Page MenuHomeClusterLabs Projects

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/exec/apidef.c b/exec/apidef.c
index 7de22098..5e1f1782 100644
--- a/exec/apidef.c
+++ b/exec/apidef.c
@@ -1,183 +1,184 @@
/*
* Copyright (c) 2008, 2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <corosync/corotypes.h>
#include <corosync/coroipc_types.h>
#include <corosync/lcr/lcr_ifact.h>
#include <corosync/totem/totempg.h>
#include <corosync/totem/totemip.h>
#include <corosync/totem/totem.h>
#include <corosync/engine/logsys.h>
#include <corosync/coroipcs.h>
#include "util.h"
#include "timer.h"
#include "sync.h"
#include "quorum.h"
#include "schedwrk.h"
#include "main.h"
#include "apidef.h"
#include <corosync/engine/coroapi.h>
#include "service.h"
LOGSYS_DECLARE_SUBSYS ("APIDEF");
/*
* Remove compile warnings about type name changes in corosync_tpg_group
*/
typedef int (*typedef_tpg_join) (
hdb_handle_t,
const struct corosync_tpg_group *,
size_t);
typedef int (*typedef_tpg_leave) (hdb_handle_t,
const struct corosync_tpg_group *,
size_t);
typedef int (*typedef_tpg_groups_mcast_groups) (
hdb_handle_t, int,
const struct corosync_tpg_group *,
size_t groups_cnt,
const struct iovec *,
unsigned int);
typedef int (*typedef_tpg_groups_send_ok) (
hdb_handle_t,
const struct corosync_tpg_group *,
size_t groups_cnt,
struct iovec *,
int);
static inline void _corosync_public_exit_error (cs_fatal_error_t err,
const char *file,
unsigned int line)
__attribute__((__noreturn__));
static inline void _corosync_public_exit_error (
cs_fatal_error_t err, const char *file, unsigned int line)
{
_corosync_exit_error (err, file, line);
}
static struct corosync_api_v1 apidef_corosync_api_v1 = {
.timer_add_duration = corosync_timer_add_duration,
.timer_add_absolute = corosync_timer_add_absolute,
.timer_delete = corosync_timer_delete,
.timer_time_get = corosync_timer_time_get,
.timer_expire_time_get = corosync_timer_expire_time_get,
.ipc_source_set = message_source_set,
.ipc_source_is_local = message_source_is_local,
.ipc_private_data_get = coroipcs_private_data_get,
.ipc_response_iov_send = coroipcs_response_iov_send,
.ipc_response_send = coroipcs_response_send,
.ipc_dispatch_send = coroipcs_dispatch_send,
.ipc_dispatch_iov_send = coroipcs_dispatch_iov_send,
.ipc_refcnt_inc = coroipcs_refcount_inc,
.ipc_refcnt_dec = coroipcs_refcount_dec,
.totem_nodeid_get = totempg_my_nodeid_get,
.totem_family_get = totempg_my_family_get,
.totem_ring_reenable = totempg_ring_reenable,
.totem_mcast = main_mcast,
.totem_ifaces_get = totempg_ifaces_get,
.totem_ifaces_print = totempg_ifaces_print,
.totem_ip_print = totemip_print,
.totem_crypto_set = totempg_crypto_set,
.totem_callback_token_create = totempg_callback_token_create,
+ .totem_get_stats = totempg_get_stats,
.tpg_init = totempg_groups_initialize,
.tpg_exit = NULL, /* missing from totempg api */
.tpg_join = (typedef_tpg_join)totempg_groups_join,
.tpg_leave = (typedef_tpg_leave)totempg_groups_leave,
.tpg_joined_mcast = totempg_groups_mcast_joined,
.tpg_joined_reserve = totempg_groups_joined_reserve,
.tpg_joined_release = totempg_groups_joined_release,
.tpg_groups_mcast = (typedef_tpg_groups_mcast_groups)totempg_groups_mcast_groups,
.tpg_groups_reserve = NULL,
.tpg_groups_release = NULL,
.schedwrk_create = schedwrk_create,
.schedwrk_destroy = schedwrk_destroy,
.sync_request = NULL, //sync_request,
.quorum_is_quorate = corosync_quorum_is_quorate,
.quorum_register_callback = corosync_quorum_register_callback,
.quorum_unregister_callback = corosync_quorum_unregister_callback,
.quorum_initialize = corosync_quorum_initialize,
.service_link_and_init = corosync_service_link_and_init,
.service_unlink_and_exit = corosync_service_unlink_and_exit,
.plugin_interface_reference = lcr_ifact_reference,
.plugin_interface_release = lcr_ifact_release,
.error_memory_failure = _corosync_out_of_memory_error,
.fatal_error = _corosync_public_exit_error,
.shutdown_request = corosync_shutdown_request,
.state_dump = corosync_state_dump,
.poll_handle_get = corosync_poll_handle_get
};
void apidef_init (struct objdb_iface_ver0 *objdb) {
apidef_corosync_api_v1.object_create = objdb->object_create;
apidef_corosync_api_v1.object_priv_set = objdb->object_priv_set;
apidef_corosync_api_v1.object_key_create = objdb->object_key_create;
apidef_corosync_api_v1.object_destroy = objdb->object_destroy;
apidef_corosync_api_v1.object_valid_set = objdb->object_valid_set;
apidef_corosync_api_v1.object_key_valid_set = objdb->object_key_valid_set;
apidef_corosync_api_v1.object_find_create = objdb->object_find_create;
apidef_corosync_api_v1.object_find_next = objdb->object_find_next;
apidef_corosync_api_v1.object_find_destroy = objdb->object_find_destroy;
apidef_corosync_api_v1.object_key_get = objdb->object_key_get;
apidef_corosync_api_v1.object_priv_get = objdb->object_priv_get;
apidef_corosync_api_v1.object_key_replace = objdb->object_key_replace;
apidef_corosync_api_v1.object_key_delete = objdb->object_key_delete;
apidef_corosync_api_v1.object_iter_reset = objdb->object_iter_reset;
apidef_corosync_api_v1.object_iter = objdb->object_iter;
apidef_corosync_api_v1.object_key_iter = objdb->object_key_iter;
apidef_corosync_api_v1.object_parent_get = objdb->object_parent_get;
apidef_corosync_api_v1.object_name_get = objdb->object_name_get;
apidef_corosync_api_v1.object_dump = objdb->object_dump;
apidef_corosync_api_v1.object_key_iter_from = objdb->object_key_iter_from;
apidef_corosync_api_v1.object_track_start = objdb->object_track_start;
apidef_corosync_api_v1.object_track_stop = objdb->object_track_stop;
apidef_corosync_api_v1.object_write_config = objdb->object_write_config;
apidef_corosync_api_v1.object_reload_config = objdb->object_reload_config;
apidef_corosync_api_v1.object_key_increment = objdb->object_key_increment;
apidef_corosync_api_v1.object_key_decrement = objdb->object_key_decrement;
apidef_corosync_api_v1.object_key_create_typed = objdb->object_key_create_typed;
apidef_corosync_api_v1.object_key_get_typed = objdb->object_key_get_typed;
apidef_corosync_api_v1.object_key_iter_typed = objdb->object_key_iter_typed;
}
struct corosync_api_v1 *apidef_get (void)
{
return (&apidef_corosync_api_v1);
}
diff --git a/exec/main.c b/exec/main.c
index 4a4447e8..87e7271f 100644
--- a/exec/main.c
+++ b/exec/main.c
@@ -1,1242 +1,1493 @@
/*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <pthread.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/poll.h>
#include <sys/uio.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <sched.h>
#include <time.h>
#include <corosync/swab.h>
#include <corosync/corotypes.h>
#include <corosync/coroipc_types.h>
#include <corosync/corodefs.h>
#include <corosync/list.h>
#include <corosync/lcr/lcr_ifact.h>
#include <corosync/totem/coropoll.h>
#include <corosync/totem/totempg.h>
#include <corosync/engine/objdb.h>
#include <corosync/engine/config.h>
#include <corosync/engine/logsys.h>
#include <corosync/coroipcs.h>
#include "quorum.h"
#include "totemsrp.h"
#include "mainconfig.h"
#include "totemconfig.h"
#include "main.h"
#include "sync.h"
#include "syncv2.h"
#include "tlist.h"
#include "timer.h"
#include "util.h"
#include "apidef.h"
#include "service.h"
#include "schedwrk.h"
#include "evil.h"
LOGSYS_DECLARE_SYSTEM ("corosync",
LOGSYS_MODE_OUTPUT_STDERR | LOGSYS_MODE_THREADED | LOGSYS_MODE_FORK,
0,
NULL,
LOG_INFO,
LOG_DAEMON,
LOG_INFO,
NULL,
1000000);
LOGSYS_DECLARE_SUBSYS ("MAIN");
#define SERVER_BACKLOG 5
static int sched_priority = 0;
static unsigned int service_count = 32;
#if defined(HAVE_PTHREAD_SPIN_LOCK)
static pthread_spinlock_t serialize_spin;
#else
static pthread_mutex_t serialize_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif
static struct totem_logging_configuration totem_logging_configuration;
static int num_config_modules;
static struct config_iface_ver0 *config_modules[MAX_DYNAMIC_SERVICES];
static struct objdb_iface_ver0 *objdb = NULL;
static struct corosync_api_v1 *api = NULL;
static enum cs_sync_mode minimum_sync_mode;
static enum cs_sync_mode minimum_sync_mode;
static int sync_in_process = 1;
static hdb_handle_t corosync_poll_handle;
struct sched_param global_sched_param;
static hdb_handle_t object_connection_handle;
+static corosync_timer_handle_t corosync_stats_timer_handle;
+
hdb_handle_t corosync_poll_handle_get (void)
{
return (corosync_poll_handle);
}
void corosync_state_dump (void)
{
int i;
for (i = 0; i < SERVICE_HANDLER_MAXIMUM_COUNT; i++) {
if (ais_service[i] && ais_service[i]->exec_dump_fn) {
ais_service[i]->exec_dump_fn ();
}
}
}
static void unlink_all_completed (void)
{
poll_stop (0);
totempg_finalize ();
coroipcs_ipc_exit ();
corosync_exit_error (AIS_DONE_EXIT);
}
void corosync_shutdown_request (void)
{
static int called = 0;
if (called) {
return;
}
if (called == 0) {
called = 1;
}
corosync_service_unlink_all (api, unlink_all_completed);
}
static void sigusr2_handler (int num)
{
/*
* TODO remove this from sigusr2 handler and access via cfg service
* engine api - corosync-cfgtool
*/
corosync_state_dump ();
}
static void sigterm_handler (int num)
{
corosync_shutdown_request ();
}
static void sigquit_handler (int num)
{
corosync_shutdown_request ();
}
static void sigintr_handler (int num)
{
corosync_shutdown_request ();
}
static void sigsegv_handler (int num)
{
(void)signal (SIGSEGV, SIG_DFL);
logsys_atexit();
logsys_log_rec_store (LOCALSTATEDIR "/lib/corosync/fdata");
raise (SIGSEGV);
}
static void sigabrt_handler (int num)
{
(void)signal (SIGABRT, SIG_DFL);
logsys_atexit();
logsys_log_rec_store (LOCALSTATEDIR "/lib/corosync/fdata");
raise (SIGABRT);
}
#define LOCALHOST_IP inet_addr("127.0.0.1")
static hdb_handle_t corosync_group_handle;
static struct totempg_group corosync_group = {
.group = "a",
.group_len = 1
};
#if defined(HAVE_PTHREAD_SPIN_LOCK)
static void serialize_lock (void)
{
pthread_spin_lock (&serialize_spin);
}
static void serialize_unlock (void)
{
pthread_spin_unlock (&serialize_spin);
}
#else
static void serialize_lock (void)
{
pthread_mutex_lock (&serialize_mutex);
}
static void serialize_unlock (void)
{
pthread_mutex_unlock (&serialize_mutex);
}
#endif
static void corosync_sync_completed (void)
{
log_printf (LOGSYS_LEVEL_NOTICE,
"Completed service synchronization, ready to provide service.\n");
sync_in_process = 0;
}
static int corosync_sync_callbacks_retrieve (int sync_id,
struct sync_callbacks *callbacks)
{
unsigned int ais_service_index;
int res;
for (ais_service_index = 0;
ais_service_index < SERVICE_HANDLER_MAXIMUM_COUNT;
ais_service_index++) {
if (ais_service[ais_service_index] != NULL
&& ais_service[ais_service_index]->sync_mode == CS_SYNC_V1) {
if (ais_service_index == sync_id) {
break;
}
}
}
/*
* Try to load backwards compat sync engines
*/
if (ais_service_index == SERVICE_HANDLER_MAXIMUM_COUNT) {
res = evil_callbacks_load (sync_id, callbacks);
return (res);
}
callbacks->name = ais_service[ais_service_index]->name;
callbacks->sync_init = ais_service[ais_service_index]->sync_init;
callbacks->sync_process = ais_service[ais_service_index]->sync_process;
callbacks->sync_activate = ais_service[ais_service_index]->sync_activate;
callbacks->sync_abort = ais_service[ais_service_index]->sync_abort;
return (0);
}
static int corosync_sync_v2_callbacks_retrieve (
int service_id,
struct sync_callbacks *callbacks)
{
int res;
if (minimum_sync_mode == CS_SYNC_V2 && service_id == CLM_SERVICE && ais_service[CLM_SERVICE] == NULL) {
res = evil_callbacks_load (service_id, callbacks);
return (res);
}
if (minimum_sync_mode == CS_SYNC_V2 && service_id == EVT_SERVICE && ais_service[EVT_SERVICE] == NULL) {
res = evil_callbacks_load (service_id, callbacks);
return (res);
}
if (ais_service[service_id] == NULL) {
return (-1);
}
if (minimum_sync_mode == CS_SYNC_V1 && ais_service[service_id]->sync_mode != CS_SYNC_V2) {
return (-1);
}
callbacks->name = ais_service[service_id]->name;
callbacks->sync_init = ais_service[service_id]->sync_init;
callbacks->sync_process = ais_service[service_id]->sync_process;
callbacks->sync_activate = ais_service[service_id]->sync_activate;
callbacks->sync_abort = ais_service[service_id]->sync_abort;
return (0);
}
static struct memb_ring_id corosync_ring_id;
static void confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id)
{
int i;
int abort_activate = 0;
if (sync_in_process == 1) {
abort_activate = 1;
}
sync_in_process = 1;
serialize_lock ();
memcpy (&corosync_ring_id, ring_id, sizeof (struct memb_ring_id));
/*
* Call configuration change for all services
*/
for (i = 0; i < service_count; i++) {
if (ais_service[i] && ais_service[i]->confchg_fn) {
ais_service[i]->confchg_fn (configuration_type,
member_list, member_list_entries,
left_list, left_list_entries,
joined_list, joined_list_entries, ring_id);
}
}
serialize_unlock ();
if (abort_activate) {
sync_v2_abort ();
}
if (minimum_sync_mode == CS_SYNC_V2 && configuration_type == TOTEM_CONFIGURATION_REGULAR) {
sync_v2_start (member_list, member_list_entries, ring_id);
}
}
static void priv_drop (void)
{
return; /* TODO: we are still not dropping privs */
}
static void corosync_tty_detach (void)
{
int fd;
/*
* Disconnect from TTY if this is not a debug run
*/
switch (fork ()) {
case -1:
corosync_exit_error (AIS_DONE_FORK);
break;
case 0:
/*
* child which is disconnected, run this process
*/
/* setset();
close (0);
close (1);
close (2);
*/
break;
default:
exit (0);
break;
}
/* Create new session */
(void)setsid();
/*
* Map stdin/out/err to /dev/null.
*/
fd = open("/dev/null", O_RDWR);
if (fd >= 0) {
/* dup2 to 0 / 1 / 2 (stdin / stdout / stderr) */
dup2(fd, STDIN_FILENO); /* 0 */
dup2(fd, STDOUT_FILENO); /* 1 */
dup2(fd, STDERR_FILENO); /* 2 */
/* Should be 0, but just in case it isn't... */
if (fd > 2)
close(fd);
}
}
static void corosync_mlockall (void)
{
#if !defined(COROSYNC_BSD)
int res;
#endif
struct rlimit rlimit;
rlimit.rlim_cur = RLIM_INFINITY;
rlimit.rlim_max = RLIM_INFINITY;
#ifndef COROSYNC_SOLARIS
setrlimit (RLIMIT_MEMLOCK, &rlimit);
#else
setrlimit (RLIMIT_VMEM, &rlimit);
#endif
#if defined(COROSYNC_BSD)
/* under FreeBSD a process with locked page cannot call dlopen
* code disabled until FreeBSD bug i386/93396 was solved
*/
log_printf (LOGSYS_LEVEL_WARNING, "Could not lock memory of service to avoid page faults\n");
#else
res = mlockall (MCL_CURRENT | MCL_FUTURE);
if (res == -1) {
log_printf (LOGSYS_LEVEL_WARNING, "Could not lock memory of service to avoid page faults: %s\n", strerror (errno));
};
#endif
}
+
+static void corosync_totem_stats_updater (void *data)
+{
+ totempg_stats_t * stats;
+ uint32_t mtt_rx_token;
+ uint32_t total_mtt_rx_token;
+ uint32_t avg_backlog_calc;
+ uint32_t total_backlog_calc;
+ uint32_t avg_token_holdtime;
+ uint32_t total_token_holdtime;
+ int t, prev;
+ int32_t token_count;
+
+ stats = api->totem_get_stats();
+
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "orf_token_tx", strlen("orf_token_tx"),
+ &stats->mrp->srp->orf_token_tx, sizeof (stats->mrp->srp->orf_token_tx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "orf_token_rx", strlen("orf_token_rx"),
+ &stats->mrp->srp->orf_token_rx, sizeof (stats->mrp->srp->orf_token_rx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "memb_merge_detect_tx", strlen("memb_merge_detect_tx"),
+ &stats->mrp->srp->memb_merge_detect_tx, sizeof (stats->mrp->srp->memb_merge_detect_tx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "memb_merge_detect_rx", strlen("memb_merge_detect_rx"),
+ &stats->mrp->srp->memb_merge_detect_rx, sizeof (stats->mrp->srp->memb_merge_detect_rx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "memb_join_tx", strlen("memb_join_tx"),
+ &stats->mrp->srp->memb_join_tx, sizeof (stats->mrp->srp->memb_join_tx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "memb_join_rx", strlen("memb_join_rx"),
+ &stats->mrp->srp->memb_join_rx, sizeof (stats->mrp->srp->memb_join_rx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "mcast_tx", strlen("mcast_tx"),
+ &stats->mrp->srp->mcast_tx, sizeof (stats->mrp->srp->mcast_tx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "mcast_retx", strlen("mcast_retx"),
+ &stats->mrp->srp->mcast_retx, sizeof (stats->mrp->srp->mcast_retx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "mcast_rx", strlen("mcast_rx"),
+ &stats->mrp->srp->mcast_rx, sizeof (stats->mrp->srp->mcast_rx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "memb_commit_token_tx", strlen("memb_commit_token_tx"),
+ &stats->mrp->srp->memb_commit_token_tx, sizeof (stats->mrp->srp->memb_commit_token_tx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "memb_commit_token_rx", strlen("memb_commit_token_rx"),
+ &stats->mrp->srp->memb_commit_token_rx, sizeof (stats->mrp->srp->memb_commit_token_rx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "token_hold_cancel_tx", strlen("token_hold_cancel_tx"),
+ &stats->mrp->srp->token_hold_cancel_tx, sizeof (stats->mrp->srp->token_hold_cancel_tx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "token_hold_cancel_rx", strlen("token_hold_cancel_rx"),
+ &stats->mrp->srp->token_hold_cancel_rx, sizeof (stats->mrp->srp->token_hold_cancel_rx));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "operational_entered", strlen("operational_entered"),
+ &stats->mrp->srp->operational_entered, sizeof (stats->mrp->srp->operational_entered));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "operational_token_lost", strlen("operational_token_lost"),
+ &stats->mrp->srp->operational_token_lost, sizeof (stats->mrp->srp->operational_token_lost));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "gather_entered", strlen("gather_entered"),
+ &stats->mrp->srp->gather_entered, sizeof (stats->mrp->srp->gather_entered));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "gather_token_lost", strlen("gather_token_lost"),
+ &stats->mrp->srp->gather_token_lost, sizeof (stats->mrp->srp->gather_token_lost));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "commit_entered", strlen("commit_entered"),
+ &stats->mrp->srp->commit_entered, sizeof (stats->mrp->srp->commit_entered));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "commit_token_lost", strlen("commit_token_lost"),
+ &stats->mrp->srp->commit_token_lost, sizeof (stats->mrp->srp->commit_token_lost));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "recovery_entered", strlen("recovery_entered"),
+ &stats->mrp->srp->recovery_entered, sizeof (stats->mrp->srp->recovery_entered));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "recovery_token_lost", strlen("recovery_token_lost"),
+ &stats->mrp->srp->recovery_token_lost, sizeof (stats->mrp->srp->recovery_token_lost));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "consensus_timeouts", strlen("consensus_timeouts"),
+ &stats->mrp->srp->consensus_timeouts, sizeof (stats->mrp->srp->consensus_timeouts));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "rx_msg_dropped", strlen("rx_msg_dropped"),
+ &stats->mrp->srp->rx_msg_dropped, sizeof (stats->mrp->srp->rx_msg_dropped));
+
+ total_mtt_rx_token = 0;
+ total_token_holdtime = 0;
+ total_backlog_calc = 0;
+ token_count = 0;
+ t = stats->mrp->srp->latest_token;
+ while (1) {
+ if (t == 0)
+ prev = TOTEM_TOKEN_STATS_MAX - 1;
+ else
+ prev = t - 1;
+ if (prev == stats->mrp->srp->earliest_token)
+ break;
+ /* if tx == 0, then dropped token (not ours) */
+ if (stats->mrp->srp->token[t].tx != 0 ||
+ (stats->mrp->srp->token[t].rx - stats->mrp->srp->token[prev].rx) > 0 ) {
+ total_mtt_rx_token += (stats->mrp->srp->token[t].rx - stats->mrp->srp->token[prev].rx);
+ total_token_holdtime += (stats->mrp->srp->token[t].tx - stats->mrp->srp->token[t].rx);
+ total_backlog_calc += stats->mrp->srp->token[t].backlog_calc;
+ token_count++;
+ }
+ t = prev;
+ }
+ mtt_rx_token = (total_mtt_rx_token / token_count);
+ avg_backlog_calc = (total_backlog_calc / token_count);
+ avg_token_holdtime = (total_token_holdtime / token_count);
+
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "mtt_rx_token", strlen("mtt_rx_token"),
+ &mtt_rx_token, sizeof (mtt_rx_token));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "avg_token_workload", strlen("avg_token_workload"),
+ &avg_token_holdtime, sizeof (avg_backlog_calc));
+ objdb->object_key_replace (stats->mrp->srp->hdr.handle,
+ "avg_backlog_calc", strlen("avg_backlog_calc"),
+ &avg_backlog_calc, sizeof (avg_backlog_calc));
+
+ api->timer_add_duration (1500 * MILLI_2_NANO_SECONDS, NULL,
+ corosync_totem_stats_updater,
+ &corosync_stats_timer_handle);
+}
+
+static void corosync_totem_stats_init (void)
+{
+ totempg_stats_t * stats;
+ hdb_handle_t object_find_handle;
+ hdb_handle_t object_runtime_handle;
+ hdb_handle_t object_totem_handle;
+ uint32_t zero_32 = 0;
+ uint64_t zero_64 = 0;
+
+ stats = api->totem_get_stats();
+
+ objdb->object_find_create (
+ OBJECT_PARENT_HANDLE,
+ "runtime",
+ strlen ("runtime"),
+ &object_find_handle);
+
+ if (objdb->object_find_next (
+ object_find_handle,
+ &object_runtime_handle) == 0) {
+
+ objdb->object_create (object_runtime_handle,
+ &object_totem_handle,
+ "totem", strlen ("totem"));
+ objdb->object_create (object_totem_handle,
+ &stats->hdr.handle,
+ "pg", strlen ("pg"));
+ objdb->object_create (stats->hdr.handle,
+ &stats->mrp->hdr.handle,
+ "mrp", strlen ("mrp"));
+ objdb->object_create (stats->mrp->hdr.handle,
+ &stats->mrp->srp->hdr.handle,
+ "srp", strlen ("srp"));
+
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "orf_token_tx", &stats->mrp->srp->orf_token_tx,
+ sizeof (stats->mrp->srp->orf_token_tx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "orf_token_rx", &stats->mrp->srp->orf_token_rx,
+ sizeof (stats->mrp->srp->orf_token_rx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "memb_merge_detect_tx", &stats->mrp->srp->memb_merge_detect_tx,
+ sizeof (stats->mrp->srp->memb_merge_detect_tx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "memb_merge_detect_rx", &stats->mrp->srp->memb_merge_detect_rx,
+ sizeof (stats->mrp->srp->memb_merge_detect_rx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "memb_join_tx", &stats->mrp->srp->memb_join_tx,
+ sizeof (stats->mrp->srp->memb_join_tx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "memb_join_rx", &stats->mrp->srp->memb_join_rx,
+ sizeof (stats->mrp->srp->memb_join_rx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "mcast_tx", &stats->mrp->srp->mcast_tx,
+ sizeof (stats->mrp->srp->mcast_tx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "mcast_retx", &stats->mrp->srp->mcast_retx,
+ sizeof (stats->mrp->srp->mcast_retx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "mcast_rx", &stats->mrp->srp->mcast_rx,
+ sizeof (stats->mrp->srp->mcast_rx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "memb_commit_token_tx", &stats->mrp->srp->memb_commit_token_tx,
+ sizeof (stats->mrp->srp->memb_commit_token_tx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "memb_commit_token_rx", &stats->mrp->srp->memb_commit_token_rx,
+ sizeof (stats->mrp->srp->memb_commit_token_rx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "token_hold_cancel_tx", &stats->mrp->srp->token_hold_cancel_tx,
+ sizeof (stats->mrp->srp->token_hold_cancel_tx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "token_hold_cancel_rx", &stats->mrp->srp->token_hold_cancel_rx,
+ sizeof (stats->mrp->srp->token_hold_cancel_rx), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "operational_entered", &stats->mrp->srp->operational_entered,
+ sizeof (stats->mrp->srp->operational_entered), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "operational_token_lost", &stats->mrp->srp->operational_token_lost,
+ sizeof (stats->mrp->srp->operational_token_lost), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "gather_entered", &stats->mrp->srp->gather_entered,
+ sizeof (stats->mrp->srp->gather_entered), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "gather_token_lost", &stats->mrp->srp->gather_token_lost,
+ sizeof (stats->mrp->srp->gather_token_lost), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "commit_entered", &stats->mrp->srp->commit_entered,
+ sizeof (stats->mrp->srp->commit_entered), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "commit_token_lost", &stats->mrp->srp->commit_token_lost,
+ sizeof (stats->mrp->srp->commit_token_lost), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "recovery_entered", &stats->mrp->srp->recovery_entered,
+ sizeof (stats->mrp->srp->recovery_entered), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "recovery_token_lost", &stats->mrp->srp->recovery_token_lost,
+ sizeof (stats->mrp->srp->recovery_token_lost), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "consensus_timeouts", &stats->mrp->srp->consensus_timeouts,
+ sizeof (stats->mrp->srp->consensus_timeouts), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "mtt_rx_token", &zero_32,
+ sizeof (zero_32), OBJDB_VALUETYPE_UINT32);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "avg_token_workload", &zero_32,
+ sizeof (zero_32), OBJDB_VALUETYPE_UINT32);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "avg_backlog_calc", &zero_64,
+ sizeof (zero_64), OBJDB_VALUETYPE_UINT64);
+ objdb->object_key_create_typed (stats->mrp->srp->hdr.handle,
+ "rx_msg_dropped", &zero_64,
+ sizeof (zero_64), OBJDB_VALUETYPE_UINT64);
+
+ }
+ /* start stats timer */
+ api->timer_add_duration (1500 * MILLI_2_NANO_SECONDS, NULL,
+ corosync_totem_stats_updater,
+ &corosync_stats_timer_handle);
+
+}
+
+
static void deliver_fn (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required)
{
const coroipc_request_header_t *header;
int service;
int fn_id;
unsigned int id;
unsigned int size;
unsigned int key_incr_dummy;
header = msg;
if (endian_conversion_required) {
id = swab32 (header->id);
size = swab32 (header->size);
} else {
id = header->id;
size = header->size;
}
/*
* Call the proper executive handler
*/
service = id >> 16;
fn_id = id & 0xffff;
serialize_lock();
if (ais_service[service] == NULL && service == EVT_SERVICE) {
evil_deliver_fn (nodeid, service, fn_id, msg,
endian_conversion_required);
}
if (!ais_service[service]) {
serialize_unlock();
return;
}
objdb->object_key_increment (service_stats_handle[service][fn_id],
"rx", strlen("rx"),
&key_incr_dummy);
if (endian_conversion_required) {
assert(ais_service[service]->exec_engine[fn_id].exec_endian_convert_fn != NULL);
ais_service[service]->exec_engine[fn_id].exec_endian_convert_fn
((void *)msg);
}
ais_service[service]->exec_engine[fn_id].exec_handler_fn
(msg, nodeid);
serialize_unlock();
}
void main_get_config_modules(struct config_iface_ver0 ***modules, int *num)
{
*modules = config_modules;
*num = num_config_modules;
}
int main_mcast (
const struct iovec *iovec,
unsigned int iov_len,
unsigned int guarantee)
{
const coroipc_request_header_t *req = iovec->iov_base;
int service;
int fn_id;
unsigned int key_incr_dummy;
service = req->id >> 16;
fn_id = req->id & 0xffff;
if (ais_service[service]) {
objdb->object_key_increment (service_stats_handle[service][fn_id],
"tx", strlen("tx"),
&key_incr_dummy);
}
return (totempg_groups_mcast_joined (corosync_group_handle, iovec, iov_len, guarantee));
}
int message_source_is_local (const mar_message_source_t *source)
{
int ret = 0;
assert (source != NULL);
if (source->nodeid == totempg_my_nodeid_get ()) {
ret = 1;
}
return ret;
}
void message_source_set (
mar_message_source_t *source,
void *conn)
{
assert ((source != NULL) && (conn != NULL));
memset (source, 0, sizeof (mar_message_source_t));
source->nodeid = totempg_my_nodeid_get ();
source->conn = conn;
}
/*
* Provides the glue from corosync to the IPC Service
*/
static int corosync_private_data_size_get (unsigned int service)
{
return (ais_service[service]->private_data_size);
}
static coroipcs_init_fn_lvalue corosync_init_fn_get (unsigned int service)
{
return (ais_service[service]->lib_init_fn);
}
static coroipcs_exit_fn_lvalue corosync_exit_fn_get (unsigned int service)
{
return (ais_service[service]->lib_exit_fn);
}
static coroipcs_handler_fn_lvalue corosync_handler_fn_get (unsigned int service, unsigned int id)
{
return (ais_service[service]->lib_engine[id].lib_handler_fn);
}
static int corosync_security_valid (int euid, int egid)
{
struct list_head *iter;
if (euid == 0 || egid == 0) {
return (1);
}
for (iter = uidgid_list_head.next; iter != &uidgid_list_head;
iter = iter->next) {
struct uidgid_item *ugi = list_entry (iter, struct uidgid_item,
list);
if (euid == ugi->uid || egid == ugi->gid)
return (1);
}
return (0);
}
static int corosync_service_available (unsigned int service)
{
return (ais_service[service] != NULL);
}
struct sending_allowed_private_data_struct {
int reserved_msgs;
};
static int corosync_sending_allowed (
unsigned int service,
unsigned int id,
const void *msg,
void *sending_allowed_private_data)
{
struct sending_allowed_private_data_struct *pd =
(struct sending_allowed_private_data_struct *)sending_allowed_private_data;
struct iovec reserve_iovec;
coroipc_request_header_t *header = (coroipc_request_header_t *)msg;
int sending_allowed;
reserve_iovec.iov_base = (char *)header;
reserve_iovec.iov_len = header->size;
pd->reserved_msgs = totempg_groups_joined_reserve (
corosync_group_handle,
&reserve_iovec, 1);
if (pd->reserved_msgs == -1) {
return (-1);
}
sending_allowed =
(corosync_quorum_is_quorate() == 1 ||
ais_service[service]->allow_inquorate == CS_LIB_ALLOW_INQUORATE) &&
((ais_service[service]->lib_engine[id].flow_control == CS_LIB_FLOW_CONTROL_NOT_REQUIRED) ||
((ais_service[service]->lib_engine[id].flow_control == CS_LIB_FLOW_CONTROL_REQUIRED) &&
(pd->reserved_msgs) &&
(sync_in_process == 0)));
return (sending_allowed);
}
static void corosync_sending_allowed_release (void *sending_allowed_private_data)
{
struct sending_allowed_private_data_struct *pd =
(struct sending_allowed_private_data_struct *)sending_allowed_private_data;
if (pd->reserved_msgs == -1) {
return;
}
totempg_groups_joined_release (pd->reserved_msgs);
}
static int ipc_subsys_id = -1;
static void ipc_log_printf (const char *format, ...) __attribute__((format(printf, 1, 2)));
static void ipc_log_printf (const char *format, ...) {
va_list ap;
va_start (ap, format);
_logsys_log_vprintf (
LOGSYS_ENCODE_RECID(LOGSYS_LEVEL_ERROR,
ipc_subsys_id,
LOGSYS_RECID_LOG),
__FUNCTION__, __FILE__, __LINE__,
format, ap);
va_end (ap);
}
static void ipc_fatal_error(const char *error_msg) {
_logsys_log_printf (
LOGSYS_ENCODE_RECID(LOGSYS_LEVEL_ERROR,
ipc_subsys_id,
LOGSYS_RECID_LOG),
__FUNCTION__, __FILE__, __LINE__,
"%s", error_msg);
exit(EXIT_FAILURE);
}
static int corosync_poll_handler_accept (
hdb_handle_t handle,
int fd,
int revent,
void *context)
{
return (coroipcs_handler_accept (fd, revent, context));
}
static int corosync_poll_handler_dispatch (
hdb_handle_t handle,
int fd,
int revent,
void *context)
{
return (coroipcs_handler_dispatch (fd, revent, context));
}
static void corosync_poll_accept_add (
int fd)
{
poll_dispatch_add (corosync_poll_handle, fd, POLLIN|POLLNVAL, 0,
corosync_poll_handler_accept);
}
static void corosync_poll_dispatch_add (
int fd,
void *context)
{
poll_dispatch_add (corosync_poll_handle, fd, POLLIN|POLLNVAL, context,
corosync_poll_handler_dispatch);
}
static void corosync_poll_dispatch_modify (
int fd,
int events)
{
poll_dispatch_modify (corosync_poll_handle, fd, events,
corosync_poll_handler_dispatch);
}
static hdb_handle_t corosync_stats_create_connection (const char* name,
const pid_t pid, const int fd)
{
uint32_t zero_32 = 0;
uint64_t zero_64 = 0;
unsigned int key_incr_dummy;
hdb_handle_t object_handle;
objdb->object_key_increment (object_connection_handle,
"active", strlen("active"),
&key_incr_dummy);
objdb->object_create (object_connection_handle,
&object_handle,
name,
strlen (name));
objdb->object_key_create_typed (object_handle,
"service_id",
&zero_32, sizeof (zero_32),
OBJDB_VALUETYPE_UINT32);
objdb->object_key_create_typed (object_handle,
"client_pid",
&pid, sizeof (pid),
OBJDB_VALUETYPE_INT32);
objdb->object_key_create_typed (object_handle,
"responses",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
objdb->object_key_create_typed (object_handle,
"dispatched",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
objdb->object_key_create_typed (object_handle,
"requests",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_INT64);
objdb->object_key_create_typed (object_handle,
"sem_retry_count",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
objdb->object_key_create_typed (object_handle,
"send_retry_count",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
objdb->object_key_create_typed (object_handle,
"recv_retry_count",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
return object_handle;
}
static void corosync_stats_destroy_connection (hdb_handle_t handle)
{
unsigned int key_incr_dummy;
objdb->object_destroy (handle);
objdb->object_key_increment (object_connection_handle,
"closed", strlen("closed"),
&key_incr_dummy);
objdb->object_key_decrement (object_connection_handle,
"active", strlen("active"),
&key_incr_dummy);
}
static void corosync_stats_update_value (hdb_handle_t handle,
const char *name, const void *value,
const size_t value_len)
{
objdb->object_key_replace (handle,
name, strlen(name),
value, value_len);
}
static void corosync_stats_increment_value (hdb_handle_t handle,
const char* name)
{
unsigned int key_incr_dummy;
objdb->object_key_increment (handle,
name, strlen(name),
&key_incr_dummy);
}
static struct coroipcs_init_state ipc_init_state = {
.socket_name = COROSYNC_SOCKET_NAME,
.sched_policy = SCHED_OTHER,
.sched_param = &global_sched_param,
.malloc = malloc,
.free = free,
.log_printf = ipc_log_printf,
.fatal_error = ipc_fatal_error,
.security_valid = corosync_security_valid,
.service_available = corosync_service_available,
.private_data_size_get = corosync_private_data_size_get,
.serialize_lock = serialize_lock,
.serialize_unlock = serialize_unlock,
.sending_allowed = corosync_sending_allowed,
.sending_allowed_release = corosync_sending_allowed_release,
.poll_accept_add = corosync_poll_accept_add,
.poll_dispatch_add = corosync_poll_dispatch_add,
.poll_dispatch_modify = corosync_poll_dispatch_modify,
.init_fn_get = corosync_init_fn_get,
.exit_fn_get = corosync_exit_fn_get,
.handler_fn_get = corosync_handler_fn_get
};
static struct coroipcs_init_stats_state ipc_init_stats_state = {
.stats_create_connection = corosync_stats_create_connection,
.stats_destroy_connection = corosync_stats_destroy_connection,
.stats_update_value = corosync_stats_update_value,
.stats_increment_value = corosync_stats_increment_value
};
static void corosync_setscheduler (void)
{
#if defined(HAVE_PTHREAD_SETSCHEDPARAM) && defined(HAVE_SCHED_GET_PRIORITY_MAX) && defined(HAVE_SCHED_SETSCHEDULER)
int res;
sched_priority = sched_get_priority_max (SCHED_RR);
if (sched_priority != -1) {
global_sched_param.sched_priority = sched_priority;
res = sched_setscheduler (0, SCHED_RR, &global_sched_param);
if (res == -1) {
global_sched_param.sched_priority = 0;
log_printf (LOGSYS_LEVEL_WARNING, "Could not set SCHED_RR at priority %d: %s\n",
global_sched_param.sched_priority, strerror (errno));
logsys_thread_priority_set (SCHED_OTHER, NULL, 1);
} else {
/*
* Turn on SCHED_RR in ipc system
*/
ipc_init_state.sched_policy = SCHED_RR;
/*
* Turn on SCHED_RR in logsys system
*/
res = logsys_thread_priority_set (SCHED_RR, &global_sched_param, 10);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR,
"Could not set logsys thread priority."
