diff --git a/libknet/compress_bzip2.c b/libknet/compress_bzip2.c index 771495f7..c62f127c 100644 --- a/libknet/compress_bzip2.c +++ b/libknet/compress_bzip2.c @@ -1,201 +1,203 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPBZIP2 #include #include "internals.h" #include "compress_bzip2.h" #include "logging.h" #include "common.h" +#define LIBBZ2_1 "libbz2.so.1" + /* * global vars for dlopen */ static void *bzip2_lib; /* * symbols remapping */ int (*_int_BZ2_bzBuffToBuffCompress)(char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor); int (*_int_BZ2_bzBuffToBuffDecompress)(char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int samll, int verbosity); static int bzip2_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; _int_BZ2_bzBuffToBuffCompress = dlsym(bzip2_lib, "BZ2_bzBuffToBuffCompress"); if (!_int_BZ2_bzBuffToBuffCompress) { error = dlerror(); log_err(knet_h, KNET_SUB_BZIP2COMP, "unable to map BZ2_bzBuffToBuffCompress: %s", error); err = -1; goto out; } _int_BZ2_bzBuffToBuffDecompress = dlsym(bzip2_lib, "BZ2_bzBuffToBuffDecompress"); if (!_int_BZ2_bzBuffToBuffDecompress) { error = dlerror(); log_err(knet_h, KNET_SUB_BZIP2COMP, "unable to map BZ2_bzBuffToBuffDecompress: %s", error); err = -1; goto out; } out: if (err) { errno = EINVAL; } return err; } int bzip2_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!bzip2_lib) { - bzip2_lib = open_lib(knet_h, "libbz2.so.1", 0); + bzip2_lib = open_lib(knet_h, LIBBZ2_1, 0); if (!bzip2_lib) { savederrno = errno; err = -1; goto out; } if (bzip2_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; dlclose(bzip2_lib); bzip2_lib = NULL; goto out; } } out: errno = savederrno; return err; } void bzip2_unload_lib( knet_handle_t knet_h) { if (bzip2_lib) { dlclose(bzip2_lib); bzip2_lib = NULL; } return; } int bzip2_val_level( knet_handle_t knet_h, int compress_level) { if ((compress_level < 1) || (compress_level > 9)) { log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unsupported compression level %d (accepted values from 1 to 9)", compress_level); errno = EINVAL; return -1; } return 0; } int bzip2_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; unsigned int destLen = KNET_DATABUFSIZE_COMPRESS; err = (*_int_BZ2_bzBuffToBuffCompress)((char *)buf_out, &destLen, (char *)buf_in, buf_in_len, knet_h->compress_level, 0, 0); switch(err) { case BZ_OK: *buf_out_len = destLen; break; case BZ_MEM_ERROR: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 compress has not enough memory"); savederrno = ENOMEM; err = -1; break; case BZ_OUTBUFF_FULL: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unable to compress source in destination buffer"); savederrno = E2BIG; err = -1; break; default: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 compress unknown error %d", err); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } int bzip2_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; unsigned int destLen = KNET_DATABUFSIZE_COMPRESS; err = (*_int_BZ2_bzBuffToBuffDecompress)((char *)buf_out, &destLen, (char *)buf_in, buf_in_len, 0, 0); switch(err) { case BZ_OK: *buf_out_len = destLen; break; case BZ_MEM_ERROR: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress has not enough memory"); savederrno = ENOMEM; err = -1; break; case BZ_OUTBUFF_FULL: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 unable to decompress source in destination buffer"); savederrno = E2BIG; err = -1; break; case BZ_DATA_ERROR: case BZ_DATA_ERROR_MAGIC: case BZ_UNEXPECTED_EOF: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress detected input data corruption"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_BZIP2COMP, "bzip2 decompress unknown error %d", err); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_lz4.c b/libknet/compress_lz4.c index e3c4563b..f5c38705 100644 --- a/libknet/compress_lz4.c +++ b/libknet/compress_lz4.c @@ -1,254 +1,256 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPLZ4 #include #include "internals.h" #include "compress_lz4.h" #include "logging.h" #include "common.h" +#define LIBLZ4_1 "liblz4.so.1" + /* * global vars for dlopen */ static void *lz4_lib; /* * symbols remapping */ int (*_int_LZ4_compress_HC)(const char* src, char* dst, int srcSize, int dstCapacity, int compressionLevel); int (*_int_LZ4_compress_fast)(const char* source, char* dest, int sourceSize, int maxDestSize, int acceleration); int (*_int_LZ4_decompress_safe)(const char* source, char* dest, int compressedSize, int maxDecompressedSize); static int lz4_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; _int_LZ4_compress_HC = dlsym(lz4_lib, "LZ4_compress_HC"); if (!_int_LZ4_compress_HC) { error = dlerror(); log_err(knet_h, KNET_SUB_LZ4COMP, "unable to map LZ4_compress_HC: %s", error); err = -1; goto out; } _int_LZ4_compress_fast = dlsym(lz4_lib, "LZ4_compress_fast"); if (!_int_LZ4_compress_fast) { error = dlerror(); log_err(knet_h, KNET_SUB_LZ4COMP, "unable to map LZ4_compress_fast: %s", error); err = -1; goto out; } _int_LZ4_decompress_safe = dlsym(lz4_lib, "LZ4_decompress_safe"); if (!_int_LZ4_decompress_safe) { error = dlerror(); log_err(knet_h, KNET_SUB_LZ4COMP, "unable to map LZ4_decompress_safe: %s", error); err = -1; goto out; } out: if (err) { _int_LZ4_compress_HC = NULL; _int_LZ4_compress_fast = NULL; _int_LZ4_decompress_safe = NULL; errno = EINVAL; } return err; } int lz4_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!lz4_lib) { - lz4_lib = open_lib(knet_h, "liblz4.so.1", 0); + lz4_lib = open_lib(knet_h, LIBLZ4_1, 0); if (!lz4_lib) { savederrno = EAGAIN; err = -1; goto out; } if (lz4_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; dlclose(lz4_lib); lz4_lib = NULL; goto out; } } out: errno = savederrno; return err; } void lz4_unload_lib( knet_handle_t knet_h) { if (lz4_lib) { dlclose(lz4_lib); lz4_lib = NULL; } return; } int lz4_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level <= 0) { - log_info(knet_h, KNET_SUB_LZ4COMP, "lz4 acceleration level 0 (or negatives) are automatically remapped to 1 by liblz4"); + log_info(knet_h, KNET_SUB_LZ4COMP, "lz4 acceleration level 0 (or negatives) are automatically remapped to 1 by %s", LIBLZ4_1); } return 0; } int lz4_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = (*_int_LZ4_compress_fast)((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE_COMPRESS, knet_h->compress_level); /* * data