diff --git a/libknet/internals.h b/libknet/internals.h index b49bbfce..e5cd6be8 100644 --- a/libknet/internals.h +++ b/libknet/internals.h @@ -1,488 +1,488 @@ /* * Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * Federico Simoncelli * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #ifndef __KNET_INTERNALS_H__ #define __KNET_INTERNALS_H__ /* * NOTE: you shouldn't need to include this header normally */ #include #include "libknet.h" #include "onwire.h" #include "compat.h" #define KNET_DATABUFSIZE KNET_MAX_PACKET_SIZE + KNET_HEADER_ALL_SIZE #define KNET_DATABUFSIZE_CRYPT_PAD 1024 #define KNET_DATABUFSIZE_CRYPT KNET_DATABUFSIZE + KNET_DATABUFSIZE_CRYPT_PAD #define KNET_DATABUFSIZE_COMPRESS_PAD 1024 #define KNET_DATABUFSIZE_COMPRESS KNET_DATABUFSIZE + KNET_DATABUFSIZE_COMPRESS_PAD #define KNET_RING_RCVBUFF 8388608 #define PCKT_FRAG_MAX UINT8_MAX #define PCKT_RX_BUFS 512 #define KNET_EPOLL_MAX_EVENTS KNET_DATAFD_MAX typedef void *knet_transport_link_t; /* per link transport handle */ typedef void *knet_transport_t; /* per knet_h transport handle */ struct knet_transport_ops; /* Forward because of circular dependancy */ struct knet_mmsghdr { struct msghdr msg_hdr; /* Message header */ unsigned int msg_len; /* Number of bytes transmitted */ }; struct knet_link { /* required */ struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; /* configurable */ unsigned int dynamic; /* see KNET_LINK_DYN_ define above */ uint8_t priority; /* higher priority == preferred for A/P */ unsigned long long ping_interval; /* interval */ unsigned long long pong_timeout; /* timeout */ unsigned int latency_fix; /* precision */ uint8_t pong_count; /* how many ping/pong to send/receive before link is up */ uint64_t flags; /* status */ struct knet_link_status status; /* internals */ uint8_t link_id; uint8_t transport_type; /* #defined constant from API */ knet_transport_link_t transport_link; /* link_info_t from transport */ int outsock; unsigned int configured:1; /* set to 1 if src/dst have been configured transport initialized on this link*/ unsigned int transport_connected:1; /* set to 1 if lower level transport is connected */ unsigned int latency_exp; uint8_t received_pong; struct timespec ping_last; /* used by PMTUD thread as temp per-link variables and should always contain the onwire_len value! */ uint32_t proto_overhead; struct timespec pmtud_last; uint32_t last_ping_size; uint32_t last_good_mtu; uint32_t last_bad_mtu; uint32_t last_sent_mtu; uint32_t last_recv_mtu; uint8_t has_valid_mtu; }; #define KNET_CBUFFER_SIZE 4096 struct knet_host_defrag_buf { char buf[KNET_DATABUFSIZE]; uint8_t in_use; /* 0 buffer is free, 1 is in use */ seq_num_t pckt_seq; /* identify the pckt we are receiving */ uint8_t frag_recv; /* how many frags did we receive */ uint8_t frag_map[PCKT_FRAG_MAX];/* bitmap of what we received? */ uint8_t last_first; /* special case if we receive the last fragment first */ uint16_t frag_size; /* normal frag size (not the last one) */ uint16_t last_frag_size; /* the last fragment might not be aligned with MTU size */ struct timespec last_update; /* keep time of the last pckt */ }; struct knet_host { /* required */ knet_node_id_t host_id; /* configurable */ uint8_t link_handler_policy; char name[KNET_MAX_HOST_LEN]; /* status */ struct knet_host_status status; /* internals */ char circular_buffer[KNET_CBUFFER_SIZE]; seq_num_t rx_seq_num; seq_num_t untimed_rx_seq_num; seq_num_t timed_rx_seq_num; uint8_t got_data; /* defrag/reassembly buffers */ struct knet_host_defrag_buf defrag_buf[KNET_MAX_LINK]; char circular_buffer_defrag[KNET_CBUFFER_SIZE]; /* link stuff */ struct knet_link link[KNET_MAX_LINK]; uint8_t active_link_entries; uint8_t active_links[KNET_MAX_LINK]; struct knet_host *next; }; struct knet_sock { int sockfd[2]; /* sockfd[0] will always be application facing * and sockfd[1] internal if sockpair has been created by knet */ int is_socket; /* check if it's a socket for recvmmsg usage */ int is_created; /* knet created this socket and has to clean up on exit/del */ int in_use; /* set to 1 if it's use, 0 if free */ int has_error; /* set to 1 if there were errors reading from the sock * and socket has been removed from epoll */ }; struct knet_fd_trackers { uint8_t transport; /* transport type (UDP/SCTP...) */ uint8_t data_type; /* internal use for transport to define what data are associated * to this fd */ void *data; /* pointer to the data */ }; #define KNET_MAX_FDS KNET_MAX_HOST * KNET_MAX_LINK * 4 #define KNET_MAX_COMPRESS_METHODS UINT8_MAX struct knet_handle { knet_node_id_t host_id; unsigned int enabled:1; struct knet_sock sockfd[KNET_DATAFD_MAX]; int logfd; uint8_t log_levels[KNET_MAX_SUBSYSTEMS]; int hostsockfd[2]; int dstsockfd[2]; int send_to_links_epollfd; int recv_from_links_epollfd; int dst_link_handler_epollfd; unsigned int pmtud_interval; unsigned int data_mtu; /* contains the max data size that we can send onwire * without frags */ struct knet_host *host_head; struct knet_host *host_index[KNET_MAX_HOST]; knet_transport_t transports[KNET_MAX_TRANSPORTS+1]; struct knet_transport_ops *transport_ops[KNET_MAX_TRANSPORTS+1]; struct knet_fd_trackers knet_transport_fd_tracker[KNET_MAX_FDS]; /* track status for each fd handled by transports */ struct knet_handle_stats stats; uint32_t reconnect_int; knet_node_id_t host_ids[KNET_MAX_HOST]; size_t host_ids_entries; struct knet_header *recv_from_sock_buf; struct knet_header *send_to_links_buf[PCKT_FRAG_MAX]; struct knet_header *recv_from_links_buf[PCKT_RX_BUFS]; struct knet_header *pingbuf; struct knet_header *pmtudbuf; pthread_t send_to_links_thread; pthread_t recv_from_links_thread; pthread_t heartbt_thread; pthread_t dst_link_handler_thread; pthread_t pmtud_link_handler_thread; int lock_init_done; pthread_rwlock_t global_rwlock; /* global config lock */ pthread_mutex_t pmtud_mutex; /* pmtud mutex to handle conditional send/recv + timeout */ pthread_cond_t pmtud_cond; /* conditional for above */ pthread_mutex_t tx_mutex; /* used to protect knet_send_sync and TX thread */ pthread_mutex_t hb_mutex; /* used to protect heartbeat thread and seq_num broadcasting */ struct crypto_instance *crypto_instance; - uint16_t sec_header_size; - uint16_t sec_block_size; - uint16_t sec_hash_size; - uint16_t sec_salt_size; + size_t sec_header_size; + size_t sec_block_size; + size_t sec_hash_size; + size_t sec_salt_size; unsigned char *send_to_links_buf_crypt[PCKT_FRAG_MAX]; unsigned char *recv_from_links_buf_crypt; unsigned char *recv_from_links_buf_decrypt; unsigned char *pingbuf_crypt; unsigned char *pmtudbuf_crypt; int compress_model; int compress_level; - uint32_t compress_threshold; + size_t compress_threshold; void *compress_int_data[KNET_MAX_COMPRESS_METHODS]; /* for compress method private data */ unsigned char *recv_from_links_buf_decompress; unsigned char *send_to_links_buf_compress; seq_num_t tx_seq_num; pthread_mutex_t tx_seq_num_mutex; uint8_t has_loop_link; uint8_t loop_link; void *dst_host_filter_fn_private_data; int (*dst_host_filter_fn) ( void *private_data, const unsigned char *outdata, ssize_t outdata_len, uint8_t tx_rx, knet_node_id_t this_host_id, knet_node_id_t src_node_id, int8_t *channel, knet_node_id_t *dst_host_ids, size_t *dst_host_ids_entries); void *pmtud_notify_fn_private_data; void (*pmtud_notify_fn) ( void *private_data, unsigned int data_mtu); void *host_status_change_notify_fn_private_data; void (*host_status_change_notify_fn) ( void *private_data, knet_node_id_t host_id, uint8_t