" Can't continue because of priority inversions.");
corosync_exit_error (AIS_DONE_LOGSETUP);
}
}
} else {
log_printf (LOGSYS_LEVEL_WARNING, "Could not get maximum scheduler priority: %s\n", strerror (errno));
sched_priority = 0;
}
#else
log_printf(LOGSYS_LEVEL_WARNING,
"The Platform is missing process priority setting features. Leaving at default.");
#endif
}
static void corosync_stats_init (void)
{
hdb_handle_t object_find_handle;
hdb_handle_t object_runtime_handle;
uint64_t zero_64 = 0;
objdb->object_find_create (OBJECT_PARENT_HANDLE,
"runtime", strlen ("runtime"),
&object_find_handle);
if (objdb->object_find_next (object_find_handle,
&object_runtime_handle) != 0) {
return;
}
/* Connection objects */
objdb->object_create (object_runtime_handle,
&object_connection_handle,
"connections", strlen ("connections"));
objdb->object_key_create_typed (object_connection_handle,
"active", &zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
objdb->object_key_create_typed (object_connection_handle,
"closed", &zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
}
static void main_service_ready (void)
{
int res;
/*
* This must occur after totempg is initialized because "this_ip" must be set
*/
res = corosync_service_defaults_link_and_init (api);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "Could not initialize default services\n");
corosync_exit_error (AIS_DONE_INIT_SERVICES);
}
evil_init (api);
corosync_stats_init ();
+ corosync_totem_stats_init ();
}
int main (int argc, char **argv)
{
const char *error_string;
struct totem_config totem_config;
hdb_handle_t objdb_handle;
hdb_handle_t config_handle;
unsigned int config_version = 0;
void *objdb_p;
struct config_iface_ver0 *config;
void *config_p;
const char *config_iface_init;
char *config_iface;
char *iface;
int res, ch;
int background, setprio;
struct stat stat_out;
char corosync_lib_dir[PATH_MAX];
hdb_handle_t object_runtime_handle;
#if defined(HAVE_PTHREAD_SPIN_LOCK)
pthread_spin_init (&serialize_spin, 0);
#endif
/* default configuration
*/
background = 1;
setprio = 1;
while ((ch = getopt (argc, argv, "fpv")) != EOF) {
switch (ch) {
case 'f':
background = 0;
logsys_config_mode_set (NULL, LOGSYS_MODE_OUTPUT_STDERR|LOGSYS_MODE_THREADED|LOGSYS_MODE_FORK);
break;
case 'p':
setprio = 0;
break;
case 'v':
printf ("Corosync Cluster Engine, version '%s' SVN revision '%s'\n", VERSION, SVN_REVISION);
printf ("Copyright (c) 2006-2009 Red Hat, Inc.\n");
return EXIT_SUCCESS;
break;
default:
fprintf(stderr, \
"usage:\n"\
" -f : Start application in foreground.\n"\
" -p : Do not set process priority. \n"\
" -v : Display version and SVN revision of Corosync and exit.\n");
return EXIT_FAILURE;
}
}
/*
* Set round robin realtime scheduling with priority 99
* Lock all memory to avoid page faults which may interrupt
* application healthchecking
*/
if (setprio) {
corosync_setscheduler ();
}
corosync_mlockall ();
log_printf (LOGSYS_LEVEL_NOTICE, "Corosync Cluster Engine ('%s'): started and ready to provide service.\n", VERSION);
log_printf (LOGSYS_LEVEL_INFO, "Corosync built-in features:" PACKAGE_FEATURES "\n");
(void)signal (SIGINT, sigintr_handler);
(void)signal (SIGUSR2, sigusr2_handler);
(void)signal (SIGSEGV, sigsegv_handler);
(void)signal (SIGABRT, sigabrt_handler);
(void)signal (SIGQUIT, sigquit_handler);
(void)signal (SIGTERM, sigterm_handler);
#if MSG_NOSIGNAL != 0
(void)signal (SIGPIPE, SIG_IGN);
#endif
corosync_timer_init (
serialize_lock,
serialize_unlock,
sched_priority);
corosync_poll_handle = poll_create ();
/*
* Load the object database interface
*/
res = lcr_ifact_reference (
&objdb_handle,
"objdb",
0,
&objdb_p,
0);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "Corosync Executive couldn't open configuration object database component.\n");
corosync_exit_error (AIS_DONE_OBJDB);
}
objdb = (struct objdb_iface_ver0 *)objdb_p;
objdb->objdb_init ();
/*
* Initialize the corosync_api_v1 definition
*/
apidef_init (objdb);
api = apidef_get ();
num_config_modules = 0;
/*
* Bootstrap in the default configuration parser or use
* the corosync default built in parser if the configuration parser
* isn't overridden
*/
config_iface_init = getenv("COROSYNC_DEFAULT_CONFIG_IFACE");
if (!config_iface_init) {
config_iface_init = "corosync_parser";
}
/* Make a copy so we can deface it with strtok */
if ((config_iface = strdup(config_iface_init)) == NULL) {
log_printf (LOGSYS_LEVEL_ERROR, "exhausted virtual memory");
corosync_exit_error (AIS_DONE_OBJDB);
}
iface = strtok(config_iface, ":");
while (iface)
{
res = lcr_ifact_reference (
&config_handle,
iface,
config_version,
&config_p,
0);
config = (struct config_iface_ver0 *)config_p;
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "Corosync Executive couldn't open configuration component '%s'\n", iface);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
res = config->config_readconfig(objdb, &error_string);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
log_printf (LOGSYS_LEVEL_NOTICE, "%s", error_string);
config_modules[num_config_modules++] = config;
iface = strtok(NULL, ":");
}
free(config_iface);
res = corosync_main_config_read (objdb, &error_string);
if (res == -1) {
/*
* if we are here, we _must_ flush the logsys queue
* and try to inform that we couldn't read the config.
* this is a desperate attempt before certain death
* and there is no guarantee that we can print to stderr
* nor that logsys is sending the messages where we expect.
*/
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
fprintf(stderr, "%s", error_string);
syslog (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
/*
* Make sure required directory is present
*/
sprintf (corosync_lib_dir, "%s/lib/corosync", LOCALSTATEDIR);
res = stat (corosync_lib_dir, &stat_out);
if ((res == -1) || (res == 0 && !S_ISDIR(stat_out.st_mode))) {
log_printf (LOGSYS_LEVEL_ERROR, "Required directory not present %s. Please create it.\n", corosync_lib_dir);
corosync_exit_error (AIS_DONE_DIR_NOT_PRESENT);
}
res = totem_config_read (objdb, &totem_config, &error_string);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
res = totem_config_keyread (objdb, &totem_config, &error_string);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
res = totem_config_validate (&totem_config, &error_string);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
totem_config.totem_logging_configuration = totem_logging_configuration;
totem_config.totem_logging_configuration.log_subsys_id =
_logsys_subsys_create ("TOTEM");
if (totem_config.totem_logging_configuration.log_subsys_id < 0) {
log_printf (LOGSYS_LEVEL_ERROR,
"Unable to initialize TOTEM logging subsystem\n");
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
totem_config.totem_logging_configuration.log_level_security = LOGSYS_LEVEL_WARNING;
totem_config.totem_logging_configuration.log_level_error = LOGSYS_LEVEL_ERROR;
totem_config.totem_logging_configuration.log_level_warning = LOGSYS_LEVEL_WARNING;
totem_config.totem_logging_configuration.log_level_notice = LOGSYS_LEVEL_NOTICE;
totem_config.totem_logging_configuration.log_level_debug = LOGSYS_LEVEL_DEBUG;
totem_config.totem_logging_configuration.log_printf = _logsys_log_printf;
res = corosync_main_config_compatibility_read (objdb,
&minimum_sync_mode,
&error_string);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
res = corosync_main_config_compatibility_read (objdb,
&minimum_sync_mode,
&error_string);
if (res == -1) {
log_printf (LOGSYS_LEVEL_ERROR, "%s", error_string);
corosync_exit_error (AIS_DONE_MAINCONFIGREAD);
}
/* create the main runtime object */
objdb->object_create (OBJECT_PARENT_HANDLE,
&object_runtime_handle,
"runtime", strlen ("runtime"));
/*
* Now we are fully initialized.
*/
if (background) {
corosync_tty_detach ();
}
logsys_fork_completed();
/*
* Sleep for a while to let other nodes in the cluster
* understand that this node has been away (if it was
* an corosync restart).
*/
// TODO what is this hack for? usleep(totem_config.token_timeout * 2000);
/*
* if totempg_initialize doesn't have root priveleges, it cannot
* bind to a specific interface. This only matters if
* there is more then one interface in a system, so
* in this case, only a warning is printed
*/
/*
* Join multicast group and setup delivery
* and configuration change functions
*/
totempg_initialize (
corosync_poll_handle,
&totem_config);
totempg_service_ready_register (
main_service_ready);
totempg_groups_initialize (
&corosync_group_handle,
deliver_fn,
confchg_fn);
totempg_groups_join (
corosync_group_handle,
&corosync_group,
1);
if (minimum_sync_mode == CS_SYNC_V2) {
log_printf (LOGSYS_LEVEL_NOTICE, "Compatibility mode set to none. Using V2 of the synchronization engine.\n");
sync_v2_init (
corosync_sync_v2_callbacks_retrieve,
corosync_sync_completed);
} else
if (minimum_sync_mode == CS_SYNC_V1) {
log_printf (LOGSYS_LEVEL_NOTICE, "Compatibility mode set to whitetank. Using V1 and V2 of the synchronization engine.\n");
sync_register (
corosync_sync_callbacks_retrieve,
sync_v2_memb_list_determine,
sync_v2_memb_list_abort,
sync_v2_start);
sync_v2_init (
corosync_sync_v2_callbacks_retrieve,
corosync_sync_completed);
}
/*
* Drop root privleges to user 'ais'
* TODO: Don't really need full root capabilities;
* needed capabilities are:
* CAP_NET_RAW (bindtodevice)
* CAP_SYS_NICE (setscheduler)
* CAP_IPC_LOCK (mlockall)
*/
priv_drop ();
schedwrk_init (
serialize_lock,
serialize_unlock);
ipc_subsys_id = _logsys_subsys_create ("IPC");
if (ipc_subsys_id < 0) {
log_printf (LOGSYS_LEVEL_ERROR,
"Could not initialize IPC logging subsystem\n");
corosync_exit_error (AIS_DONE_INIT_SERVICES);
}
coroipcs_ipc_init (&ipc_init_state);
coroipcs_ipc_stats_init (&ipc_init_stats_state);
/*
* Start main processing loop
*/
poll_run (corosync_poll_handle);
return EXIT_SUCCESS;
}
diff --git a/exec/service.c b/exec/service.c
index d99e7bf8..980eb74d 100644
--- a/exec/service.c
+++ b/exec/service.c
@@ -1,633 +1,632 @@
/*
* Copyright (c) 2006 MontaVista Software, Inc.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <corosync/lcr/lcr_ifact.h>
#include <corosync/swab.h>
#include <corosync/totem/totem.h>
#include <corosync/corotypes.h>
#include <corosync/coroipc_types.h>
#include "mainconfig.h"
#include "util.h"
#include <corosync/engine/logsys.h>
#include "timer.h"
#include <corosync/totem/totempg.h>
#include <corosync/totem/totemip.h>
#include "main.h"
#include <corosync/engine/coroapi.h>
#include "service.h"
LOGSYS_DECLARE_SUBSYS ("SERV");
struct default_service {
const char *name;
int ver;
};
static struct default_service default_services[] = {
{
.name = "corosync_evs",
.ver = 0,
},
{
.name = "corosync_cfg",
.ver = 0,
},
{
.name = "corosync_cpg",
.ver = 0,
},
{
.name = "corosync_confdb",
.ver = 0,
},
{
.name = "corosync_pload",
.ver = 0,
},
{
.name = "corosync_quorum",
.ver = 0,
}
};
struct corosync_service_engine *ais_service[SERVICE_HANDLER_MAXIMUM_COUNT];
hdb_handle_t service_stats_handle[SERVICE_HANDLER_MAXIMUM_COUNT][64];
static hdb_handle_t object_internal_configuration_handle;
static hdb_handle_t object_stats_services_handle;
static void (*service_unlink_all_complete) (void) = NULL;
static hdb_handle_t unlink_all_handle;
static unsigned int default_services_requested (struct corosync_api_v1 *corosync_api)
{
hdb_handle_t object_service_handle;
hdb_handle_t object_find_handle;
char *value;
/*
* Don't link default services if they have been disabled
*/
corosync_api->object_find_create (
OBJECT_PARENT_HANDLE,
"aisexec",
strlen ("aisexec"),
&object_find_handle);
if (corosync_api->object_find_next (
object_find_handle,
&object_service_handle) == 0) {
if ( ! corosync_api->object_key_get (object_service_handle,
"defaultservices",
strlen ("defaultservices"),
(void *)&value,
NULL)) {
if (value && strcmp (value, "no") == 0) {
return 0;
}
}
}
corosync_api->object_find_destroy (object_find_handle);
return (-1);
}
unsigned int corosync_service_link_and_init (
struct corosync_api_v1 *corosync_api,
const char *service_name,
unsigned int service_ver)
{
struct corosync_service_engine_iface_ver0 *iface_ver0;
void *iface_ver0_p;
hdb_handle_t handle;
struct corosync_service_engine *service;
unsigned int res;
hdb_handle_t object_service_handle;
hdb_handle_t object_stats_handle;
int fn;
char object_name[32];
char *name_sufix;
uint64_t zero_64 = 0;
/*
* reference the service interface
*/
iface_ver0_p = NULL;
lcr_ifact_reference (
&handle,
service_name,
service_ver,
&iface_ver0_p,
(void *)0);
iface_ver0 = (struct corosync_service_engine_iface_ver0 *)iface_ver0_p;
if (iface_ver0 == 0) {
log_printf(LOGSYS_LEVEL_ERROR, "Service failed to load '%s'.\n", service_name);
return (-1);
}
/*
* Initialize service
*/
service = iface_ver0->corosync_get_service_engine_ver0();
ais_service[service->id] = service;
if (service->config_init_fn) {
res = service->config_init_fn (corosync_api);
}
if (service->exec_init_fn) {
res = service->exec_init_fn (corosync_api);
}
/*
* Store service in object database
*/
corosync_api->object_create (object_internal_configuration_handle,
&object_service_handle,
"service",
strlen ("service"));
corosync_api->object_key_create_typed (object_service_handle,
"name",
service_name,
strlen (service_name) + 1, OBJDB_VALUETYPE_STRING);
corosync_api->object_key_create_typed (object_service_handle,
"ver",
&service_ver,
sizeof (service_ver), OBJDB_VALUETYPE_UINT32);
res = corosync_api->object_key_create_typed (object_service_handle,
"handle",
&handle,
sizeof (handle), OBJDB_VALUETYPE_UINT64);
corosync_api->object_key_create_typed (object_service_handle,
"service_id",
&service->id,
sizeof (service->id), OBJDB_VALUETYPE_UINT16);
name_sufix = strrchr (service_name, '_');
if (name_sufix)
name_sufix++;
else
name_sufix = (char*)service_name;
corosync_api->object_create (object_stats_services_handle,
&object_stats_handle,
name_sufix, strlen (name_sufix));
corosync_api->object_key_create_typed (object_stats_handle,
"service_id",
&service->id, sizeof (service->id),
OBJDB_VALUETYPE_INT16);
for (fn = 0; fn < service->exec_engine_count; fn++) {
snprintf (object_name, 32, "%d", fn);
corosync_api->object_create (object_stats_handle,
&service_stats_handle[service->id][fn],
object_name, strlen (object_name));
corosync_api->object_key_create_typed (service_stats_handle[service->id][fn],
"tx",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
corosync_api->object_key_create_typed (service_stats_handle[service->id][fn],
"rx",
&zero_64, sizeof (zero_64),
OBJDB_VALUETYPE_UINT64);
}
log_printf (LOGSYS_LEVEL_NOTICE, "Service engine loaded: %s\n", service->name);
return (res);
}
static int service_priority_max(void)
{
int lpc = 0, max = 0;
for(; lpc < SERVICE_HANDLER_MAXIMUM_COUNT; lpc++) {
if(ais_service[lpc] != NULL && ais_service[lpc]->priority > max) {
max = ais_service[lpc]->priority;
}
}
return max;
}
/*
* use the force
*/
static unsigned int
corosync_service_unlink_priority (
struct corosync_api_v1 *corosync_api,
int lowest_priority,
int *current_priority,
int *current_service_engine)
{
unsigned short *service_id;
hdb_handle_t object_service_handle;
hdb_handle_t object_find_handle;
hdb_handle_t *found_service_handle;
for(; *current_priority >= lowest_priority; *current_priority = *current_priority - 1) {
for(*current_service_engine = 0;
*current_service_engine < SERVICE_HANDLER_MAXIMUM_COUNT;
*current_service_engine = *current_service_engine + 1) {
if(ais_service[*current_service_engine] == NULL ||
ais_service[*current_service_engine]->priority != *current_priority) {
continue;
}
/*
* find service object in object database by service id
* and unload it if possible.
*
* If the service engine's exec_exit_fn returns -1 indicating
* it was busy, this function returns -1 and can be called again
* at a later time (usually via the schedwrk api).
*/
corosync_api->object_find_create (
object_internal_configuration_handle,
"service", strlen ("service"), &object_find_handle);
while (corosync_api->object_find_next (
object_find_handle, &object_service_handle) == 0) {
int res = corosync_api->object_key_get (
object_service_handle,
"service_id", strlen ("service_id"),
(void *)&service_id, NULL);
if (res == 0 && *service_id ==
ais_service[*current_service_engine]->id) {
if (ais_service[*service_id]->exec_exit_fn) {
res = ais_service[*service_id]->exec_exit_fn ();
if (res == -1) {
corosync_api->object_find_destroy (object_find_handle);
return (-1);
}
}
log_printf(LOGSYS_LEVEL_NOTICE,
"Service engine unloaded: %s\n",
ais_service[*current_service_engine]->name);
ais_service[*current_service_engine] = NULL;
res = corosync_api->object_key_get (
object_service_handle,
"handle", strlen ("handle"),
(void *)&found_service_handle,
NULL);
lcr_ifact_release (*found_service_handle);
corosync_api->object_destroy (object_service_handle);
break;
}
}
corosync_api->object_find_destroy (object_find_handle);
}
}
return 0;
}
static unsigned int service_unlink_and_exit (
struct corosync_api_v1 *corosync_api,
const char *service_name,
unsigned int service_ver)
{
hdb_handle_t object_service_handle;
char *found_service_name;
unsigned short *service_id;
unsigned int *found_service_ver;
hdb_handle_t object_find_handle;
- hdb_handle_t *found_service_handle;
char *name_sufix;
int res;
name_sufix = strrchr (service_name, '_');
if (name_sufix)
name_sufix++;
else
name_sufix = (char*)service_name;
corosync_api->object_find_create (
object_stats_services_handle,
name_sufix, strlen (name_sufix),
&object_find_handle);
if (corosync_api->object_find_next (
object_find_handle,
&object_service_handle) == 0) {
corosync_api->object_destroy (object_service_handle);
}
corosync_api->object_find_destroy (object_find_handle);
corosync_api->object_find_create (
object_internal_configuration_handle,
"service",
strlen ("service"),
&object_find_handle);
while (corosync_api->object_find_next (
object_find_handle,
&object_service_handle) == 0) {
corosync_api->object_key_get (object_service_handle,
"name",
strlen ("name"),
(void *)&found_service_name,
NULL);
if (strcmp (service_name, found_service_name) != 0) {
continue;
}
corosync_api->object_key_get (object_service_handle,
"ver",
strlen ("ver"),
(void *)&found_service_ver,
NULL);
/*
* If service found and linked exit it
*/
if (service_ver != *found_service_ver) {
continue;
}
corosync_api->object_key_get (
object_service_handle,
"service_id", strlen ("service_id"),
(void *)&service_id, NULL);
if(service_id != NULL
&& *service_id > 0
&& *service_id < SERVICE_HANDLER_MAXIMUM_COUNT
&& ais_service[*service_id] != NULL) {
corosync_api->object_find_destroy (object_find_handle);
if (ais_service[*service_id]->exec_exit_fn) {
res = ais_service[*service_id]->exec_exit_fn ();
if (res == -1) {
return (-1);
}
}
log_printf(LOGSYS_LEVEL_NOTICE,
"Service engine unloaded: %s\n",
ais_service[*service_id]->name);
ais_service[*service_id] = NULL;
res = corosync_api->object_key_get (
object_service_handle,
"handle", strlen ("handle"),
(void *)&found_service_handle,
NULL);
lcr_ifact_release (*found_service_handle);
corosync_api->object_destroy (object_service_handle);
}
}
corosync_api->object_find_destroy (object_find_handle);
return (0);
}
/*
* Links default services into the executive
*/
unsigned int corosync_service_defaults_link_and_init (struct corosync_api_v1 *corosync_api)
{
unsigned int i;
hdb_handle_t object_service_handle;
char *found_service_name;
char *found_service_ver;
unsigned int found_service_ver_atoi;
hdb_handle_t object_find_handle;
hdb_handle_t object_find2_handle;
hdb_handle_t object_runtime_handle;
corosync_api->object_find_create (
OBJECT_PARENT_HANDLE,
"runtime",
strlen ("runtime"),
&object_find2_handle);
if (corosync_api->object_find_next (
object_find2_handle,
&object_runtime_handle) == 0) {
corosync_api->object_create (object_runtime_handle,
&object_stats_services_handle,
"services", strlen ("services"));
}
corosync_api->object_create (OBJECT_PARENT_HANDLE,
&object_internal_configuration_handle,
"internal_configuration",
strlen ("internal_configuration"));
corosync_api->object_find_create (
OBJECT_PARENT_HANDLE,
"service",
strlen ("service"),
&object_find_handle);
while (corosync_api->object_find_next (
object_find_handle,
&object_service_handle) == 0) {
corosync_api->object_key_get (object_service_handle,
"name",
strlen ("name"),
(void *)&found_service_name,
NULL);
found_service_ver = NULL;
corosync_api->object_key_get (object_service_handle,
"ver",
strlen ("ver"),
(void *)&found_service_ver,
NULL);
found_service_ver_atoi = (found_service_ver ? atoi (found_service_ver) : 0);
corosync_service_link_and_init (
corosync_api,
found_service_name,
found_service_ver_atoi);
}
corosync_api->object_find_destroy (object_find_handle);
if (default_services_requested (corosync_api) == 0) {
return (0);
}
for (i = 0;
i < sizeof (default_services) / sizeof (struct default_service); i++) {
corosync_service_link_and_init (
corosync_api,
default_services[i].name,
default_services[i].ver);
}
return (0);
}
static int unlink_all_schedwrk_handler (const void *data) {
int res;
static int current_priority = 0;
static int current_service_engine = 0;
static int called = 0;
struct corosync_api_v1 *api = (struct corosync_api_v1 *)data;
if (called == 0) {
log_printf(LOGSYS_LEVEL_NOTICE,
"Unloading all Corosync service engines.\n");
current_priority = service_priority_max ();
called = 1;
}
res = corosync_service_unlink_priority (
api,
0,
&current_priority,
&current_service_engine);
if (res == 0) {
service_unlink_all_complete();
}
return (res);
}
void corosync_service_unlink_all (
struct corosync_api_v1 *api,
void (*unlink_all_complete) (void))
{
static int called = 0;
assert (api);
service_unlink_all_complete = unlink_all_complete;
if (called) {
return;
}
if (called == 0) {
called = 1;
}
api->schedwrk_create (
&unlink_all_handle,
&unlink_all_schedwrk_handler,
api);
}
struct service_unlink_and_exit_data {
hdb_handle_t handle;
struct corosync_api_v1 *api;
const char *name;
unsigned int ver;
};
static int service_unlink_and_exit_schedwrk_handler (void *data)
{
struct service_unlink_and_exit_data *service_unlink_and_exit_data =
data;
int res;
res = service_unlink_and_exit (
service_unlink_and_exit_data->api,
service_unlink_and_exit_data->name,
service_unlink_and_exit_data->ver);
if (res == 0) {
free (service_unlink_and_exit_data);
}
return (res);
}
typedef int (*schedwrk_cast) (const void *);
unsigned int corosync_service_unlink_and_exit (
struct corosync_api_v1 *api,
const char *service_name,
unsigned int service_ver)
{
struct service_unlink_and_exit_data *service_unlink_and_exit_data;
assert (api);
service_unlink_and_exit_data = malloc (sizeof (struct service_unlink_and_exit_data));
service_unlink_and_exit_data->api = api;
service_unlink_and_exit_data->name = strdup (service_name);
service_unlink_and_exit_data->ver = service_ver;
api->schedwrk_create (
&service_unlink_and_exit_data->handle,
(schedwrk_cast)service_unlink_and_exit_schedwrk_handler,
service_unlink_and_exit_data);
return (0);
}
diff --git a/exec/totemmrp.c b/exec/totemmrp.c
index d014300b..6473c196 100644
--- a/exec/totemmrp.c
+++ b/exec/totemmrp.c
@@ -1,244 +1,246 @@
/*
* Copyright (c) 2005 MontaVista Software, Inc.