compressed */ if (lzerr > 0) { *buf_out_len = lzerr; } /* * unable to compress */ if (lzerr == 0) { *buf_out_len = buf_in_len; } /* * lz4 internal error */ if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 compression error: %d", lzerr); savederrno = EINVAL; err = -1; } errno = savederrno; return err; } #ifdef LZ4HC_CLEVEL_MAX #define KNET_LZ4HC_MAX LZ4HC_CLEVEL_MAX #endif #ifdef LZ4HC_MAX_CLEVEL #define KNET_LZ4HC_MAX LZ4HC_MAX_CLEVEL #endif #ifndef KNET_LZ4HC_MAX #define KNET_LZ4HC_MAX 0 #error Please check lz4hc.h for missing LZ4HC_CLEVEL_MAX or LZ4HC_MAX_CLEVEL variants #endif int lz4hc_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level < 1) { log_err(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc supports only 1+ values for compression level"); errno = EINVAL; return -1; } if (compress_level < 4) { log_info(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc recommends 4+ compression level for better results"); } if (compress_level > KNET_LZ4HC_MAX) { log_warn(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc installed on this system supports up to compression level %d. Higher values behaves as %d", KNET_LZ4HC_MAX, KNET_LZ4HC_MAX); } return 0; } int lz4hc_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = (*_int_LZ4_compress_HC)((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE_COMPRESS, knet_h->compress_level); /* * data compressed */ if (lzerr > 0) { *buf_out_len = lzerr; } /* * unable to compress */ if (lzerr <= 0) { log_err(knet_h, KNET_SUB_LZ4HCCOMP, "lz4hc compression error: %d", lzerr); savederrno = EINVAL; err = -1; } errno = savederrno; return err; } int lz4_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzerr = (*_int_LZ4_decompress_safe)((const char *)buf_in, (char *)buf_out, buf_in_len, KNET_DATABUFSIZE); if (lzerr < 0) { log_err(knet_h, KNET_SUB_LZ4COMP, "lz4 decompression error: %d", lzerr); savederrno = EINVAL; err = -1; } if (lzerr > 0) { *buf_out_len = lzerr; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_lzma.c b/libknet/compress_lzma.c index 3ba5d0d5..92ffed17 100644 --- a/libknet/compress_lzma.c +++ b/libknet/compress_lzma.c @@ -1,216 +1,218 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPLZMA #include #include "internals.h" #include "compress_lzma.h" #include "logging.h" #include "common.h" +#define LIBLZMA_5 "liblzma.so.5" + /* * global vars for dlopen */ static void *lzma_lib; /* * symbols remapping */ int (*_int_lzma_easy_buffer_encode)( uint32_t preset, lzma_check check, const lzma_allocator *allocator, const uint8_t *in, size_t in_size, uint8_t *out, size_t *out_pos, size_t out_size); int (*_int_lzma_stream_buffer_decode)( uint64_t *memlimit, uint32_t flags, const lzma_allocator *allocator, const uint8_t *in, size_t *in_pos, size_t in_size, uint8_t *out, size_t *out_pos, size_t out_size); static int lzma_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; _int_lzma_easy_buffer_encode = dlsym(lzma_lib, "lzma_easy_buffer_encode"); if (!_int_lzma_easy_buffer_encode) { error = dlerror(); log_err(knet_h, KNET_SUB_LZMACOMP, "unable to map lzma_easy_buffer_encode: %s", error); err = -1; goto out; } _int_lzma_stream_buffer_decode = dlsym(lzma_lib, "lzma_stream_buffer_decode"); if (!_int_lzma_stream_buffer_decode) { error = dlerror(); log_err(knet_h, KNET_SUB_LZMACOMP, "unable to map lzma_stream_buffer_decode: %s", error); err = -1; goto out; } out: if (err) { errno = EINVAL; } return err; } int lzma_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!lzma_lib) { - lzma_lib = open_lib(knet_h, "liblzma.so.5", 0); + lzma_lib = open_lib(knet_h, LIBLZMA_5, 0); if (!lzma_lib) { savederrno = EAGAIN; err = -1; goto out; } if (lzma_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; dlclose(lzma_lib); lzma_lib = NULL; goto out; } } out: errno = savederrno; return err; } void lzma_unload_lib( knet_handle_t knet_h) { if (lzma_lib) { dlclose(lzma_lib); lzma_lib = NULL; } return; } int lzma_val_level( knet_handle_t knet_h, int compress_level) { if ((compress_level < 0) || (compress_level > 9)) { log_err(knet_h, KNET_SUB_LZMACOMP, "lzma unsupported compression preset %d (accepted values from 0 to 9)", compress_level); errno = EINVAL; return -1; } return 0; } int lzma_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; size_t out_pos = 0; lzma_ret ret = 0; ret = (*_int_lzma_easy_buffer_encode)(knet_h->compress_level, LZMA_CHECK_NONE, NULL, (const uint8_t *)buf_in, buf_in_len, (uint8_t *)buf_out, &out_pos, KNET_DATABUFSIZE_COMPRESS); switch(ret) { case LZMA_OK: *buf_out_len = out_pos; break; case LZMA_MEM_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress memory allocation failed"); savederrno = ENOMEM; err = -1; break; case LZMA_MEMLIMIT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress requires higher memory boundaries (see lzma_memlimit_set)"); savederrno = ENOMEM; err = -1; break; case LZMA_PROG_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress has been called with incorrect options"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma compress unknown error %u", ret); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } int lzma_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int err = 0; int savederrno = 0; uint64_t memlimit = UINT64_MAX; /* disable lzma internal memlimit check */ size_t out_pos = 0, in_pos = 0; lzma_ret ret = 0; ret = (*_int_lzma_stream_buffer_decode)(&memlimit, 0, NULL, (const uint8_t *)buf_in, &in_pos, buf_in_len, (uint8_t *)buf_out, &out_pos, KNET_DATABUFSIZE_COMPRESS); switch(ret) { case LZMA_OK: *buf_out_len = out_pos; break; case LZMA_MEM_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress memory allocation failed"); savederrno = ENOMEM; err = -1; break; case LZMA_MEMLIMIT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress requires higher memory boundaries (see lzma_memlimit_set)"); savederrno = ENOMEM; err = -1; break; case LZMA_DATA_ERROR: case LZMA_FORMAT_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress invalid data received"); savederrno = EINVAL; err = -1; break; case LZMA_PROG_ERROR: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress has been called with incorrect options"); savederrno = EINVAL; err = -1; break; default: log_err(knet_h, KNET_SUB_LZMACOMP, "lzma decompress unknown error %u", ret); savederrno = EINVAL; err = -1; break; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_lzo2.c b/libknet/compress_lzo2.c index e1a9e8b4..bd00ffc0 100644 --- a/libknet/compress_lzo2.c +++ b/libknet/compress_lzo2.c @@ -1,290 +1,292 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPLZO2 #include #include "internals.h" #include "compress_lzo2.h" #include "logging.h" #include "common.h" +#define LIBLZO2_2 "liblzo2.so.2" + /* * global vars for dlopen */ static void *lzo2_lib; /* * symbols remapping */ int (*_int_lzo1x_decompress)(const lzo_bytep src, lzo_uint src_len, lzo_bytep dst, lzo_uintp dst_len, lzo_voidp wrkmem /* NOT USED */ ); int (*_int_lzo1x_1_compress)(const lzo_bytep src, lzo_uint src_len, lzo_bytep dst, lzo_uintp dst_len, lzo_voidp wrkmem); int (*_int_lzo1x_1_11_compress)(const lzo_bytep src, lzo_uint src_len, lzo_bytep dst, lzo_uintp dst_len, lzo_voidp wrkmem); int (*_int_lzo1x_1_12_compress)(const lzo_bytep src, lzo_uint src_len, lzo_bytep dst, lzo_uintp dst_len, lzo_voidp wrkmem); int (*_int_lzo1x_1_15_compress)(const lzo_bytep src, lzo_uint src_len, lzo_bytep dst, lzo_uintp dst_len, lzo_voidp wrkmem); int (*_int_lzo1x_999_compress)(const lzo_bytep src, lzo_uint src_len, lzo_bytep dst, lzo_uintp dst_len, lzo_voidp wrkmem); static int lzo2_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; _int_lzo1x_decompress = dlsym(lzo2_lib, "lzo1x_decompress"); if (!_int_lzo1x_decompress) { error = dlerror(); log_err(knet_h, KNET_SUB_LZO2COMP, "unable to map lzo1x_decompress: %s", error); err = -1; goto out; } _int_lzo1x_1_compress = dlsym(lzo2_lib, "lzo1x_1_compress"); if (!_int_lzo1x_1_compress) { error = dlerror(); log_err(knet_h, KNET_SUB_LZO2COMP, "unable to map lzo1x_1_compress: %s", error); err = -1; goto out; } _int_lzo1x_1_11_compress = dlsym(lzo2_lib, "lzo1x_1_11_compress"); if (!_int_lzo1x_1_11_compress) { error = dlerror(); log_err(knet_h, KNET_SUB_LZO2COMP, "unable to map lzo1x_1_11_compress: %s", error); err = -1; goto out; } _int_lzo1x_1_12_compress = dlsym(lzo2_lib, "lzo1x_1_12_compress"); if (!_int_lzo1x_1_12_compress) { error = dlerror(); log_err(knet_h, KNET_SUB_LZO2COMP, "unable to map lzo1x_1_12_compress: %s", error); err = -1; goto out; } _int_lzo1x_1_15_compress = dlsym(lzo2_lib, "lzo1x_1_15_compress"); if (!_int_lzo1x_1_15_compress) { error = dlerror(); log_err(knet_h, KNET_SUB_LZO2COMP, "unable to map lzo1x_1_15_compress: %s", error); err = -1; goto out; } _int_lzo1x_999_compress = dlsym(lzo2_lib, "lzo1x_999_compress"); if (!_int_lzo1x_999_compress) { error = dlerror(); log_err(knet_h, KNET_SUB_LZO2COMP, "unable to map lzo1x_999_compress: %s", error); err = -1; goto out; } out: if (err) { _int_lzo1x_decompress = NULL; _int_lzo1x_1_compress = NULL; _int_lzo1x_1_11_compress = NULL; _int_lzo1x_1_12_compress = NULL; _int_lzo1x_1_15_compress = NULL; _int_lzo1x_999_compress = NULL; errno = EINVAL; } return err; } int lzo2_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!lzo2_lib) { - lzo2_lib = open_lib(knet_h, "liblzo2.so.2", 0); + lzo2_lib = open_lib(knet_h, LIBLZO2_2, 0); if (!lzo2_lib) { savederrno = EAGAIN; err = -1; goto out; } if (lzo2_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; dlclose(lzo2_lib); lzo2_lib = NULL; goto out; } } out: errno = savederrno; return err; } void lzo2_unload_lib( knet_handle_t knet_h) { if (lzo2_lib) { dlclose(lzo2_lib); lzo2_lib = NULL; } return; } int lzo2_is_init( knet_handle_t knet_h, int method_idx) { if (knet_h->compress_int_data[method_idx]) { return 1; } return 0; } int lzo2_init( knet_handle_t knet_h, int method_idx) { /* * LZO1X_999_MEM_COMPRESS is the highest amount of memory lzo2 can use */ if (!knet_h->compress_int_data[method_idx]) { knet_h->compress_int_data[method_idx] = malloc(LZO1X_999_MEM_COMPRESS); if (!knet_h->compress_int_data[method_idx]) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 unable to allocate work memory"); errno = ENOMEM; return -1; } memset(knet_h->compress_int_data[method_idx], 0, LZO1X_999_MEM_COMPRESS); } return 0; } void lzo2_fini( knet_handle_t knet_h, int method_idx) { if (knet_h->compress_int_data[method_idx]) { free(knet_h->compress_int_data[method_idx]); knet_h->compress_int_data[method_idx] = NULL; } return; } int lzo2_val_level( knet_handle_t knet_h, int compress_level) { switch(compress_level) { case 1: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_compress internal compress method"); break; case 11: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_11_compress internal compress method"); break; case 12: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_12_compress internal compress method"); break; case 15: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_1_15_compress internal compress method"); break; case 999: log_debug(knet_h, KNET_SUB_LZO2COMP, "lzo2 will use lzo1x_999_compress internal compress method"); break; default: log_warn(knet_h, KNET_SUB_LZO2COMP, "Unknown lzo2 internal compress method. lzo1x_1_compress will be used as default fallback"); break; } return 0; } int lzo2_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int savederrno = 0, lzerr = 0, err = 0; lzo_uint cmp_len; switch(knet_h->compress_level) { case 1: lzerr = (*_int_lzo1x_1_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 11: lzerr = (*_int_lzo1x_1_11_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 12: lzerr = (*_int_lzo1x_1_12_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 15: lzerr = (*_int_lzo1x_1_15_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; case 999: lzerr = (*_int_lzo1x_999_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; default: lzerr = (*_int_lzo1x_1_compress)(buf_in, buf_in_len, buf_out, &cmp_len, knet_h->compress_int_data[knet_h->compress_model]); break; } if (lzerr != LZO_E_OK) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 internal compression error"); savederrno = EAGAIN; err = -1; } else { *buf_out_len = cmp_len; } errno = savederrno; return err; } int lzo2_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int lzerr = 0, err = 0; int savederrno = 0; lzo_uint decmp_len; lzerr = (*_int_lzo1x_decompress)(buf_in, buf_in_len, buf_out, &decmp_len, NULL); if (lzerr != LZO_E_OK) { log_err(knet_h, KNET_SUB_LZO2COMP, "lzo2 internal decompression error"); savederrno = EAGAIN; err = -1; } else { *buf_out_len = decmp_len; } errno = savederrno; return err; } #endif diff --git a/libknet/compress_zlib.c b/libknet/compress_zlib.c index 4b82306a..1d5472aa 100644 --- a/libknet/compress_zlib.c +++ b/libknet/compress_zlib.c @@ -1,212 +1,214 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #ifdef BUILDCOMPZLIB #include #include "internals.h" #include "compress_zlib.h" #include "logging.h" #include "common.h" +#define LIBZ_1 "libz.so.1" + /* * global vars for dlopen */ static void *zlib_lib; /* * symbols remapping */ int (*_int_uncompress)(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen); int (*_int_compress2)(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level); static int zlib_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; _int_uncompress = dlsym(zlib_lib, "uncompress"); if (!