reachable, uint8_t remote, uint8_t external); void *sock_notify_fn_private_data; void (*sock_notify_fn) ( void *private_data, int datafd, int8_t channel, uint8_t tx_rx, int error, int errorno); int fini_in_progress; }; extern pthread_rwlock_t shlib_rwlock; /* global shared lib load lock */ /* * NOTE: every single operation must be implementend * for every protocol. */ typedef struct knet_transport_ops { /* * transport generic information */ const char *transport_name; const uint8_t transport_id; uint32_t transport_mtu_overhead; /* * transport init must allocate the new transport * and perform all internal initializations * (threads, lists, etc). */ int (*transport_init)(knet_handle_t knet_h); /* * transport free must releases _all_ resources * allocated by tranport_init */ int (*transport_free)(knet_handle_t knet_h); /* * link operations should take care of all the * sockets and epoll management for a given link/transport set * transport_link_disable should return err = -1 and errno = EBUSY * if listener is still in use, and any other errno in case * the link cannot be disabled. * * set_config/clear_config are invoked in global write lock context */ int (*transport_link_set_config)(knet_handle_t knet_h, struct knet_link *link); int (*transport_link_clear_config)(knet_handle_t knet_h, struct knet_link *link); /* * transport callback for incoming dynamic connections * this is called in global read lock context */ int (*transport_link_dyn_connect)(knet_handle_t knet_h, int sockfd, struct knet_link *link); /* * per transport error handling of recvmmsg * (see _handle_recv_from_links comments for details) */ /* * transport_rx_sock_error is invoked when recvmmsg returns <= 0 * * transport_rx_sock_error is invoked with both global_rdlock */ int (*transport_rx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno); /* * transport_tx_sock_error is invoked with global_rwlock and * it's invoked when sendto or sendmmsg returns =< 0 * * it should return: * -1 on internal error * 0 ignore error and continue * 1 retry * any sleep or wait action should happen inside the transport code */ int (*transport_tx_sock_error)(knet_handle_t knet_h, int sockfd, int recv_err, int recv_errno); /* * this function is called on _every_ received packet * to verify if the packet is data or internal protocol error handling * * it should return: * -1 on error * 0 packet is not data and we should continue the packet process loop * 1 packet is not data and we should STOP the packet process loop * 2 packet is data and should be parsed as such * * transport_rx_is_data is invoked with both global_rwlock * and fd_tracker read lock (from RX thread) */ int (*transport_rx_is_data)(knet_handle_t knet_h, int sockfd, struct knet_mmsghdr *msg); } knet_transport_ops_t; socklen_t sockaddr_len(const struct sockaddr_storage *ss); /** * This is a kernel style list implementation. * * @author Steven Dake */ struct knet_list_head { struct knet_list_head *next; struct knet_list_head *prev; }; /** * @def KNET_LIST_DECLARE() * Declare and initialize a list head. */ #define KNET_LIST_DECLARE(name) \ struct knet_list_head name = { &(name), &(name) } #define KNET_INIT_LIST_HEAD(ptr) do { \ (ptr)->next = (ptr); (ptr)->prev = (ptr); \ } while (0) /** * Initialize the list entry. * * Points next and prev pointers to head. * @param head pointer to the list head */ static inline void knet_list_init(struct knet_list_head *head) { head->next = head; head->prev = head; } /** * Add this element to the list. * * @param element the new element to insert. * @param head pointer to the list head */ static inline void knet_list_add(struct knet_list_head *element, struct knet_list_head *head) { head->next->prev = element; element->next = head->next; element->prev = head; head->next = element; } /** * Add to the list (but at the end of the list). * * @param element pointer to the element to add * @param head pointer to the list head * @see knet_list_add() */ static inline void knet_list_add_tail(struct knet_list_head *element, struct knet_list_head *head) { head->prev->next = element; element->next = head; element->prev = head->prev; head->prev = element; } /** * Delete an entry from the list. * * @param _remove the list item to remove */ static inline void knet_list_del(struct knet_list_head *_remove) { _remove->next->prev = _remove->prev; _remove->prev->next = _remove->next; } /** * Replace old entry by new one * @param old: the element to be replaced * @param new: the new element to insert */ static inline void knet_list_replace(struct knet_list_head *old, struct knet_list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } /** * Tests whether list is the last entry in list head * @param list: the entry to test * @param head: the head of the list * @return boolean true/false */ static inline int knet_list_is_last(const struct knet_list_head *list, const struct knet_list_head *head) { return list->next == head; } /** * A quick test to see if the list is empty (pointing to it's self). * @param head pointer to the list head * @return boolean true/false */ static inline int32_t knet_list_empty(const struct knet_list_head *head) { return head->next == head; } /** * Get the struct for this entry * @param ptr: the &struct list_head pointer. * @param type: the type of the struct this is embedded in. * @param member: the name of the list_struct within the struct. */ #define knet_list_entry(ptr,type,member)\ ((type *)((char *)(ptr)-(char*)(&((type *)0)->member))) /** * Get the first element from a list * @param ptr: the &struct list_head pointer. * @param type: the type of the struct this is embedded in. * @param member: the name of the list_struct within the struct. */ #define knet_list_first_entry(ptr, type, member) \ knet_list_entry((ptr)->next, type, member) /** * Iterate over a list * @param pos: the &struct list_head to use as a loop counter. * @param head: the head for your list. */ #define knet_list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * Iterate over a list backwards * @param pos: the &struct list_head to use as a loop counter. * @param head: the head for your list. */ #define knet_list_for_each_reverse(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * Iterate over a list safe against removal of list entry * @param pos: the &struct list_head to use as a loop counter. * @param n: another &struct list_head to use as temporary storage * @param head: the head for your list. */ #define knet_list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * Iterate over list of given type * @param pos: the type * to use as a loop counter. * @param head: the head for your list. * @param member: the name of the list_struct within the struct. */ #define knet_list_for_each_entry(pos, head, member) \ for (pos = knet_list_entry((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = knet_list_entry(pos->member.next, typeof(*pos), member)) #endif diff --git a/libknet/tests/api_knet_send.c b/libknet/tests/api_knet_send.c index d75fe026..c3bddbe7 100644 --- a/libknet/tests/api_knet_send.c +++ b/libknet/tests/api_knet_send.c @@ -1,315 +1,315 @@ /* * Copyright (C) 2016 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include #include "libknet.h" #include "internals.h" #include "netutils.h" #include "test-common.h" static int private_data; static void sock_notify(void *pvt_data, int datafd, int8_t channel, uint8_t tx_rx, int error, int errorno) { return; } static void test(void) { knet_handle_t knet_h; int logfds[2]; int