* Copyright (c) 2006-2007, 2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sched.h>
#include <time.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <corosync/totem/totem.h>
#include <corosync/totem/coropoll.h>
-#include <corosync/hdb.h>
#include "totemmrp.h"
#include "totemsrp.h"
void *totemsrp_context;
void totemmrp_deliver_fn (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required);
void totemmrp_confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
void (*pg_deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required) = 0;
void (*pg_confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id) = 0;
void totemmrp_deliver_fn (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required)
{
pg_deliver_fn (nodeid, msg, msg_len, endian_conversion_required);
}
void totemmrp_confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id)
{
pg_confchg_fn (configuration_type,
member_list, member_list_entries,
left_list, left_list_entries,
joined_list, joined_list_entries,
ring_id);
}
/*
* Initialize the totem multiple ring protocol
*/
int totemmrp_initialize (
hdb_handle_t poll_handle,
struct totem_config *totem_config,
+ totempg_stats_t *stats,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id))
{
int result;
pg_deliver_fn = deliver_fn;
pg_confchg_fn = confchg_fn;
+ stats->mrp = calloc (sizeof(totemmrp_stats_t), 1);
result = totemsrp_initialize (
poll_handle,
&totemsrp_context,
totem_config,
+ stats->mrp,
totemmrp_deliver_fn,
totemmrp_confchg_fn);
return (result);
}
void totemmrp_finalize (void)
{
totemsrp_finalize (totemsrp_context);
}
/*
* Multicast a message
*/
int totemmrp_mcast (
struct iovec *iovec,
unsigned int iov_len,
int priority)
{
return totemsrp_mcast (totemsrp_context, iovec, iov_len, priority);
}
/*
* Return number of available messages that can be queued
*/
int totemmrp_avail (void)
{
return (totemsrp_avail (totemsrp_context));
}
int totemmrp_callback_token_create (
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data)
{
return totemsrp_callback_token_create (totemsrp_context, handle_out, type, delete, callback_fn, data);
}
void totemmrp_callback_token_destroy (
void *handle_out)
{
totemsrp_callback_token_destroy (totemsrp_context, handle_out);
}
void totemmrp_new_msg_signal (void) {
totemsrp_new_msg_signal (totemsrp_context);
}
int totemmrp_ifaces_get (
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count)
{
int res;
res = totemsrp_ifaces_get (
totemsrp_context,
nodeid,
interfaces,
status,
iface_count);
return (res);
}
int totemmrp_crypto_set (
unsigned int type)
{
return totemsrp_crypto_set (totemsrp_context,
type);
}
unsigned int totemmrp_my_nodeid_get (void)
{
return (totemsrp_my_nodeid_get (totemsrp_context));
}
int totemmrp_my_family_get (void)
{
return (totemsrp_my_family_get (totemsrp_context));
}
extern int totemmrp_ring_reenable (void)
{
int res;
res = totemsrp_ring_reenable (
totemsrp_context);
return (res);
}
extern void totemmrp_service_ready_register (
void (*totem_service_ready) (void))
{
totemsrp_service_ready_register (
totemsrp_context,
totem_service_ready);
}
diff --git a/exec/totemmrp.h b/exec/totemmrp.h
index aa19c1b7..66449b6a 100644
--- a/exec/totemmrp.h
+++ b/exec/totemmrp.h
@@ -1,118 +1,119 @@
/*
* Copyright (c) 2005 MontaVista Software, Inc.
* Copyright (c) 2006-2007, 2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TOTEMMRP_H_DEFINED
#define TOTEMMRP_H_DEFINED
#include <corosync/totem/totem.h>
/*
* Totem Single Ring Protocol
* depends on poll abstraction, POSIX, IPV4
*/
/*
* Initialize the logger
*/
extern void totemmrp_log_printf_init (
void (*log_printf) (int , char *, ...),
int log_level_security,
int log_level_error,
int log_level_warning,
int log_level_notice,
int log_level_debug);
/*
* Initialize the group messaging interface
*/
extern int totemmrp_initialize (
hdb_handle_t poll_handle,
struct totem_config *totem_config,
+ totempg_stats_t *stats,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id));
extern void totemmrp_finalize (void);
/*
* Multicast a message
*/
extern int totemmrp_mcast (
struct iovec *iovec,
unsigned int iov_len,
int priority);
/*
* Return number of available messages that can be queued
*/
extern int totemmrp_avail (void);
extern int totemmrp_callback_token_create (
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data);
extern void totemmrp_callback_token_destroy (
void *handle_out);
extern void totemmrp_new_msg_signal (void);
extern int totemmrp_ifaces_get (
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count);
extern unsigned int totemmrp_my_nodeid_get (void);
extern int totemmrp_my_family_get (void);
extern int totemmrp_crypto_set (unsigned int);
extern int totemmrp_ring_reenable (void);
extern void totemmrp_service_ready_register (
void (*totem_service_ready) (void));
#endif /* TOTEMMRP_H_DEFINED */
diff --git a/exec/totempg.c b/exec/totempg.c
index ed4c2863..6a4b7bf3 100644
--- a/exec/totempg.c
+++ b/exec/totempg.c
@@ -1,1366 +1,1374 @@
/*
* Copyright (c) 2003-2005 MontaVista Software, Inc.
* Copyright (c) 2005 OSDL.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
* Author: Mark Haverkamp (markh@osdl.org)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* FRAGMENTATION AND PACKING ALGORITHM:
*
* Assemble the entire message into one buffer
* if full fragment
* store fragment into lengths list
* for each full fragment
* multicast fragment
* set length and fragment fields of pg mesage
* store remaining multicast into head of fragmentation data and set lens field
*
* If a message exceeds the maximum packet size allowed by the totem
* single ring protocol, the protocol could lose forward progress.
* Statically calculating the allowed data amount doesn't work because
* the amount of data allowed depends on the number of fragments in
* each message. In this implementation, the maximum fragment size
* is dynamically calculated for each fragment added to the message.
* It is possible for a message to be two bytes short of the maximum
* packet size. This occurs when a message or collection of
* messages + the mcast header + the lens are two bytes short of the
* end of the packet. Since another len field consumes two bytes, the
* len field would consume the rest of the packet without room for data.
*
* One optimization would be to forgo the final len field and determine
* it from the size of the udp datagram. Then this condition would no
* longer occur.
*/
/*
* ASSEMBLY AND UNPACKING ALGORITHM:
*
* copy incoming packet into assembly data buffer indexed by current
* location of end of fragment
*
* if not fragmented
* deliver all messages in assembly data buffer
* else
* if msg_count > 1 and fragmented
* deliver all messages except last message in assembly data buffer
* copy last fragmented section to start of assembly data buffer
* else
* if msg_count = 1 and fragmented
* do nothing
*
*/
#include <config.h>
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#include <netinet/in.h>
#include <sys/uio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
#include <errno.h>
#include <limits.h>
#include <corosync/swab.h>
#include <corosync/hdb.h>
#include <corosync/list.h>
#include <corosync/totem/coropoll.h>
#include <corosync/totem/totempg.h>
#define LOGSYS_UTILS_ONLY 1
#include <corosync/engine/logsys.h>
#include "totemmrp.h"
#include "totemsrp.h"
#define min(a,b) ((a) < (b)) ? a : b
struct totempg_mcast_header {
short version;
short type;
};
/*
* totempg_mcast structure
*
* header: Identify the mcast.
* fragmented: Set if this message continues into next message
* continuation: Set if this message is a continuation from last message
* msg_count Indicates how many packed messages are contained
* in the mcast.
* Also, the size of each packed message and the messages themselves are
* appended to the end of this structure when sent.
*/
struct totempg_mcast {
struct totempg_mcast_header header;
unsigned char fragmented;
unsigned char continuation;
unsigned short msg_count;
/*
* short msg_len[msg_count];
*/
/*
* data for messages
*/
};
/*
* Maximum packet size for totem pg messages
*/
#define TOTEMPG_PACKET_SIZE (totempg_totem_config->net_mtu - \
sizeof (struct totempg_mcast))
/*
* Local variables used for packing small messages
*/
static unsigned short mcast_packed_msg_lens[FRAME_SIZE_MAX];
static int mcast_packed_msg_count = 0;
static int totempg_reserved = 1;
static unsigned int totempg_size_limit;
/*
* Function and data used to log messages
*/
static int totempg_log_level_security;
static int totempg_log_level_error;
static int totempg_log_level_warning;
static int totempg_log_level_notice;
static int totempg_log_level_debug;
static int totempg_subsys_id;
static void (*totempg_log_printf) (
unsigned int rec_ident,
const char *function,
const char *file,
int line,
const char *format, ...) __attribute__((format(printf, 5, 6)));
struct totem_config *totempg_totem_config;
+static totempg_stats_t totempg_stats;
+
enum throw_away_mode {
THROW_AWAY_INACTIVE,
THROW_AWAY_ACTIVE
};
struct assembly {
unsigned int nodeid;
unsigned char data[MESSAGE_SIZE_MAX];
int index;
unsigned char last_frag_num;
enum throw_away_mode throw_away_mode;
struct list_head list;
};
static void assembly_deref (struct assembly *assembly);
static int callback_token_received_fn (enum totem_callback_token_type type,
const void *data);
DECLARE_LIST_INIT(assembly_list_inuse);
DECLARE_LIST_INIT(assembly_list_free);
/*
* Staging buffer for packed messages. Messages are staged in this buffer
* before sending. Multiple messages may fit which cuts down on the
* number of mcasts sent. If a message doesn't completely fit, then
* the mcast header has a fragment bit set that says that there are more
* data to follow. fragment_size is an index into the buffer. It indicates
* the size of message data and where to place new message data.
* fragment_contuation indicates whether the first packed message in
* the buffer is a continuation of a previously packed fragment.
*/
static unsigned char *fragmentation_data;
static int fragment_size = 0;
static int fragment_continuation = 0;
static struct iovec iov_delv;
static unsigned int totempg_max_handle = 0;
struct totempg_group_instance {
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required);
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
struct totempg_group *groups;
int groups_cnt;
};
DECLARE_HDB_DATABASE (totempg_groups_instance_database,NULL);
static unsigned char next_fragment = 1;
static pthread_mutex_t totempg_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t callback_token_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t mcast_msg_mutex = PTHREAD_MUTEX_INITIALIZER;
#define log_printf(level, format, args...) \
do { \
totempg_log_printf ( \
LOGSYS_ENCODE_RECID(level, \
totempg_subsys_id, \
LOGSYS_RECID_LOG), \
__FUNCTION__, __FILE__, __LINE__, \
format, ##args); \
} while (0);
static int msg_count_send_ok (int msg_count);
static int byte_count_send_ok (int byte_count);
static struct assembly *assembly_ref (unsigned int nodeid)
{
struct assembly *assembly;
struct list_head *list;
/*
* Search inuse list for node id and return assembly buffer if found
*/
for (list = assembly_list_inuse.next;
list != &assembly_list_inuse;
list = list->next) {
assembly = list_entry (list, struct assembly, list);
if (nodeid == assembly->nodeid) {
return (assembly);
}
}
/*
* Nothing found in inuse list get one from free list if available
*/
if (list_empty (&assembly_list_free) == 0) {
assembly = list_entry (assembly_list_free.next, struct assembly, list);
list_del (&assembly->list);
list_add (&assembly->list, &assembly_list_inuse);
assembly->nodeid = nodeid;
assembly->index = 0;
assembly->last_frag_num = 0;
assembly->throw_away_mode = THROW_AWAY_INACTIVE;
return (assembly);
}
/*
* Nothing available in inuse or free list, so allocate a new one
*/
assembly = malloc (sizeof (struct assembly));
/*
* TODO handle memory allocation failure here
*/
assert (assembly);
assembly->nodeid = nodeid;
assembly->data[0] = 0;
assembly->index = 0;
assembly->last_frag_num = 0;
assembly->throw_away_mode = THROW_AWAY_INACTIVE;
list_init (&assembly->list);
list_add (&assembly->list, &assembly_list_inuse);
return (assembly);
}
static void assembly_deref (struct assembly *assembly)
{
list_del (&assembly->list);
list_add (&assembly->list, &assembly_list_free);
}
static inline void app_confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id)
{
int i;
struct totempg_group_instance *instance;
struct assembly *assembly;
unsigned int res;
/*
* For every leaving processor, add to free list
* This also has the side effect of clearing out the dataset
* In the leaving processor's assembly buffer.
*/
for (i = 0; i < left_list_entries; i++) {
assembly = assembly_ref (left_list[i]);
list_del (&assembly->list);
list_add (&assembly->list, &assembly_list_free);
}
for (i = 0; i <= totempg_max_handle; i++) {
res = hdb_handle_get (&totempg_groups_instance_database,
hdb_nocheck_convert (i), (void *)&instance);
if (res == 0) {
if (instance->confchg_fn) {
instance->confchg_fn (
configuration_type,
member_list,
member_list_entries,
left_list,
left_list_entries,
joined_list,
joined_list_entries,
ring_id);
}
hdb_handle_put (&totempg_groups_instance_database,
hdb_nocheck_convert (i));
}
}
}
static inline void group_endian_convert (
void *msg,
int msg_len)
{
unsigned short *group_len;
int i;
char *aligned_msg;
/*
* Align data structure for sparc and ia64
*/
if ((size_t)msg % 4 != 0) {
aligned_msg = alloca(msg_len);
memcpy(aligned_msg, msg, msg_len);
} else {
aligned_msg = msg;
}
group_len = (unsigned short *)aligned_msg;
group_len[0] = swab16(group_len[0]);
for (i = 1; i < group_len[0] + 1; i++) {
group_len[i] = swab16(group_len[i]);
}
if (aligned_msg != msg) {
memcpy(msg, aligned_msg, msg_len);
}
}
static inline int group_matches (
struct iovec *iovec,
unsigned int iov_len,
struct totempg_group *groups_b,
unsigned int group_b_cnt,
unsigned int *adjust_iovec)
{
unsigned short *group_len;
char *group_name;
int i;
int j;
struct iovec iovec_aligned = { NULL, 0 };
assert (iov_len == 1);
/*
* Align data structure for sparc and ia64
*/
if ((size_t)iovec->iov_base % 4 != 0) {
iovec_aligned.iov_base = alloca(iovec->iov_len);
memcpy(iovec_aligned.iov_base, iovec->iov_base, iovec->iov_len);
iovec_aligned.iov_len = iovec->iov_len;
iovec = &iovec_aligned;
}
group_len = (unsigned short *)iovec->iov_base;
group_name = ((char *)iovec->iov_base) +
sizeof (unsigned short) * (group_len[0] + 1);
/*
* Calculate amount to adjust the iovec by before delivering to app
*/
*adjust_iovec = sizeof (unsigned short) * (group_len[0] + 1);
for (i = 1; i < group_len[0] + 1; i++) {
*adjust_iovec += group_len[i];
}
/*
* Determine if this message should be delivered to this instance
*/
for (i = 1; i < group_len[0] + 1; i++) {
for (j = 0; j < group_b_cnt; j++) {
if ((group_len[i] == groups_b[j].group_len) &&
(memcmp (groups_b[j].group, group_name, group_len[i]) == 0)) {
return (1);
}
}
group_name += group_len[i];
}
return (0);
}
static inline void app_deliver_fn (
unsigned int nodeid,
void *msg,
unsigned int msg_len,
int endian_conversion_required)
{
int i;
struct totempg_group_instance *instance;
struct iovec stripped_iovec;
unsigned int adjust_iovec;
unsigned int res;
struct iovec *iovec;
struct iovec aligned_iovec = { NULL, 0 };
if (endian_conversion_required) {
group_endian_convert (msg, msg_len);
}
/*
* TODO This function needs to be rewritten for proper alignment to avoid 3+ memory copies
*/
/*
* Align data structure for sparc and ia64
*/
aligned_iovec.iov_base = alloca(msg_len);
aligned_iovec.iov_len = msg_len;
memcpy(aligned_iovec.iov_base, msg, msg_len);
iovec = &aligned_iovec;
for (i = 0; i <= totempg_max_handle; i++) {
res = hdb_handle_get (&totempg_groups_instance_database,
hdb_nocheck_convert (i), (void *)&instance);
if (res == 0) {
if (group_matches (iovec, 1, instance->groups, instance->groups_cnt, &adjust_iovec)) {
stripped_iovec.iov_len = iovec->iov_len - adjust_iovec;
stripped_iovec.iov_base = (char *)iovec->iov_base + adjust_iovec;
/*
* Align data structure for sparc and ia64
*/
if ((char *)iovec->iov_base + adjust_iovec % 4 != 0) {
/*
* Deal with misalignment
*/
stripped_iovec.iov_base =
alloca (stripped_iovec.iov_len);
memcpy (stripped_iovec.iov_base,
(char *)iovec->iov_base + adjust_iovec,
stripped_iovec.iov_len);
}
instance->deliver_fn (
nodeid,
stripped_iovec.iov_base,
stripped_iovec.iov_len,
endian_conversion_required);
}
hdb_handle_put (&totempg_groups_instance_database, hdb_nocheck_convert(i));
}
}
}
static void totempg_confchg_fn (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id)
{
// TODO optimize this
app_confchg_fn (configuration_type,
member_list, member_list_entries,
left_list, left_list_entries,
joined_list, joined_list_entries,
ring_id);
}
static void totempg_deliver_fn (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required)
{
struct totempg_mcast *mcast;
unsigned short *msg_lens;
int i;
struct assembly *assembly;
char header[FRAME_SIZE_MAX];
int msg_count;
int continuation;
int start;
const char *data;
int datasize;
assembly = assembly_ref (nodeid);
assert (assembly);
/*
* Assemble the header into one block of data and
* assemble the packet contents into one block of data to simplify delivery
*/
mcast = (struct totempg_mcast *)msg;
if (endian_conversion_required) {
mcast->msg_count = swab16 (mcast->msg_count);
}
msg_count = mcast->msg_count;
datasize = sizeof (struct totempg_mcast) +
msg_count * sizeof (unsigned short);
memcpy (header, msg, datasize);
data = msg;
msg_lens = (unsigned short *) (header + sizeof (struct totempg_mcast));
if (endian_conversion_required) {
for (i = 0; i < mcast->msg_count; i++) {
msg_lens[i] = swab16 (msg_lens[i]);
}
}
memcpy (&assembly->data[assembly->index], &data[datasize],
msg_len - datasize);
/*
* If the last message in the buffer is a fragment, then we
* can't deliver it. We'll first deliver the full messages
* then adjust the assembly buffer so we can add the rest of the
* fragment when it arrives.
*/
msg_count = mcast->fragmented ? mcast->msg_count - 1 : mcast->msg_count;
continuation = mcast->continuation;
iov_delv.iov_base = (void *)&assembly->data[0];
iov_delv.iov_len = assembly->index + msg_lens[0];
/*
* Make sure that if this message is a continuation, that it
* matches the sequence number of the previous fragment.
* Also, if the first packed message is a continuation
* of a previous message, but the assembly buffer
* is empty, then we need to discard it since we can't
* assemble a complete message. Likewise, if this message isn't a
* continuation and the assembly buffer is empty, we have to discard
* the continued message.
*/
start = 0;
if (assembly->throw_away_mode == THROW_AWAY_ACTIVE) {
/* Throw away the first msg block */
if (mcast->fragmented == 0 || mcast->fragmented == 1) {
assembly->throw_away_mode = THROW_AWAY_INACTIVE;
assembly->index += msg_lens[0];
iov_delv.iov_base = (void *)&assembly->data[assembly->index];
iov_delv.iov_len = msg_lens[1];
start = 1;
}
} else
if (assembly->throw_away_mode == THROW_AWAY_INACTIVE) {
if (continuation == assembly->last_frag_num) {
assembly->last_frag_num = mcast->fragmented;
for (i = start; i < msg_count; i++) {
app_deliver_fn(nodeid, iov_delv.iov_base, iov_delv.iov_len,
endian_conversion_required);
assembly->index += msg_lens[i];
iov_delv.iov_base = (void *)&assembly->data[assembly->index];
if (i < (msg_count - 1)) {
iov_delv.iov_len = msg_lens[i + 1];
}
}
} else {
assembly->throw_away_mode = THROW_AWAY_ACTIVE;
}
}
if (mcast->fragmented == 0) {
/*
* End of messages, dereference assembly struct
*/
assembly->last_frag_num = 0;
assembly->index = 0;
assembly_deref (assembly);
} else {
/*
* Message is fragmented, keep around assembly list
*/
if (mcast->msg_count > 1) {
memmove (&assembly->data[0],
&assembly->data[assembly->index],
msg_lens[msg_count]);
assembly->index = 0;
}
assembly->index += msg_lens[msg_count];
}
}
/*
* Totem Process Group Abstraction
* depends on poll abstraction, POSIX, IPV4
*/
void *callback_token_received_handle;
int callback_token_received_fn (enum totem_callback_token_type type,
const void *data)
{
struct totempg_mcast mcast;
struct iovec iovecs[3];
int res;
pthread_mutex_lock (&mcast_msg_mutex);
if (mcast_packed_msg_count == 0) {
pthread_mutex_unlock (&mcast_msg_mutex);
return (0);
}
if (totemmrp_avail() == 0) {
pthread_mutex_unlock (&mcast_msg_mutex);
return (0);
}
mcast.header.version = 0;
mcast.fragmented = 0;
/*
* Was the first message in this buffer a continuation of a
* fragmented message?
*/
mcast.continuation = fragment_continuation;
fragment_continuation = 0;
mcast.msg_count = mcast_packed_msg_count;
iovecs[0].iov_base = (void *)&mcast;
iovecs[0].iov_len = sizeof (struct totempg_mcast);
iovecs[1].iov_base = (void *)mcast_packed_msg_lens;
iovecs[1].iov_len = mcast_packed_msg_count * sizeof (unsigned short);
iovecs[2].iov_base = (void *)&fragmentation_data[0];
iovecs[2].iov_len = fragment_size;
res = totemmrp_mcast (iovecs, 3, 0);
mcast_packed_msg_count = 0;
fragment_size = 0;
pthread_mutex_unlock (&mcast_msg_mutex);
return (0);
}
/*
* Initialize the totem process group abstraction
*/
int totempg_initialize (
hdb_handle_t poll_handle,
struct totem_config *totem_config)
{
int res;
totempg_totem_config = totem_config;
totempg_log_level_security = totem_config->totem_logging_configuration.log_level_security;
totempg_log_level_error = totem_config->totem_logging_configuration.log_level_error;
totempg_log_level_warning = totem_config->totem_logging_configuration.log_level_warning;
totempg_log_level_notice = totem_config->totem_logging_configuration.log_level_notice;
totempg_log_level_debug = totem_config->totem_logging_configuration.log_level_debug;
totempg_log_printf = totem_config->totem_logging_configuration.log_printf;
totempg_subsys_id = totem_config->totem_logging_configuration.log_subsys_id;
fragmentation_data = malloc (TOTEMPG_PACKET_SIZE);
if (fragmentation_data == 0) {
return (-1);
}
totemsrp_net_mtu_adjust (totem_config);
res = totemmrp_initialize (
poll_handle,
totem_config,
+ &totempg_stats,
totempg_deliver_fn,
totempg_confchg_fn);
totemmrp_callback_token_create (
&callback_token_received_handle,
TOTEM_CALLBACK_TOKEN_RECEIVED,
0,
callback_token_received_fn,
0);
totempg_size_limit = (totemmrp_avail() - 1) *
(totempg_totem_config->net_mtu -
sizeof (struct totempg_mcast) - 16);
return (res);
}
void totempg_finalize (void)
{
pthread_mutex_lock (&totempg_mutex);
totemmrp_finalize ();
pthread_mutex_unlock (&totempg_mutex);
}
/*
* Multicast a message
*/
static int mcast_msg (
struct iovec *iovec_in,
unsigned int iov_len,
int guarantee)
{
int res = 0;
struct totempg_mcast mcast;
struct iovec iovecs[3];
struct iovec iovec[64];
int i;
int dest, src;
int max_packet_size = 0;
int copy_len = 0;
int copy_base = 0;
int total_size = 0;
pthread_mutex_lock (&mcast_msg_mutex);
totemmrp_new_msg_signal ();
/*
* Remove zero length iovectors from the list
*/
assert (iov_len < 64);
for (dest = 0, src = 0; src < iov_len; src++) {
if (iovec_in[src].iov_len) {
memcpy (&iovec[dest++], &iovec_in[src],
sizeof (struct iovec));
}
}
iov_len = dest;
max_packet_size = TOTEMPG_PACKET_SIZE -
(sizeof (unsigned short) * (mcast_packed_msg_count + 1));
mcast_packed_msg_lens[mcast_packed_msg_count] = 0;
/*
* Check if we would overwrite new message queue
*/
for (i = 0; i < iov_len; i++) {
total_size += iovec[i].iov_len;
}
if (byte_count_send_ok (total_size + sizeof(unsigned short) *
(mcast_packed_msg_count)) == 0) {
pthread_mutex_unlock (&mcast_msg_mutex);
return(-1);
}
mcast.header.version = 0;
for (i = 0; i < iov_len; ) {
mcast.fragmented = 0;
mcast.continuation = fragment_continuation;
copy_len = iovec[i].iov_len - copy_base;
/*
* If it all fits with room left over, copy it in.
* We need to leave at least sizeof(short) + 1 bytes in the
* fragment_buffer on exit so that max_packet_size + fragment_size
* doesn't exceed the size of the fragment_buffer on the next call.
*/
if ((copy_len + fragment_size) <
(max_packet_size - sizeof (unsigned short))) {
memcpy (&fragmentation_data[fragment_size],
(char *)iovec[i].iov_base + copy_base, copy_len);
fragment_size += copy_len;
mcast_packed_msg_lens[mcast_packed_msg_count] += copy_len;
next_fragment = 1;
copy_len = 0;
copy_base = 0;
i++;
continue;
/*
* If it just fits or is too big, then send out what fits.
*/
} else {
unsigned char *data_ptr;
copy_len = min(copy_len, max_packet_size - fragment_size);
if( copy_len == max_packet_size )
data_ptr = (unsigned char *)iovec[i].iov_base + copy_base;
else {
data_ptr = fragmentation_data;
memcpy (&fragmentation_data[fragment_size],
(unsigned char *)iovec[i].iov_base + copy_base, copy_len);
}
memcpy (&fragmentation_data[fragment_size],
(unsigned char *)iovec[i].iov_base + copy_base, copy_len);
mcast_packed_msg_lens[mcast_packed_msg_count] += copy_len;
/*
* if we're not on the last iovec or the iovec is too large to
* fit, then indicate a fragment. This also means that the next
* message will have the continuation of this one.
*/
if ((i < (iov_len - 1)) ||
((copy_base + copy_len) < iovec[i].iov_len)) {
if (!next_fragment) {
next_fragment++;
}
fragment_continuation = next_fragment;
mcast.fragmented = next_fragment++;
assert(fragment_continuation != 0);
assert(mcast.fragmented != 0);
} else {
fragment_continuation = 0;
}
/*
* assemble the message and send it
*/
mcast.msg_count = ++mcast_packed_msg_count;
iovecs[0].iov_base = (void *)&mcast;
iovecs[0].iov_len = sizeof(struct totempg_mcast);
iovecs[1].iov_base = (void *)mcast_packed_msg_lens;
iovecs[1].iov_len = mcast_packed_msg_count *
sizeof(unsigned short);
iovecs[2].iov_base = (void *)data_ptr;
iovecs[2].iov_len = max_packet_size;
assert (totemmrp_avail() > 0);
res = totemmrp_mcast (iovecs, 3, guarantee);
if (res == -1) {
goto error_exit;
}
/*
* Recalculate counts and indexes for the next.
*/
mcast_packed_msg_lens[0] = 0;
mcast_packed_msg_count = 0;
fragment_size = 0;
max_packet_size = TOTEMPG_PACKET_SIZE - (sizeof(unsigned short));
/*
* If the iovec all fit, go to the next iovec
*/
if ((copy_base + copy_len) == iovec[i].iov_len) {
copy_len = 0;
copy_base = 0;
i++;
/*
* Continue with the rest of the current iovec.
*/
} else {
copy_base += copy_len;
}
}
}
/*
* Bump only if we added message data. This may be zero if
* the last buffer just fit into the fragmentation_data buffer
* and we were at the last iovec.