_int_uncompress) { error = dlerror(); log_err(knet_h, KNET_SUB_ZLIBCOMP, "unable to map uncompress: %s", error); err = -1; goto out; } _int_compress2 = dlsym(zlib_lib, "compress2"); if (!_int_compress2) { error = dlerror(); log_err(knet_h, KNET_SUB_ZLIBCOMP, "unable to map compress2: %s", error); err = -1; goto out; } out: if (err) { _int_uncompress = NULL; _int_compress2 = NULL; errno = EINVAL; } return err; } int zlib_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!zlib_lib) { - zlib_lib = open_lib(knet_h, "libz.so.1", 0); + zlib_lib = open_lib(knet_h, LIBZ_1, 0); if (!zlib_lib) { savederrno = EAGAIN; err = -1; goto out; } if (zlib_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; dlclose(zlib_lib); zlib_lib = NULL; goto out; } } out: errno = savederrno; return err; } void zlib_unload_lib( knet_handle_t knet_h) { if (zlib_lib) { dlclose(zlib_lib); zlib_lib = NULL; } return; } int zlib_val_level( knet_handle_t knet_h, int compress_level) { if (compress_level < 0) { log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib does not support negative compression level %d", compress_level); return -1; } if (compress_level > 9) { log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib does not support compression level higher than 9"); return -1; } if (compress_level == 0) { log_warn(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress level 0 does NOT perform any compression"); } return 0; } int zlib_compress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int zerr = 0, err = 0; int savederrno = 0; uLongf destLen = *buf_out_len; zerr = (*_int_compress2)(buf_out, &destLen, buf_in, buf_in_len, knet_h->compress_level); *buf_out_len = destLen; switch(zerr) { case Z_OK: err = 0; savederrno = 0; break; case Z_MEM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress mem error"); err = -1; savederrno = ENOMEM; break; case Z_BUF_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress buf error"); err = -1; savederrno = ENOBUFS; break; case Z_STREAM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib compress stream error"); err = -1; savederrno = EINVAL; break; default: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib unknown compress error: %d", zerr); break; } errno = savederrno; return err; } int zlib_decompress( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { int zerr = 0, err = 0; int savederrno = 0; uLongf destLen = *buf_out_len; zerr = (*_int_uncompress)(buf_out, &destLen, buf_in, buf_in_len); *buf_out_len = destLen; switch(zerr) { case Z_OK: err = 0; savederrno = 0; break; case Z_MEM_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress mem error"); err = -1; savederrno = ENOMEM; break; case Z_BUF_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress buf error"); err = -1; savederrno = ENOBUFS; break; case Z_DATA_ERROR: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib decompress data error"); err = -1; savederrno = EINVAL; break; default: log_err(knet_h, KNET_SUB_ZLIBCOMP, "zlib unknown decompress error: %d", zerr); break; } errno = savederrno; return err; } #endif diff --git a/libknet/crypto_nss.c b/libknet/crypto_nss.c index a9ef74ad..42e5aeaf 100644 --- a/libknet/crypto_nss.c +++ b/libknet/crypto_nss.c @@ -1,1133 +1,1135 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Author: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #ifdef BUILDCRYPTONSS #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "crypto.h" #include "crypto_nss.h" #include "logging.h" +#define LIBNSS3 "libnss3.so" + /* * global vars for dlopen */ static void *nss_lib; /* * symbols remapping */ /* * nss3 */ CK_MECHANISM_TYPE (*_int_PK11_GetBestWrapMechanism)(PK11SlotInfo *slot); PK11SlotInfo *(*_int_PK11_GetBestSlot)(CK_MECHANISM_TYPE type, void *wincx); int (*_int_PK11_GetBestKeyLength)(PK11SlotInfo *slot, CK_MECHANISM_TYPE type); SECStatus (*_int_PK11_DigestFinal)(PK11Context *context, unsigned char *data, unsigned int *outLen, unsigned int length); void (*_int_SECITEM_FreeItem)(SECItem *zap, PRBool freeit); SECStatus (*_int_NSS_NoDB_Init)(const char *configdir); SECStatus (*_int_NSS_Shutdown)(void); SECStatus (*_int_PK11_DigestBegin)(PK11Context *cx); SECStatus (*_int_PK11_DigestOp)(PK11Context *context, const unsigned char *in, unsigned len); void (*_int_PK11_DestroyContext)(PK11Context *context, PRBool freeit); SECStatus (*_int_PK11_Finalize)(PK11Context *context); SECStatus (*_int_PK11_CipherOp)(PK11Context *context, unsigned char *out, int *outlen, int maxout, const unsigned char *in, int inlen); PK11SymKey *(*_int_PK11_UnwrapSymKey)(PK11SymKey *key, CK_MECHANISM_TYPE wraptype, SECItem *param, SECItem *wrapppedKey, CK_MECHANISM_TYPE target, CK_ATTRIBUTE_TYPE operation, int keySize); void (*_int_PK11_FreeSymKey)(PK11SymKey *key); PK11Context *(*_int_PK11_CreateContextBySymKey)(CK_MECHANISM_TYPE type, CK_ATTRIBUTE_TYPE operation, PK11SymKey *symKey, SECItem *param); SECStatus (*_int_PK11_GenerateRandom)(unsigned char *data, int len); SECItem *(*_int_PK11_ParamFromIV)(CK_MECHANISM_TYPE type, SECItem *iv); void (*_int_PK11_FreeSlot)(PK11SlotInfo *slot); int (*_int_PK11_GetBlockSize)(CK_MECHANISM_TYPE type, SECItem *params); PK11SymKey *(*_int_PK11_KeyGen)(PK11SlotInfo *slot, CK_MECHANISM_TYPE type, SECItem *param, int keySize, void *wincx); /* * nspr4 */ PRStatus (*_int_PR_Cleanup)(void); const char * (*_int_PR_ErrorToString)(PRErrorCode code, PRLanguageCode language); PRErrorCode (*_int_PR_GetError)(void); PRBool (*_int_PR_Initialized)(void); /* * plds4 */ void (*_int_PL_ArenaFinish)(void); static int nsscrypto_remap_symbols(knet_handle_t knet_h) { int err = 0; char *error = NULL; /* * nss3 */ _int_PK11_GetBestWrapMechanism = dlsym(nss_lib, "PK11_GetBestWrapMechanism"); if (!