datafd = 0; int8_t channel = 0; struct knet_link_status link_status; char send_buff[KNET_MAX_PACKET_SIZE]; char recv_buff[KNET_MAX_PACKET_SIZE]; ssize_t send_len = 0; int recv_len = 0; int savederrno; struct sockaddr_storage lo; memset(&lo, 0, sizeof(struct sockaddr_storage)); if (knet_strtoaddr("127.0.0.1", "50000", &lo, sizeof(struct sockaddr_storage)) < 0) { printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno)); exit(FAIL); } memset(send_buff, 0, sizeof(send_buff)); printf("Test knet_send incorrect knet_h\n"); if ((!knet_send(NULL, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid knet_h or returned incorrect error: %s\n", strerror(errno)); exit(FAIL); } setup_logpipes(logfds); knet_h = knet_handle_new(1, logfds[1], KNET_LOG_DEBUG); if (!knet_h) { printf("knet_handle_new failed: %s\n", strerror(errno)); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } printf("Test knet_send with no send_buff\n"); if ((!knet_send(knet_h, NULL, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid send_buff or returned incorrect error: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with invalid send_buff len (0)\n"); if ((!knet_send(knet_h, send_buff, 0, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid send_buff len (0) or returned incorrect error: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with invalid send_buff len (> KNET_MAX_PACKET_SIZE)\n"); if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE + 1, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid send_buff len (> KNET_MAX_PACKET_SIZE) or returned incorrect error: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with invalid channel (-1)\n"); channel = -1; if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid channel (-1) or returned incorrect error: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with invalid channel (KNET_DATAFD_MAX)\n"); channel = KNET_DATAFD_MAX; if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid channel (KNET_DATAFD_MAX) or returned incorrect error: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with unconfigured channel\n"); channel = 0; if ((!knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel)) || (errno != EINVAL)) { printf("knet_send accepted invalid unconfigured channel or returned incorrect error: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with valid data\n"); if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) { printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } datafd = 0; channel = -1; if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) { printf("knet_handle_add_datafd failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_host_add(knet_h, 1) < 0) { printf("knet_host_add failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) { printf("Unable to configure link: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) { printf("knet_link_set_enable failed: %s\n", strerror(errno)); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_handle_setfwd(knet_h, 1) < 0) { printf("knet_handle_setfwd failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } while(knet_h->host_index[1]->status.reachable != 1) { printf("waiting host to be reachable\n"); sleep(1); } send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel); if (send_len <= 0) { printf("knet_send failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (send_len != sizeof(send_buff)) { printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); sleep(1); recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel); savederrno = errno; if (recv_len != send_len) { printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) { printf("helgrind exception. this is normal due to possible timeouts\n"); exit(PASS); } exit(FAIL); } if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) { printf("recv and send buffers are different!\n"); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } /* A sanity check on the stats */ if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) { printf("knet_link_get_status failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (link_status.stats.tx_data_packets != 2 || link_status.stats.rx_data_packets != 2 || link_status.stats.tx_data_bytes < KNET_MAX_PACKET_SIZE || link_status.stats.rx_data_bytes < KNET_MAX_PACKET_SIZE || link_status.stats.tx_data_bytes > KNET_MAX_PACKET_SIZE*2 || link_status.stats.rx_data_bytes > KNET_MAX_PACKET_SIZE*2) { - printf("stats look wrong: tx_packets: %lu (%lu bytes), rx_packets: %lu (%lu bytes)\n", + printf("stats look wrong: tx_packets: %llu (%llu bytes), rx_packets: %llu (%llu bytes)\n", link_status.stats.tx_data_packets, link_status.stats.tx_data_bytes, link_status.stats.rx_data_packets, link_status.stats.rx_data_bytes); } flush_logs(logfds[0], stdout); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); } int main(int argc, char *argv[]) { need_root(); test(); return PASS; } diff --git a/libknet/tests/api_knet_send_compress.c b/libknet/tests/api_knet_send_compress.c index 6dba41a1..d7a498a1 100644 --- a/libknet/tests/api_knet_send_compress.c +++ b/libknet/tests/api_knet_send_compress.c @@ -1,278 +1,278 @@ /* * Copyright (C) 2016 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include #include "libknet.h" #include "compress.h" #include "internals.h" #include "netutils.h" #include "test-common.h" static int private_data; static void sock_notify(void *pvt_data, int datafd, int8_t channel, uint8_t tx_rx, int error, int errorno) { return; } static void test(const char *model) { knet_handle_t knet_h; int logfds[2]; int datafd = 0; int8_t channel = 0; struct knet_handle_stats stats; char send_buff[KNET_MAX_PACKET_SIZE]; char recv_buff[KNET_MAX_PACKET_SIZE]; ssize_t send_len = 0; int recv_len = 0; int savederrno; struct sockaddr_storage lo; struct knet_handle_compress_cfg knet_handle_compress_cfg; memset(&lo, 0, sizeof(struct sockaddr_storage)); if (knet_strtoaddr("127.0.0.1", "50000", &lo, sizeof(struct sockaddr_storage)) < 0) { printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno)); exit(FAIL); } memset(send_buff, 0, sizeof(send_buff)); setup_logpipes(logfds); knet_h = knet_handle_new(1, logfds[1], KNET_LOG_DEBUG); if (!knet_h) { printf("knet_handle_new failed: %s\n", strerror(errno)); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with %s and valid data\n", model); memset(&knet_handle_compress_cfg, 0, sizeof(struct knet_handle_compress_cfg)); strncpy(knet_handle_compress_cfg.compress_model, model, sizeof(knet_handle_compress_cfg.compress_model) - 1); knet_handle_compress_cfg.compress_level = 4; knet_handle_compress_cfg.compress_threshold = 0; if (knet_handle_compress(knet_h, &knet_handle_compress_cfg) < 0) { printf("knet_handle_compress did not accept zlib compress mode with compress level 1 cfg\n"); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) { printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } datafd = 0; channel = -1; if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) { printf("knet_handle_add_datafd failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_host_add(knet_h, 1) < 0) { printf("knet_host_add failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) { printf("Unable to configure link: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) { printf("knet_link_set_enable failed: %s\n", strerror(errno)); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_handle_setfwd(knet_h, 1) < 0) { printf("knet_handle_setfwd failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } while(knet_h->host_index[1]->status.reachable != 1) { printf("waiting host to be reachable\n"); sleep(1); } send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel); if (send_len <= 0) { printf("knet_send failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (send_len != sizeof(send_buff)) { printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); sleep(1); recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel); savederrno = errno; if (recv_len != send_len) { printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) { printf("helgrind exception. this is normal due to possible timeouts\n"); exit(PASS); } exit(FAIL); } if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) { printf("recv and send buffers are different!