*/
if (mcast_packed_msg_lens[mcast_packed_msg_count]) {
mcast_packed_msg_count++;
}
error_exit:
pthread_mutex_unlock (&mcast_msg_mutex);
return (res);
}
/*
* Determine if a message of msg_size could be queued
*/
static int msg_count_send_ok (
int msg_count)
{
int avail = 0;
avail = totemmrp_avail ();
return ((avail - totempg_reserved) > msg_count);
}
static int byte_count_send_ok (
int byte_count)
{
unsigned int msg_count = 0;
int avail = 0;
avail = totemmrp_avail ();
msg_count = (byte_count / (totempg_totem_config->net_mtu - sizeof (struct totempg_mcast) - 16)) + 1;
return (avail >= msg_count);
}
static int send_reserve (
int msg_size)
{
unsigned int msg_count = 0;
msg_count = (msg_size / (totempg_totem_config->net_mtu - sizeof (struct totempg_mcast) - 16)) + 1;
totempg_reserved += msg_count;
return (msg_count);
}
static void send_release (
int msg_count)
{
totempg_reserved -= msg_count;
}
int totempg_callback_token_create (
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data)
{
unsigned int res;
pthread_mutex_lock (&callback_token_mutex);
res = totemmrp_callback_token_create (handle_out, type, delete,
callback_fn, data);
pthread_mutex_unlock (&callback_token_mutex);
return (res);
}
void totempg_callback_token_destroy (
void *handle_out)
{
pthread_mutex_lock (&callback_token_mutex);
totemmrp_callback_token_destroy (handle_out);
pthread_mutex_unlock (&callback_token_mutex);
}
/*
* vi: set autoindent tabstop=4 shiftwidth=4 :
*/
int totempg_groups_initialize (
hdb_handle_t *handle,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id))
{
struct totempg_group_instance *instance;
unsigned int res;
pthread_mutex_lock (&totempg_mutex);
res = hdb_handle_create (&totempg_groups_instance_database,
sizeof (struct totempg_group_instance), handle);
if (res != 0) {
goto error_exit;
}
if (*handle > totempg_max_handle) {
totempg_max_handle = *handle;
}
res = hdb_handle_get (&totempg_groups_instance_database, *handle,
(void *)&instance);
if (res != 0) {
goto error_destroy;
}
instance->deliver_fn = deliver_fn;
instance->confchg_fn = confchg_fn;
instance->groups = 0;
instance->groups_cnt = 0;
hdb_handle_put (&totempg_groups_instance_database, *handle);
pthread_mutex_unlock (&totempg_mutex);
return (0);
error_destroy:
hdb_handle_destroy (&totempg_groups_instance_database, *handle);
error_exit:
pthread_mutex_unlock (&totempg_mutex);
return (-1);
}
int totempg_groups_join (
hdb_handle_t handle,
const struct totempg_group *groups,
size_t group_cnt)
{
struct totempg_group_instance *instance;
struct totempg_group *new_groups;
unsigned int res;
pthread_mutex_lock (&totempg_mutex);
res = hdb_handle_get (&totempg_groups_instance_database, handle,
(void *)&instance);
if (res != 0) {
goto error_exit;
}
new_groups = realloc (instance->groups,
sizeof (struct totempg_group) *
(instance->groups_cnt + group_cnt));
if (new_groups == 0) {
res = ENOMEM;
goto error_exit;
}
memcpy (&new_groups[instance->groups_cnt],
groups, group_cnt * sizeof (struct totempg_group));
instance->groups = new_groups;
instance->groups_cnt += group_cnt;
hdb_handle_put (&totempg_groups_instance_database, handle);
error_exit:
pthread_mutex_unlock (&totempg_mutex);
return (res);
}
int totempg_groups_leave (
hdb_handle_t handle,
const struct totempg_group *groups,
size_t group_cnt)
{
struct totempg_group_instance *instance;
unsigned int res;
pthread_mutex_lock (&totempg_mutex);
res = hdb_handle_get (&totempg_groups_instance_database, handle,
(void *)&instance);
if (res != 0) {
goto error_exit;
}
hdb_handle_put (&totempg_groups_instance_database, handle);
error_exit:
pthread_mutex_unlock (&totempg_mutex);
return (res);
}
#define MAX_IOVECS_FROM_APP 32
#define MAX_GROUPS_PER_MSG 32
int totempg_groups_mcast_joined (
hdb_handle_t handle,
const struct iovec *iovec,
unsigned int iov_len,
int guarantee)
{
struct totempg_group_instance *instance;
unsigned short group_len[MAX_GROUPS_PER_MSG + 1];
struct iovec iovec_mcast[MAX_GROUPS_PER_MSG + 1 + MAX_IOVECS_FROM_APP];
int i;
unsigned int res;
pthread_mutex_lock (&totempg_mutex);
res = hdb_handle_get (&totempg_groups_instance_database, handle,
(void *)&instance);
if (res != 0) {
goto error_exit;
}
/*
* Build group_len structure and the iovec_mcast structure
*/
group_len[0] = instance->groups_cnt;
for (i = 0; i < instance->groups_cnt; i++) {
group_len[i + 1] = instance->groups[i].group_len;
iovec_mcast[i + 1].iov_len = instance->groups[i].group_len;
iovec_mcast[i + 1].iov_base = (void *) instance->groups[i].group;
}
iovec_mcast[0].iov_len = (instance->groups_cnt + 1) * sizeof (unsigned short);
iovec_mcast[0].iov_base = group_len;
for (i = 0; i < iov_len; i++) {
iovec_mcast[i + instance->groups_cnt + 1].iov_len = iovec[i].iov_len;
iovec_mcast[i + instance->groups_cnt + 1].iov_base = iovec[i].iov_base;
}
res = mcast_msg (iovec_mcast, iov_len + instance->groups_cnt + 1, guarantee);
hdb_handle_put (&totempg_groups_instance_database, handle);
error_exit:
pthread_mutex_unlock (&totempg_mutex);
return (res);
}
int totempg_groups_joined_reserve (
hdb_handle_t handle,
const struct iovec *iovec,
unsigned int iov_len)
{
struct totempg_group_instance *instance;
unsigned int size = 0;
unsigned int i;
unsigned int res;
unsigned int reserved = 0;
pthread_mutex_lock (&totempg_mutex);
pthread_mutex_lock (&mcast_msg_mutex);
res = hdb_handle_get (&totempg_groups_instance_database, handle,
(void *)&instance);
if (res != 0) {
goto error_exit;
}
for (i = 0; i < instance->groups_cnt; i++) {
size += instance->groups[i].group_len;
}
for (i = 0; i < iov_len; i++) {
size += iovec[i].iov_len;
}
if (size >= totempg_size_limit) {
reserved = -1;
goto error_put;
}
reserved = send_reserve (size);
if (msg_count_send_ok (reserved) == 0) {
send_release (reserved);
reserved = 0;
}
error_put:
hdb_handle_put (&totempg_groups_instance_database, handle);
error_exit:
pthread_mutex_unlock (&mcast_msg_mutex);
pthread_mutex_unlock (&totempg_mutex);
return (reserved);
}
int totempg_groups_joined_release (int msg_count)
{
pthread_mutex_lock (&totempg_mutex);
pthread_mutex_lock (&mcast_msg_mutex);
send_release (msg_count);
pthread_mutex_unlock (&mcast_msg_mutex);
pthread_mutex_unlock (&totempg_mutex);
return 0;
}
int totempg_groups_mcast_groups (
hdb_handle_t handle,
int guarantee,
const struct totempg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len)
{
struct totempg_group_instance *instance;
unsigned short group_len[MAX_GROUPS_PER_MSG + 1];
struct iovec iovec_mcast[MAX_GROUPS_PER_MSG + 1 + MAX_IOVECS_FROM_APP];
int i;
unsigned int res;
pthread_mutex_lock (&totempg_mutex);
res = hdb_handle_get (&totempg_groups_instance_database, handle,
(void *)&instance);
if (res != 0) {
goto error_exit;
}
/*
* Build group_len structure and the iovec_mcast structure
*/
group_len[0] = groups_cnt;
for (i = 0; i < groups_cnt; i++) {
group_len[i + 1] = groups[i].group_len;
iovec_mcast[i + 1].iov_len = groups[i].group_len;
iovec_mcast[i + 1].iov_base = (void *) groups[i].group;
}
iovec_mcast[0].iov_len = (groups_cnt + 1) * sizeof (unsigned short);
iovec_mcast[0].iov_base = group_len;
for (i = 0; i < iov_len; i++) {
iovec_mcast[i + groups_cnt + 1].iov_len = iovec[i].iov_len;
iovec_mcast[i + groups_cnt + 1].iov_base = iovec[i].iov_base;
}
res = mcast_msg (iovec_mcast, iov_len + groups_cnt + 1, guarantee);
hdb_handle_put (&totempg_groups_instance_database, handle);
error_exit:
pthread_mutex_unlock (&totempg_mutex);
return (res);
}
/*
* Returns -1 if error, 0 if can't send, 1 if can send the message
*/
int totempg_groups_send_ok_groups (
hdb_handle_t handle,
const struct totempg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len)
{
struct totempg_group_instance *instance;
unsigned int size = 0;
unsigned int i;
unsigned int res;
pthread_mutex_lock (&totempg_mutex);
res = hdb_handle_get (&totempg_groups_instance_database, handle,
(void *)&instance);
if (res != 0) {
goto error_exit;
}
for (i = 0; i < groups_cnt; i++) {
size += groups[i].group_len;
}
for (i = 0; i < iov_len; i++) {
size += iovec[i].iov_len;
}
res = msg_count_send_ok (size);
hdb_handle_put (&totempg_groups_instance_database, handle);
error_exit:
pthread_mutex_unlock (&totempg_mutex);
return (res);
}
int totempg_ifaces_get (
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count)
{
int res;
res = totemmrp_ifaces_get (
nodeid,
interfaces,
status,
iface_count);
return (res);
}
+void* totempg_get_stats (void)
+{
+ return &totempg_stats;
+}
+
int totempg_crypto_set (
unsigned int type)
{
int res;
res = totemmrp_crypto_set (
type);
return (res);
}
int totempg_ring_reenable (void)
{
int res;
res = totemmrp_ring_reenable ();
return (res);
}
const char *totempg_ifaces_print (unsigned int nodeid)
{
static char iface_string[256 * INTERFACE_MAX];
char one_iface[64];
struct totem_ip_address interfaces[INTERFACE_MAX];
char **status;
unsigned int iface_count;
unsigned int i;
int res;
iface_string[0] = '\0';
res = totempg_ifaces_get (nodeid, interfaces, &status, &iface_count);
if (res == -1) {
return ("no interface found for nodeid");
}
for (i = 0; i < iface_count; i++) {
sprintf (one_iface, "r(%d) ip(%s) ",
i, totemip_print (&interfaces[i]));
strcat (iface_string, one_iface);
}
return (iface_string);
}
unsigned int totempg_my_nodeid_get (void)
{
return (totemmrp_my_nodeid_get());
}
int totempg_my_family_get (void)
{
return (totemmrp_my_family_get());
}
extern void totempg_service_ready_register (
void (*totem_service_ready) (void))
{
totemmrp_service_ready_register (totem_service_ready);
}
diff --git a/exec/totemsrp.c b/exec/totemsrp.c
index a7c1eac2..43431ed7 100644
--- a/exec/totemsrp.c
+++ b/exec/totemsrp.c
@@ -1,4259 +1,4361 @@
/*
* Copyright (c) 2003-2006 MontaVista Software, Inc.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The first version of this code was based upon Yair Amir's PhD thesis:
* http://www.cs.jhu.edu/~yairamir/phd.ps) (ch4,5).
*
* The current version of totemsrp implements the Totem protocol specified in:
* http://citeseer.ist.psu.edu/amir95totem.html
*
* The deviations from the above published protocols are:
* - encryption of message contents with SOBER128
* - authentication of meessage contents with SHA1/HMAC
* - token hold mode where token doesn't rotate on unused ring - reduces cpu
* usage on 1.6ghz xeon from 35% to less then .1 % as measured by top
*/
#include <config.h>
#include <assert.h>
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sched.h>
#include <time.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <limits.h>
#include <corosync/swab.h>
#include <corosync/cs_queue.h>
#include <corosync/sq.h>
#include <corosync/list.h>
#include <corosync/hdb.h>
#include <corosync/totem/coropoll.h>
#define LOGSYS_UTILS_ONLY 1
#include <corosync/engine/logsys.h>
#include "totemsrp.h"
#include "totemrrp.h"
#include "totemnet.h"
#include "wthread.h"
#include "crypto.h"
#include "tlist.h"
#define LOCALHOST_IP inet_addr("127.0.0.1")
#define QUEUE_RTR_ITEMS_SIZE_MAX 256 /* allow 256 retransmit items */
#define RETRANS_MESSAGE_QUEUE_SIZE_MAX 500 /* allow 500 messages to be queued */
#define RECEIVED_MESSAGE_QUEUE_SIZE_MAX 500 /* allow 500 messages to be queued */
#define MAXIOVS 5
#define RETRANSMIT_ENTRIES_MAX 30
#define TOKEN_SIZE_MAX 64000 /* bytes */
#define LEAVE_DUMMY_NODEID 0
/*
* Rollover handling:
* SEQNO_START_MSG is the starting sequence number after a new configuration
* This should remain zero, unless testing overflow in which case
* 0x7ffff000 and 0xfffff000 are good starting values.
*
* SEQNO_START_TOKEN is the starting sequence number after a new configuration
* for a token. This should remain zero, unless testing overflow in which
* case 07fffff00 or 0xffffff00 are good starting values.
*
* SEQNO_START_MSG is the starting sequence number after a new configuration
* This should remain zero, unless testing overflow in which case
* 0x7ffff000 and 0xfffff000 are good values to start with
*/
#define SEQNO_START_MSG 0x0
#define SEQNO_START_TOKEN 0x0
/*
* These can be used ot test different rollover points
* #define SEQNO_START_MSG 0xfffffe00
* #define SEQNO_START_TOKEN 0xfffffe00
*/
/*
* These can be used to test the error recovery algorithms
* #define TEST_DROP_ORF_TOKEN_PERCENTAGE 30
* #define TEST_DROP_COMMIT_TOKEN_PERCENTAGE 30
* #define TEST_DROP_MCAST_PERCENTAGE 50
* #define TEST_RECOVERY_MSG_COUNT 300
*/
/*
* we compare incoming messages to determine if their endian is
* different - if so convert them
*
* do not change
*/
#define ENDIAN_LOCAL 0xff22
enum message_type {
MESSAGE_TYPE_ORF_TOKEN = 0, /* Ordering, Reliability, Flow (ORF) control Token */
MESSAGE_TYPE_MCAST = 1, /* ring ordered multicast message */
MESSAGE_TYPE_MEMB_MERGE_DETECT = 2, /* merge rings if there are available rings */
MESSAGE_TYPE_MEMB_JOIN = 3, /* membership join message */
MESSAGE_TYPE_MEMB_COMMIT_TOKEN = 4, /* membership commit token */
MESSAGE_TYPE_TOKEN_HOLD_CANCEL = 5, /* cancel the holding of the token */
};
enum encapsulation_type {
MESSAGE_ENCAPSULATED = 1,
MESSAGE_NOT_ENCAPSULATED = 2
};
/*
* New membership algorithm local variables
*/
struct srp_addr {
struct totem_ip_address addr[INTERFACE_MAX];
};
struct consensus_list_item {
struct srp_addr addr;
int set;
};
struct token_callback_instance {
struct list_head list;
int (*callback_fn) (enum totem_callback_token_type type, const void *);
enum totem_callback_token_type callback_type;
int delete;
void *data;
};
struct totemsrp_socket {
int mcast;
int token;
};
struct message_header {
char type;
char encapsulated;
unsigned short endian_detector;
unsigned int nodeid;
} __attribute__((packed));
struct mcast {
struct message_header header;
struct srp_addr system_from;
unsigned int seq;
int this_seqno;
struct memb_ring_id ring_id;
unsigned int node_id;
int guarantee;
} __attribute__((packed));
struct rtr_item {
struct memb_ring_id ring_id;
unsigned int seq;
}__attribute__((packed));
struct orf_token {
struct message_header header;
unsigned int seq;
unsigned int token_seq;
unsigned int aru;
unsigned int aru_addr;
struct memb_ring_id ring_id;
unsigned int backlog;
unsigned int fcc;
int retrans_flg;
int rtr_list_entries;
struct rtr_item rtr_list[0];
}__attribute__((packed));
struct memb_join {
struct message_header header;
struct srp_addr system_from;
unsigned int proc_list_entries;
unsigned int failed_list_entries;
unsigned long long ring_seq;
unsigned char end_of_memb_join[0];
/*
* These parts of the data structure are dynamic:
* struct srp_addr proc_list[];
* struct srp_addr failed_list[];
*/
} __attribute__((packed));
struct memb_merge_detect {
struct message_header header;
struct srp_addr system_from;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct token_hold_cancel {
struct message_header header;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct memb_commit_token_memb_entry {
struct memb_ring_id ring_id;
unsigned int aru;
unsigned int high_delivered;
unsigned int received_flg;
}__attribute__((packed));
struct memb_commit_token {
struct message_header header;
unsigned int token_seq;
struct memb_ring_id ring_id;
unsigned int retrans_flg;
int memb_index;
int addr_entries;
unsigned char end_of_commit_token[0];
/*
* These parts of the data structure are dynamic:
*
* struct srp_addr addr[PROCESSOR_COUNT_MAX];
* struct memb_commit_token_memb_entry memb_list[PROCESSOR_COUNT_MAX];
*/
}__attribute__((packed));
struct message_item {
struct mcast *mcast;
unsigned int msg_len;
};
struct sort_queue_item {
struct mcast *mcast;
unsigned int msg_len;
};
struct orf_token_mcast_thread_state {
char iobuf[9000];
prng_state prng_state;
};
enum memb_state {
MEMB_STATE_OPERATIONAL = 1,
MEMB_STATE_GATHER = 2,
MEMB_STATE_COMMIT = 3,
MEMB_STATE_RECOVERY = 4
};
struct totemsrp_instance {
int iface_changes;
/*
* Flow control mcasts and remcasts on last and current orf_token
*/
int fcc_remcast_last;
int fcc_mcast_last;
int fcc_remcast_current;
struct consensus_list_item consensus_list[PROCESSOR_COUNT_MAX];
int consensus_list_entries;
struct srp_addr my_id;
struct srp_addr my_proc_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_failed_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_new_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_trans_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_deliver_memb_list[PROCESSOR_COUNT_MAX];
struct srp_addr my_left_memb_list[PROCESSOR_COUNT_MAX];
int my_proc_list_entries;
int my_failed_list_entries;
int my_new_memb_entries;
int my_trans_memb_entries;
int my_memb_entries;
int my_deliver_memb_entries;
int my_left_memb_entries;
struct memb_ring_id my_ring_id;
struct memb_ring_id my_old_ring_id;
int my_aru_count;
int my_merge_detect_timeout_outstanding;
unsigned int my_last_aru;
int my_seq_unchanged;
int my_received_flg;
unsigned int my_high_seq_received;
unsigned int my_install_seq;
int my_rotation_counter;
int my_set_retrans_flg;
int my_retrans_flg_count;
unsigned int my_high_ring_delivered;
int heartbeat_timeout;
/*
* Queues used to order, deliver, and recover messages
*/
struct cs_queue new_message_queue;
struct cs_queue retrans_message_queue;
struct sq regular_sort_queue;
struct sq recovery_sort_queue;
/*
* Received up to and including
*/
unsigned int my_aru;
unsigned int my_high_delivered;
struct list_head token_callback_received_listhead;
struct list_head token_callback_sent_listhead;
char *orf_token_retransmit[TOKEN_SIZE_MAX];
int orf_token_retransmit_size;
unsigned int my_token_seq;
/*
* Timers
*/
poll_timer_handle timer_pause_timeout;
poll_timer_handle timer_orf_token_timeout;
poll_timer_handle timer_orf_token_retransmit_timeout;
poll_timer_handle timer_orf_token_hold_retransmit_timeout;
poll_timer_handle timer_merge_detect_timeout;
poll_timer_handle memb_timer_state_gather_join_timeout;
poll_timer_handle memb_timer_state_gather_consensus_timeout;
poll_timer_handle memb_timer_state_commit_timeout;
poll_timer_handle timer_heartbeat_timeout;
/*
* Function and data used to log messages
*/
int totemsrp_log_level_security;
int totemsrp_log_level_error;
int totemsrp_log_level_warning;
int totemsrp_log_level_notice;
int totemsrp_log_level_debug;
int totemsrp_subsys_id;
void (*totemsrp_log_printf) (
unsigned int rec_ident,
const char *function,
const char *file,
int line,
const char *format, ...)__attribute__((format(printf, 5, 6)));;
enum memb_state memb_state;
//TODO struct srp_addr next_memb;
hdb_handle_t totemsrp_poll_handle;
struct totem_ip_address mcast_address;
void (*totemsrp_deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required);
void (*totemsrp_confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
void (*totemsrp_service_ready_fn) (void);
int global_seqno;
int my_token_held;
unsigned long long token_ring_id_seq;
unsigned int last_released;
unsigned int set_aru;
int old_ring_state_saved;
int old_ring_state_aru;
unsigned int old_ring_state_high_seq_received;
int ring_saved;
unsigned int my_last_seq;
struct timeval tv_old;
void *totemrrp_context;
struct totem_config *totem_config;
unsigned int use_heartbeat;
unsigned int my_trc;
unsigned int my_pbl;
unsigned int my_cbl;
unsigned long long int pause_timestamp;
struct memb_commit_token *commit_token;
+ totemsrp_stats_t *stats;
+ void * token_recv_event_handle;
+ void * token_sent_event_handle;
char commit_token_storage[9000];
};
struct message_handlers {
int count;
int (*handler_functions[6]) (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
};
/*
* forward decls
*/
static int message_handler_orf_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_mcast (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_merge_detect (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_join (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_memb_commit_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static int message_handler_token_hold_cancel (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed);
static void totemsrp_instance_initialize (struct totemsrp_instance *instance);
static unsigned int main_msgs_missing (void);
static void main_token_seqid_get (
const void *msg,
unsigned int *seqid,
unsigned int *token_is);
static void srp_addr_copy (struct srp_addr *dest, const struct srp_addr *src);
static void srp_addr_to_nodeid (
unsigned int *nodeid_out,
struct srp_addr *srp_addr_in,
unsigned int entries);
static int srp_addr_equal (const struct srp_addr *a, const struct srp_addr *b);
static void memb_leave_message_send (struct totemsrp_instance *instance);
static void memb_ring_id_create_or_load (struct totemsrp_instance *, struct memb_ring_id *);
static void token_callbacks_execute (struct totemsrp_instance *instance, enum totem_callback_token_type type);
static void memb_state_gather_enter (struct totemsrp_instance *instance, int gather_from);
static void messages_deliver_to_app (struct totemsrp_instance *instance, int skip, unsigned int end_point);
static int orf_token_mcast (struct totemsrp_instance *instance, struct orf_token *oken,
int fcc_mcasts_allowed);
static void messages_free (struct totemsrp_instance *instance, unsigned int token_aru);
static void memb_ring_id_set_and_store (struct totemsrp_instance *instance,
const struct memb_ring_id *ring_id);
static void target_set_completed (void *context);
static void memb_state_commit_token_update (struct totemsrp_instance *instance);
static void memb_state_commit_token_target_set (struct totemsrp_instance *instance);
static int memb_state_commit_token_send (struct totemsrp_instance *instance);
static int memb_state_commit_token_send_recovery (struct totemsrp_instance *instance, struct memb_commit_token *memb_commit_token);
static void memb_state_commit_token_create (struct totemsrp_instance *instance);
static int token_hold_cancel_send (struct totemsrp_instance *instance);
static void orf_token_endian_convert (const struct orf_token *in, struct orf_token *out);
static void memb_commit_token_endian_convert (const struct memb_commit_token *in, struct memb_commit_token *out);
static void memb_join_endian_convert (const struct memb_join *in, struct memb_join *out);
static void mcast_endian_convert (const struct mcast *in, struct mcast *out);
static void memb_merge_detect_endian_convert (
const struct memb_merge_detect *in,
struct memb_merge_detect *out);
static void srp_addr_copy_endian_convert (struct srp_addr *out, const struct srp_addr *in);
static void timer_function_orf_token_timeout (void *data);
static void timer_function_pause_timeout (void *data);
static void timer_function_heartbeat_timeout (void *data);
static void timer_function_token_retransmit_timeout (void *data);
static void timer_function_token_hold_retransmit_timeout (void *data);
static void timer_function_merge_detect_timeout (void *data);
void main_deliver_fn (
void *context,
const void *msg,
unsigned int msg_len);
void main_iface_change_fn (
void *context,
const struct totem_ip_address *iface_address,
unsigned int iface_no);
struct message_handlers totemsrp_message_handlers = {
6,
{
message_handler_orf_token,
message_handler_mcast,
message_handler_memb_merge_detect,
message_handler_memb_join,
message_handler_memb_commit_token,
message_handler_token_hold_cancel
}
};
static const char *rundir = NULL;
#define log_printf(level, format, args...) \
do { \
instance->totemsrp_log_printf ( \
LOGSYS_ENCODE_RECID(level, \
instance->totemsrp_subsys_id, \
LOGSYS_RECID_LOG), \
__FUNCTION__, __FILE__, __LINE__, \
format, ##args); \
} while (0);
static void totemsrp_instance_initialize (struct totemsrp_instance *instance)
{
memset (instance, 0, sizeof (struct totemsrp_instance));
list_init (&instance->token_callback_received_listhead);
list_init (&instance->token_callback_sent_listhead);
instance->my_received_flg = 1;
instance->my_token_seq = SEQNO_START_TOKEN - 1;
instance->memb_state = MEMB_STATE_OPERATIONAL;
instance->set_aru = -1;
instance->my_aru = SEQNO_START_MSG;
instance->my_high_seq_received = SEQNO_START_MSG;
instance->my_high_delivered = SEQNO_START_MSG;
instance->commit_token = (struct memb_commit_token *)instance->commit_token_storage;
}
static void main_token_seqid_get (
const void *msg,
unsigned int *seqid,
unsigned int *token_is)
{
const struct orf_token *token = msg;
*seqid = 0;
*token_is = 0;
if (token->header.type == MESSAGE_TYPE_ORF_TOKEN) {
*seqid = token->token_seq;
*token_is = 1;
}
}
static unsigned int main_msgs_missing (void)
{
// TODO
return (0);
}
static int pause_flush (struct totemsrp_instance *instance)
{
uint64_t now_msec;
uint64_t timestamp_msec;
int res = 0;
now_msec = (timerlist_nano_current_get () / TIMERLIST_NS_IN_MSEC);
timestamp_msec = instance->pause_timestamp / TIMERLIST_NS_IN_MSEC;
if ((now_msec - timestamp_msec) > (instance->totem_config->token_timeout / 2)) {
log_printf (instance->totemsrp_log_level_notice,
"Process pause detected for %d ms, flushing membership messages.\n", (unsigned int)(now_msec - timestamp_msec));
/*
* -1 indicates an error from recvmsg
*/
do {
res = totemrrp_mcast_recv_empty (instance->totemrrp_context);
} while (res == -1);
}
return (res);
}
+static int token_event_stats_collector (enum totem_callback_token_type type, const void *void_instance)
+{
+ struct totemsrp_instance *instance = (struct totemsrp_instance *)void_instance;
+ uint32_t time_now;
+ unsigned long long nano_secs = timerlist_nano_current_get ();
+
+ time_now = (nano_secs / TIMERLIST_NS_IN_MSEC);
+
+ if (type == TOTEM_CALLBACK_TOKEN_RECEIVED) {
+ /* incr latest token the index */
+ if (instance->stats->latest_token == (TOTEM_TOKEN_STATS_MAX - 1))
+ instance->stats->latest_token = 0;
+ else
+ instance->stats->latest_token++;
+
+ if (instance->stats->earliest_token == instance->stats->latest_token) {
+ /* we have filled up the array, start overwriting */
+ if (instance->stats->earliest_token == (TOTEM_TOKEN_STATS_MAX - 1))
+ instance->stats->earliest_token = 0;
+ else
+ instance->stats->earliest_token++;
+
+ instance->stats->token[instance->stats->earliest_token].rx = 0;
+ instance->stats->token[instance->stats->earliest_token].tx = 0;