_int_PK11_GetBestWrapMechanism) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_GetBestWrapMechanism: %s", error); err = -1; goto out; } _int_PK11_GetBestSlot = dlsym(nss_lib, "PK11_GetBestSlot"); if (!_int_PK11_GetBestSlot) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_GetBestSlot: %s", error); err = -1; goto out; } _int_PK11_GetBestKeyLength = dlsym(nss_lib, "PK11_GetBestKeyLength"); if (!_int_PK11_GetBestKeyLength) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_GetBestKeyLength: %s", error); err = -1; goto out; } _int_PK11_DigestFinal = dlsym(nss_lib, "PK11_DigestFinal"); if (!_int_PK11_DigestFinal) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_DigestFinal: %s", error); err = -1; goto out; } _int_SECITEM_FreeItem = dlsym(nss_lib, "SECITEM_FreeItem"); if (!_int_SECITEM_FreeItem) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map SECITEM_FreeItem: %s", error); err = -1; goto out; } _int_NSS_NoDB_Init = dlsym(nss_lib, "NSS_NoDB_Init"); if (!_int_NSS_NoDB_Init) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map NSS_NoDB_Init: %s", error); err = -1; goto out; } _int_NSS_Shutdown = dlsym(nss_lib, "NSS_Shutdown"); if (!_int_NSS_Shutdown) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map NSS_Shutdown: %s", error); err = -1; goto out; } _int_PK11_DigestBegin = dlsym(nss_lib, "PK11_DigestBegin"); if (!_int_PK11_DigestBegin) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_DigestBegin: %s", error); err = -1; goto out; } _int_PK11_DigestOp = dlsym(nss_lib, "PK11_DigestOp"); if (!_int_PK11_DigestOp) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_DigestOp: %s", error); err = -1; goto out; } _int_PK11_DestroyContext = dlsym(nss_lib, "PK11_DestroyContext"); if (!_int_PK11_DestroyContext) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_DestroyContext: %s", error); err = -1; goto out; } _int_PK11_Finalize = dlsym(nss_lib, "PK11_Finalize"); if (!_int_PK11_Finalize) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_Finalize: %s", error); err = -1; goto out; } _int_PK11_CipherOp = dlsym(nss_lib, "PK11_CipherOp"); if (!_int_PK11_CipherOp) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_CipherOp: %s", error); err = -1; goto out; } _int_PK11_UnwrapSymKey = dlsym(nss_lib, "PK11_UnwrapSymKey"); if (!_int_PK11_UnwrapSymKey) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_UnwrapSymKey: %s", error); err = -1; goto out; } _int_PK11_FreeSymKey = dlsym(nss_lib, "PK11_FreeSymKey"); if (!_int_PK11_FreeSymKey) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_FreeSymKey: %s", error); err = -1; goto out; } _int_PK11_CreateContextBySymKey = dlsym(nss_lib, "PK11_CreateContextBySymKey"); if (!_int_PK11_CreateContextBySymKey) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_CreateContextBySymKey: %s", error); err = -1; goto out; } _int_PK11_GenerateRandom = dlsym(nss_lib, "PK11_GenerateRandom"); if (!_int_PK11_GenerateRandom) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_GenerateRandom: %s", error); err = -1; goto out; } _int_PK11_ParamFromIV = dlsym(nss_lib, "PK11_ParamFromIV"); if (!_int_PK11_ParamFromIV) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_ParamFromIV: %s", error); err = -1; goto out; } _int_PK11_FreeSlot = dlsym(nss_lib, "PK11_FreeSlot"); if (!_int_PK11_FreeSlot) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_FreeSlot: %s", error); err = -1; goto out; } _int_PK11_GetBlockSize = dlsym(nss_lib, "PK11_GetBlockSize"); if (!_int_PK11_GetBlockSize) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_GetBlockSize: %s", error); err = -1; goto out; } _int_PK11_KeyGen = dlsym(nss_lib, "PK11_KeyGen"); if (!_int_PK11_KeyGen) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PK11_KeyGen: %s", error); err = -1; goto out; } /* * nspr4 */ _int_PR_Cleanup = dlsym(nss_lib, "PR_Cleanup"); if (!_int_PR_Cleanup) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PR_Cleanup: %s", error); err = -1; goto out; } _int_PR_ErrorToString = dlsym(nss_lib, "PR_ErrorToString"); if (!_int_PR_ErrorToString) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PR_ErrorToString: %s", error); err = -1; goto out; } _int_PR_Initialized = dlsym(nss_lib, "PR_Initialized"); if (!_int_PR_Initialized) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map Initialized: %s", error); err = -1; goto out; } _int_PR_GetError = dlsym(nss_lib, "PR_GetError"); if (!_int_PR_GetError) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PR_GetError: %s", error); err = -1; goto out; } /* * plds4 */ _int_PL_ArenaFinish = dlsym(nss_lib, "PL_ArenaFinish"); if (!_int_PL_ArenaFinish) { error = dlerror(); log_err(knet_h, KNET_SUB_NSSCRYPTO, "unable to map PL_ArenaFinish: %s", error); err = -1; goto out; } out: if (err) { _int_PK11_GetBestWrapMechanism = NULL; _int_PK11_GetBestSlot = NULL; _int_PK11_GetBestKeyLength = NULL; _int_PK11_DigestFinal = NULL; _int_SECITEM_FreeItem = NULL; _int_NSS_NoDB_Init = NULL; _int_NSS_Shutdown = NULL; _int_PK11_DigestBegin = NULL; _int_PK11_DigestOp = NULL; _int_PK11_DestroyContext = NULL; _int_PK11_Finalize = NULL; _int_PK11_CipherOp = NULL; _int_PK11_UnwrapSymKey = NULL; _int_PK11_FreeSymKey = NULL; _int_PK11_CreateContextBySymKey = NULL; _int_PK11_GenerateRandom = NULL; _int_PK11_ParamFromIV = NULL; _int_PK11_FreeSlot = NULL; _int_PK11_GetBlockSize = NULL; _int_PK11_KeyGen = NULL; _int_PR_Cleanup = NULL; _int_PR_ErrorToString = NULL; _int_PR_Initialized = NULL; _int_PR_GetError = NULL; _int_PL_ArenaFinish = NULL; } return err; } static int init_nss_db(knet_handle_t knet_h) { if ((*_int_NSS_NoDB_Init)(".") != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "NSS DB initialization failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); return -1; } return 0; } void nsscrypto_unload_lib( knet_handle_t knet_h) { - log_warn(knet_h, KNET_SUB_NSSCRYPTO, "libnss runtime unload can cause minor (< 2kb) memory leaks! Please reload your application at a convenient time (and no, we cannot detect if you are shutting down the app or closing one handle, so you will get this message regardless)."); + log_warn(knet_h, KNET_SUB_NSSCRYPTO, "%s runtime unload can cause minor (< 2kb) memory leaks! Please reload your application at a convenient time (and no, we cannot detect if you are shutting down the app or closing one handle, so you will get this message regardless).", LIBNSS3); if (nss_lib) { (*_int_NSS_Shutdown)(); if ((*_int_PR_Initialized)()) { (*_int_PL_ArenaFinish)(); (*_int_PR_Cleanup)(); } dlclose(nss_lib); nss_lib = NULL; } return; } int nsscrypto_load_lib( knet_handle_t knet_h) { int err = 0, savederrno = 0; if (!nss_lib) { - nss_lib = open_lib(knet_h, "libnss3.so", 0); + nss_lib = open_lib(knet_h, LIBNSS3, 0); if (!nss_lib) { savederrno = errno; err = -1; goto out; } if (nsscrypto_remap_symbols(knet_h) < 0) { savederrno = errno; err = -1; goto out; } if (init_nss_db(knet_h) < 0) { savederrno = EAGAIN; err = -1; goto out; } } out: if (err) { nsscrypto_unload_lib(knet_h); } errno = savederrno; return err; } /* * crypto definitions and conversion tables */ #define SALT_SIZE 16 /* * This are defined in new NSS. For older one, we will define our own */ #ifndef AES_256_KEY_LENGTH #define AES_256_KEY_LENGTH 32 #endif #ifndef AES_192_KEY_LENGTH #define AES_192_KEY_LENGTH 24 #endif #ifndef AES_128_KEY_LENGTH #define AES_128_KEY_LENGTH 16 #endif enum crypto_crypt_t { CRYPTO_CIPHER_TYPE_NONE = 0, CRYPTO_CIPHER_TYPE_AES256 = 1, CRYPTO_CIPHER_TYPE_AES192 = 2, CRYPTO_CIPHER_TYPE_AES128 = 3, CRYPTO_CIPHER_TYPE_3DES = 4 }; CK_MECHANISM_TYPE cipher_to_nss[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES256 */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES192 */ CKM_AES_CBC_PAD, /* CRYPTO_CIPHER_TYPE_AES128 */ CKM_DES3_CBC_PAD /* CRYPTO_CIPHER_TYPE_3DES */ }; size_t cipher_key_len[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ AES_256_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES256 */ AES_192_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES192 */ AES_128_KEY_LENGTH, /* CRYPTO_CIPHER_TYPE_AES128 */ 24 /* CRYPTO_CIPHER_TYPE_3DES */ }; size_t cypher_block_len[] = { 0, /* CRYPTO_CIPHER_TYPE_NONE */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES256 */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES192 */ AES_BLOCK_SIZE, /* CRYPTO_CIPHER_TYPE_AES128 */ 0 /* CRYPTO_CIPHER_TYPE_3DES */ }; /* * hash definitions and conversion tables */ enum crypto_hash_t { CRYPTO_HASH_TYPE_NONE = 0, CRYPTO_HASH_TYPE_MD5 = 1, CRYPTO_HASH_TYPE_SHA1 = 2, CRYPTO_HASH_TYPE_SHA256 = 3, CRYPTO_HASH_TYPE_SHA384 = 4, CRYPTO_HASH_TYPE_SHA512 = 5 }; CK_MECHANISM_TYPE hash_to_nss[] = { 0, /* CRYPTO_HASH_TYPE_NONE */ CKM_MD5_HMAC, /* CRYPTO_HASH_TYPE_MD5 */ CKM_SHA_1_HMAC, /* CRYPTO_HASH_TYPE_SHA1 */ CKM_SHA256_HMAC, /* CRYPTO_HASH_TYPE_SHA256 */ CKM_SHA384_HMAC, /* CRYPTO_HASH_TYPE_SHA384 */ CKM_SHA512_HMAC /* CRYPTO_HASH_TYPE_SHA512 */ }; size_t hash_len[] = { 0, /* CRYPTO_HASH_TYPE_NONE */ MD5_LENGTH, /* CRYPTO_HASH_TYPE_MD5 */ SHA1_LENGTH, /* CRYPTO_HASH_TYPE_SHA1 */ SHA256_LENGTH, /* CRYPTO_HASH_TYPE_SHA256 */ SHA384_LENGTH, /* CRYPTO_HASH_TYPE_SHA384 */ SHA512_LENGTH /* CRYPTO_HASH_TYPE_SHA512 */ }; enum sym_key_type { SYM_KEY_TYPE_CRYPT, SYM_KEY_TYPE_HASH }; struct nsscrypto_instance { PK11SymKey *nss_sym_key; PK11SymKey *nss_sym_key_sign; unsigned char *private_key; unsigned int private_key_len; int crypto_cipher_type; int crypto_hash_type; }; /* * crypt/decrypt functions */ static int string_to_crypto_cipher_type(const char* crypto_cipher_type) { if (strcmp(crypto_cipher_type, "none") == 0) { return CRYPTO_CIPHER_TYPE_NONE; } else if (strcmp(crypto_cipher_type, "aes256") == 0) { return CRYPTO_CIPHER_TYPE_AES256; } else if (strcmp(crypto_cipher_type, "aes192") == 0) { return CRYPTO_CIPHER_TYPE_AES192; } else if (strcmp(crypto_cipher_type, "aes128") == 0) { return CRYPTO_CIPHER_TYPE_AES128; } else if (strcmp(crypto_cipher_type, "3des") == 0) { return CRYPTO_CIPHER_TYPE_3DES; } return -1; } static PK11SymKey *import_symmetric_key(knet_handle_t knet_h, enum sym_key_type key_type) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; SECItem key_item; PK11SlotInfo *slot; PK11SymKey *res_key; CK_MECHANISM_TYPE cipher; CK_ATTRIBUTE_TYPE operation; CK_MECHANISM_TYPE wrap_mechanism; int wrap_key_len; PK11SymKey *wrap_key; PK11Context *wrap_key_crypt_context; SECItem tmp_sec_item; SECItem wrapped_key; int wrapped_key_len; unsigned char wrapped_key_data[KNET_MAX_KEY_LEN]; memset(&key_item, 0, sizeof(key_item)); slot = NULL; wrap_key = NULL; res_key = NULL; wrap_key_crypt_context = NULL; key_item.type = siBuffer; key_item.data = instance->private_key; switch (key_type) { case SYM_KEY_TYPE_CRYPT: key_item.len = cipher_key_len[instance->crypto_cipher_type]; cipher = cipher_to_nss[instance->crypto_cipher_type]; operation = CKA_ENCRYPT|CKA_DECRYPT; break; case SYM_KEY_TYPE_HASH: key_item.len = instance->private_key_len; cipher = hash_to_nss[instance->crypto_hash_type]; operation = CKA_SIGN; break; default: log_err(knet_h, KNET_SUB_NSSCRYPTO, "Import symmetric key failed. Unknown keyimport request"); goto exit_res_key; break; } slot = (*_int_PK11_GetBestSlot)(cipher, NULL); if (slot == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to find security slot (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Without FIPS it would be possible to just use * res_key = PK11_ImportSymKey(slot, cipher, PK11_OriginUnwrap, operation, &key_item, NULL); * with FIPS NSS Level 2 certification has to be "workarounded" (so it becomes Level 1) by using * following method: * 1. Generate wrap key * 2. Encrypt authkey with wrap key * 3. Unwrap encrypted authkey using wrap key */ /* * Generate wrapping key */ wrap_mechanism = (*_int_PK11_GetBestWrapMechanism)(slot); wrap_key_len = (*_int_PK11_GetBestKeyLength)(slot, wrap_mechanism); wrap_key = (*_int_PK11_KeyGen)(slot, wrap_mechanism, NULL, wrap_key_len, NULL); if (wrap_key == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to generate wrapping key (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Encrypt authkey with wrapping key */ /* * Initialization of IV is not needed because PK11_GetBestWrapMechanism should return ECB mode */ memset(&tmp_sec_item, 0, sizeof(tmp_sec_item)); wrap_key_crypt_context = (*_int_PK11_CreateContextBySymKey)(wrap_mechanism, CKA_ENCRYPT, wrap_key, &tmp_sec_item); if (wrap_key_crypt_context == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to create encrypt context (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } wrapped_key_len = (int)sizeof(wrapped_key_data); if ((*_int_PK11_CipherOp)(wrap_key_crypt_context, wrapped_key_data, &wrapped_key_len, sizeof(wrapped_key_data), key_item.data, key_item.len) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to encrypt authkey (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } if ((*_int_PK11_Finalize)(wrap_key_crypt_context) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to finalize encryption of authkey (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto exit_res_key; } /* * Finally unwrap sym key */ memset(&tmp_sec_item, 0, sizeof(tmp_sec_item)); wrapped_key.data = wrapped_key_data; wrapped_key.len = wrapped_key_len; res_key = (*_int_PK11_UnwrapSymKey)(wrap_key, wrap_mechanism, &tmp_sec_item, &wrapped_key, cipher, operation, key_item.len); if (res_key == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to import key into NSS (%d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); if ((*_int_PR_GetError)() == SEC_ERROR_BAD_DATA) { /* * Maximum key length for FIPS enabled softtoken is limited to * MAX_KEY_LEN (pkcs11i.h - 256) and checked in NSC_UnwrapKey. Returned * error is CKR_TEMPLATE_INCONSISTENT which is mapped to SEC_ERROR_BAD_DATA. */ log_err(knet_h, KNET_SUB_NSSCRYPTO, "Secret key is probably too long. " "Try reduce it to 256 bytes"); } goto exit_res_key; } exit_res_key: if (wrap_key_crypt_context != NULL) { (*_int_PK11_DestroyContext)(wrap_key_crypt_context, PR_TRUE); } if (wrap_key != NULL) { (*_int_PK11_FreeSymKey)(wrap_key); } if (slot != NULL) { (*_int_PK11_FreeSlot)(slot); } return (res_key); } static int init_nss_crypto(knet_handle_t knet_h) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; if (!cipher_to_nss[instance->crypto_cipher_type]) { return 0; } instance->nss_sym_key = import_symmetric_key(knet_h, SYM_KEY_TYPE_CRYPT); if (instance->nss_sym_key == NULL) { return -1; } return 0; } static int encrypt_nss( knet_handle_t knet_h, const struct iovec *iov, int iovcnt, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* crypt_context = NULL; SECItem crypt_param; SECItem *nss_sec_param = NULL; int tmp_outlen = 0, tmp1_outlen = 0; unsigned int tmp2_outlen = 0; unsigned char *salt = buf_out; unsigned char *data = buf_out + SALT_SIZE; int err = -1; int i; if ((*_int_PK11_GenerateRandom)(salt, SALT_SIZE) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to generate a random number (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } crypt_param.type = siBuffer; crypt_param.data = salt; crypt_param.len = SALT_SIZE; nss_sec_param = (*_int_PK11_ParamFromIV)(cipher_to_nss[instance->crypto_cipher_type], &crypt_param); if (nss_sec_param == NULL) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Failure to set up PKCS11 param (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } /* * Create cipher context for encryption */ crypt_context = (*_int_PK11_CreateContextBySymKey)(cipher_to_nss[instance->crypto_cipher_type], CKA_ENCRYPT, instance->nss_sym_key, nss_sec_param); if (!crypt_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (encrypt) crypt_type=%d (err %d): %s", (int)cipher_to_nss[instance->crypto_cipher_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } for (i=0; icrypto_cipher_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } tmp1_outlen = tmp1_outlen + tmp_outlen; } if ((*_int_PK11_DigestFinal)(crypt_context, data + tmp1_outlen, &tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal failed (encrypt) crypt_type=%d (err %d): %s", (int)cipher_to_nss[instance->crypto_cipher_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } *buf_out_len = tmp1_outlen + tmp2_outlen + SALT_SIZE; err = 0; out: if (crypt_context) { (*_int_PK11_DestroyContext)(crypt_context, PR_TRUE); } if (nss_sec_param) { (*_int_SECITEM_FreeItem)(nss_sec_param, PR_TRUE); } return err; } static int decrypt_nss ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* decrypt_context = NULL; SECItem decrypt_param; int tmp1_outlen = 0; unsigned int tmp2_outlen = 0; unsigned char *salt = (unsigned char *)buf_in; unsigned char *data = salt + SALT_SIZE; int datalen = buf_in_len - SALT_SIZE; int err = -1; /* Create cipher context for decryption */ decrypt_param.type = siBuffer; decrypt_param.data = salt; decrypt_param.len = SALT_SIZE; decrypt_context = (*_int_PK11_CreateContextBySymKey)(cipher_to_nss[instance->crypto_cipher_type], CKA_DECRYPT, instance->nss_sym_key, &decrypt_param); if (!decrypt_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext (decrypt) failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_CipherOp)(decrypt_context, buf_out, &tmp1_outlen, KNET_DATABUFSIZE_CRYPT, data, datalen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CipherOp (decrypt) failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestFinal)(decrypt_context, buf_out + tmp1_outlen, &tmp2_outlen, KNET_DATABUFSIZE_CRYPT - tmp1_outlen) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinal (decrypt) failed (err %d): %s", (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } *buf_out_len = tmp1_outlen + tmp2_outlen; err = 0; out: if (decrypt_context) { (*_int_PK11_DestroyContext)(decrypt_context, PR_TRUE); } return err; } /* * hash/hmac/digest functions */ static int string_to_crypto_hash_type(const char* crypto_hash_type) { if (strcmp(crypto_hash_type, "none") == 0) { return CRYPTO_HASH_TYPE_NONE; } else if (strcmp(crypto_hash_type, "md5") == 0) { return CRYPTO_HASH_TYPE_MD5; } else if (strcmp(crypto_hash_type, "sha1") == 0) { return CRYPTO_HASH_TYPE_SHA1; } else if (strcmp(crypto_hash_type, "sha256") == 0) { return CRYPTO_HASH_TYPE_SHA256; } else if (strcmp(crypto_hash_type, "sha384") == 0) { return CRYPTO_HASH_TYPE_SHA384; } else if (strcmp(crypto_hash_type, "sha512") == 0) { return CRYPTO_HASH_TYPE_SHA512; } return -1; } static int init_nss_hash(knet_handle_t knet_h) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; if (!hash_to_nss[instance->crypto_hash_type]) { return 0; } instance->nss_sym_key_sign = import_symmetric_key(knet_h, SYM_KEY_TYPE_HASH); if (instance->nss_sym_key_sign == NULL) { return -1; } return 0; } static int calculate_nss_hash( knet_handle_t knet_h, const unsigned char *buf, const size_t buf_len, unsigned char *hash) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; PK11Context* hash_context = NULL; SECItem hash_param; unsigned