\n"); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } /* A sanity check on the stats */ if (knet_handle_get_stats(knet_h, &stats, sizeof(stats)) < 0) { printf("knet_handle_get_stats failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (strcmp(model, "none") == 0) { if (stats.tx_compressed_packets != 0 || stats.rx_compressed_packets != 0) { - printf("stats look wrong: s/b all 0 for model 'none' tx_packets: %lu (%lu/%lu comp/uncomp), rx_packets: %lu (%lu/%lu comp/uncomp)\n", + printf("stats look wrong: s/b all 0 for model 'none' tx_packets: %llu (%llu/%llu comp/uncomp), rx_packets: %llu (%llu/%llu comp/uncomp)\n", stats.tx_compressed_packets, stats.tx_compressed_size_bytes, stats.tx_compressed_original_bytes, stats.rx_compressed_packets, stats.rx_compressed_size_bytes, stats.rx_compressed_original_bytes); } } else { if (stats.tx_compressed_packets != 1 || stats.rx_compressed_packets != 1 || stats.tx_compressed_original_bytes < stats.tx_compressed_size_bytes || stats.tx_compressed_original_bytes < stats.tx_compressed_size_bytes) { - printf("stats look wrong: tx_packets: %lu (%lu/%lu comp/uncomp), rx_packets: %lu (%lu/%lu comp/uncomp)\n", + printf("stats look wrong: tx_packets: %llu (%llu/%llu comp/uncomp), rx_packets: %llu (%llu/%llu comp/uncomp)\n", stats.tx_compressed_packets, stats.tx_compressed_size_bytes, stats.tx_compressed_original_bytes, stats.rx_compressed_packets, stats.rx_compressed_size_bytes, stats.rx_compressed_original_bytes); } } flush_logs(logfds[0], stdout); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); } int main(int argc, char *argv[]) { need_root(); test("none"); #ifdef BUILDCOMPZLIB test("zlib"); #endif #ifdef BUILDCOMPLZ4 test("lz4"); test("lz4hc"); #endif #ifdef BUILDCOMPLZO2 test("lzo2"); #endif #ifdef BUILDCOMPLZMA test("lzma"); #endif #ifdef BUILDCOMPBZIP2 test("bzip2"); #endif return PASS; } diff --git a/libknet/tests/api_knet_send_loopback.c b/libknet/tests/api_knet_send_loopback.c index 12d5a63f..69d0c62a 100644 --- a/libknet/tests/api_knet_send_loopback.c +++ b/libknet/tests/api_knet_send_loopback.c @@ -1,385 +1,385 @@ /* * Copyright (C) 2016 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include #include "libknet.h" #include "internals.h" #include "netutils.h" #include "test-common.h" static int private_data; static void sock_notify(void *pvt_data, int datafd, int8_t channel, uint8_t tx_rx, int error, int errorno) { return; } static int dhost_filter(void *pvt_data, const unsigned char *outdata, ssize_t outdata_len, uint8_t tx_rx, knet_node_id_t this_host_id, knet_node_id_t src_host_id, int8_t *dst_channel, knet_node_id_t *dst_host_ids, size_t *dst_host_ids_entries) { dst_host_ids[0] = 1; *dst_host_ids_entries = 1; return 0; } static void test(void) { knet_handle_t knet_h; int logfds[2]; int datafd = 0; int8_t channel = 0; struct knet_link_status link_status; char send_buff[KNET_MAX_PACKET_SIZE]; char recv_buff[KNET_MAX_PACKET_SIZE]; ssize_t send_len = 0; int recv_len = 0; int savederrno; struct sockaddr_storage lo; memset(&lo, 0, sizeof(struct sockaddr_storage)); if (knet_strtoaddr("127.0.0.1", "50000", &lo, sizeof(struct sockaddr_storage)) < 0) { printf("Unable to convert loopback to sockaddr: %s\n", strerror(errno)); exit(FAIL); } memset(send_buff, 0, sizeof(send_buff)); setup_logpipes(logfds); knet_h = knet_handle_new(1, logfds[1], KNET_LOG_DEBUG); if (!knet_h) { printf("knet_handle_new failed: %s\n", strerror(errno)); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test configuring multiple links with loopback\n"); if (knet_handle_enable_sock_notify(knet_h, &private_data, sock_notify) < 0) { printf("knet_handle_enable_sock_notify failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } datafd = 0; channel = -1; if (knet_handle_add_datafd(knet_h, &datafd, &channel) < 0) { printf("knet_handle_add_datafd failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_host_add(knet_h, 1) < 0) { printf("knet_host_add failed: %s\n", strerror(errno)); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) < 0) { printf("Unable to configure link: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) == 0) { printf("Managed to configure two LOOPBACK links - this is wrong\n"); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test configuring UDP link after loopback\n"); if (knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_UDP, &lo, &lo, 0) == 0) { printf("Managed to configure UDP and LOOPBACK links together: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test configuring UDP link before loopback\n"); if (knet_link_clear_config(knet_h, 1, 0) < 0) { printf("Failed to clear existing LOOPBACK link: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_UDP, &lo, &lo, 0) < 0) { printf("Failed to configure UDP link for testing: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 1, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) == 0) { printf("Managed to configure LOOPBACK link after UDP: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); printf("Test knet_send with valid data\n"); if (knet_link_clear_config(knet_h, 1, 0) < 0) { printf("Failed to clear existing UDP link: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_config(knet_h, 1, 0, KNET_TRANSPORT_LOOPBACK, &lo, &lo, 0) < 0) { printf("Failed configure LOOPBACK link for sending: %s\n", strerror(errno)); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_link_set_enable(knet_h, 1, 0, 1) < 0) { printf("knet_link_set_enable failed: %s\n", strerror(errno)); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (knet_handle_setfwd(knet_h, 1) < 0) { printf("knet_handle_setfwd failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } while(knet_h->host_index[1]->status.reachable != 1) { printf("waiting host to be reachable\n"); sleep(1); } send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel); if (send_len <= 0) { printf("knet_send failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (send_len != sizeof(send_buff)) { printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); sleep(1); recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel); savederrno = errno; if (recv_len != send_len) { printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) { printf("helgrind exception. this is normal due to possible timeouts\n"); exit(PASS); } exit(FAIL); } if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) { printf("recv and send buffers are different!