+ instance->stats->token[instance->stats->earliest_token].backlog_calc = 0;
+ }
+
+ instance->stats->token[instance->stats->latest_token].rx = time_now;
+ instance->stats->token[instance->stats->latest_token].tx = 0; /* in case we drop the token */
+ } else {
+ instance->stats->token[instance->stats->latest_token].tx = time_now;
+ }
+ return 0;
+}
+
/*
* Exported interfaces
*/
int totemsrp_initialize (
hdb_handle_t poll_handle,
void **srp_context,
struct totem_config *totem_config,
+ totemmrp_stats_t *stats,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id))
{
struct totemsrp_instance *instance;
unsigned int res;
instance = malloc (sizeof (struct totemsrp_instance));
if (instance == NULL) {
goto error_exit;
}
rundir = getenv ("COROSYNC_RUN_DIR");
if (rundir == NULL) {
rundir = LOCALSTATEDIR "/lib/corosync";
}
res = mkdir (rundir, 0700);
if (res == -1 && errno != EEXIST) {
goto error_destroy;
}
res = chdir (rundir);
if (res == -1) {
goto error_destroy;
}
totemsrp_instance_initialize (instance);
+ instance->stats = calloc (sizeof(totemsrp_stats_t), 1);
+ stats->srp = instance->stats;
+ instance->stats->latest_token = 0;
+ instance->stats->earliest_token = 0;
+
instance->totem_config = totem_config;
/*
* Configure logging
*/
instance->totemsrp_log_level_security = totem_config->totem_logging_configuration.log_level_security;
instance->totemsrp_log_level_error = totem_config->totem_logging_configuration.log_level_error;
instance->totemsrp_log_level_warning = totem_config->totem_logging_configuration.log_level_warning;
instance->totemsrp_log_level_notice = totem_config->totem_logging_configuration.log_level_notice;
instance->totemsrp_log_level_debug = totem_config->totem_logging_configuration.log_level_debug;
instance->totemsrp_subsys_id = totem_config->totem_logging_configuration.log_subsys_id;
instance->totemsrp_log_printf = totem_config->totem_logging_configuration.log_printf;
/*
* Initialize local variables for totemsrp
*/
totemip_copy (&instance->mcast_address, &totem_config->interfaces[0].mcast_addr);
/*
* Display totem configuration
*/
log_printf (instance->totemsrp_log_level_debug,
"Token Timeout (%d ms) retransmit timeout (%d ms)\n",
totem_config->token_timeout, totem_config->token_retransmit_timeout);
log_printf (instance->totemsrp_log_level_debug,
"token hold (%d ms) retransmits before loss (%d retrans)\n",
totem_config->token_hold_timeout, totem_config->token_retransmits_before_loss_const);
log_printf (instance->totemsrp_log_level_debug,
"join (%d ms) send_join (%d ms) consensus (%d ms) merge (%d ms)\n",
totem_config->join_timeout,
totem_config->send_join_timeout,
totem_config->consensus_timeout,
totem_config->merge_timeout);
log_printf (instance->totemsrp_log_level_debug,
"downcheck (%d ms) fail to recv const (%d msgs)\n",
totem_config->downcheck_timeout, totem_config->fail_to_recv_const);
log_printf (instance->totemsrp_log_level_debug,
"seqno unchanged const (%d rotations) Maximum network MTU %d\n", totem_config->seqno_unchanged_const, totem_config->net_mtu);
log_printf (instance->totemsrp_log_level_debug,
"window size per rotation (%d messages) maximum messages per rotation (%d messages)\n",
totem_config->window_size, totem_config->max_messages);
log_printf (instance->totemsrp_log_level_debug,
"send threads (%d threads)\n", totem_config->threads);
log_printf (instance->totemsrp_log_level_debug,
"RRP token expired timeout (%d ms)\n",
totem_config->rrp_token_expired_timeout);
log_printf (instance->totemsrp_log_level_debug,
"RRP token problem counter (%d ms)\n",
totem_config->rrp_problem_count_timeout);
log_printf (instance->totemsrp_log_level_debug,
"RRP threshold (%d problem count)\n",
totem_config->rrp_problem_count_threshold);
log_printf (instance->totemsrp_log_level_debug,
"RRP mode set to %s.\n", instance->totem_config->rrp_mode);
log_printf (instance->totemsrp_log_level_debug,
"heartbeat_failures_allowed (%d)\n", totem_config->heartbeat_failures_allowed);
log_printf (instance->totemsrp_log_level_debug,
"max_network_delay (%d ms)\n", totem_config->max_network_delay);
cs_queue_init (&instance->retrans_message_queue, RETRANS_MESSAGE_QUEUE_SIZE_MAX,
sizeof (struct message_item));
sq_init (&instance->regular_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
sq_init (&instance->recovery_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
instance->totemsrp_poll_handle = poll_handle;
instance->totemsrp_deliver_fn = deliver_fn;
instance->totemsrp_confchg_fn = confchg_fn;
instance->use_heartbeat = 1;
instance->pause_timestamp = timerlist_nano_current_get ();
if ( totem_config->heartbeat_failures_allowed == 0 ) {
log_printf (instance->totemsrp_log_level_debug,
"HeartBeat is Disabled. To enable set heartbeat_failures_allowed > 0\n");
instance->use_heartbeat = 0;
}
if (instance->use_heartbeat) {
instance->heartbeat_timeout
= (totem_config->heartbeat_failures_allowed) * totem_config->token_retransmit_timeout
+ totem_config->max_network_delay;
if (instance->heartbeat_timeout >= totem_config->token_timeout) {
log_printf (instance->totemsrp_log_level_debug,
"total heartbeat_timeout (%d ms) is not less than token timeout (%d ms)\n",
instance->heartbeat_timeout,
totem_config->token_timeout);
log_printf (instance->totemsrp_log_level_debug,
"heartbeat_timeout = heartbeat_failures_allowed * token_retransmit_timeout + max_network_delay\n");
log_printf (instance->totemsrp_log_level_debug,
"heartbeat timeout should be less than the token timeout. HeartBeat is Diabled !!\n");
instance->use_heartbeat = 0;
}
else {
log_printf (instance->totemsrp_log_level_debug,
"total heartbeat_timeout (%d ms)\n", instance->heartbeat_timeout);
}
}
totemrrp_initialize (
poll_handle,
&instance->totemrrp_context,
totem_config,
instance,
main_deliver_fn,
main_iface_change_fn,
main_token_seqid_get,
main_msgs_missing,
target_set_completed);
/*
* Must have net_mtu adjusted by totemrrp_initialize first
*/
cs_queue_init (&instance->new_message_queue,
MESSAGE_QUEUE_MAX,
sizeof (struct message_item));
+ totemsrp_callback_token_create (instance,
+ &instance->token_recv_event_handle,
+ TOTEM_CALLBACK_TOKEN_RECEIVED,
+ 0,
+ token_event_stats_collector,
+ instance);
+ totemsrp_callback_token_create (instance,
+ &instance->token_sent_event_handle,
+ TOTEM_CALLBACK_TOKEN_SENT,
+ 0,
+ token_event_stats_collector,
+ instance);
*srp_context = instance;
return (0);
error_destroy:
free (instance);
error_exit:
return (-1);
}
void totemsrp_finalize (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
memb_leave_message_send (instance);
free (srp_context);
}
int totemsrp_ifaces_get (
void *srp_context,
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res = 0;
unsigned int found = 0;
unsigned int i;
for (i = 0; i < instance->my_memb_entries; i++) {
if (instance->my_memb_list[i].addr[0].nodeid == nodeid) {
found = 1;
break;
}
}
if (found) {
memcpy (interfaces, &instance->my_memb_list[i],
sizeof (struct srp_addr));
*iface_count = instance->totem_config->interface_count;
goto finish;
}
for (i = 0; i < instance->my_left_memb_entries; i++) {
if (instance->my_left_memb_list[i].addr[0].nodeid == nodeid) {
found = 1;
break;
}
}
if (found) {
memcpy (interfaces, &instance->my_left_memb_list[i],
sizeof (struct srp_addr));
*iface_count = instance->totem_config->interface_count;
} else {
res = -1;
}
finish:
totemrrp_ifaces_get (instance->totemrrp_context, status, NULL);
return (res);
}
int totemsrp_crypto_set (
void *srp_context,
unsigned int type)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res;
res = totemrrp_crypto_set(instance->totemrrp_context, type);
return (res);
}
unsigned int totemsrp_my_nodeid_get (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
unsigned int res;
res = instance->totem_config->interfaces[0].boundto.nodeid;
return (res);
}
int totemsrp_my_family_get (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int res;
res = instance->totem_config->interfaces[0].boundto.family;
return (res);
}
int totemsrp_ring_reenable (
void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
totemrrp_ring_reenable (instance->totemrrp_context);
return (0);
}
/*
* Set operations for use by the membership algorithm
*/
static int srp_addr_equal (const struct srp_addr *a, const struct srp_addr *b)
{
unsigned int i;
unsigned int res;
for (i = 0; i < 1; i++) {
res = totemip_equal (&a->addr[i], &b->addr[i]);
if (res == 0) {
return (0);
}
}
return (1);
}
static void srp_addr_copy (struct srp_addr *dest, const struct srp_addr *src)
{
unsigned int i;
for (i = 0; i < INTERFACE_MAX; i++) {
totemip_copy (&dest->addr[i], &src->addr[i]);
}
}
static void srp_addr_to_nodeid (
unsigned int *nodeid_out,
struct srp_addr *srp_addr_in,
unsigned int entries)
{
unsigned int i;
for (i = 0; i < entries; i++) {
nodeid_out[i] = srp_addr_in[i].addr[0].nodeid;
}
}
static void srp_addr_copy_endian_convert (struct srp_addr *out, const struct srp_addr *in)
{
int i;
for (i = 0; i < INTERFACE_MAX; i++) {
totemip_copy_endian_convert (&out->addr[i], &in->addr[i]);
}
}
static void memb_consensus_reset (struct totemsrp_instance *instance)
{
instance->consensus_list_entries = 0;
}
static void memb_set_subtract (
struct srp_addr *out_list, int *out_list_entries,
struct srp_addr *one_list, int one_list_entries,
struct srp_addr *two_list, int two_list_entries)
{
int found = 0;
int i;
int j;
*out_list_entries = 0;
for (i = 0; i < one_list_entries; i++) {
for (j = 0; j < two_list_entries; j++) {
if (srp_addr_equal (&one_list[i], &two_list[j])) {
found = 1;
break;
}
}
if (found == 0) {
srp_addr_copy (&out_list[*out_list_entries], &one_list[i]);
*out_list_entries = *out_list_entries + 1;
}
found = 0;
}
}
/*
* Set consensus for a specific processor
*/
static void memb_consensus_set (
struct totemsrp_instance *instance,
const struct srp_addr *addr)
{
int found = 0;
int i;
if (addr->addr[0].nodeid == LEAVE_DUMMY_NODEID)
return;
for (i = 0; i < instance->consensus_list_entries; i++) {
if (srp_addr_equal(addr, &instance->consensus_list[i].addr)) {
found = 1;
break; /* found entry */
}
}
srp_addr_copy (&instance->consensus_list[i].addr, addr);
instance->consensus_list[i].set = 1;
if (found == 0) {
instance->consensus_list_entries++;
}
return;
}
/*
* Is consensus set for a specific processor
*/
static int memb_consensus_isset (
struct totemsrp_instance *instance,
const struct srp_addr *addr)
{
int i;
for (i = 0; i < instance->consensus_list_entries; i++) {
if (srp_addr_equal (addr, &instance->consensus_list[i].addr)) {
return (instance->consensus_list[i].set);
}
}
return (0);
}
/*
* Is consensus agreed upon based upon consensus database
*/
static int memb_consensus_agreed (
struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int agreed = 1;
int i;
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
for (i = 0; i < token_memb_entries; i++) {
if (memb_consensus_isset (instance, &token_memb[i]) == 0) {
agreed = 0;
break;
}
}
assert (token_memb_entries >= 1);
return (agreed);
}
static void memb_consensus_notset (
struct totemsrp_instance *instance,
struct srp_addr *no_consensus_list,
int *no_consensus_list_entries,
struct srp_addr *comparison_list,
int comparison_list_entries)
{
int i;
*no_consensus_list_entries = 0;
for (i = 0; i < instance->my_proc_list_entries; i++) {
if (memb_consensus_isset (instance, &instance->my_proc_list[i]) == 0) {
srp_addr_copy (&no_consensus_list[*no_consensus_list_entries], &instance->my_proc_list[i]);
*no_consensus_list_entries = *no_consensus_list_entries + 1;
}
}
}
/*
* Is set1 equal to set2 Entries can be in different orders
*/
static int memb_set_equal (
struct srp_addr *set1, int set1_entries,
struct srp_addr *set2, int set2_entries)
{
int i;
int j;
int found = 0;
if (set1_entries != set2_entries) {
return (0);
}
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (srp_addr_equal (&set1[j], &set2[i])) {
found = 1;
break;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* Is subset fully contained in fullset
*/
static int memb_set_subset (
const struct srp_addr *subset, int subset_entries,
const struct srp_addr *fullset, int fullset_entries)
{
int i;
int j;
int found = 0;
if (subset_entries > fullset_entries) {
return (0);
}
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < fullset_entries; j++) {
if (srp_addr_equal (&subset[i], &fullset[j])) {
found = 1;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* merge subset into fullset taking care not to add duplicates
*/
static void memb_set_merge (
const struct srp_addr *subset, int subset_entries,
struct srp_addr *fullset, int *fullset_entries)
{
int found = 0;
int i;
int j;
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < *fullset_entries; j++) {
if (srp_addr_equal (&fullset[j], &subset[i])) {
found = 1;
break;
}
}
if (found == 0) {
srp_addr_copy (&fullset[*fullset_entries], &subset[i]);
*fullset_entries = *fullset_entries + 1;
}
found = 0;
}
return;
}
static void memb_set_and (
struct srp_addr *set1, int set1_entries,
struct srp_addr *set2, int set2_entries,
struct srp_addr *and, int *and_entries)
{
int i;
int j;
int found = 0;
*and_entries = 0;
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (srp_addr_equal (&set1[j], &set2[i])) {
found = 1;
break;
}
}
if (found) {
srp_addr_copy (&and[*and_entries], &set1[j]);
*and_entries = *and_entries + 1;
}
found = 0;
}
return;
}
#ifdef CODE_COVERAGE
static void memb_set_print (
char *string,
struct srp_addr *list,
int list_entries)
{
int i;
int j;
printf ("List '%s' contains %d entries:\n", string, list_entries);
for (i = 0; i < list_entries; i++) {
for (j = 0; j < INTERFACE_MAX; j++) {
printf ("Address %d\n", i);
printf ("\tiface %d %s\n", j, totemip_print (&list[i].addr[j]));
printf ("family %d\n", list[i].addr[j].family);
}
}
}
#endif
static void reset_token_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle,
instance->timer_orf_token_retransmit_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_retransmit_timeout,
(void *)instance,
timer_function_token_retransmit_timeout,
&instance->timer_orf_token_retransmit_timeout);
}
static void start_merge_detect_timeout (struct totemsrp_instance *instance)
{
if (instance->my_merge_detect_timeout_outstanding == 0) {
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->merge_timeout,
(void *)instance,
timer_function_merge_detect_timeout,
&instance->timer_merge_detect_timeout);
instance->my_merge_detect_timeout_outstanding = 1;
}
}
static void cancel_merge_detect_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_merge_detect_timeout);
instance->my_merge_detect_timeout_outstanding = 0;
}
/*
* ring_state_* is used to save and restore the sort queue
* state when a recovery operation fails (and enters gather)
*/
static void old_ring_state_save (struct totemsrp_instance *instance)
{
if (instance->old_ring_state_saved == 0) {
instance->old_ring_state_saved = 1;
instance->old_ring_state_aru = instance->my_aru;
instance->old_ring_state_high_seq_received = instance->my_high_seq_received;
log_printf (instance->totemsrp_log_level_debug,
"Saving state aru %x high seq received %x\n",
instance->my_aru, instance->my_high_seq_received);
}
}
static void ring_save (struct totemsrp_instance *instance)
{
if (instance->ring_saved == 0) {
instance->ring_saved = 1;
memcpy (&instance->my_old_ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
}
}
static void ring_reset (struct totemsrp_instance *instance)
{
instance->ring_saved = 0;
}
static void ring_state_restore (struct totemsrp_instance *instance)
{
if (instance->old_ring_state_saved) {
totemip_zero_set(&instance->my_ring_id.rep);
instance->my_aru = instance->old_ring_state_aru;
instance->my_high_seq_received = instance->old_ring_state_high_seq_received;
log_printf (instance->totemsrp_log_level_debug,
"Restoring instance->my_aru %x my high seq received %x\n",
instance->my_aru, instance->my_high_seq_received);
}
}
static void old_ring_state_reset (struct totemsrp_instance *instance)
{
instance->old_ring_state_saved = 0;
}
static void reset_pause_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_pause_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_timeout / 5,
(void *)instance,
timer_function_pause_timeout,
&instance->timer_pause_timeout);
}
static void reset_token_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_orf_token_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_timeout,
(void *)instance,
timer_function_orf_token_timeout,
&instance->timer_orf_token_timeout);
}
static void reset_heartbeat_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_heartbeat_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->heartbeat_timeout,
(void *)instance,
timer_function_heartbeat_timeout,
&instance->timer_heartbeat_timeout);
}
static void cancel_token_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_orf_token_timeout);
}
static void cancel_heartbeat_timeout (struct totemsrp_instance *instance) {
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_heartbeat_timeout);
}
static void cancel_token_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle, instance->timer_orf_token_retransmit_timeout);
}
static void start_token_hold_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->token_hold_timeout,
(void *)instance,
timer_function_token_hold_retransmit_timeout,
&instance->timer_orf_token_hold_retransmit_timeout);
}
static void cancel_token_hold_retransmit_timeout (struct totemsrp_instance *instance)
{
poll_timer_delete (instance->totemsrp_poll_handle,
instance->timer_orf_token_hold_retransmit_timeout);
}
static void memb_state_consensus_timeout_expired (
struct totemsrp_instance *instance)
{
struct srp_addr no_consensus_list[PROCESSOR_COUNT_MAX];
int no_consensus_list_entries;
+ instance->stats->consensus_timeouts++;
if (memb_consensus_agreed (instance)) {
memb_consensus_reset (instance);
memb_consensus_set (instance, &instance->my_id);
reset_token_timeout (instance); // REVIEWED
} else {
memb_consensus_notset (
instance,
no_consensus_list,
&no_consensus_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries);
memb_set_merge (no_consensus_list, no_consensus_list_entries,
instance->my_failed_list, &instance->my_failed_list_entries);
memb_state_gather_enter (instance, 0);
}
}
static void memb_join_message_send (struct totemsrp_instance *instance);
static void memb_merge_detect_transmit (struct totemsrp_instance *instance);
/*
* Timers used for various states of the membership algorithm
*/
static void timer_function_pause_timeout (void *data)
{
struct totemsrp_instance *instance = data;
instance->pause_timestamp = timerlist_nano_current_get ();
reset_pause_timeout (instance);
}
static void timer_function_orf_token_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the OPERATIONAL state.\n");
log_printf (instance->totemsrp_log_level_notice,
"A processor failed, forming new configuration.\n");
totemrrp_iface_check (instance->totemrrp_context);
memb_state_gather_enter (instance, 2);
+ instance->stats->operational_token_lost++;
break;
case MEMB_STATE_GATHER:
log_printf (instance->totemsrp_log_level_debug,
"The consensus timeout expired.\n");
memb_state_consensus_timeout_expired (instance);
memb_state_gather_enter (instance, 3);
+ instance->stats->gather_token_lost++;
break;
case MEMB_STATE_COMMIT:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the COMMIT state.\n");
memb_state_gather_enter (instance, 4);
+ instance->stats->commit_token_lost++;
break;
case MEMB_STATE_RECOVERY:
log_printf (instance->totemsrp_log_level_debug,
"The token was lost in the RECOVERY state.\n");
ring_state_restore (instance);
memb_state_gather_enter (instance, 5);
+ instance->stats->recovery_token_lost++;
break;
}
}
static void timer_function_heartbeat_timeout (void *data)
{
struct totemsrp_instance *instance = data;
log_printf (instance->totemsrp_log_level_debug,
"HeartBeat Timer expired Invoking token loss mechanism in state %d \n", instance->memb_state);
timer_function_orf_token_timeout(data);
}
static void memb_timer_function_state_gather (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
assert (0); /* this should never happen */
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
memb_join_message_send (instance);
/*
* Restart the join timeout
`*/
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->join_timeout,
(void *)instance,
memb_timer_function_state_gather,
&instance->memb_timer_state_gather_join_timeout);
break;
}
}
static void memb_timer_function_gather_consensus_timeout (void *data)
{
struct totemsrp_instance *instance = data;
memb_state_consensus_timeout_expired (instance);
}
static void deliver_messages_from_recovery_to_regular (struct totemsrp_instance *instance)
{
unsigned int i;
struct sort_queue_item *recovery_message_item;
struct sort_queue_item regular_message_item;
unsigned int range = 0;
int res;
void *ptr;
struct mcast *mcast;
log_printf (instance->totemsrp_log_level_debug,
"recovery to regular %x-%x\n", SEQNO_START_MSG + 1, instance->my_aru);
range = instance->my_aru - SEQNO_START_MSG;
/*
* Move messages from recovery to regular sort queue
*/
// todo should i be initialized to 0 or 1 ?
for (i = 1; i <= range; i++) {
res = sq_item_get (&instance->recovery_sort_queue,
i + SEQNO_START_MSG, &ptr);
if (res != 0) {
continue;
}
recovery_message_item = ptr;
/*
* Convert recovery message into regular message
*/
mcast = recovery_message_item->mcast;
if (mcast->header.encapsulated == MESSAGE_ENCAPSULATED) {
/*
* Message is a recovery message encapsulated
* in a new ring message
*/
regular_message_item.mcast =
(struct mcast *)(((char *)recovery_message_item->mcast) + sizeof (struct mcast));
regular_message_item.msg_len =
recovery_message_item->msg_len - sizeof (struct mcast);
mcast = regular_message_item.mcast;
} else {
/*
* TODO this case shouldn't happen
*/
continue;
}
log_printf (instance->totemsrp_log_level_debug,
"comparing if ring id is for this processors old ring seqno %d\n",
mcast->seq);
/*
* Only add this message to the regular sort
* queue if it was originated with the same ring
* id as the previous ring
*/
if (memcmp (&instance->my_old_ring_id, &mcast->ring_id,
sizeof (struct memb_ring_id)) == 0) {
regular_message_item.msg_len = recovery_message_item->msg_len;
res = sq_item_inuse (&instance->regular_sort_queue, mcast->seq);
if (res == 0) {
sq_item_add (&instance->regular_sort_queue,
&regular_message_item, mcast->seq);
if (sq_lt_compare (instance->old_ring_state_high_seq_received, mcast->seq)) {
instance->old_ring_state_high_seq_received = mcast->seq;
}
}
} else {
log_printf (instance->totemsrp_log_level_debug,
"-not adding msg with seq no %x\n", mcast->seq);
}
}
}
/*
* Change states in the state machine of the membership algorithm
*/
static void memb_state_operational_enter (struct totemsrp_instance *instance)
{
struct srp_addr joined_list[PROCESSOR_COUNT_MAX];
int joined_list_entries = 0;
unsigned int aru_save;
unsigned int joined_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int trans_memb_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int new_memb_list_totemip[PROCESSOR_COUNT_MAX];
unsigned int left_list[PROCESSOR_COUNT_MAX];
memb_consensus_reset (instance);
old_ring_state_reset (instance);
ring_reset (instance);
deliver_messages_from_recovery_to_regular (instance);
log_printf (instance->totemsrp_log_level_debug,
"Delivering to app %x to %x\n",
instance->my_high_delivered + 1, instance->old_ring_state_high_seq_received);
aru_save = instance->my_aru;
instance->my_aru = instance->old_ring_state_aru;
messages_deliver_to_app (instance, 0, instance->old_ring_state_high_seq_received);
/*
* Calculate joined and left list
*/
memb_set_subtract (instance->my_left_memb_list,
&instance->my_left_memb_entries,
instance->my_memb_list, instance->my_memb_entries,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
memb_set_subtract (joined_list, &joined_list_entries,
instance->my_new_memb_list, instance->my_new_memb_entries,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
/*
* Install new membership
*/
instance->my_memb_entries = instance->my_new_memb_entries;
memcpy (&instance->my_memb_list, instance->my_new_memb_list,
sizeof (struct srp_addr) * instance->my_memb_entries);
instance->last_released = 0;
instance->my_set_retrans_flg = 0;
/*
* Deliver transitional configuration to application
*/
srp_addr_to_nodeid (left_list, instance->my_left_memb_list,
instance->my_left_memb_entries);
srp_addr_to_nodeid (trans_memb_list_totemip,
instance->my_trans_memb_list, instance->my_trans_memb_entries);
instance->totemsrp_confchg_fn (TOTEM_CONFIGURATION_TRANSITIONAL,
trans_memb_list_totemip, instance->my_trans_memb_entries,
left_list, instance->my_left_memb_entries,
0, 0, &instance->my_ring_id);
// TODO we need to filter to ensure we only deliver those
// messages which are part of instance->my_deliver_memb
messages_deliver_to_app (instance, 1, instance->old_ring_state_high_seq_received);
instance->my_aru = aru_save;
/*
* Deliver regular configuration to application
*/
srp_addr_to_nodeid (new_memb_list_totemip,
instance->my_new_memb_list, instance->my_new_memb_entries);
srp_addr_to_nodeid (joined_list_totemip, joined_list,
joined_list_entries);
instance->totemsrp_confchg_fn (TOTEM_CONFIGURATION_REGULAR,
new_memb_list_totemip, instance->my_new_memb_entries,
0, 0,
joined_list_totemip, joined_list_entries, &instance->my_ring_id);
/*
* The recovery sort queue now becomes the regular
* sort queue. It is necessary to copy the state
* into the regular sort queue.
*/
sq_copy (&instance->regular_sort_queue, &instance->recovery_sort_queue);
instance->my_last_aru = SEQNO_START_MSG;
sq_items_release (&instance->regular_sort_queue, SEQNO_START_MSG - 1);
/* When making my_proc_list smaller, ensure that the
* now non-used entries are zero-ed out. There are some suspect
* assert's that assume that there is always 2 entries in the list.
* These fail when my_proc_list is reduced to 1 entry (and the
* valid [0] entry is the same as the 'unused' [1] entry).
