_instance);
knet_h->crypto_instance->model_instance = NULL;
knet_h->sec_header_size = 0;
}
return;
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Feb 25, 8:44 AM (1 d, 13 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1464761
Default Alt Text
(22 KB)

Event Timeline