\n"); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } /* A sanity check on the stats */ if (knet_link_get_status(knet_h, 1, 0, &link_status, sizeof(link_status)) < 0) { printf("knet_link_get_status failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (link_status.stats.tx_data_packets != 1 || link_status.stats.rx_data_packets != 0 || link_status.stats.tx_data_bytes != KNET_MAX_PACKET_SIZE) { - printf("stats look wrong: tx_packets: %lu (%lu bytes), rx_packets: %lu (%lu bytes)\n", + printf("stats look wrong: tx_packets: %llu (%llu bytes), rx_packets: %llu (%llu bytes)\n", link_status.stats.tx_data_packets, link_status.stats.tx_data_bytes, link_status.stats.rx_data_packets, link_status.stats.rx_data_bytes); } flush_logs(logfds[0], stdout); printf("Test knet_send with only localhost\n"); if (knet_handle_enable_filter(knet_h, NULL, dhost_filter) < 0) { printf("knet_handle_enable_filter failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } send_len = knet_send(knet_h, send_buff, KNET_MAX_PACKET_SIZE, channel); if (send_len <= 0) { printf("knet_send failed: %s\n", strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } if (send_len != sizeof(send_buff)) { printf("knet_send sent only %zd bytes: %s\n", send_len, strerror(errno)); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } flush_logs(logfds[0], stdout); sleep(1); recv_len = knet_recv(knet_h, recv_buff, KNET_MAX_PACKET_SIZE, channel); savederrno = errno; if (recv_len != send_len) { printf("knet_recv received only %d bytes: %s (errno: %d)\n", recv_len, strerror(errno), errno); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); if ((is_helgrind()) && (recv_len == -1) && (savederrno == EAGAIN)) { printf("helgrind exception. this is normal due to possible timeouts\n"); exit(PASS); } exit(FAIL); } if (memcmp(recv_buff, send_buff, KNET_MAX_PACKET_SIZE)) { printf("recv and send buffers are different!\n"); knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); exit(FAIL); } knet_link_set_enable(knet_h, 1, 0, 0); knet_link_clear_config(knet_h, 1, 0); knet_host_remove(knet_h, 1); knet_handle_free(knet_h); flush_logs(logfds[0], stdout); close_logpipes(logfds); } int main(int argc, char *argv[]) { need_root(); test(); return PASS; } diff --git a/libknet/threads_pmtud.c b/libknet/threads_pmtud.c index 999597a9..61bae78c 100644 --- a/libknet/threads_pmtud.c +++ b/libknet/threads_pmtud.c @@ -1,409 +1,409 @@ /* * Copyright (C) 2010-2015 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * Federico Simoncelli * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include "crypto.h" #include "links.h" #include "host.h" #include "logging.h" #include "threads_common.h" #include "threads_pmtud.h" static int _handle_check_link_pmtud(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link) { int err, ret, savederrno, mutex_retry_limit, failsafe; - ssize_t onwire_len; /* current packet onwire size */ - ssize_t overhead_len; /* onwire packet overhead (protocol based) */ - ssize_t max_mtu_len; /* max mtu for protocol */ - ssize_t data_len; /* how much data we can send in the packet - * generally would be onwire_len - overhead_len - * needs to be adjusted for crypto - */ - ssize_t pad_len; /* crypto packet pad size, needs to move into crypto.c callbacks */ - int len; /* len of what we were able to sendto onwire */ + size_t onwire_len; /* current packet onwire size */ + size_t overhead_len; /* onwire packet overhead (protocol based) */ + size_t max_mtu_len; /* max mtu for protocol */ + size_t data_len; /* how much data we can send in the packet + * generally would be onwire_len - overhead_len + * needs to be adjusted for crypto + */ + size_t pad_len; /* crypto packet pad size, needs to move into crypto.c callbacks */ + ssize_t len; /* len of what we were able to sendto onwire */ struct timespec ts; unsigned char *outbuf = (unsigned char *)knet_h->pmtudbuf; mutex_retry_limit = 0; failsafe = 0; pad_len = 0; dst_link->last_bad_mtu = 0; knet_h->pmtudbuf->khp_pmtud_link = dst_link->link_id; switch (dst_link->dst_addr.ss_family) { case AF_INET6: max_mtu_len = KNET_PMTUD_SIZE_V6; overhead_len = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead; dst_link->last_good_mtu = dst_link->last_ping_size + overhead_len; break; case AF_INET: max_mtu_len = KNET_PMTUD_SIZE_V4; overhead_len = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead; dst_link->last_good_mtu = dst_link->last_ping_size + overhead_len; break; default: log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted, unknown protocol"); return -1; break; } /* * discovery starts from the top because kernel will * refuse to send packets > current iface mtu. * this saves us some time and network bw. */ onwire_len = max_mtu_len; restart: /* * prevent a race when interface mtu is changed _exactly_ during * the discovery process and it's complex to detect. Easier * to wait the next loop. * 30 is not an arbitrary value. To bisect from 576 to 128000 doesn't * take more than 18/19 steps. */ if (failsafe == 30) { log_err(knet_h, KNET_SUB_PMTUD, "Aborting PMTUD process: Too many attempts. MTU might have changed during discovery."); return -1; } else { failsafe++; } data_len = onwire_len - overhead_len; if (knet_h->crypto_instance) { if (knet_h->sec_block_size) { pad_len = knet_h->sec_block_size - (data_len % knet_h->sec_block_size); if (pad_len == knet_h->sec_block_size) { pad_len = 0; } data_len = data_len + pad_len; } data_len = data_len + (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size); if (knet_h->sec_block_size) { while (data_len + overhead_len >= max_mtu_len) { data_len = data_len - knet_h->sec_block_size; } } if (dst_link->last_bad_mtu) { while (data_len + overhead_len >= dst_link->last_bad_mtu) { data_len = data_len - (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size); } } if (data_len < (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size) + 1) { log_debug(knet_h, KNET_SUB_PMTUD, "Aborting PMTUD process: link mtu smaller than crypto header detected (link might have been disconnected)"); return -1; } onwire_len = data_len + overhead_len; knet_h->pmtudbuf->khp_pmtud_size = onwire_len; if (crypto_encrypt_and_sign(knet_h, (const unsigned char *)knet_h->pmtudbuf, data_len - (knet_h->sec_hash_size + knet_h->sec_salt_size + knet_h->sec_block_size), knet_h->pmtudbuf_crypt, - &data_len) < 0) { + (ssize_t *)&data_len) < 0) { log_debug(knet_h, KNET_SUB_PMTUD, "Unable to crypto pmtud packet"); return -1; } outbuf = knet_h->pmtudbuf_crypt; } else { knet_h->pmtudbuf->khp_pmtud_size = onwire_len; } /* link has gone down, aborting pmtud */ if (dst_link->status.connected != 1) { log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected host (%u) link (%u) has been disconnected", dst_host->host_id, dst_link->link_id); return -1; } if (dst_link->transport_connected != 1) { log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected host (%u) link (%u) has been disconnected", dst_host->host_id, dst_link->link_id); return -1; } if (pthread_mutex_lock(&knet_h->pmtud_mutex) != 0) { log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get mutex lock"); return -1; } retry: len = sendto(dst_link->outsock, outbuf, data_len, MSG_DONTWAIT | MSG_NOSIGNAL, (struct sockaddr *) &dst_link->dst_addr, sizeof(struct sockaddr_storage)); savederrno = errno; err = knet_h->transport_ops[dst_link->transport_type]->transport_tx_sock_error(knet_h, dst_link->outsock, len, savederrno); switch(err) { case -1: /* unrecoverable error */ log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet (sendto): %d %s", savederrno, strerror(savederrno)); pthread_mutex_unlock(&knet_h->pmtud_mutex); dst_link->status.stats.tx_pmtu_errors++; return -1; case 0: /* ignore error and continue */ break; case 1: /* retry to send those same data */ dst_link->status.stats.tx_pmtu_retries++; goto retry; break; } - if (len != data_len) { + if (len != (ssize_t )data_len) { if (savederrno == EMSGSIZE) { dst_link->last_bad_mtu = onwire_len; } else { - log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet len: %zd err: %s", onwire_len, strerror(savederrno)); + log_debug(knet_h, KNET_SUB_PMTUD, "Unable to send pmtu packet len: %zu err: %s", onwire_len, strerror(savederrno)); } } else { dst_link->last_sent_mtu = onwire_len; dst_link->last_recv_mtu = 0; dst_link->status.stats.tx_pmtu_packets++; dst_link->status.stats.tx_pmtu_bytes += data_len; if (clock_gettime(CLOCK_REALTIME, &ts) < 0) { log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get current time: %s", strerror(errno)); pthread_mutex_unlock(&knet_h->pmtud_mutex); return -1; } /* * Set an artibrary 2 seconds timeout to receive a PMTUd reply * perhaps this should be configurable but: * 1) too short timeout can cause instability since MTU value * influeces link status * 2) too high timeout slows down the MTU detection process for * small MTU * * Another option is to make the PMTUd process less influent * in link status detection but that could cause data packet loss * without link up/down changes */ ts.tv_sec += 2; ret = pthread_cond_timedwait(&knet_h->pmtud_cond, &knet_h->pmtud_mutex, &ts); if (shutdown_in_progress(knet_h)) { pthread_mutex_unlock(&knet_h->pmtud_mutex); log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted. shutdown in progress"); return -1; } if ((ret != 0) && (ret != ETIMEDOUT)) { pthread_mutex_unlock(&knet_h->pmtud_mutex); if (mutex_retry_limit == 3) { log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD aborted, unable to get mutex lock"); return -1; } mutex_retry_limit++; goto restart; } if ((dst_link->last_recv_mtu != onwire_len) || (ret)) { dst_link->last_bad_mtu = onwire_len; } else { int found_mtu = 0; if (knet_h->sec_block_size) { if ((onwire_len + knet_h->sec_block_size >= max_mtu_len) || ((dst_link->last_bad_mtu) && (dst_link->last_bad_mtu <= (onwire_len + knet_h->sec_block_size)))) { found_mtu = 1; } } else { if ((onwire_len == max_mtu_len) || ((dst_link->last_bad_mtu) && (dst_link->last_bad_mtu == (onwire_len + 1)))) { found_mtu = 1; } } if (found_mtu) { /* * account for IP overhead, knet headers and crypto in PMTU calculation */ dst_link->status.mtu = onwire_len - dst_link->status.proto_overhead; pthread_mutex_unlock(&knet_h->pmtud_mutex); return 0; } dst_link->last_good_mtu = onwire_len; } } onwire_len = (dst_link->last_good_mtu + dst_link->last_bad_mtu) / 2; pthread_mutex_unlock(&knet_h->pmtud_mutex); goto restart; } static int _handle_check_pmtud(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_link *dst_link, unsigned int *min_mtu) { uint8_t saved_valid_pmtud; unsigned int saved_pmtud; struct timespec clock_now; unsigned long long diff_pmtud, interval; interval = knet_h->pmtud_interval * 1000000000llu; /* nanoseconds */ if (clock_gettime(CLOCK_MONOTONIC, &clock_now) != 0) { log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get monotonic clock"); return 0; } timespec_diff(dst_link->pmtud_last, clock_now, &diff_pmtud); if (diff_pmtud < interval) { *min_mtu = dst_link->status.mtu; return dst_link->has_valid_mtu; } switch (dst_link->dst_addr.ss_family) { case AF_INET6: dst_link->status.proto_overhead = KNET_PMTUD_OVERHEAD_V6 + dst_link->proto_overhead + KNET_HEADER_ALL_SIZE + knet_h->sec_header_size; break; case AF_INET: dst_link->status.proto_overhead = KNET_PMTUD_OVERHEAD_V4 + dst_link->proto_overhead + KNET_HEADER_ALL_SIZE + knet_h->sec_header_size; break; } saved_pmtud = dst_link->status.mtu; saved_valid_pmtud = dst_link->has_valid_mtu; log_debug(knet_h, KNET_SUB_PMTUD, "Starting PMTUD for host: %u link: %u", dst_host->host_id, dst_link->link_id); if (_handle_check_link_pmtud(knet_h, dst_host, dst_link) < 0) { dst_link->has_valid_mtu = 0; } else { dst_link->has_valid_mtu = 1; switch (dst_link->dst_addr.ss_family) { case AF_INET6: if (((dst_link->status.mtu + dst_link->status.proto_overhead) < KNET_PMTUD_MIN_MTU_V6) || ((dst_link->status.mtu + dst_link->status.proto_overhead) > KNET_PMTUD_SIZE_V6)) { log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected an IPv6 MTU out of bound value (%u) for host: %u link: %u.", dst_link->status.mtu + dst_link->status.proto_overhead, dst_host->host_id, dst_link->link_id); dst_link->has_valid_mtu = 0; } break; case AF_INET: if (((dst_link->status.mtu + dst_link->status.proto_overhead) < KNET_PMTUD_MIN_MTU_V4) || ((dst_link->status.mtu + dst_link->status.proto_overhead) > KNET_PMTUD_SIZE_V4)) { log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD detected an IPv4 MTU out of bound value (%u) for host: %u link: %u.", dst_link->status.mtu + dst_link->status.proto_overhead, dst_host->host_id, dst_link->link_id); dst_link->has_valid_mtu = 0; } break; } if (dst_link->has_valid_mtu) { if ((saved_pmtud) && (saved_pmtud != dst_link->status.mtu)) { log_info(knet_h, KNET_SUB_PMTUD, "PMTUD link change for host: %u link: %u from %u to %u", dst_host->host_id, dst_link->link_id, saved_pmtud, dst_link->status.mtu); } log_debug(knet_h, KNET_SUB_PMTUD, "PMTUD completed for host: %u link: %u current link mtu: %u", dst_host->host_id, dst_link->link_id, dst_link->status.mtu); if (dst_link->status.mtu < *min_mtu) { *min_mtu = dst_link->status.mtu; } dst_link->pmtud_last = clock_now; } } if (saved_valid_pmtud != dst_link->has_valid_mtu) { _host_dstcache_update_sync(knet_h, dst_host); } return dst_link->has_valid_mtu; } void *_handle_pmtud_link_thread(void *data) { knet_handle_t knet_h = (knet_handle_t) data; struct knet_host *dst_host; struct knet_link *dst_link; int link_idx; unsigned int min_mtu, have_mtu; unsigned int lower_mtu; knet_h->data_mtu = KNET_PMTUD_MIN_MTU_V4 - KNET_HEADER_ALL_SIZE - knet_h->sec_header_size; /* preparing pmtu buffer */ knet_h->pmtudbuf->kh_version = KNET_HEADER_VERSION; knet_h->pmtudbuf->kh_type = KNET_HEADER_TYPE_PMTUD; knet_h->pmtudbuf->kh_node = htons(knet_h->host_id); while (!shutdown_in_progress(knet_h)) { usleep(KNET_THREADS_TIMERES); if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) { log_debug(knet_h, KNET_SUB_PMTUD, "Unable to get read lock"); continue; } lower_mtu = KNET_PMTUD_SIZE_V4; min_mtu = KNET_PMTUD_SIZE_V4 - KNET_HEADER_ALL_SIZE - knet_h->sec_header_size; have_mtu = 0; for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) { for (link_idx = 0; link_idx < KNET_MAX_LINK; link_idx++) { dst_link = &dst_host->link[link_idx]; if ((dst_link->status.enabled != 1) || (dst_link->status.connected != 1) || (dst_host->link[link_idx].transport_type == KNET_TRANSPORT_LOOPBACK) || (!dst_link->last_ping_size) || ((dst_link->dynamic == KNET_LINK_DYNIP) && (dst_link->status.dynconnected != 1))) continue; if (_handle_check_pmtud(knet_h, dst_host, dst_link, &min_mtu)) { have_mtu = 1; if (min_mtu < lower_mtu) { lower_mtu = min_mtu; } } } } if (have_mtu) { if (knet_h->data_mtu != lower_mtu) { knet_h->data_mtu = lower_mtu; log_info(knet_h, KNET_SUB_PMTUD, "Global data MTU changed to: %u", knet_h->data_mtu); if (knet_h->pmtud_notify_fn) { knet_h->pmtud_notify_fn(knet_h->pmtud_notify_fn_private_data, knet_h->data_mtu); } } } pthread_rwlock_unlock(&knet_h->global_rwlock); } return NULL; } diff --git a/libknet/threads_tx.c b/libknet/threads_tx.c index c1a79320..063c8e31 100644 --- a/libknet/threads_tx.c +++ b/libknet/threads_tx.c @@ -1,732 +1,732 @@ /* * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. * * Authors: Fabio M. Di Nitto * Federico Simoncelli * * This software licensed under GPL-2.0+, LGPL-2.0+ */ #include "config.h" #include #include #include #include #include #include #include "compat.h" #include "compress.h" #include "crypto.h" #include "host.h" #include "link.h" #include "logging.h" #include "transports.h" #include "threads_common.h" #include "threads_heartbeat.h" #include "threads_tx.h" #include "netutils.h" /* * SEND */ static int _dispatch_to_links(knet_handle_t knet_h, struct knet_host *dst_host, struct knet_mmsghdr *msg, int msgs_to_send) { int link_idx, msg_idx, sent_msgs, prev_sent, progress; int err = 0, savederrno = 0; unsigned int i; struct knet_mmsghdr *cur; struct knet_link *cur_link; for (link_idx = 0; link_idx < dst_host->active_link_entries; link_idx++) { sent_msgs = 0; prev_sent = 0; progress = 1; cur_link = &dst_host->link[dst_host->active_links[link_idx]]; if (cur_link->transport_type == KNET_TRANSPORT_LOOPBACK) { continue; } msg_idx = 0; while (msg_idx < msgs_to_send) { msg[msg_idx].msg_hdr.msg_name = &cur_link->dst_addr; /* Cast for Linux/BSD compatibility */ for (i=0; i<(unsigned int)msg[msg_idx].msg_hdr.msg_iovlen; i++) { cur_link->status.stats.tx_data_bytes += msg[msg_idx].msg_hdr.msg_iov[i].iov_len; } cur_link->status.stats.tx_data_packets++; msg_idx++; } retry: cur = &msg[prev_sent]; sent_msgs = _sendmmsg(dst_host->link[dst_host->active_links[link_idx]].outsock, &cur[0], msgs_to_send - prev_sent, MSG_DONTWAIT | MSG_NOSIGNAL); savederrno = errno; err = knet_h->transport_ops[dst_host->link[dst_host->active_links[link_idx]].transport_type]->transport_tx_sock_error(knet_h, dst_host->link[dst_host->active_links[link_idx]].outsock, sent_msgs, savederrno); switch(err) { case -1: /* unrecoverable error */ cur_link->status.stats.tx_data_errors++; goto out_unlock; break; case 0: /* ignore error and continue */ break; case 1: /* retry to send those same data */ cur_link->status.stats.tx_data_retries++; goto retry; break; } prev_sent = prev_sent + sent_msgs; if ((sent_msgs >= 0) && (prev_sent < msgs_to_send)) { if ((sent_msgs) || (progress)) { if (sent_msgs) { progress = 1; } else { progress = 0; } #ifdef DEBUG log_debug(knet_h, KNET_SUB_TX, "Unable to send all (%d/%d) data packets to host %s (%u) link %s:%s (%u)", sent_msgs, msg_idx, dst_host->name, dst_host->host_id, dst_host->link[dst_host->active_links[link_idx]].status.dst_ipaddr, dst_host->link[dst_host->active_links[link_idx]].status.dst_port, dst_host->link[dst_host->active_links[link_idx]].link_id); #endif goto retry; } if (!progress) { savederrno = EAGAIN; err = -1; goto out_unlock; } } if ((dst_host->link_handler_policy == KNET_LINK_POLICY_RR) && (dst_host->active_link_entries > 1)) { uint8_t cur_link_id = dst_host->active_links[0]; memmove(&dst_host->active_links[0], &dst_host->active_links[1], KNET_MAX_LINK - 1); dst_host->active_links[dst_host->active_link_entries - 1] = cur_link_id; break; } } out_unlock: errno = savederrno; return err; } -static int _parse_recv_from_sock(knet_handle_t knet_h, ssize_t inlen, int8_t channel, int is_sync) +static int _parse_recv_from_sock(knet_handle_t knet_h, size_t inlen, int8_t channel, int is_sync) { - ssize_t outlen, frag_len; + size_t outlen, frag_len; struct knet_host *dst_host; knet_node_id_t dst_host_ids_temp[KNET_MAX_HOST]; size_t dst_host_ids_entries_temp = 0; knet_node_id_t dst_host_ids[KNET_MAX_HOST]; size_t dst_host_ids_entries = 0; int bcast = 1; struct knet_hostinfo *knet_hostinfo; struct iovec iov_out[PCKT_FRAG_MAX][2]; int iovcnt_out = 2; uint8_t frag_idx; unsigned int temp_data_mtu; size_t host_idx; int send_mcast = 0; struct knet_header *inbuf; int savederrno = 0; int err = 0; seq_num_t tx_seq_num; struct knet_mmsghdr msg[PCKT_FRAG_MAX]; int msgs_to_send, msg_idx; unsigned int i; int j; int send_local = 0; int data_compressed = 0; size_t uncrypted_frag_size; inbuf = knet_h->recv_from_sock_buf; if ((knet_h->enabled != 1) && (inbuf->kh_type != KNET_HEADER_TYPE_HOST_INFO)) { /* data forward is disabled */ log_debug(knet_h, KNET_SUB_TX, "Received data packet but forwarding is disabled"); savederrno = ECANCELED; err = -1; goto out_unlock; } /* * move this into a separate function to expand on * extra switching rules */ switch(inbuf->kh_type) { case KNET_HEADER_TYPE_DATA: if (knet_h->dst_host_filter_fn) { bcast = knet_h->dst_host_filter_fn( knet_h->dst_host_filter_fn_private_data, (const unsigned char *)inbuf->khp_data_userdata, inlen, KNET_NOTIFY_TX, knet_h->host_id, knet_h->host_id, &channel, dst_host_ids_temp, &dst_host_ids_entries_temp); if (bcast < 0) { log_debug(knet_h, KNET_SUB_TX, "Error from dst_host_filter_fn: %d", bcast); savederrno = EFAULT; err = -1; goto out_unlock; } if ((!bcast) && (!dst_host_ids_entries_temp)) { log_debug(knet_h, KNET_SUB_TX, "Message is unicast but no dst_host_ids_entries"); savederrno = EINVAL; err = -1; goto out_unlock; } } /* Send to localhost if appropriate and enabled */ if (knet_h->has_loop_link) { send_local = 0; if (bcast) { send_local = 1; } else { for (i=0; i< dst_host_ids_entries_temp; i++) { if (dst_host_ids_temp[i] == knet_h->host_id) { send_local = 1; } } } if (send_local) { const unsigned char *buf = inbuf->khp_data_userdata; ssize_t buflen = inlen; struct knet_link *local_link; local_link = knet_h->host_index[knet_h->host_id]->link; local_retry: err = write(knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], buf, buflen); if (err < 0) { log_err(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local failed. error=%s\n", strerror(errno)); local_link->status.stats.tx_data_errors++; } if (err > 0 && err < buflen) { - log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %ld\n", err, inlen); + log_debug(knet_h, KNET_SUB_TRANSP_LOOPBACK, "send local incomplete=%d bytes of %u\n", err, inlen); local_link->status.stats.tx_data_retries++; buf += err; buflen -= err; usleep(KNET_THREADS_TIMERES / 16); goto local_retry; } if (err == buflen) { local_link->status.stats.tx_data_packets++; local_link->status.stats.tx_data_bytes += inlen; } } } break; case KNET_HEADER_TYPE_HOST_INFO: knet_hostinfo = (struct knet_hostinfo *)inbuf->khp_data_userdata; if (knet_hostinfo->khi_bcast == KNET_HOSTINFO_UCAST) { bcast = 0; dst_host_ids_temp[0] = knet_hostinfo->khi_dst_node_id; dst_host_ids_entries_temp = 1; knet_hostinfo->khi_dst_node_id = htons(knet_hostinfo->khi_dst_node_id); } break; default: log_warn(knet_h, KNET_SUB_TX, "Receiving unknown messages from socket"); savederrno = ENOMSG; err = -1; goto out_unlock; break; } if (is_sync) { if ((bcast) || ((!bcast) && (dst_host_ids_entries_temp > 1))) { log_debug(knet_h, KNET_SUB_TX, "knet_send_sync is only supported with unicast packets for one destination"); savederrno = E2BIG; err = -1; goto out_unlock; } } /* * check destinations hosts before spending time * in fragmenting/encrypting packets to save * time processing data for unreachable hosts. * for unicast, also remap the destination data * to skip unreachable hosts. */ if (!bcast) { dst_host_ids_entries = 0; for (host_idx = 0; host_idx < dst_host_ids_entries_temp; host_idx++) { dst_host = knet_h->host_index[dst_host_ids_temp[host_idx]]; if (!dst_host) { continue; } if (!(dst_host->host_id == knet_h->host_id && knet_h->has_loop_link) && dst_host->status.reachable) { dst_host_ids[dst_host_ids_entries] = dst_host_ids_temp[host_idx]; dst_host_ids_entries++; } } if (!dst_host_ids_entries) { savederrno = EHOSTDOWN; err = -1; goto out_unlock; } } else { send_mcast = 0; for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) { if (!