*/
memset(instance->my_proc_list, 0,
sizeof (struct srp_addr) * instance->my_proc_list_entries);
instance->my_proc_list_entries = instance->my_new_memb_entries;
memcpy (instance->my_proc_list, instance->my_new_memb_list,
sizeof (struct srp_addr) * instance->my_memb_entries);
instance->my_failed_list_entries = 0;
instance->my_high_delivered = instance->my_aru;
// TODO the recovery messages are leaked
log_printf (instance->totemsrp_log_level_debug,
"entering OPERATIONAL state.\n");
log_printf (instance->totemsrp_log_level_notice,
"A processor joined or left the membership and a new membership was formed.\n");
instance->memb_state = MEMB_STATE_OPERATIONAL;
+ instance->stats->operational_entered++;
instance->my_received_flg = 1;
reset_pause_timeout (instance);
return;
}
static void memb_state_gather_enter (
struct totemsrp_instance *instance,
int gather_from)
{
memb_set_merge (
&instance->my_id, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
assert (srp_addr_equal (&instance->my_proc_list[0], &instance->my_proc_list[1]) == 0);
memb_join_message_send (instance);
/*
* Restart the join timeout
*/
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->join_timeout,
(void *)instance,
memb_timer_function_state_gather,
&instance->memb_timer_state_gather_join_timeout);
/*
* Restart the consensus timeout
*/
poll_timer_delete (instance->totemsrp_poll_handle,
instance->memb_timer_state_gather_consensus_timeout);
poll_timer_add (instance->totemsrp_poll_handle,
instance->totem_config->consensus_timeout,
(void *)instance,
memb_timer_function_gather_consensus_timeout,
&instance->memb_timer_state_gather_consensus_timeout);
/*
* Cancel the token loss and token retransmission timeouts
*/
cancel_token_retransmit_timeout (instance); // REVIEWED
cancel_token_timeout (instance); // REVIEWED
cancel_merge_detect_timeout (instance);
memb_consensus_reset (instance);
memb_consensus_set (instance, &instance->my_id);
log_printf (instance->totemsrp_log_level_debug,
"entering GATHER state from %d.\n", gather_from);
instance->memb_state = MEMB_STATE_GATHER;
+ instance->stats->gather_entered++;
return;
}
static void timer_function_token_retransmit_timeout (void *data);
static void target_set_completed (
void *context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
memb_state_commit_token_send (instance);
}
static void memb_state_commit_enter (
struct totemsrp_instance *instance)
{
ring_save (instance);
old_ring_state_save (instance);
memb_state_commit_token_update (instance);
memb_state_commit_token_target_set (instance);
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_join_timeout);
instance->memb_timer_state_gather_join_timeout = 0;
poll_timer_delete (instance->totemsrp_poll_handle, instance->memb_timer_state_gather_consensus_timeout);
instance->memb_timer_state_gather_consensus_timeout = 0;
memb_ring_id_set_and_store (instance, &instance->commit_token->ring_id);
instance->token_ring_id_seq = instance->my_ring_id.seq;
log_printf (instance->totemsrp_log_level_debug,
"entering COMMIT state.\n");
instance->memb_state = MEMB_STATE_COMMIT;
reset_token_retransmit_timeout (instance); // REVIEWED
reset_token_timeout (instance); // REVIEWED
+ instance->stats->commit_entered++;
/*
* reset all flow control variables since we are starting a new ring
*/
instance->my_trc = 0;
instance->my_pbl = 0;
instance->my_cbl = 0;
/*
* commit token sent after callback that token target has been set
*/
}
static void memb_state_recovery_enter (
struct totemsrp_instance *instance,
struct memb_commit_token *commit_token)
{
int i;
int local_received_flg = 1;
unsigned int low_ring_aru;
unsigned int range = 0;
unsigned int messages_originated = 0;
char is_originated[4096];
char not_originated[4096];
char seqno_string_hex[10];
const struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
addr = (const struct srp_addr *)commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + commit_token->addr_entries);
log_printf (instance->totemsrp_log_level_debug,
"entering RECOVERY state.\n");
instance->my_high_ring_delivered = 0;
sq_reinit (&instance->recovery_sort_queue, SEQNO_START_MSG);
cs_queue_reinit (&instance->retrans_message_queue);
low_ring_aru = instance->old_ring_state_high_seq_received;
memb_state_commit_token_send_recovery (instance, commit_token);
instance->my_token_seq = SEQNO_START_TOKEN - 1;
/*
* Build regular configuration
*/
totemrrp_processor_count_set (
instance->totemrrp_context,
commit_token->addr_entries);
/*
* Build transitional configuration
*/
memb_set_and (instance->my_new_memb_list, instance->my_new_memb_entries,
instance->my_memb_list, instance->my_memb_entries,
instance->my_trans_memb_list, &instance->my_trans_memb_entries);
for (i = 0; i < instance->my_new_memb_entries; i++) {
log_printf (instance->totemsrp_log_level_debug,
"position [%d] member %s:\n", i, totemip_print (&addr[i].addr[0]));
log_printf (instance->totemsrp_log_level_debug,
"previous ring seq %lld rep %s\n",
memb_list[i].ring_id.seq,
totemip_print (&memb_list[i].ring_id.rep));
log_printf (instance->totemsrp_log_level_debug,
"aru %x high delivered %x received flag %d\n",
memb_list[i].aru,
memb_list[i].high_delivered,
memb_list[i].received_flg);
// assert (totemip_print (&memb_list[i].ring_id.rep) != 0);
}
/*
* Determine if any received flag is false
*/
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&instance->my_new_memb_list[i], 1,
instance->my_trans_memb_list, instance->my_trans_memb_entries) &&
memb_list[i].received_flg == 0) {
instance->my_deliver_memb_entries = instance->my_trans_memb_entries;
memcpy (instance->my_deliver_memb_list, instance->my_trans_memb_list,
sizeof (struct srp_addr) * instance->my_trans_memb_entries);
local_received_flg = 0;
break;
}
}
if (local_received_flg == 1) {
goto no_originate;
} /* Else originate messages if we should */
/*
* Calculate my_low_ring_aru, instance->my_high_ring_delivered for the transitional membership
*/
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&instance->my_new_memb_list[i], 1,
instance->my_deliver_memb_list,
instance->my_deliver_memb_entries) &&
memcmp (&instance->my_old_ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (memb_list[i].aru, low_ring_aru)) {
low_ring_aru = memb_list[i].aru;
}
if (sq_lt_compare (instance->my_high_ring_delivered, memb_list[i].high_delivered)) {
instance->my_high_ring_delivered = memb_list[i].high_delivered;
}
}
}
/*
* Copy all old ring messages to instance->retrans_message_queue
*/
range = instance->old_ring_state_high_seq_received - low_ring_aru;
if (range == 0) {
/*
* No messages to copy
*/
goto no_originate;
}
assert (range < 1024);
log_printf (instance->totemsrp_log_level_debug,
"copying all old ring messages from %x-%x.\n",
low_ring_aru + 1, instance->old_ring_state_high_seq_received);
strcpy (not_originated, "Not Originated for recovery: ");
strcpy (is_originated, "Originated for recovery: ");
for (i = 1; i <= range; i++) {
struct sort_queue_item *sort_queue_item;
struct message_item message_item;
void *ptr;
int res;
sprintf (seqno_string_hex, "%x ", low_ring_aru + i);
res = sq_item_get (&instance->regular_sort_queue,
low_ring_aru + i, &ptr);
if (res != 0) {
strcat (not_originated, seqno_string_hex);
continue;
}
strcat (is_originated, seqno_string_hex);
sort_queue_item = ptr;
messages_originated++;
memset (&message_item, 0, sizeof (struct message_item));
// TODO LEAK
message_item.mcast = malloc (FRAME_SIZE_MAX);
assert (message_item.mcast);
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
srp_addr_copy (&message_item.mcast->system_from, &instance->my_id);
message_item.mcast->header.encapsulated = MESSAGE_ENCAPSULATED;
message_item.mcast->header.nodeid = instance->my_id.addr[0].nodeid;
assert (message_item.mcast->header.nodeid);
message_item.mcast->header.endian_detector = ENDIAN_LOCAL;
memcpy (&message_item.mcast->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
message_item.msg_len = sort_queue_item->msg_len + sizeof (struct mcast);
memcpy (((char *)message_item.mcast) + sizeof (struct mcast),
sort_queue_item->mcast,
sort_queue_item->msg_len);
cs_queue_item_add (&instance->retrans_message_queue, &message_item);
}
log_printf (instance->totemsrp_log_level_debug,
"Originated %d messages in RECOVERY.\n", messages_originated);
strcat (not_originated, "\n");
strcat (is_originated, "\n");
log_printf (instance->totemsrp_log_level_debug, "%s", is_originated);
log_printf (instance->totemsrp_log_level_debug, "%s", not_originated);
goto originated;
no_originate:
log_printf (instance->totemsrp_log_level_debug,
"Did not need to originate any messages in recovery.\n");
originated:
instance->my_aru = SEQNO_START_MSG;
instance->my_aru_count = 0;
instance->my_seq_unchanged = 0;
instance->my_high_seq_received = SEQNO_START_MSG;
instance->my_install_seq = SEQNO_START_MSG;
instance->last_released = SEQNO_START_MSG;
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
instance->memb_state = MEMB_STATE_RECOVERY;
+ instance->stats->recovery_entered++;
return;
}
int totemsrp_new_msg_signal (void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
token_hold_cancel_send (instance);
return (0);
}
int totemsrp_mcast (
void *srp_context,
struct iovec *iovec,
unsigned int iov_len,
int guarantee)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int i;
struct message_item message_item;
char *addr;
unsigned int addr_idx;
if (cs_queue_is_full (&instance->new_message_queue)) {
log_printf (instance->totemsrp_log_level_debug, "queue full\n");
return (-1);
}
memset (&message_item, 0, sizeof (struct message_item));
/*
* Allocate pending item
*/
message_item.mcast = malloc (FRAME_SIZE_MAX);
if (message_item.mcast == 0) {
goto error_mcast;
}
/*
* Set mcast header
*/
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
message_item.mcast->header.endian_detector = ENDIAN_LOCAL;
message_item.mcast->header.encapsulated = MESSAGE_NOT_ENCAPSULATED;
message_item.mcast->header.nodeid = instance->my_id.addr[0].nodeid;
assert (message_item.mcast->header.nodeid);
message_item.mcast->guarantee = guarantee;
srp_addr_copy (&message_item.mcast->system_from, &instance->my_id);
addr = (char *)message_item.mcast;
addr_idx = sizeof (struct mcast);
for (i = 0; i < iov_len; i++) {
memcpy (&addr[addr_idx], iovec[i].iov_base, iovec[i].iov_len);
addr_idx += iovec[i].iov_len;
}
message_item.msg_len = addr_idx;
log_printf (instance->totemsrp_log_level_debug, "mcasted message added to pending queue\n");
+ instance->stats->mcast_tx++;
cs_queue_item_add (&instance->new_message_queue, &message_item);
return (0);
error_mcast:
return (-1);
}
/*
* Determine if there is room to queue a new message
*/
int totemsrp_avail (void *srp_context)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
int avail;
cs_queue_avail (&instance->new_message_queue, &avail);
return (avail);
}
/*
* ORF Token Management
*/
/*
* Recast message to mcast group if it is available
*/
static int orf_token_remcast (
struct totemsrp_instance *instance,
int seq)
{
struct sort_queue_item *sort_queue_item;
int res;
void *ptr;
struct sq *sort_queue;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
res = sq_in_range (sort_queue, seq);
if (res == 0) {
log_printf (instance->totemsrp_log_level_debug, "sq not in range\n");
return (-1);
}
/*
* Get RTR item at seq, if not available, return
*/
res = sq_item_get (sort_queue, seq, &ptr);
if (res != 0) {
return -1;
}
sort_queue_item = ptr;
totemrrp_mcast_noflush_send (
instance->totemrrp_context,
sort_queue_item->mcast,
sort_queue_item->msg_len);
return (0);
}
/*
* Free all freeable messages from ring
*/
static void messages_free (
struct totemsrp_instance *instance,
unsigned int token_aru)
{
struct sort_queue_item *regular_message;
unsigned int i;
int res;
int log_release = 0;
unsigned int release_to;
unsigned int range = 0;
release_to = token_aru;
if (sq_lt_compare (instance->my_last_aru, release_to)) {
release_to = instance->my_last_aru;
}
if (sq_lt_compare (instance->my_high_delivered, release_to)) {
release_to = instance->my_high_delivered;
}
/*
* Ensure we dont try release before an already released point
*/
if (sq_lt_compare (release_to, instance->last_released)) {
return;
}
range = release_to - instance->last_released;
assert (range < 1024);
/*
* Release retransmit list items if group aru indicates they are transmitted
*/
for (i = 1; i <= range; i++) {
void *ptr;
res = sq_item_get (&instance->regular_sort_queue,
instance->last_released + i, &ptr);
if (res == 0) {
regular_message = ptr;
free (regular_message->mcast);
}
sq_items_release (&instance->regular_sort_queue,
instance->last_released + i);
log_release = 1;
}
instance->last_released += range;
if (log_release) {
log_printf (instance->totemsrp_log_level_debug,
"releasing messages up to and including %x\n", release_to);
}
}
static void update_aru (
struct totemsrp_instance *instance)
{
unsigned int i;
int res;
struct sq *sort_queue;
unsigned int range;
unsigned int my_aru_saved = 0;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
range = instance->my_high_seq_received - instance->my_aru;
if (range > 1024) {
return;
}
my_aru_saved = instance->my_aru;
for (i = 1; i <= range; i++) {
void *ptr;
res = sq_item_get (sort_queue, my_aru_saved + i, &ptr);
/*
* If hole, stop updating aru
*/
if (res != 0) {
break;
}
}
instance->my_aru += i - 1;
}
/*
* Multicasts pending messages onto the ring (requires orf_token possession)
*/
static int orf_token_mcast (
struct totemsrp_instance *instance,
struct orf_token *token,
int fcc_mcasts_allowed)
{
struct message_item *message_item = 0;
struct cs_queue *mcast_queue;
struct sq *sort_queue;
struct sort_queue_item sort_queue_item;
struct sort_queue_item *sort_queue_item_ptr;
struct mcast *mcast;
unsigned int fcc_mcast_current;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
mcast_queue = &instance->retrans_message_queue;
sort_queue = &instance->recovery_sort_queue;
reset_token_retransmit_timeout (instance); // REVIEWED
} else {
mcast_queue = &instance->new_message_queue;
sort_queue = &instance->regular_sort_queue;
}
for (fcc_mcast_current = 0; fcc_mcast_current < fcc_mcasts_allowed; fcc_mcast_current++) {
if (cs_queue_is_empty (mcast_queue)) {
break;
}
message_item = (struct message_item *)cs_queue_item_get (mcast_queue);
/* preincrement required by algo */
if (instance->old_ring_state_saved &&
(instance->memb_state == MEMB_STATE_GATHER ||
instance->memb_state == MEMB_STATE_COMMIT)) {
log_printf (instance->totemsrp_log_level_debug,
"not multicasting at seqno is %d\n",
token->seq);
return (0);
}
message_item->mcast->seq = ++token->seq;
message_item->mcast->this_seqno = instance->global_seqno++;
/*
* Build IO vector
*/
memset (&sort_queue_item, 0, sizeof (struct sort_queue_item));
sort_queue_item.mcast = message_item->mcast;
sort_queue_item.msg_len = message_item->msg_len;
mcast = sort_queue_item.mcast;
memcpy (&mcast->ring_id, &instance->my_ring_id, sizeof (struct memb_ring_id));
/*
* Add message to retransmit queue
*/
sort_queue_item_ptr = sq_item_add (sort_queue,
&sort_queue_item, message_item->mcast->seq);
totemrrp_mcast_noflush_send (
instance->totemrrp_context,
message_item->mcast,
message_item->msg_len);
/*
* Delete item from pending queue
*/
cs_queue_item_remove (mcast_queue);
/*
* If messages mcasted, deliver any new messages to totempg
*/
instance->my_high_seq_received = token->seq;
}
update_aru (instance);
/*
* Return 1 if more messages are available for single node clusters
*/
return (fcc_mcast_current);
}
/*
* Remulticasts messages in orf_token's retransmit list (requires orf_token)
* Modify's orf_token's rtr to include retransmits required by this process
*/
static int orf_token_rtr (
struct totemsrp_instance *instance,
struct orf_token *orf_token,
unsigned int *fcc_allowed)
{
unsigned int res;
unsigned int i, j;
unsigned int found;
unsigned int total_entries;
struct sq *sort_queue;
struct rtr_item *rtr_list;
unsigned int range = 0;
char retransmit_msg[1024];
char value[64];
if (instance->memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
rtr_list = &orf_token->rtr_list[0];
strcpy (retransmit_msg, "Retransmit List: ");
if (orf_token->rtr_list_entries) {
log_printf (instance->totemsrp_log_level_debug,
"Retransmit List %d\n", orf_token->rtr_list_entries);
for (i = 0; i < orf_token->rtr_list_entries; i++) {
sprintf (value, "%x ", rtr_list[i].seq);
strcat (retransmit_msg, value);
}
strcat (retransmit_msg, "\n");
log_printf (instance->totemsrp_log_level_debug,
"%s", retransmit_msg);
}
total_entries = orf_token->rtr_list_entries;
/*
* Retransmit messages on orf_token's RTR list from RTR queue
*/
for (instance->fcc_remcast_current = 0, i = 0;
instance->fcc_remcast_current < *fcc_allowed && i < orf_token->rtr_list_entries;) {
/*
* If this retransmit request isn't from this configuration,
* try next rtr entry
*/
if (memcmp (&rtr_list[i].ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
i += 1;
continue;
}
res = orf_token_remcast (instance, rtr_list[i].seq);
if (res == 0) {
/*
* Multicasted message, so no need to copy to new retransmit list
*/
orf_token->rtr_list_entries -= 1;
assert (orf_token->rtr_list_entries >= 0);
memmove (&rtr_list[i], &rtr_list[i + 1],
sizeof (struct rtr_item) * (orf_token->rtr_list_entries));
+ instance->stats->mcast_retx++;
instance->fcc_remcast_current++;
} else {
i += 1;
}
}
*fcc_allowed = *fcc_allowed - instance->fcc_remcast_current;
/*
* Add messages to retransmit to RTR list
* but only retry if there is room in the retransmit list
*/
range = instance->my_high_seq_received - instance->my_aru;
assert (range < 100000);
for (i = 1; (orf_token->rtr_list_entries < RETRANSMIT_ENTRIES_MAX) &&
(i <= range); i++) {
/*
* Ensure message is within the sort queue range
*/
res = sq_in_range (sort_queue, instance->my_aru + i);
if (res == 0) {
break;
}
/*
* Find if a message is missing from this processor
*/
res = sq_item_inuse (sort_queue, instance->my_aru + i);
if (res == 0) {
/*
* Determine if missing message is already in retransmit list
*/
found = 0;
for (j = 0; j < orf_token->rtr_list_entries; j++) {
if (instance->my_aru + i == rtr_list[j].seq) {
found = 1;
}
}
if (found == 0) {
/*
* Missing message not found in current retransmit list so add it
*/
memcpy (&rtr_list[orf_token->rtr_list_entries].ring_id,
&instance->my_ring_id, sizeof (struct memb_ring_id));
rtr_list[orf_token->rtr_list_entries].seq = instance->my_aru + i;
orf_token->rtr_list_entries++;
}
}
}
return (instance->fcc_remcast_current);
}
static void token_retransmit (struct totemsrp_instance *instance)
{
totemrrp_token_send (instance->totemrrp_context,
instance->orf_token_retransmit,
instance->orf_token_retransmit_size);
}
/*
* Retransmit the regular token if no mcast or token has
* been received in retransmit token period retransmit
* the token to the next processor
*/
static void timer_function_token_retransmit_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit (instance);
reset_token_retransmit_timeout (instance); // REVIEWED
break;
}
}
static void timer_function_token_hold_retransmit_timeout (void *data)
{
struct totemsrp_instance *instance = data;
switch (instance->memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
break;
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit (instance);
break;
}
}
static void timer_function_merge_detect_timeout(void *data)
{
struct totemsrp_instance *instance = data;
instance->my_merge_detect_timeout_outstanding = 0;
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0])) {
memb_merge_detect_transmit (instance);
}
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
case MEMB_STATE_RECOVERY:
break;
}
}
/*
* Send orf_token to next member (requires orf_token)
*/
static int token_send (
struct totemsrp_instance *instance,
struct orf_token *orf_token,
int forward_token)
{
int res = 0;
unsigned int orf_token_size;
orf_token_size = sizeof (struct orf_token) +
(orf_token->rtr_list_entries * sizeof (struct rtr_item));
memcpy (instance->orf_token_retransmit, orf_token, orf_token_size);
instance->orf_token_retransmit_size = orf_token_size;
orf_token->header.nodeid = instance->my_id.addr[0].nodeid;
assert (orf_token->header.nodeid);
if (forward_token == 0) {
return (0);
}
totemrrp_token_send (instance->totemrrp_context,
orf_token,
orf_token_size);
return (res);
}
static int token_hold_cancel_send (struct totemsrp_instance *instance)
{
struct token_hold_cancel token_hold_cancel;
/*
* Only cancel if the token is currently held
*/
if (instance->my_token_held == 0) {
return (0);
}
instance->my_token_held = 0;
/*
* Build message
*/
token_hold_cancel.header.type = MESSAGE_TYPE_TOKEN_HOLD_CANCEL;
token_hold_cancel.header.endian_detector = ENDIAN_LOCAL;
token_hold_cancel.header.nodeid = instance->my_id.addr[0].nodeid;
memcpy (&token_hold_cancel.ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
assert (token_hold_cancel.header.nodeid);
+ instance->stats->token_hold_cancel_tx++;
+
totemrrp_mcast_flush_send (instance->totemrrp_context, &token_hold_cancel,
sizeof (struct token_hold_cancel));
return (0);
}
static int orf_token_send_initial (struct totemsrp_instance *instance)
{
struct orf_token orf_token;
int res;
orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN;
orf_token.header.endian_detector = ENDIAN_LOCAL;
orf_token.header.encapsulated = 0;
orf_token.header.nodeid = instance->my_id.addr[0].nodeid;
assert (orf_token.header.nodeid);
orf_token.seq = SEQNO_START_MSG;
orf_token.token_seq = SEQNO_START_TOKEN;
orf_token.retrans_flg = 1;
instance->my_set_retrans_flg = 1;
+ instance->stats->orf_token_tx++;
if (cs_queue_is_empty (&instance->retrans_message_queue) == 1) {
orf_token.retrans_flg = 0;
instance->my_set_retrans_flg = 0;
} else {
orf_token.retrans_flg = 1;
instance->my_set_retrans_flg = 1;
}
orf_token.aru = 0;
orf_token.aru = SEQNO_START_MSG - 1;
orf_token.aru_addr = instance->my_id.addr[0].nodeid;
memcpy (&orf_token.ring_id, &instance->my_ring_id, sizeof (struct memb_ring_id));
orf_token.fcc = 0;
orf_token.backlog = 0;
orf_token.rtr_list_entries = 0;
res = token_send (instance, &orf_token, 1);
return (res);
}
static void memb_state_commit_token_update (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int high_aru;
unsigned int i;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
memcpy (instance->my_new_memb_list, addr,
sizeof (struct srp_addr) * instance->commit_token->addr_entries);
instance->my_new_memb_entries = instance->commit_token->addr_entries;
memcpy (&memb_list[instance->commit_token->memb_index].ring_id,
&instance->my_old_ring_id, sizeof (struct memb_ring_id));
assert (!totemip_zero_check(&instance->my_old_ring_id.rep));
memb_list[instance->commit_token->memb_index].aru = instance->old_ring_state_aru;
/*
* TODO high delivered is really instance->my_aru, but with safe this
* could change?
*/
instance->my_received_flg =
(instance->my_aru == instance->my_high_seq_received);
memb_list[instance->commit_token->memb_index].received_flg = instance->my_received_flg;
memb_list[instance->commit_token->memb_index].high_delivered = instance->my_high_delivered;
/*
* find high aru up to current memb_index for all matching ring ids
* if any ring id matching memb_index has aru less then high aru set
* received flag for that entry to false
*/
high_aru = memb_list[instance->commit_token->memb_index].aru;
for (i = 0; i <= instance->commit_token->memb_index; i++) {
if (memcmp (&memb_list[instance->commit_token->memb_index].ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (high_aru, memb_list[i].aru)) {
high_aru = memb_list[i].aru;
}
}
}
for (i = 0; i <= instance->commit_token->memb_index; i++) {
if (memcmp (&memb_list[instance->commit_token->memb_index].ring_id,
&memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (sq_lt_compare (memb_list[i].aru, high_aru)) {
memb_list[i].received_flg = 0;
if (i == instance->commit_token->memb_index) {
instance->my_received_flg = 0;
}
}
}
}
instance->commit_token->header.nodeid = instance->my_id.addr[0].nodeid;
instance->commit_token->memb_index += 1;
assert (instance->commit_token->memb_index <= instance->commit_token->addr_entries);
assert (instance->commit_token->header.nodeid);
}
static void memb_state_commit_token_target_set (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
unsigned int i;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
for (i = 0; i < instance->totem_config->interface_count; i++) {
totemrrp_token_target_set (
instance->totemrrp_context,
&addr[instance->commit_token->memb_index %
instance->commit_token->addr_entries].addr[i],
i);
}
}
static int memb_state_commit_token_send_recovery (
struct totemsrp_instance *instance,
struct memb_commit_token *commit_token)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int commit_token_size;
addr = (struct srp_addr *)commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + commit_token->addr_entries);
commit_token->token_seq++;
commit_token_size = sizeof (struct memb_commit_token) +
((sizeof (struct srp_addr) +
sizeof (struct memb_commit_token_memb_entry)) * commit_token->addr_entries);
/*
* Make a copy for retransmission if necessary
*/
memcpy (instance->orf_token_retransmit, commit_token, commit_token_size);
instance->orf_token_retransmit_size = commit_token_size;
totemrrp_token_send (instance->totemrrp_context,
commit_token,
commit_token_size);
/*
* Request retransmission of the commit token in case it is lost
*/
reset_token_retransmit_timeout (instance);
return (0);
}
static int memb_state_commit_token_send (
struct totemsrp_instance *instance)
{
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
unsigned int commit_token_size;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
instance->commit_token->token_seq++;
commit_token_size = sizeof (struct memb_commit_token) +
((sizeof (struct srp_addr) +
sizeof (struct memb_commit_token_memb_entry)) * instance->commit_token->addr_entries);
/*
* Make a copy for retransmission if necessary
*/
memcpy (instance->orf_token_retransmit, instance->commit_token, commit_token_size);
instance->orf_token_retransmit_size = commit_token_size;
+ instance->stats->memb_commit_token_tx++;
+
totemrrp_token_send (instance->totemrrp_context,
instance->commit_token,
commit_token_size);
/*
* Request retransmission of the commit token in case it is lost
*/
reset_token_retransmit_timeout (instance);
return (0);
}
static int memb_lowest_in_config (struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int i;
struct totem_ip_address *lowest_addr;
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
/*
* find representative by searching for smallest identifier
*/
lowest_addr = &token_memb[0].addr[0];
for (i = 1; i < token_memb_entries; i++) {
if (totemip_compare(lowest_addr, &token_memb[i].addr[0]) > 0) {
totemip_copy (lowest_addr, &token_memb[i].addr[0]);
}
}
return (totemip_compare (lowest_addr, &instance->my_id.addr[0]) == 0);
}
static int srp_addr_compare (const void *a, const void *b)
{
const struct srp_addr *srp_a = (const struct srp_addr *)a;
const struct srp_addr *srp_b = (const struct srp_addr *)b;
return (totemip_compare (&srp_a->addr[0], &srp_b->addr[0]));
}
static void memb_state_commit_token_create (
struct totemsrp_instance *instance)
{
struct srp_addr token_memb[PROCESSOR_COUNT_MAX];
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
int token_memb_entries = 0;
log_printf (instance->totemsrp_log_level_debug,
"Creating commit token because I am the rep.\n");
memb_set_subtract (token_memb, &token_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
memset (instance->commit_token, 0, sizeof (struct memb_commit_token));
instance->commit_token->header.type = MESSAGE_TYPE_MEMB_COMMIT_TOKEN;
instance->commit_token->header.endian_detector = ENDIAN_LOCAL;
instance->commit_token->header.encapsulated = 0;
instance->commit_token->header.nodeid = instance->my_id.addr[0].nodeid;
assert (instance->commit_token->header.nodeid);
totemip_copy(&instance->commit_token->ring_id.rep, &instance->my_id.addr[0]);
instance->commit_token->ring_id.seq = instance->token_ring_id_seq + 4;
/*
* This qsort is necessary to ensure the commit token traverses
* the ring in the proper order
*/
qsort (token_memb, token_memb_entries, sizeof (struct srp_addr),
srp_addr_compare);
instance->commit_token->memb_index = 0;
instance->commit_token->addr_entries = token_memb_entries;
addr = (struct srp_addr *)instance->commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + instance->commit_token->addr_entries);
memcpy (addr, token_memb,
token_memb_entries * sizeof (struct srp_addr));
memset (memb_list, 0,
sizeof (struct memb_commit_token_memb_entry) * token_memb_entries);
}
static void memb_join_message_send (struct totemsrp_instance *instance)
{
char memb_join_data[10000];
struct memb_join *memb_join = (struct memb_join *)memb_join_data;
char *addr;
unsigned int addr_idx;
memb_join->header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join->header.endian_detector = ENDIAN_LOCAL;
memb_join->header.encapsulated = 0;
memb_join->header.nodeid = instance->my_id.addr[0].nodeid;
assert (memb_join->header.nodeid);
assert (srp_addr_equal (&instance->my_proc_list[0], &instance->my_proc_list[1]) == 0);
memb_join->ring_seq = instance->my_ring_id.seq;
memb_join->proc_list_entries = instance->my_proc_list_entries;
memb_join->failed_list_entries = instance->my_failed_list_entries;
srp_addr_copy (&memb_join->system_from, &instance->my_id);
/*
* This mess adds the joined and failed processor lists into the join
* message
*/
addr = (char *)memb_join;
addr_idx = sizeof (struct memb_join);
memcpy (&addr[addr_idx],
instance->my_proc_list,
instance->my_proc_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_proc_list_entries *
sizeof (struct srp_addr);
memcpy (&addr[addr_idx],
instance->my_failed_list,
instance->my_failed_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_failed_list_entries *
sizeof (struct srp_addr);
if (instance->totem_config->send_join_timeout) {
usleep (random() % (instance->totem_config->send_join_timeout * 1000));
}
+ instance->stats->memb_join_tx++;
+
totemrrp_mcast_flush_send (
instance->totemrrp_context,
memb_join,
addr_idx);
}
static void memb_leave_message_send (struct totemsrp_instance *instance)
{
char memb_join_data[10000];
struct memb_join *memb_join = (struct memb_join *)memb_join_data;
char *addr;
unsigned int addr_idx;
int active_memb_entries;
struct srp_addr active_memb[PROCESSOR_COUNT_MAX];
log_printf (instance->totemsrp_log_level_debug,
"sending join/leave message\n");
/*
* add us to the failed list, and remove us from
* the members list
*/
memb_set_merge(
&instance->my_id, 1,
instance->my_failed_list, &instance->my_failed_list_entries);
memb_set_subtract (active_memb, &active_memb_entries,
instance->my_proc_list, instance->my_proc_list_entries,
&instance->my_id, 1);
memb_join->header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join->header.endian_detector = ENDIAN_LOCAL;
memb_join->header.encapsulated = 0;
memb_join->header.nodeid = LEAVE_DUMMY_NODEID;
memb_join->ring_seq = instance->my_ring_id.seq;
memb_join->proc_list_entries = active_memb_entries;
memb_join->failed_list_entries = instance->my_failed_list_entries;
srp_addr_copy (&memb_join->system_from, &instance->my_id);
memb_join->system_from.addr[0].nodeid = LEAVE_DUMMY_NODEID;
// TODO: CC Maybe use the actual join send routine.
/*
* This mess adds the joined and failed processor lists into the join
* message
*/
addr = (char *)memb_join;
addr_idx = sizeof (struct memb_join);
memcpy (&addr[addr_idx],
active_memb,
active_memb_entries *
sizeof (struct srp_addr));
addr_idx +=
active_memb_entries *
sizeof (struct srp_addr);
memcpy (&addr[addr_idx],
instance->my_failed_list,
instance->my_failed_list_entries *
sizeof (struct srp_addr));
addr_idx +=
instance->my_failed_list_entries *
sizeof (struct srp_addr);
if (instance->totem_config->send_join_timeout) {
usleep (random() % (instance->totem_config->send_join_timeout * 1000));
}
+ instance->stats->memb_join_tx++;
totemrrp_mcast_flush_send (
instance->totemrrp_context,
memb_join,
addr_idx);
}
static void memb_merge_detect_transmit (struct totemsrp_instance *instance)
{
struct memb_merge_detect memb_merge_detect;
memb_merge_detect.header.type = MESSAGE_TYPE_MEMB_MERGE_DETECT;
memb_merge_detect.header.endian_detector = ENDIAN_LOCAL;
memb_merge_detect.header.encapsulated = 0;
memb_merge_detect.header.nodeid = instance->my_id.addr[0].nodeid;
srp_addr_copy (&memb_merge_detect.system_from, &instance->my_id);
memcpy (&memb_merge_detect.ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id));
assert (memb_merge_detect.header.nodeid);
+ instance->stats->memb_merge_detect_tx++;
totemrrp_mcast_flush_send (instance->totemrrp_context,
&memb_merge_detect,
sizeof (struct memb_merge_detect));
}
static void memb_ring_id_create_or_load (
struct totemsrp_instance *instance,
struct memb_ring_id *memb_ring_id)
{
int fd;
int res;
char filename[256];
snprintf (filename, sizeof(filename), "%s/ringid_%s",
rundir, totemip_print (&instance->my_id.addr[0]));
fd = open (filename, O_RDONLY, 0700);
if (fd > 0) {
res = read (fd, &memb_ring_id->seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
} else
if (fd == -1 && errno == ENOENT) {
memb_ring_id->seq = 0;
umask(0);
fd = open (filename, O_CREAT|O_RDWR, 0700);
if (fd == -1) {
log_printf (instance->totemsrp_log_level_warning,
"Couldn't create %s %s\n", filename, strerror (errno));
}
res = write (fd, &memb_ring_id->seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
} else {
log_printf (instance->totemsrp_log_level_warning,
"Couldn't open %s %s\n", filename, strerror (errno));
}
totemip_copy(&memb_ring_id->rep, &instance->my_id.addr[0]);
assert (!totemip_zero_check(&memb_ring_id->rep));
instance->token_ring_id_seq = memb_ring_id->seq;
}
static void memb_ring_id_set_and_store (
struct totemsrp_instance *instance,
const struct memb_ring_id *ring_id)
{
char filename[256];
int fd;
int res;
memcpy (&instance->my_ring_id, ring_id, sizeof (struct memb_ring_id));
snprintf (filename, sizeof(filename), "%s/ringid_%s",
rundir, totemip_print (&instance->my_id.addr[0]));
fd = open (filename, O_WRONLY, 0777);
if (fd == -1) {
fd = open (filename, O_CREAT|O_RDWR, 0777);
}
if (fd == -1) {
log_printf (instance->totemsrp_log_level_warning,
"Couldn't store new ring id %llx to stable storage (%s)\n",
instance->my_ring_id.seq, strerror (errno));
assert (0);
return;
}
log_printf (instance->totemsrp_log_level_debug,
"Storing new sequence id for ring %llx\n", instance->my_ring_id.seq);
//assert (fd > 0);
res = write (fd, &instance->my_ring_id.seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
}
int totemsrp_callback_token_create (
void *srp_context,
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data)
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)srp_context;
struct token_callback_instance *callback_handle;
token_hold_cancel_send (instance);
callback_handle = malloc (sizeof (struct token_callback_instance));
if (callback_handle == 0) {
return (-1);
}
*handle_out = (void *)callback_handle;
list_init (&callback_handle->list);
callback_handle->callback_fn = callback_fn;
callback_handle->data = (void *) data;
callback_handle->callback_type = type;
callback_handle->delete = delete;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
list_add (&callback_handle->list, &instance->token_callback_received_listhead);
break;
case TOTEM_CALLBACK_TOKEN_SENT:
list_add (&callback_handle->list, &instance->token_callback_sent_listhead);
break;
}
return (0);
}
void totemsrp_callback_token_destroy (void *srp_context, void **handle_out)
{
struct token_callback_instance *h;
if (*handle_out) {
h = (struct token_callback_instance *)*handle_out;
list_del (&h->list);
free (h);
h = NULL;
*handle_out = 0;
}
}
static void token_callbacks_execute (
struct totemsrp_instance *instance,
enum totem_callback_token_type type)
{
struct list_head *list;
struct list_head *list_next;
struct list_head *callback_listhead = 0;
struct token_callback_instance *token_callback_instance;
int res;
int del;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
callback_listhead = &instance->token_callback_received_listhead;
break;
case TOTEM_CALLBACK_TOKEN_SENT:
callback_listhead = &instance->token_callback_sent_listhead;
break;
default:
assert (0);
}
for (list = callback_listhead->next; list != callback_listhead;
list = list_next) {
token_callback_instance = list_entry (list, struct token_callback_instance, list);
list_next = list->next;
del = token_callback_instance->delete;
if (del == 1) {
list_del (list);
}
res = token_callback_instance->callback_fn (
token_callback_instance->callback_type,
token_callback_instance->data);
/*
* This callback failed to execute, try it again on the next token
*/
if (res == -1 && del == 1) {
list_add (list, callback_listhead);
} else if (del) {
free (token_callback_instance);
}
}
}
/*
* Flow control functions
*/
static unsigned int backlog_get (struct totemsrp_instance *instance)
{
unsigned int backlog = 0;
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
backlog = cs_queue_used (&instance->new_message_queue);
} else
if (instance->memb_state == MEMB_STATE_RECOVERY) {
backlog = cs_queue_used (&instance->retrans_message_queue);
}
+ instance->stats->token[instance->stats->latest_token].backlog_calc = backlog;
return (backlog);
}
static int fcc_calculate (
struct totemsrp_instance *instance,
struct orf_token *token)
{
unsigned int transmits_allowed;
unsigned int backlog_calc;
transmits_allowed = instance->totem_config->max_messages;
if (transmits_allowed > instance->totem_config->window_size - token->fcc) {
transmits_allowed = instance->totem_config->window_size - token->fcc;
}
instance->my_cbl = backlog_get (instance);
/*
* Only do backlog calculation if there is a backlog otherwise
* we would result in div by zero
*/
if (token->backlog + instance->my_cbl - instance->my_pbl) {
backlog_calc = (instance->totem_config->window_size * instance->my_pbl) /
(token->backlog + instance->my_cbl - instance->my_pbl);
if (backlog_calc > 0 && transmits_allowed > backlog_calc) {
transmits_allowed = backlog_calc;
}
}
return (transmits_allowed);
}
/*
* don't overflow the RTR sort queue
*/
static void fcc_rtr_limit (
struct totemsrp_instance *instance,
struct orf_token *token,
unsigned int *transmits_allowed)
{
assert ((QUEUE_RTR_ITEMS_SIZE_MAX - *transmits_allowed - instance->totem_config->window_size) >= 0);
if (sq_lt_compare (instance->last_released +
QUEUE_RTR_ITEMS_SIZE_MAX - *transmits_allowed -
instance->totem_config->window_size,
token->seq)) {
*transmits_allowed = 0;
}
}
static void fcc_token_update (
struct totemsrp_instance *instance,
struct orf_token *token,
unsigned int msgs_transmitted)
{
token->fcc += msgs_transmitted - instance->my_trc;
token->backlog += instance->my_cbl - instance->my_pbl;
assert (token->backlog >= 0);
instance->my_trc = msgs_transmitted;
instance->my_pbl = instance->my_cbl;
}
/*
* Message Handlers
*/
unsigned long long int tv_old;
/*
* message handler called when TOKEN message type received
*/
static int message_handler_orf_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
char token_storage[1500];
char token_convert[1500];
struct orf_token *token = NULL;
int forward_token;
unsigned int transmits_allowed;
unsigned int mcasted_retransmit;
unsigned int mcasted_regular;
unsigned int last_aru;
#ifdef GIVEINFO
unsigned long long tv_current;
unsigned long long tv_diff;
tv_current = timerlist_nano_current_get ();
tv_diff = tv_current - tv_old;
tv_old = tv_current;
log_printf (instance->totemsrp_log_level_debug,
"Time since last token %0.4f ms\n", ((float)tv_diff) / 1000000.0);
#endif
#ifdef TEST_DROP_ORF_TOKEN_PERCENTAGE
if (random()%100 < TEST_DROP_ORF_TOKEN_PERCENTAGE) {
return (0);
}
#endif
if (endian_conversion_needed) {
orf_token_endian_convert ((struct orf_token *)msg,
(struct orf_token *)token_convert);
msg = (struct orf_token *)token_convert;
}
/*
* Make copy of token and retransmit list in case we have
* to flush incoming messages from the kernel queue
*/
token = (struct orf_token *)token_storage;
memcpy (token, msg, sizeof (struct orf_token));
memcpy (&token->rtr_list[0], (char *)msg + sizeof (struct orf_token),
sizeof (struct rtr_item) * RETRANSMIT_ENTRIES_MAX);
/*
* Handle merge detection timeout
*/
if (token->seq == instance->my_last_seq) {
start_merge_detect_timeout (instance);
instance->my_seq_unchanged += 1;
} else {
cancel_merge_detect_timeout (instance);
cancel_token_hold_retransmit_timeout (instance);
instance->my_seq_unchanged = 0;
}
instance->my_last_seq = token->seq;
#ifdef TEST_RECOVERY_MSG_COUNT
if (instance->memb_state == MEMB_STATE_OPERATIONAL && token->seq > TEST_RECOVERY_MSG_COUNT) {
return (0);
}
#endif
totemrrp_recv_flush (instance->totemrrp_context);
/*
* Determine if we should hold (in reality drop) the token
*/
instance->my_token_held = 0;
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0]) &&
instance->my_seq_unchanged > instance->totem_config->seqno_unchanged_const) {
instance->my_token_held = 1;
} else
if (!totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0]) &&
instance->my_seq_unchanged >= instance->totem_config->seqno_unchanged_const) {
instance->my_token_held = 1;
}
/*
* Hold onto token when there is no activity on ring and
* this processor is the ring rep
*/
forward_token = 1;
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0])) {
if (instance->my_token_held) {
forward_token = 0;
}
}
token_callbacks_execute (instance, TOTEM_CALLBACK_TOKEN_RECEIVED);
switch (instance->memb_state) {
case MEMB_STATE_COMMIT:
/* Discard token */
break;
case MEMB_STATE_OPERATIONAL:
messages_free (instance, token->aru);
case MEMB_STATE_GATHER:
/*
* DO NOT add break, we use different free mechanism in recovery state
*/
case MEMB_STATE_RECOVERY:
last_aru = instance->my_last_aru;
instance->my_last_aru = token->aru;
/*
* Discard tokens from another configuration
*/
if (memcmp (&token->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0); /* discard token */
}
/*
* Discard retransmitted tokens
*/
if (sq_lte_compare (token->token_seq, instance->my_token_seq)) {
/*
* If this processor receives a retransmitted token, it is sure
* the previous processor is still alive. As a result, it can
* reset its token timeout. If some processor previous to that
* has failed, it will eventually not execute a reset of the
* token timeout, and will cause a reconfiguration to occur.