int hash_tmp_outlen = 0; int err = -1; /* Now do the digest */ hash_param.type = siBuffer; hash_param.data = 0; hash_param.len = 0; hash_context = (*_int_PK11_CreateContextBySymKey)(hash_to_nss[instance->crypto_hash_type], CKA_SIGN, instance->nss_sym_key_sign, &hash_param); if (!hash_context) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_CreateContext failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestBegin)(hash_context) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestBegin failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestOp)(hash_context, buf, buf_len) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestOp failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } if ((*_int_PK11_DigestFinal)(hash_context, hash, &hash_tmp_outlen, hash_len[instance->crypto_hash_type]) != SECSuccess) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "PK11_DigestFinale failed (hash) hash_type=%d (err %d): %s", (int)hash_to_nss[instance->crypto_hash_type], (*_int_PR_GetError)(), (*_int_PR_ErrorToString)((*_int_PR_GetError)(), PR_LANGUAGE_I_DEFAULT)); goto out; } err = 0; out: if (hash_context) { (*_int_PK11_DestroyContext)(hash_context, PR_TRUE); } return err; } /* * global/glue nss functions */ static int init_nss(knet_handle_t knet_h) { if (init_nss_crypto(knet_h) < 0) { return -1; } if (init_nss_hash(knet_h) < 0) { return -1; } return 0; } /* * exported API */ int nsscrypto_encrypt_and_sign ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct iovec iov_in; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (unsigned char *)buf_in; iov_in.iov_len = buf_in_len; return nsscrypto_encrypt_and_signv(knet_h, &iov_in, 1, buf_out, buf_out_len); } int nsscrypto_encrypt_and_signv ( knet_handle_t knet_h, const struct iovec *iov_in, int iovcnt_in, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; int i; if (cipher_to_nss[instance->crypto_cipher_type]) { if (encrypt_nss(knet_h, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) { return -1; } } else { *buf_out_len = 0; for (i=0; icrypto_hash_type]) { if (calculate_nss_hash(knet_h, buf_out, *buf_out_len, buf_out + *buf_out_len) < 0) { return -1; } *buf_out_len = *buf_out_len + hash_len[instance->crypto_hash_type]; } return 0; } int nsscrypto_authenticate_and_decrypt ( knet_handle_t knet_h, const unsigned char *buf_in, const ssize_t buf_in_len, unsigned char *buf_out, ssize_t *buf_out_len) { struct nsscrypto_instance *instance = knet_h->crypto_instance->model_instance; ssize_t temp_len = buf_in_len; if (hash_to_nss[instance->crypto_hash_type]) { unsigned char tmp_hash[hash_len[instance->crypto_hash_type]]; ssize_t temp_buf_len = buf_in_len - hash_len[instance->crypto_hash_type]; if ((temp_buf_len < 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Incorrect packet size."); return -1; } if (calculate_nss_hash(knet_h, buf_in, temp_buf_len, tmp_hash) < 0) { return -1; } if (memcmp(tmp_hash, buf_in + temp_buf_len, hash_len[instance->crypto_hash_type]) != 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Digest does not match"); return -1; } temp_len = temp_len - hash_len[instance->crypto_hash_type]; *buf_out_len = temp_len; } if (cipher_to_nss[instance->crypto_cipher_type]) { if (decrypt_nss(knet_h, buf_in, temp_len, buf_out, buf_out_len) < 0) { return -1; } } else { memmove(buf_out, buf_in, temp_len); *buf_out_len = temp_len; } return 0; } int nsscrypto_init( knet_handle_t knet_h, struct knet_handle_crypto_cfg *knet_handle_crypto_cfg) { struct nsscrypto_instance *nsscrypto_instance = NULL; log_debug(knet_h, KNET_SUB_NSSCRYPTO, "Initizializing nss crypto module [%s/%s]", knet_handle_crypto_cfg->crypto_cipher_type, knet_handle_crypto_cfg->crypto_hash_type); knet_h->crypto_instance->model_instance = malloc(sizeof(struct nsscrypto_instance)); if (!knet_h->crypto_instance->model_instance) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "Unable to allocate memory for nss model instance"); return -1; } nsscrypto_instance = knet_h->crypto_instance->model_instance; memset(nsscrypto_instance, 0, sizeof(struct nsscrypto_instance)); nsscrypto_instance->crypto_cipher_type = string_to_crypto_cipher_type(knet_handle_crypto_cfg->crypto_cipher_type); if (nsscrypto_instance->crypto_cipher_type < 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto cipher type requested"); goto out_err; } nsscrypto_instance->crypto_hash_type = string_to_crypto_hash_type(knet_handle_crypto_cfg->crypto_hash_type); if (nsscrypto_instance->crypto_hash_type < 0) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "unknown crypto hash type requested"); goto out_err; } if ((nsscrypto_instance->crypto_cipher_type > 0) && (nsscrypto_instance->crypto_hash_type == 0)) { log_err(knet_h, KNET_SUB_NSSCRYPTO, "crypto communication requires hash specified"); goto out_err; } nsscrypto_instance->private_key = knet_handle_crypto_cfg->private_key; nsscrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len; if (init_nss(knet_h) < 0) { goto out_err; } knet_h->sec_header_size = 0; if (nsscrypto_instance->crypto_hash_type > 0) { knet_h->sec_header_size += hash_len[nsscrypto_instance->crypto_hash_type]; knet_h->sec_hash_size = hash_len[nsscrypto_instance->crypto_hash_type]; } if (nsscrypto_instance->crypto_cipher_type > 0) { int block_size; if (cypher_block_len[nsscrypto_instance->crypto_cipher_type]) { block_size = cypher_block_len[nsscrypto_instance->crypto_cipher_type]; } else { block_size = (*_int_PK11_GetBlockSize)(nsscrypto_instance->crypto_cipher_type, NULL); if (block_size < 0) { goto out_err; } } knet_h->sec_header_size += (block_size * 2); knet_h->sec_header_size += SALT_SIZE; knet_h->sec_salt_size = SALT_SIZE; knet_h->sec_block_size = block_size; } return 0; out_err: nsscrypto_fini(knet_h); return -1; } void nsscrypto_fini( knet_handle_t knet_h) { struct nsscrypto_instance *nsscrypto_instance = knet_h->crypto_instance->model_instance; if (nsscrypto_instance) { if (nsscrypto_instance->nss_sym_key) { (*_int_PK11_FreeSymKey)(nsscrypto_instance->nss_sym_key); nsscrypto_instance->nss_sym_key = NULL; } if (nsscrypto_instance->nss_sym_key_sign) { (*_int_PK11_FreeSymKey)(nsscrypto_instance->nss_sym_key_sign); nsscrypto_instance->nss_sym_key_sign = NULL; } free(nsscrypto_instance); knet_h->crypto_instance->model_instance = NULL; knet_h->sec_header_size = 0; } return; } #endif