*/
reset_token_timeout (instance);
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0); /* discard token */
}
transmits_allowed = fcc_calculate (instance, token);
mcasted_retransmit = orf_token_rtr (instance, token, &transmits_allowed);
fcc_rtr_limit (instance, token, &transmits_allowed);
mcasted_regular = orf_token_mcast (instance, token, transmits_allowed);
/*
if (mcasted_regular) {
printf ("mcasted regular %d\n", mcasted_regular);
printf ("token seq %d\n", token->seq);
}
*/
fcc_token_update (instance, token, mcasted_retransmit +
mcasted_regular);
if (sq_lt_compare (instance->my_aru, token->aru) ||
instance->my_id.addr[0].nodeid == token->aru_addr ||
token->aru_addr == 0) {
token->aru = instance->my_aru;
if (token->aru == token->seq) {
token->aru_addr = 0;
} else {
token->aru_addr = instance->my_id.addr[0].nodeid;
}
}
if (token->aru == last_aru && token->aru_addr != 0) {
instance->my_aru_count += 1;
} else {
instance->my_aru_count = 0;
}
if (instance->my_aru_count > instance->totem_config->fail_to_recv_const &&
token->aru_addr != instance->my_id.addr[0].nodeid) {
log_printf (instance->totemsrp_log_level_error,
"FAILED TO RECEIVE\n");
// TODO if we fail to receive, it may be possible to end with a gather
// state of proc == failed = 0 entries
/* THIS IS A BIG TODO
memb_set_merge (&token->aru_addr, 1,
instance->my_failed_list,
&instance->my_failed_list_entries);
*/
ring_state_restore (instance);
memb_state_gather_enter (instance, 6);
} else {
instance->my_token_seq = token->token_seq;
token->token_seq += 1;
if (instance->memb_state == MEMB_STATE_RECOVERY) {
/*
* instance->my_aru == instance->my_high_seq_received means this processor
* has recovered all messages it can recover
* (ie: its retrans queue is empty)
*/
if (cs_queue_is_empty (&instance->retrans_message_queue) == 0) {
if (token->retrans_flg == 0) {
token->retrans_flg = 1;
instance->my_set_retrans_flg = 1;
}
} else
if (token->retrans_flg == 1 && instance->my_set_retrans_flg) {
token->retrans_flg = 0;
}
log_printf (instance->totemsrp_log_level_debug,
"token retrans flag is %d my set retrans flag%d retrans queue empty %d count %d, aru %x\n",
token->retrans_flg, instance->my_set_retrans_flg,
cs_queue_is_empty (&instance->retrans_message_queue),
instance->my_retrans_flg_count, token->aru);
if (token->retrans_flg == 0) {
instance->my_retrans_flg_count += 1;
} else {
instance->my_retrans_flg_count = 0;
}
if (instance->my_retrans_flg_count == 2) {
instance->my_install_seq = token->seq;
}
log_printf (instance->totemsrp_log_level_debug,
"install seq %x aru %x high seq received %x\n",
instance->my_install_seq, instance->my_aru, instance->my_high_seq_received);
if (instance->my_retrans_flg_count >= 2 &&
instance->my_received_flg == 0 &&
sq_lte_compare (instance->my_install_seq, instance->my_aru)) {
instance->my_received_flg = 1;
instance->my_deliver_memb_entries = instance->my_trans_memb_entries;
memcpy (instance->my_deliver_memb_list, instance->my_trans_memb_list,
sizeof (struct totem_ip_address) * instance->my_trans_memb_entries);
}
if (instance->my_retrans_flg_count >= 3 &&
sq_lte_compare (instance->my_install_seq, token->aru)) {
instance->my_rotation_counter += 1;
} else {
instance->my_rotation_counter = 0;
}
if (instance->my_rotation_counter == 2) {
log_printf (instance->totemsrp_log_level_debug,
"retrans flag count %x token aru %x install seq %x aru %x %x\n",
instance->my_retrans_flg_count, token->aru, instance->my_install_seq,
instance->my_aru, token->seq);
memb_state_operational_enter (instance);
instance->my_rotation_counter = 0;
instance->my_retrans_flg_count = 0;
}
}
totemrrp_send_flush (instance->totemrrp_context);
token_send (instance, token, forward_token);
#ifdef GIVEINFO
tv_current = timerlist_nano_current_get ();
tv_diff = tv_current - tv_old;
tv_old = tv_current;
log_printf (instance->totemsrp_log_level_debug,
"I held %0.4f ms\n",
((float)tv_diff) / 1000000.0);
#endif
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (instance, 0,
instance->my_high_seq_received);
}
/*
* Deliver messages after token has been transmitted
* to improve performance
*/
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
if (totemip_equal(&instance->my_id.addr[0], &instance->my_ring_id.rep) &&
instance->my_token_held == 1) {
start_token_hold_retransmit_timeout (instance);
}
token_callbacks_execute (instance, TOTEM_CALLBACK_TOKEN_SENT);
}
break;
}
if ((forward_token)
&& instance->use_heartbeat) {
reset_heartbeat_timeout(instance);
}
else {
cancel_heartbeat_timeout(instance);
}
return (0);
}
static void messages_deliver_to_app (
struct totemsrp_instance *instance,
int skip,
unsigned int end_point)
{
struct sort_queue_item *sort_queue_item_p;
unsigned int i;
int res;
struct mcast *mcast_in;
struct mcast mcast_header;
unsigned int range = 0;
int endian_conversion_required;
unsigned int my_high_delivered_stored = 0;
range = end_point - instance->my_high_delivered;
if (range) {
log_printf (instance->totemsrp_log_level_debug,
"Delivering %x to %x\n", instance->my_high_delivered,
end_point);
}
assert (range < 10240);
my_high_delivered_stored = instance->my_high_delivered;
/*
* Deliver messages in order from rtr queue to pending delivery queue
*/
for (i = 1; i <= range; i++) {
void *ptr = 0;
/*
* If out of range of sort queue, stop assembly
*/
res = sq_in_range (&instance->regular_sort_queue,
my_high_delivered_stored + i);
if (res == 0) {
break;
}
res = sq_item_get (&instance->regular_sort_queue,
my_high_delivered_stored + i, &ptr);
/*
* If hole, stop assembly
*/
if (res != 0 && skip == 0) {
break;
}
instance->my_high_delivered = my_high_delivered_stored + i;
if (res != 0) {
continue;
}
sort_queue_item_p = ptr;
mcast_in = sort_queue_item_p->mcast;
assert (mcast_in != (struct mcast *)0xdeadbeef);
endian_conversion_required = 0;
if (mcast_in->header.endian_detector != ENDIAN_LOCAL) {
endian_conversion_required = 1;
mcast_endian_convert (mcast_in, &mcast_header);
} else {
memcpy (&mcast_header, mcast_in, sizeof (struct mcast));
}
/*
* Skip messages not originated in instance->my_deliver_memb
*/
if (skip &&
memb_set_subset (&mcast_header.system_from,
1,
instance->my_deliver_memb_list,
instance->my_deliver_memb_entries) == 0) {
instance->my_high_delivered = my_high_delivered_stored + i;
continue;
}
/*
* Message found
*/
log_printf (instance->totemsrp_log_level_debug,
"Delivering MCAST message with seq %x to pending delivery queue\n",
mcast_header.seq);
/*
* Message is locally originated multicast
*/
instance->totemsrp_deliver_fn (
mcast_header.header.nodeid,
((char *)sort_queue_item_p->mcast) + sizeof (struct mcast),
sort_queue_item_p->msg_len - sizeof (struct mcast),
endian_conversion_required);
}
}
/*
* recv message handler called when MCAST message type received
*/
static int message_handler_mcast (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct sort_queue_item sort_queue_item;
struct sq *sort_queue;
struct mcast mcast_header;
if (endian_conversion_needed) {
mcast_endian_convert (msg, &mcast_header);
} else {
memcpy (&mcast_header, msg, sizeof (struct mcast));
}
if (mcast_header.header.encapsulated == MESSAGE_ENCAPSULATED) {
sort_queue = &instance->recovery_sort_queue;
} else {
sort_queue = &instance->regular_sort_queue;
}
assert (msg_len <= FRAME_SIZE_MAX);
#ifdef TEST_DROP_MCAST_PERCENTAGE
if (random()%100 < TEST_DROP_MCAST_PERCENTAGE) {
printf ("dropping message %d\n", mcast_header.seq);
return (0);
} else {
printf ("accepting message %d\n", mcast_header.seq);
}
#endif
if (srp_addr_equal (&mcast_header.system_from, &instance->my_id) == 0) {
cancel_token_retransmit_timeout (instance);
}
/*
* If the message is foreign execute the switch below
*/
if (memcmp (&instance->my_ring_id, &mcast_header.ring_id,
sizeof (struct memb_ring_id)) != 0) {
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (
&mcast_header.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 7);
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (
&mcast_header.system_from,
1,
instance->my_proc_list,
instance->my_proc_list_entries)) {
memb_set_merge (&mcast_header.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 8);
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* discard message */
+ instance->stats->rx_msg_dropped++;
break;
case MEMB_STATE_RECOVERY:
/* discard message */
+ instance->stats->rx_msg_dropped++;
break;
}
return (0);
}
log_printf (instance->totemsrp_log_level_debug,
"Received ringid(%s:%lld) seq %x\n",
totemip_print (&mcast_header.ring_id.rep),
mcast_header.ring_id.seq,
mcast_header.seq);
/*
* Add mcast message to rtr queue if not already in rtr queue
* otherwise free io vectors
*/
if (msg_len > 0 && msg_len <= FRAME_SIZE_MAX &&
sq_in_range (sort_queue, mcast_header.seq) &&
sq_item_inuse (sort_queue, mcast_header.seq) == 0) {
/*
* Allocate new multicast memory block
*/
// TODO LEAK
sort_queue_item.mcast = malloc (msg_len);
if (sort_queue_item.mcast == NULL) {
return (-1); /* error here is corrected by the algorithm */
}
memcpy (sort_queue_item.mcast, msg, msg_len);
sort_queue_item.msg_len = msg_len;
if (sq_lt_compare (instance->my_high_seq_received,
mcast_header.seq)) {
instance->my_high_seq_received = mcast_header.seq;
}
sq_item_add (sort_queue, &sort_queue_item, mcast_header.seq);
}
update_aru (instance);
if (instance->memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (instance, 0, instance->my_high_seq_received);
}
/* TODO remove from retrans message queue for old ring in recovery state */
return (0);
}
static int message_handler_memb_merge_detect (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct memb_merge_detect memb_merge_detect;
if (endian_conversion_needed) {
memb_merge_detect_endian_convert (msg, &memb_merge_detect);
} else {
memcpy (&memb_merge_detect, msg,
sizeof (struct memb_merge_detect));
}
/*
* do nothing if this is a merge detect from this configuration
*/
if (memcmp (&instance->my_ring_id, &memb_merge_detect.ring_id,
sizeof (struct memb_ring_id)) == 0) {
return (0);
}
/*
* Execute merge operation
*/
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (&memb_merge_detect.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 9);
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (
&memb_merge_detect.system_from,
1,
instance->my_proc_list,
instance->my_proc_list_entries)) {
memb_set_merge (&memb_merge_detect.system_from, 1,
instance->my_proc_list, &instance->my_proc_list_entries);
memb_state_gather_enter (instance, 10);
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* do nothing in commit */
break;
case MEMB_STATE_RECOVERY:
/* do nothing in recovery */
break;
}
return (0);
}
static int memb_join_process (
struct totemsrp_instance *instance,
const struct memb_join *memb_join)
{
struct srp_addr *proc_list;
struct srp_addr *failed_list;
proc_list = (struct srp_addr *)memb_join->end_of_memb_join;
failed_list = proc_list + memb_join->proc_list_entries;
/*
memb_set_print ("proclist", proc_list, memb_join->proc_list_entries);
memb_set_print ("faillist", failed_list, memb_join->failed_list_entries);
memb_set_print ("my_proclist", instance->my_proc_list, instance->my_proc_list_entries);
memb_set_print ("my_faillist", instance->my_failed_list, instance->my_failed_list_entries);
*/
if (memb_set_equal (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries) &&
memb_set_equal (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list,
instance->my_failed_list_entries)) {
memb_consensus_set (instance, &memb_join->system_from);
if (memb_consensus_agreed (instance) &&
memb_lowest_in_config (instance)) {
memb_state_commit_token_create (instance);
memb_state_commit_enter (instance);
} else {
return (0);
}
} else
if (memb_set_subset (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list,
instance->my_proc_list_entries) &&
memb_set_subset (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list,
instance->my_failed_list_entries)) {
return (0);
} else
if (memb_set_subset (&memb_join->system_from, 1,
instance->my_failed_list, instance->my_failed_list_entries)) {
return (0);
} else {
memb_set_merge (proc_list,
memb_join->proc_list_entries,
instance->my_proc_list, &instance->my_proc_list_entries);
if (memb_set_subset (
&instance->my_id, 1,
failed_list, memb_join->failed_list_entries)) {
memb_set_merge (
&memb_join->system_from, 1,
instance->my_failed_list, &instance->my_failed_list_entries);
} else {
memb_set_merge (failed_list,
memb_join->failed_list_entries,
instance->my_failed_list, &instance->my_failed_list_entries);
}
memb_state_gather_enter (instance, 11);
return (1); /* gather entered */
}
return (0); /* gather not entered */
}
static void memb_join_endian_convert (const struct memb_join *in, struct memb_join *out)
{
int i;
struct srp_addr *in_proc_list;
struct srp_addr *in_failed_list;
struct srp_addr *out_proc_list;
struct srp_addr *out_failed_list;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
srp_addr_copy_endian_convert (&out->system_from, &in->system_from);
out->proc_list_entries = swab32 (in->proc_list_entries);
out->failed_list_entries = swab32 (in->failed_list_entries);
out->ring_seq = swab64 (in->ring_seq);
in_proc_list = (struct srp_addr *)in->end_of_memb_join;
in_failed_list = in_proc_list + out->proc_list_entries;
out_proc_list = (struct srp_addr *)out->end_of_memb_join;
out_failed_list = out_proc_list + out->proc_list_entries;
for (i = 0; i < out->proc_list_entries; i++) {
srp_addr_copy_endian_convert (&out_proc_list[i], &in_proc_list[i]);
}
for (i = 0; i < out->failed_list_entries; i++) {
srp_addr_copy_endian_convert (&out_failed_list[i], &in_failed_list[i]);
}
}
static void memb_commit_token_endian_convert (const struct memb_commit_token *in, struct memb_commit_token *out)
{
int i;
struct srp_addr *in_addr = (struct srp_addr *)in->end_of_commit_token;
struct srp_addr *out_addr = (struct srp_addr *)out->end_of_commit_token;
struct memb_commit_token_memb_entry *in_memb_list;
struct memb_commit_token_memb_entry *out_memb_list;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
out->token_seq = swab32 (in->token_seq);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->retrans_flg = swab32 (in->retrans_flg);
out->memb_index = swab32 (in->memb_index);
out->addr_entries = swab32 (in->addr_entries);
in_memb_list = (struct memb_commit_token_memb_entry *)(in_addr + out->addr_entries);
out_memb_list = (struct memb_commit_token_memb_entry *)(out_addr + out->addr_entries);
for (i = 0; i < out->addr_entries; i++) {
srp_addr_copy_endian_convert (&out_addr[i], &in_addr[i]);
/*
* Only convert the memb entry if it has been set
*/
if (in_memb_list[i].ring_id.rep.family != 0) {
totemip_copy_endian_convert (&out_memb_list[i].ring_id.rep,
&in_memb_list[i].ring_id.rep);
out_memb_list[i].ring_id.seq =
swab64 (in_memb_list[i].ring_id.seq);
out_memb_list[i].aru = swab32 (in_memb_list[i].aru);
out_memb_list[i].high_delivered = swab32 (in_memb_list[i].high_delivered);
out_memb_list[i].received_flg = swab32 (in_memb_list[i].received_flg);
}
}
}
static void orf_token_endian_convert (const struct orf_token *in, struct orf_token *out)
{
int i;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
out->seq = swab32 (in->seq);
out->token_seq = swab32 (in->token_seq);
out->aru = swab32 (in->aru);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->aru_addr = swab32(in->aru_addr);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->fcc = swab32 (in->fcc);
out->backlog = swab32 (in->backlog);
out->retrans_flg = swab32 (in->retrans_flg);
out->rtr_list_entries = swab32 (in->rtr_list_entries);
for (i = 0; i < out->rtr_list_entries; i++) {
totemip_copy_endian_convert(&out->rtr_list[i].ring_id.rep, &in->rtr_list[i].ring_id.rep);
out->rtr_list[i].ring_id.seq = swab64 (in->rtr_list[i].ring_id.seq);
out->rtr_list[i].seq = swab32 (in->rtr_list[i].seq);
}
}
static void mcast_endian_convert (const struct mcast *in, struct mcast *out)
{
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
out->header.encapsulated = in->header.encapsulated;
out->seq = swab32 (in->seq);
out->this_seqno = swab32 (in->this_seqno);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
out->node_id = swab32 (in->node_id);
out->guarantee = swab32 (in->guarantee);
srp_addr_copy_endian_convert (&out->system_from, &in->system_from);
}
static void memb_merge_detect_endian_convert (
const struct memb_merge_detect *in,
struct memb_merge_detect *out)
{
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->header.nodeid = swab32 (in->header.nodeid);
totemip_copy_endian_convert(&out->ring_id.rep, &in->ring_id.rep);
out->ring_id.seq = swab64 (in->ring_id.seq);
srp_addr_copy_endian_convert (&out->system_from, &in->system_from);
}
static int message_handler_memb_join (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct memb_join *memb_join;
struct memb_join *memb_join_convert = alloca (msg_len);
int gather_entered;
if (endian_conversion_needed) {
memb_join = memb_join_convert;
memb_join_endian_convert (msg, memb_join_convert);
} else {
memb_join = msg;
}
/*
* If the process paused because it wasn't scheduled in a timely
* fashion, flush the join messages because they may be queued
* entries
*/
if (pause_flush (instance)) {
return (0);
}
if (instance->token_ring_id_seq < memb_join->ring_seq) {
instance->token_ring_id_seq = memb_join->ring_seq;
}
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
gather_entered = memb_join_process (instance,
memb_join);
if (gather_entered == 0) {
memb_state_gather_enter (instance, 12);
}
break;
case MEMB_STATE_GATHER:
memb_join_process (instance, memb_join);
break;
case MEMB_STATE_COMMIT:
if (memb_set_subset (&memb_join->system_from,
1,
instance->my_new_memb_list,
instance->my_new_memb_entries) &&
memb_join->ring_seq >= instance->my_ring_id.seq) {
memb_join_process (instance, memb_join);
memb_state_gather_enter (instance, 13);
}
break;
case MEMB_STATE_RECOVERY:
if (memb_set_subset (&memb_join->system_from,
1,
instance->my_new_memb_list,
instance->my_new_memb_entries) &&
memb_join->ring_seq >= instance->my_ring_id.seq) {
ring_state_restore (instance);
memb_join_process (instance, memb_join);
memb_state_gather_enter (instance, 14);
}
break;
}
return (0);
}
static int message_handler_memb_commit_token (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
struct memb_commit_token *memb_commit_token_convert = alloca (msg_len);
struct memb_commit_token *memb_commit_token;
struct srp_addr sub[PROCESSOR_COUNT_MAX];
int sub_entries;
struct srp_addr *addr;
struct memb_commit_token_memb_entry *memb_list;
log_printf (instance->totemsrp_log_level_debug,
"got commit token\n");
if (endian_conversion_needed) {
memb_commit_token_endian_convert (msg, memb_commit_token_convert);
} else {
memcpy (memb_commit_token_convert, msg, msg_len);
}
memb_commit_token = memb_commit_token_convert;
addr = (struct srp_addr *)memb_commit_token->end_of_commit_token;
memb_list = (struct memb_commit_token_memb_entry *)(addr + memb_commit_token->addr_entries);
#ifdef TEST_DROP_COMMIT_TOKEN_PERCENTAGE
if (random()%100 < TEST_DROP_COMMIT_TOKEN_PERCENTAGE) {
return (0);
}
#endif
switch (instance->memb_state) {
case MEMB_STATE_OPERATIONAL:
/* discard token */
break;
case MEMB_STATE_GATHER:
memb_set_subtract (sub, &sub_entries,
instance->my_proc_list, instance->my_proc_list_entries,
instance->my_failed_list, instance->my_failed_list_entries);
if (memb_set_equal (addr,
memb_commit_token->addr_entries,
sub,
sub_entries) &&
memb_commit_token->ring_id.seq > instance->my_ring_id.seq) {
memcpy (instance->commit_token, memb_commit_token, msg_len);
memb_state_commit_enter (instance);
}
break;
case MEMB_STATE_COMMIT:
/*
* If retransmitted commit tokens are sent on this ring
* filter them out and only enter recovery once the
* commit token has traversed the array. This is
* determined by :
* memb_commit_token->memb_index == memb_commit_token->addr_entries) {
*/
if (memb_commit_token->ring_id.seq == instance->my_ring_id.seq &&
memb_commit_token->memb_index == memb_commit_token->addr_entries) {
memb_state_recovery_enter (instance, memb_commit_token);
}
break;
case MEMB_STATE_RECOVERY:
if (totemip_equal (&instance->my_id.addr[0], &instance->my_ring_id.rep)) {
log_printf (instance->totemsrp_log_level_debug,
"Sending initial ORF token\n");
// TODO convert instead of initiate
orf_token_send_initial (instance);
reset_token_timeout (instance); // REVIEWED
reset_token_retransmit_timeout (instance); // REVIEWED
}
break;
}
return (0);
}
static int message_handler_token_hold_cancel (
struct totemsrp_instance *instance,
const void *msg,
size_t msg_len,
int endian_conversion_needed)
{
const struct token_hold_cancel *token_hold_cancel = msg;
if (memcmp (&token_hold_cancel->ring_id, &instance->my_ring_id,
sizeof (struct memb_ring_id)) == 0) {
instance->my_seq_unchanged = 0;
if (totemip_equal(&instance->my_ring_id.rep, &instance->my_id.addr[0])) {
timer_function_token_retransmit_timeout (instance);
}
}
return (0);
}
void main_deliver_fn (
void *context,
const void *msg,
unsigned int msg_len)
{
struct totemsrp_instance *instance = context;
const struct message_header *message_header = msg;
if (msg_len < sizeof (struct message_header)) {
log_printf (instance->totemsrp_log_level_security,
"Received message is too short... ignoring %u.\n",
(unsigned int)msg_len);
return;
}
if ((int)message_header->type >= totemsrp_message_handlers.count) {
log_printf (instance->totemsrp_log_level_security, "Type of received message is wrong... ignoring %d.\n", (int)message_header->type);
printf ("wrong message type\n");
+ instance->stats->rx_msg_dropped++;
return;
}
+ switch (message_header->type) {
+ case MESSAGE_TYPE_ORF_TOKEN:
+ instance->stats->orf_token_rx++;
+ break;
+ case MESSAGE_TYPE_MCAST:
+ instance->stats->mcast_rx++;
+ break;
+ case MESSAGE_TYPE_MEMB_MERGE_DETECT:
+ instance->stats->memb_merge_detect_rx++;
+ break;
+ case MESSAGE_TYPE_MEMB_JOIN:
+ instance->stats->memb_join_rx++;
+ break;
+ case MESSAGE_TYPE_MEMB_COMMIT_TOKEN:
+ instance->stats->memb_commit_token_rx++;
+ break;
+ case MESSAGE_TYPE_TOKEN_HOLD_CANCEL:
+ instance->stats->token_hold_cancel_rx++;
+ break;
+ default:
+ break;
+ }
/*
* Handle incoming message
*/
totemsrp_message_handlers.handler_functions[(int)message_header->type] (
instance,
msg,
msg_len,
message_header->endian_detector != ENDIAN_LOCAL);
}
void main_iface_change_fn (
void *context,
const struct totem_ip_address *iface_addr,
unsigned int iface_no)
{
struct totemsrp_instance *instance = context;
totemip_copy (&instance->my_id.addr[iface_no], iface_addr);
assert (instance->my_id.addr[iface_no].nodeid);
totemip_copy (&instance->my_memb_list[0].addr[iface_no], iface_addr);
if (instance->iface_changes++ == 0) {
memb_ring_id_create_or_load (instance, &instance->my_ring_id);
log_printf (
instance->totemsrp_log_level_debug,
"Created or loaded sequence id %lld.%s for this ring.\n",
instance->my_ring_id.seq,
totemip_print (&instance->my_ring_id.rep));
if (instance->totemsrp_service_ready_fn) {
instance->totemsrp_service_ready_fn ();
}
}
if (instance->iface_changes >= instance->totem_config->interface_count) {
memb_state_gather_enter (instance, 15);
}
}
void totemsrp_net_mtu_adjust (struct totem_config *totem_config) {
totem_config->net_mtu -= sizeof (struct mcast);
}
void totemsrp_service_ready_register (
void *context,
void (*totem_service_ready) (void))
{
struct totemsrp_instance *instance = (struct totemsrp_instance *)context;
instance->totemsrp_service_ready_fn = totem_service_ready;
}
diff --git a/exec/totemsrp.h b/exec/totemsrp.h
index 743aaad8..cb6dac1c 100644
--- a/exec/totemsrp.h
+++ b/exec/totemsrp.h
@@ -1,122 +1,123 @@
/*
* Copyright (c) 2003-2005 MontaVista Software, Inc.
* Copyright (c) 2006-2007, 2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TOTEMSRP_H_DEFINED
#define TOTEMSRP_H_DEFINED
#include <corosync/totem/totem.h>
#include <corosync/totem/coropoll.h>
/*
* Totem Single Ring Protocol
* depends on poll abstraction, POSIX, IPV4
*/
/*
* Create a protocol instance
*/
int totemsrp_initialize (
hdb_handle_t poll_handle,
void **srp_context,
struct totem_config *totem_config,
+ totemmrp_stats_t *stats,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id));
void totemsrp_finalize (void *srp_context);
/*
* Multicast a message
*/
int totemsrp_mcast (
void *srp_context,
struct iovec *iovec,
unsigned int iov_len,
int priority);
/*
* Return number of available messages that can be queued
*/
int totemsrp_avail (void *srp_context);
int totemsrp_callback_token_create (
void *srp_context,
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data);
void totemsrp_callback_token_destroy (
void *srp_context,
void **handle_out);
int totemsrp_new_msg_signal (void *srp_context);
extern void totemsrp_net_mtu_adjust (struct totem_config *totem_config);
extern int totemsrp_ifaces_get (
void *srp_context,
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count);
extern unsigned int totemsrp_my_nodeid_get (
void *srp_context);
extern int totemsrp_my_family_get (
void *srp_context);
extern int totemsrp_crypto_set (
void *srp_context,
unsigned int type);
extern int totemsrp_ring_reenable (
void *srp_context);
void totemsrp_service_ready_register (
void *srp_context,
void (*totem_service_ready) (void));
#endif /* TOTEMSRP_H_DEFINED */
diff --git a/include/corosync/coroipcs.h b/include/corosync/coroipcs.h
index 0d3d978a..1e97014f 100644
--- a/include/corosync/coroipcs.h
+++ b/include/corosync/coroipcs.h
@@ -1,134 +1,135 @@
/*
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef COROIPCS_H_DEFINED
#define COROIPCS_H_DEFINED
#include <stdlib.h>
+#include <corosync/engine/objdb.h>
#ifdef __cplusplus
extern "C" {
#endif
struct iovec;
typedef int (*coroipcs_init_fn_lvalue) (void *conn);
typedef int (*coroipcs_exit_fn_lvalue) (void *conn);
typedef void (*coroipcs_handler_fn_lvalue) (void *conn, const void *msg);
struct coroipcs_init_state {
const char *socket_name;
int sched_policy;
const struct sched_param *sched_param;
void *(*malloc) (size_t size);
void (*free) (void *ptr);
void (*log_printf) (
const char *format,
...) __attribute__((format(printf, 1, 2)));
int (*service_available)(unsigned int service);
int (*private_data_size_get)(unsigned int service);
int (*security_valid)(int uid, int gid);
void (*serialize_lock)(void);
void (*serialize_unlock)(void);
int (*sending_allowed)(unsigned int service, unsigned int id,
const void *msg, void *sending_allowed_private_data);
void (*sending_allowed_release)(void *sending_allowed_private_data);
void (*poll_accept_add)(int fd);
void (*poll_dispatch_add)(int fd, void *context);
void (*poll_dispatch_modify)(int fd, int events);
void (*poll_dispatch_destroy)(int fd, void *context);
void (*fatal_error)(const char *error_msg);
coroipcs_init_fn_lvalue (*init_fn_get)(unsigned int service);
coroipcs_exit_fn_lvalue (*exit_fn_get)(unsigned int service);
coroipcs_handler_fn_lvalue (*handler_fn_get)(unsigned int service, unsigned int id);
};
struct coroipcs_init_stats_state {
hdb_handle_t (*stats_create_connection) (const char* name,
const pid_t pid, const int fd);
void (*stats_destroy_connection) (hdb_handle_t handle);
void (*stats_update_value) (hdb_handle_t handle,
const char* name, const void* value, const size_t value_len);
void (*stats_increment_value) (hdb_handle_t handle, const char* name);
};
extern void coroipcs_ipc_init (
struct coroipcs_init_state *init_state);
extern void coroipcs_ipc_stats_init (
struct coroipcs_init_stats_state *init_stats_state);
extern void *coroipcs_private_data_get (void *conn);
extern int coroipcs_response_send (
void *conn,
const void *msg,
size_t mlen);
extern int coroipcs_response_iov_send (
void *conn,
const struct iovec *iov,
unsigned int iov_len);
extern int coroipcs_dispatch_send (
void *conn,
const void *msg,
size_t mlen);
extern int coroipcs_dispatch_iov_send (
void *conn,
const struct iovec *iov,
unsigned int iov_len);
extern void coroipcs_refcount_inc (void *conn);
extern void coroipcs_refcount_dec (void *conn);
extern void coroipcs_ipc_exit (void);
extern int coroipcs_handler_accept (
int fd,
int revent,
void *context);
extern int coroipcs_handler_dispatch (
int fd,
int revent,
void *context);
#ifdef __cplusplus
}
#endif
#endif /* COROIPCS_H_DEFINED */
diff --git a/include/corosync/engine/coroapi.h b/include/corosync/engine/coroapi.h
index b860a4df..0c487caf 100644
--- a/include/corosync/engine/coroapi.h
+++ b/include/corosync/engine/coroapi.h
@@ -1,683 +1,685 @@
/*
* Copyright (c) 2008, 2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef COROAPI_H_DEFINED
#define COROAPI_H_DEFINED
#include <stdio.h>
#ifdef COROSYNC_BSD
#include <sys/uio.h>
#endif
#include <corosync/hdb.h>
#include <corosync/swab.h>
typedef struct {
uint32_t nodeid __attribute__((aligned(8)));
void *conn __attribute__((aligned(8)));
} mar_message_source_t __attribute__((aligned(8)));
static inline void swab_mar_message_source_t (mar_message_source_t *to_swab)
{
swab32 (to_swab->nodeid);
/*
* if it is from a byteswapped machine, then we can safely
* ignore its conn info data structure since this is only
* local to the machine
*/
to_swab->conn = NULL;
}
typedef void * corosync_timer_handle_t;
struct corosync_tpg_group {
const void *group;
size_t group_len;
};
#define TOTEMIP_ADDRLEN (sizeof(struct in6_addr))
#define INTERFACE_MAX 2
#ifdef HAVE_SMALL_MEMORY_FOOTPRINT
#define PROCESSOR_COUNT_MAX 16
#define MESSAGE_SIZE_MAX 1024*64
#define MESSAGE_QUEUE_MAX 512
#else
#define PROCESSOR_COUNT_MAX 384
#define MESSAGE_SIZE_MAX 1024*1024 /* (1MB) */
#define MESSAGE_QUEUE_MAX MESSAGE_SIZE_MAX / totem_config->net_mtu
#endif /* HAVE_SMALL_MEMORY_FOOTPRINT */
#define TOTEM_AGREED 0
#define TOTEM_SAFE 1
#define MILLI_2_NANO_SECONDS 1000000ULL
#if !defined(TOTEM_IP_ADDRESS)
struct totem_ip_address {
unsigned int nodeid;
unsigned short family;
unsigned char addr[TOTEMIP_ADDRLEN];
} __attribute__((packed));
#endif
#if !defined(MEMB_RING_ID)
struct memb_ring_id {
struct totem_ip_address rep;
unsigned long long seq;
} __attribute__((packed));
#endif
#if !defined(TOTEM_CONFIGURATION_TYPE)
enum totem_configuration_type {
TOTEM_CONFIGURATION_REGULAR,
TOTEM_CONFIGURATION_TRANSITIONAL
};
#endif
#if !defined(TOTEM_CALLBACK_TOKEN_TYPE)
enum totem_callback_token_type {
TOTEM_CALLBACK_TOKEN_RECEIVED = 1,
TOTEM_CALLBACK_TOKEN_SENT = 2
};
#endif
enum cs_lib_flow_control {
CS_LIB_FLOW_CONTROL_REQUIRED = 1,
CS_LIB_FLOW_CONTROL_NOT_REQUIRED = 2
};
#define corosync_lib_flow_control cs_lib_flow_control
#define COROSYNC_LIB_FLOW_CONTROL_REQUIRED CS_LIB_FLOW_CONTROL_REQUIRED
#define COROSYNC_LIB_FLOW_CONTROL_NOT_REQUIRED CS_LIB_FLOW_CONTROL_NOT_REQUIRED
enum cs_lib_allow_inquorate {
CS_LIB_DISALLOW_INQUORATE = 0, /* default */
CS_LIB_ALLOW_INQUORATE = 1
};
#if !defined (COROSYNC_FLOW_CONTROL_STATE)
enum cs_flow_control_state {
CS_FLOW_CONTROL_STATE_DISABLED,
CS_FLOW_CONTROL_STATE_ENABLED
};
#define corosync_flow_control_state cs_flow_control_state
#define CS_FLOW_CONTROL_STATE_DISABLED CS_FLOW_CONTROL_STATE_DISABLED
#define CS_FLOW_CONTROL_STATE_ENABLED CS_FLOW_CONTROL_STATE_ENABLED
#endif /* COROSYNC_FLOW_CONTROL_STATE */
enum cs_sync_mode {
CS_SYNC_V1 = 0,
CS_SYNC_V2 = 1
};
typedef enum {
COROSYNC_FATAL_ERROR_EXIT = -1,
COROSYNC_LIBAIS_SOCKET = -6,
COROSYNC_LIBAIS_BIND = -7,
COROSYNC_READKEY = -8,
COROSYNC_INVALID_CONFIG = -9,
COROSYNC_DYNAMICLOAD = -12,
COROSYNC_OUT_OF_MEMORY = -15,
COROSYNC_FATAL_ERR = -16
} cs_fatal_error_t;
#define corosync_fatal_error_t cs_fatal_error_t;
#ifndef OBJECT_PARENT_HANDLE
#define OBJECT_PARENT_HANDLE 0xffffffff00000000ULL
struct object_valid {
char *object_name;
size_t object_len;
};
struct object_key_valid {
char *key_name;
size_t key_len;
int (*validate_callback) (const void *key, size_t key_len,
const void *value, size_t value_len);
};
/* deprecated */
typedef enum {
OBJDB_VALUETYPE_INT16,
OBJDB_VALUETYPE_UINT16,
OBJDB_VALUETYPE_INT32,
OBJDB_VALUETYPE_UINT32,
OBJDB_VALUETYPE_INT64,
OBJDB_VALUETYPE_UINT64,
OBJDB_VALUETYPE_FLOAT,
OBJDB_VALUETYPE_DOUBLE,
OBJDB_VALUETYPE_STRING,
OBJDB_VALUETYPE_ANY,
} objdb_value_types_t;
typedef enum {
OBJECT_TRACK_DEPTH_ONE,
OBJECT_TRACK_DEPTH_RECURSIVE
} object_track_depth_t;
typedef enum {
OBJECT_KEY_CREATED,
OBJECT_KEY_REPLACED,
OBJECT_KEY_DELETED
} object_change_type_t;
typedef enum {
OBJDB_RELOAD_NOTIFY_START,
OBJDB_RELOAD_NOTIFY_END,
OBJDB_RELOAD_NOTIFY_FAILED
} objdb_reload_notify_type_t;
typedef void (*object_key_change_notify_fn_t)(
object_change_type_t change_type,
hdb_handle_t parent_object_handle,
hdb_handle_t object_handle,
const void *object_name_pt, size_t object_name_len,
const void *key_name_pt, size_t key_len,
const void *key_value_pt, size_t key_value_len,
void *priv_data_pt);
typedef void (*object_create_notify_fn_t) (
hdb_handle_t parent_object_handle,
hdb_handle_t object_handle,
const uint8_t *name_pt, size_t name_len,
void *priv_data_pt);
typedef void (*object_destroy_notify_fn_t) (
hdb_handle_t parent_object_handle,
const uint8_t *name_pt, size_t name_len,
void *priv_data_pt);
typedef void (*object_notify_callback_fn_t)(
hdb_handle_t object_handle,
const void *key_name, size_t key_len,
const void *value, size_t value_len,
object_change_type_t type,
const void * priv_data_pt);
typedef void (*object_reload_notify_fn_t) (
objdb_reload_notify_type_t,
int flush,
void *priv_data_pt);
#endif /* OBJECT_PARENT_HANDLE_DEFINED */
#ifndef QUORUM_H_DEFINED
typedef void (*quorum_callback_fn_t) (int quorate, void *context);
struct quorum_callin_functions
{
int (*quorate) (void);
int (*register_callback) (quorum_callback_fn_t callback_fn, void *context);
int (*unregister_callback) (quorum_callback_fn_t callback_fn, void *context);
};
typedef void (*sync_callback_fn_t) (
const unsigned int *view_list,
size_t view_list_entries,
int primary_designated,
struct memb_ring_id *ring_id);
#endif /* QUORUM_H_DEFINED */
struct corosync_api_v1 {
/*
* Object and configuration APIs
*/
int (*object_create) (
hdb_handle_t parent_object_handle,
hdb_handle_t *object_handle,
const void *object_name,
size_t object_name_len);
int (*object_priv_set) (
hdb_handle_t object_handle,
void *priv);
int (*object_key_create) (
hdb_handle_t object_handle,
const void *key_name,
size_t key_len,
const void *value,
size_t value_len);
int (*object_destroy) (
hdb_handle_t object_handle);
int (*object_valid_set) (
hdb_handle_t object_handle,
struct object_valid *object_valid_list,
size_t object_valid_list_entries);
int (*object_key_valid_set) (
hdb_handle_t object_handle,
struct object_key_valid *object_key_valid_list,
size_t object_key_valid_list_entries);
int (*object_find_create) (
hdb_handle_t parent_object_handle,
const void *object_name,
size_t object_name_len,
hdb_handle_t *object_find_handle);
int (*object_find_next) (
hdb_handle_t object_find_handle,
hdb_handle_t *object_handle);
int (*object_find_destroy) (
hdb_handle_t object_find_handle);
int (*object_key_get) (
hdb_handle_t object_handle,
const void *key_name,
size_t key_len,
void **value,
size_t *value_len);
int (*object_priv_get) (
hdb_handle_t jobject_handle,
void **priv);
int (*object_key_replace) (
hdb_handle_t object_handle,
const void *key_name,
size_t key_len,
const void *new_value,
size_t new_value_len);
int (*object_key_delete) (
hdb_handle_t object_handle,
const void *key_name,
size_t key_len);
int (*object_iter_reset) (
hdb_handle_t parent_object_handle);
int (*object_iter) (
hdb_handle_t parent_object_handle,
void **object_name,
size_t *name_len,
hdb_handle_t *object_handle);
int (*object_key_iter_reset) (
hdb_handle_t object_handle);
int (*object_key_iter) (
hdb_handle_t parent_object_handle,
void **key_name,
size_t *key_len,
void **value,
size_t *value_len);
int (*object_parent_get) (
hdb_handle_t object_handle,
hdb_handle_t *parent_handle);
int (*object_name_get) (
hdb_handle_t object_handle,
char *object_name,
size_t *object_name_len);
int (*object_dump) (
hdb_handle_t object_handle,
FILE *file);
int (*object_key_iter_from) (
hdb_handle_t parent_object_handle,
hdb_handle_t start_pos,
void **key_name,
size_t *key_len,
void **value,
size_t *value_len);
int (*object_track_start) (
hdb_handle_t object_handle,
object_track_depth_t depth,
object_key_change_notify_fn_t key_change_notify_fn,
object_create_notify_fn_t object_create_notify_fn,
object_destroy_notify_fn_t object_destroy_notify_fn,
object_reload_notify_fn_t object_reload_notify_fn,
void * priv_data_pt);
void (*object_track_stop) (
object_key_change_notify_fn_t key_change_notify_fn,
object_create_notify_fn_t object_create_notify_fn,
object_destroy_notify_fn_t object_destroy_notify_fn,
object_reload_notify_fn_t object_reload_notify_fn,
void * priv_data_pt);
int (*object_write_config) (const char **error_string);
int (*object_reload_config) (int flush,
const char **error_string);
int (*object_key_increment) (
hdb_handle_t object_handle,
const void *key_name,
size_t key_len,
unsigned int *value);
int (*object_key_decrement) (
hdb_handle_t object_handle,
const void *key_name,
size_t key_len,
unsigned int *value);
/*
* Time and timer APIs
*/
int (*timer_add_duration) (
unsigned long long nanoseconds_in_future,
void *data,
void (*timer_nf) (void *data),
corosync_timer_handle_t *handle);
int (*timer_add_absolute) (
unsigned long long nanoseconds_from_epoch,
void *data,
void (*timer_fn) (void *data),
corosync_timer_handle_t *handle);
void (*timer_delete) (
corosync_timer_handle_t timer_handle);
unsigned long long (*timer_time_get) (void);
unsigned long long (*timer_expire_time_get) (
corosync_timer_handle_t timer_handle);
/*
* IPC APIs
*/
void (*ipc_source_set) (mar_message_source_t *source, void *conn);
int (*ipc_source_is_local) (const mar_message_source_t *source);
void *(*ipc_private_data_get) (void *conn);
int (*ipc_response_send) (void *conn, const void *msg, size_t mlen);
int (*ipc_response_iov_send) (void *conn,
const struct iovec *iov, unsigned int iov_len);
int (*ipc_dispatch_send) (void *conn, const void *msg, size_t mlen);
int (*ipc_dispatch_iov_send) (void *conn,
const struct iovec *iov, unsigned int iov_len);
void (*ipc_refcnt_inc) (void *conn);
void (*ipc_refcnt_dec) (void *conn);
/*
* Totem APIs
*/
unsigned int (*totem_nodeid_get) (void);
int (*totem_family_get) (void);
int (*totem_ring_reenable) (void);
int (*totem_mcast) (const struct iovec *iovec,
unsigned int iov_len, unsigned int guarantee);
int (*totem_ifaces_get) (
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count);
const char *(*totem_ifaces_print) (unsigned int nodeid);
const char *(*totem_ip_print) (const struct totem_ip_address *addr);
int (*totem_crypto_set) (unsigned int type);
int (*totem_callback_token_create) (
void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type,
const void *),
const void *data);
/*
* Totem open process groups API for those service engines
* wanting their own groups
*/
int (*tpg_init) (
hdb_handle_t *handle,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list,
size_t member_list_entries,
const unsigned int *left_list,
size_t left_list_entries,
const unsigned int *joined_list,
size_t joined_list_entries,
const struct memb_ring_id *ring_id));
int (*tpg_exit) (
hdb_handle_t handle);
int (*tpg_join) (
hdb_handle_t handle,
const struct corosync_tpg_group *groups,
size_t group_cnt);
int (*tpg_leave) (
hdb_handle_t handle,
const struct corosync_tpg_group *groups,
size_t group_cnt);
int (*tpg_joined_mcast) (
hdb_handle_t handle,
const struct iovec *iovec,
unsigned int iov_len,
int guarantee);
int (*tpg_joined_reserve) (
hdb_handle_t handle,
const struct iovec *iovec,
unsigned int iov_len);
int (*tpg_joined_release) (
int reserved_msgs);
int (*tpg_groups_mcast) (
hdb_handle_t handle,
int guarantee,
const struct corosync_tpg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len);
int (*tpg_groups_reserve) (
hdb_handle_t handle,
const struct corosync_tpg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len);
int (*tpg_groups_release) (
int reserved_msgs);
int (*schedwrk_create) (
hdb_handle_t *handle,
int (schedwrk_fn) (const void *),
const void *context);
void (*schedwrk_destroy) (hdb_handle_t handle);
int (*sync_request) (
const char *service_name);
/*
* User plugin-callable functions for quorum
*/
int (*quorum_is_quorate) (void);
int (*quorum_register_callback) (quorum_callback_fn_t callback_fn, void *context);
int (*quorum_unregister_callback) (quorum_callback_fn_t callback_fn, void *context);
/*
* This one is for the quorum management plugin's use
*/
int (*quorum_initialize)(struct quorum_callin_functions *fns);
/*
* Plugin loading and unloading
*/
int (*plugin_interface_reference) (
hdb_handle_t *handle,
const char *iface_name,
int version,
void **interface,
void *context);
int (*plugin_interface_release) (hdb_handle_t handle);
/*
* Service loading and unloading APIs
*/
unsigned int (*service_link_and_init) (
struct corosync_api_v1 *corosync_api_v1,
const char *service_name,
unsigned int service_ver);
unsigned int (*service_unlink_and_exit) (
struct corosync_api_v1 *corosync_api_v1,
const char *service_name,
unsigned int service_ver);
/*
* Error handling APIs
*/
void (*error_memory_failure) (void);
#define corosync_fatal_error(err) api->fatal_error ((err), __FILE__, __LINE__)
void (*fatal_error) (cs_fatal_error_t err, const char *file, unsigned int line);
void (*shutdown_request) (void);
void (*state_dump) (void);
/*
* The use of this interface is highly discouraged.
* Please avoid using any of coropoll apis in your service engines.
*/
hdb_handle_t (*poll_handle_get) (void);
int (*object_key_create_typed) (
hdb_handle_t object_handle,
const char *key_name,
const void *value,
size_t value_len,
objdb_value_types_t type);
int (*object_key_get_typed) (
hdb_handle_t object_handle,
const char *key_name,
void **value,
size_t *value_len,
objdb_value_types_t *type);
int (*object_key_iter_typed) (
hdb_handle_t parent_object_handle,
char **key_name,
void **value,
size_t *value_len,
objdb_value_types_t *type);
+
+ void *(*totem_get_stats)(void);
};
#define SERVICE_ID_MAKE(a,b) ( ((a)<<16) | (b) )
#define SERVICE_HANDLER_MAXIMUM_COUNT 64
struct corosync_lib_handler {
void (*lib_handler_fn) (void *conn, const void *msg);
enum cs_lib_flow_control flow_control;
};
struct corosync_exec_handler {
void (*exec_handler_fn) (const void *msg, unsigned int nodeid);
void (*exec_endian_convert_fn) (void *msg);
};
struct corosync_service_engine_iface_ver0 {
struct corosync_service_engine *(*corosync_get_service_engine_ver0) (void);
};
struct corosync_service_engine {
const char *name;
unsigned short id;
unsigned short priority; /* Lower priority are loaded first, unloaded last.
* 0 is a special case which always loaded _and_ unloaded last
*/
unsigned int private_data_size;
enum cs_lib_flow_control flow_control;
enum cs_lib_allow_inquorate allow_inquorate;
int (*exec_init_fn) (struct corosync_api_v1 *);
int (*exec_exit_fn) (void);
void (*exec_dump_fn) (void);
int (*lib_init_fn) (void *conn);
int (*lib_exit_fn) (void *conn);
struct corosync_lib_handler *lib_engine;
int lib_engine_count;
struct corosync_exec_handler *exec_engine;
int exec_engine_count;
int (*config_init_fn) (struct corosync_api_v1 *);
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id);
enum cs_sync_mode sync_mode;
void (*sync_init) (
const unsigned int *member_list,
size_t member_list_entries,
const struct memb_ring_id *ring_id);
int (*sync_process) (void);
void (*sync_activate) (void);
void (*sync_abort) (void);
};
#endif /* COROAPI_H_DEFINED */
diff --git a/include/corosync/totem/totem.h b/include/corosync/totem/totem.h
index 521a497a..a769d577 100644
--- a/include/corosync/totem/totem.h
+++ b/include/corosync/totem/totem.h
@@ -1,188 +1,256 @@
/*
* Copyright (c) 2005 MontaVista Software, Inc.
* Copyright (c) 2006-2009 Red Hat, Inc.
*
* Author: Steven Dake (sdake@redhat.com)
*
* All rights reserved.
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TOTEM_H_DEFINED
#define TOTEM_H_DEFINED
#include "totemip.h"
+#include <corosync/hdb.h>
#ifdef HAVE_SMALL_MEMORY_FOOTPRINT
#define PROCESSOR_COUNT_MAX 16
#define MESSAGE_SIZE_MAX 1024*64
#define MESSAGE_QUEUE_MAX 512
#else
#define PROCESSOR_COUNT_MAX 384
#define MESSAGE_SIZE_MAX 1024*1024 /* (1MB) */
#define MESSAGE_QUEUE_MAX MESSAGE_SIZE_MAX / totem_config->net_mtu
#endif /* HAVE_SMALL_MEMORY_FOOTPRINT */
#define FRAME_SIZE_MAX 10000
#define TRANSMITS_ALLOWED 16
#define SEND_THREADS_MAX 16
#define INTERFACE_MAX 2
struct totem_interface {
struct totem_ip_address bindnet;
struct totem_ip_address boundto;
struct totem_ip_address mcast_addr;
uint16_t ip_port;
};
struct totem_logging_configuration {
void (*log_printf) (
unsigned int rec_ident,
const char *function_name,
const char *file_name,
int file_line,
const char *format,
...) __attribute__((format(printf, 5, 6)));
int log_level_security;
int log_level_error;
int log_level_warning;
int log_level_notice;
int log_level_debug;
int log_subsys_id;
};
enum { TOTEM_PRIVATE_KEY_LEN = 128 };
enum { TOTEM_RRP_MODE_BYTES = 64 };
struct totem_config {
int version;
/*
* network
*/
struct totem_interface *interfaces;
unsigned int interface_count;
unsigned int node_id;
unsigned int clear_node_high_bit;
/*
* key information
*/
unsigned char private_key[TOTEM_PRIVATE_KEY_LEN];
unsigned int private_key_len;
/*
* Totem configuration parameters
*/
unsigned int token_timeout;
unsigned int token_retransmit_timeout;
unsigned int token_hold_timeout;
unsigned int token_retransmits_before_loss_const;
unsigned int join_timeout;
unsigned int send_join_timeout;
unsigned int consensus_timeout;
unsigned int merge_timeout;
unsigned int downcheck_timeout;
unsigned int fail_to_recv_const;
unsigned int seqno_unchanged_const;
unsigned int rrp_token_expired_timeout;
unsigned int rrp_problem_count_timeout;
unsigned int rrp_problem_count_threshold;
char rrp_mode[TOTEM_RRP_MODE_BYTES];
struct totem_logging_configuration totem_logging_configuration;
void (*log_rec) (
int subsysid,
const char *function_name,
const char *file_name,
int file_line,
unsigned int rec_ident,
...);
unsigned int secauth;
unsigned int net_mtu;
unsigned int threads;
unsigned int heartbeat_failures_allowed;
unsigned int max_network_delay;
unsigned int window_size;
unsigned int max_messages;
const char *vsf_type;
unsigned int broadcast_use;
enum { TOTEM_CRYPTO_SOBER=0, TOTEM_CRYPTO_NSS } crypto_type;
enum { TOTEM_CRYPTO_ACCEPT_OLD=0, TOTEM_CRYPTO_ACCEPT_NEW } crypto_accept;
int crypto_crypt_type;
int crypto_sign_type;
int transport_number;
};
#define TOTEM_CONFIGURATION_TYPE
enum totem_configuration_type {
TOTEM_CONFIGURATION_REGULAR,
TOTEM_CONFIGURATION_TRANSITIONAL
};
#define TOTEM_CALLBACK_TOKEN_TYPE
enum totem_callback_token_type {
TOTEM_CALLBACK_TOKEN_RECEIVED = 1,
TOTEM_CALLBACK_TOKEN_SENT = 2
};
#define MEMB_RING_ID
struct memb_ring_id {
struct totem_ip_address rep;
unsigned long long seq;
} __attribute__((packed));
+typedef struct {
+ hdb_handle_t handle;
+ int is_dirty;
+ time_t last_updated;
+} totem_stats_header_t;
+
+typedef struct {
+ totem_stats_header_t hdr;
+ uint32_t iface_changes;
+} totemnet_stats_t;
+
+typedef struct {
+ totem_stats_header_t hdr;
+ totemnet_stats_t *net;
+ char *algo_name;
+} totemrrp_stats_t;
+
+
+typedef struct {
+ uint32_t rx;
+ uint32_t tx;
+ int backlog_calc;
+} totemsrp_token_stats_t;
+
+typedef struct {
+ totem_stats_header_t hdr;
+ totemrrp_stats_t *rrp;
+ uint64_t orf_token_tx;
+ uint64_t orf_token_rx;
+ uint64_t memb_merge_detect_tx;
+ uint64_t memb_merge_detect_rx;
+ uint64_t memb_join_tx;
+ uint64_t memb_join_rx;
+ uint64_t mcast_tx;
+ uint64_t mcast_retx;
+ uint64_t mcast_rx;
+ uint64_t memb_commit_token_tx;
+ uint64_t memb_commit_token_rx;
+ uint64_t token_hold_cancel_tx;
+ uint64_t token_hold_cancel_rx;
+ uint64_t operational_entered;
+ uint64_t operational_token_lost;
+ uint64_t gather_entered;
+ uint64_t gather_token_lost;
+ uint64_t commit_entered;
+ uint64_t commit_token_lost;
+ uint64_t recovery_entered;
+ uint64_t recovery_token_lost;
+ uint64_t consensus_timeouts;
+ uint64_t rx_msg_dropped;
+
+ int earliest_token;
+ int latest_token;
+#define TOTEM_TOKEN_STATS_MAX 100
+ totemsrp_token_stats_t token[TOTEM_TOKEN_STATS_MAX];
+
+} totemsrp_stats_t;
+
+typedef struct {
+ totem_stats_header_t hdr;
+ totemsrp_stats_t *srp;
+} totemmrp_stats_t;
+
+typedef struct {
+ totem_stats_header_t hdr;
+ totemmrp_stats_t *mrp;
+} totempg_stats_t;
#endif /* TOTEM_H_DEFINED */
diff --git a/include/corosync/totem/totempg.h b/include/corosync/totem/totempg.h
index 4609092a..86a799e1 100644
--- a/include/corosync/totem/totempg.h
+++ b/include/corosync/totem/totempg.h
@@ -1,163 +1,165 @@
/*
* Copyright (c) 2003-2005 MontaVista Software, Inc.
* Copyright (c) 2006-2007, 2009 Red Hat, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@redhat.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TOTEMPG_H_DEFINED
#define TOTEMPG_H_DEFINED
#ifdef __cplusplus
extern "C" {
#endif
#include <netinet/in.h>
#include "totem.h"
#include "coropoll.h"
#include <corosync/hdb.h>
struct totempg_group {
const void *group;
size_t group_len;
};
#define TOTEMPG_AGREED 0
#define TOTEMPG_SAFE 1
/*
* Totem Single Ring Protocol
* depends on poll abstraction, POSIX, IPV4
*/
/*
* Initialize the totem process groups abstraction
*/
extern int totempg_initialize (
hdb_handle_t poll_handle,
struct totem_config *totem_config
);
extern void totempg_finalize (void);
extern int totempg_callback_token_create (void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, const void *),
const void *data);
extern void totempg_callback_token_destroy (void *handle);
/*
* Initialize a groups instance
*/
extern int totempg_groups_initialize (
hdb_handle_t *handle,
void (*deliver_fn) (
unsigned int nodeid,
const void *msg,
unsigned int msg_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
const unsigned int *member_list, size_t member_list_entries,
const unsigned int *left_list, size_t left_list_entries,
const unsigned int *joined_list, size_t joined_list_entries,
const struct memb_ring_id *ring_id));
extern int totempg_groups_finalize (
hdb_handle_t handle);
extern int totempg_groups_join (
hdb_handle_t handle,
const struct totempg_group *groups,
size_t group_cnt);
extern int totempg_groups_leave (
hdb_handle_t handle,
const struct totempg_group *groups,
size_t group_cnt);
extern int totempg_groups_mcast_joined (
hdb_handle_t handle,
const struct iovec *iovec,
unsigned int iov_len,
int guarantee);
extern int totempg_groups_joined_reserve (
hdb_handle_t handle,
const struct iovec *iovec,
unsigned int iov_len);
extern int totempg_groups_joined_release (
int msg_count);
extern int totempg_groups_mcast_groups (
hdb_handle_t handle,
int guarantee,
const struct totempg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len);
extern int totempg_groups_send_ok_groups (
hdb_handle_t handle,
const struct totempg_group *groups,
size_t groups_cnt,
const struct iovec *iovec,
unsigned int iov_len);
extern int totempg_ifaces_get (
unsigned int nodeid,
struct totem_ip_address *interfaces,
char ***status,
unsigned int *iface_count);
+extern void* totempg_get_stats (void);
+
extern const char *totempg_ifaces_print (unsigned int nodeid);
extern unsigned int totempg_my_nodeid_get (void);
extern int totempg_my_family_get (void);
extern int totempg_crypto_set (unsigned int type);
extern int totempg_ring_reenable (void);
extern void totempg_service_ready_register (
void (*totem_service_ready) (void));
#ifdef __cplusplus
}
#endif
#endif /* TOTEMPG_H_DEFINED */

File Metadata

Mime Type
text/x-diff
Expires
Wed, Jun 25, 4:40 AM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
1952180
Default Alt Text
(278 KB)

Event Timeline