(dst_host->host_id == knet_h->host_id && knet_h->has_loop_link) && dst_host->status.reachable) { send_mcast = 1; break; } } if (!send_mcast) { savederrno = EHOSTDOWN; err = -1; goto out_unlock; } } if (!knet_h->data_mtu) { /* * using MIN_MTU_V4 for data mtu is not completely accurate but safe enough */ log_debug(knet_h, KNET_SUB_TX, "Received data packet but data MTU is still unknown." " Packet might not be delivered." " Assuming mininum IPv4 mtu (%d)", KNET_PMTUD_MIN_MTU_V4); temp_data_mtu = KNET_PMTUD_MIN_MTU_V4; } else { /* * take a copy of the mtu to avoid value changing under * our feet while we are sending a fragmented pckt */ temp_data_mtu = knet_h->data_mtu; } /* * compress data */ if ((knet_h->compress_model > 0) && (inlen > knet_h->compress_threshold)) { - ssize_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS; + size_t cmp_outlen = KNET_DATABUFSIZE_COMPRESS; struct timespec start_time; struct timespec end_time; uint64_t compress_time; clock_gettime(CLOCK_MONOTONIC, &start_time); err = compress(knet_h, (const unsigned char *)inbuf->khp_data_userdata, inlen, - knet_h->send_to_links_buf_compress, &cmp_outlen); + knet_h->send_to_links_buf_compress, (ssize_t *)&cmp_outlen); if (err < 0) { log_warn(knet_h, KNET_SUB_COMPRESS, "Compression failed (%d): %s", err, strerror(errno)); } else { /* Collect stats */ clock_gettime(CLOCK_MONOTONIC, &end_time); timespec_diff(start_time, end_time, &compress_time); if (compress_time < knet_h->stats.tx_compress_time_min) { knet_h->stats.tx_compress_time_min = compress_time; } if (compress_time > knet_h->stats.tx_compress_time_max) { knet_h->stats.tx_compress_time_max = compress_time; } knet_h->stats.tx_compress_time_ave = (unsigned long long)(knet_h->stats.tx_compress_time_ave * knet_h->stats.tx_compressed_packets + compress_time) / (knet_h->stats.tx_compressed_packets+1); knet_h->stats.tx_compressed_packets++; knet_h->stats.tx_compressed_original_bytes += inlen; knet_h->stats.tx_compressed_size_bytes += cmp_outlen; if (cmp_outlen < inlen) { memmove(inbuf->khp_data_userdata, knet_h->send_to_links_buf_compress, cmp_outlen); inlen = cmp_outlen; data_compressed = 1; } } } if ((knet_h->compress_model > 0) && (inlen <= knet_h->compress_threshold)) { knet_h->stats.tx_uncompressed_packets++; } /* * prepare the outgoing buffers */ frag_len = inlen; frag_idx = 0; inbuf->khp_data_bcast = bcast; inbuf->khp_data_frag_num = ceil((float)inlen / temp_data_mtu); inbuf->khp_data_channel = channel; if (data_compressed) { inbuf->khp_data_compress = knet_h->compress_model; } else { inbuf->khp_data_compress = 0; } if (pthread_mutex_lock(&knet_h->tx_seq_num_mutex)) { log_debug(knet_h, KNET_SUB_TX, "Unable to get seq mutex lock"); goto out_unlock; } knet_h->tx_seq_num++; /* * force seq_num 0 to detect a node that has crashed and rejoining * the knet instance. seq_num 0 will clear the buffers in the RX * thread */ if (knet_h->tx_seq_num == 0) { knet_h->tx_seq_num++; } /* * cache the value in locked context */ tx_seq_num = knet_h->tx_seq_num; inbuf->khp_data_seq_num = htons(knet_h->tx_seq_num); pthread_mutex_unlock(&knet_h->tx_seq_num_mutex); /* * forcefully broadcast a ping to all nodes every SEQ_MAX / 8 * pckts. * this solves 2 problems: * 1) on TX socket overloads we generate extra pings to keep links alive * 2) in 3+ nodes setup, where all the traffic is flowing between node 1 and 2, * node 3+ will be able to keep in sync on the TX seq_num even without * receiving traffic or pings in betweens. This avoids issues with * rollover of the circular buffer */ if (tx_seq_num % (SEQ_MAX / 8) == 0) { _send_pings(knet_h, 0); } if (inbuf->khp_data_frag_num > 1) { while (frag_idx < inbuf->khp_data_frag_num) { /* * set the iov_base */ iov_out[frag_idx][0].iov_base = (void *)knet_h->send_to_links_buf[frag_idx]; iov_out[frag_idx][0].iov_len = KNET_HEADER_DATA_SIZE; iov_out[frag_idx][1].iov_base = inbuf->khp_data_userdata + (temp_data_mtu * frag_idx); /* * set the len */ if (frag_len > temp_data_mtu) { iov_out[frag_idx][1].iov_len = temp_data_mtu; } else { iov_out[frag_idx][1].iov_len = frag_len; } /* * copy the frag info on all buffers */ knet_h->send_to_links_buf[frag_idx]->kh_type = inbuf->kh_type; knet_h->send_to_links_buf[frag_idx]->khp_data_seq_num = inbuf->khp_data_seq_num; knet_h->send_to_links_buf[frag_idx]->khp_data_frag_num = inbuf->khp_data_frag_num; knet_h->send_to_links_buf[frag_idx]->khp_data_bcast = inbuf->khp_data_bcast; knet_h->send_to_links_buf[frag_idx]->khp_data_channel = inbuf->khp_data_channel; knet_h->send_to_links_buf[frag_idx]->khp_data_compress = inbuf->khp_data_compress; frag_len = frag_len - temp_data_mtu; frag_idx++; } iovcnt_out = 2; } else { iov_out[frag_idx][0].iov_base = (void *)inbuf; iov_out[frag_idx][0].iov_len = frag_len + KNET_HEADER_DATA_SIZE; iovcnt_out = 1; } if (knet_h->crypto_instance) { struct timespec start_time; struct timespec end_time; uint64_t crypt_time; frag_idx = 0; while (frag_idx < inbuf->khp_data_frag_num) { clock_gettime(CLOCK_MONOTONIC, &start_time); if (crypto_encrypt_and_signv( knet_h, iov_out[frag_idx], iovcnt_out, knet_h->send_to_links_buf_crypt[frag_idx], - &outlen) < 0) { + (ssize_t *)&outlen) < 0) { log_debug(knet_h, KNET_SUB_TX, "Unable to encrypt packet"); savederrno = ECHILD; err = -1; goto out_unlock; } clock_gettime(CLOCK_MONOTONIC, &end_time); timespec_diff(start_time, end_time, &crypt_time); if (crypt_time < knet_h->stats.tx_crypt_time_min) { knet_h->stats.tx_crypt_time_min = crypt_time; } if (crypt_time > knet_h->stats.tx_crypt_time_max) { knet_h->stats.tx_crypt_time_max = crypt_time; } knet_h->stats.tx_crypt_time_ave = (knet_h->stats.tx_crypt_time_ave * knet_h->stats.tx_crypt_packets + crypt_time) / (knet_h->stats.tx_crypt_packets+1); uncrypted_frag_size = 0; for (j=0; j < iovcnt_out; j++) { uncrypted_frag_size += iov_out[frag_idx][j].iov_len; } knet_h->stats.tx_crypt_byte_overhead += (outlen - uncrypted_frag_size); knet_h->stats.tx_crypt_packets++; iov_out[frag_idx][0].iov_base = knet_h->send_to_links_buf_crypt[frag_idx]; iov_out[frag_idx][0].iov_len = outlen; frag_idx++; } iovcnt_out = 1; } memset(&msg, 0, sizeof(msg)); msgs_to_send = inbuf->khp_data_frag_num; msg_idx = 0; while (msg_idx < msgs_to_send) { msg[msg_idx].msg_hdr.msg_namelen = sizeof(struct sockaddr_storage); msg[msg_idx].msg_hdr.msg_iov = &iov_out[msg_idx][0]; msg[msg_idx].msg_hdr.msg_iovlen = iovcnt_out; msg_idx++; } if (!bcast) { for (host_idx = 0; host_idx < dst_host_ids_entries; host_idx++) { dst_host = knet_h->host_index[dst_host_ids[host_idx]]; err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send); savederrno = errno; if (err) { goto out_unlock; } } } else { for (dst_host = knet_h->host_head; dst_host != NULL; dst_host = dst_host->next) { if (dst_host->status.reachable) { err = _dispatch_to_links(knet_h, dst_host, &msg[0], msgs_to_send); savederrno = errno; if (err) { goto out_unlock; } } } } out_unlock: errno = savederrno; return err; } int knet_send_sync(knet_handle_t knet_h, const char *buff, const size_t buff_len, const int8_t channel) { int savederrno = 0, err = 0; if (!knet_h) { errno = EINVAL; return -1; } if (buff == NULL) { errno = EINVAL; return -1; } if (buff_len <= 0) { errno = EINVAL; return -1; } if (buff_len > KNET_MAX_PACKET_SIZE) { errno = EINVAL; return -1; } if (channel < 0) { errno = EINVAL; return -1; } if (channel >= KNET_DATAFD_MAX) { errno = EINVAL; return -1; } savederrno = pthread_rwlock_rdlock(&knet_h->global_rwlock); if (savederrno) { log_err(knet_h, KNET_SUB_TX, "Unable to get read lock: %s", strerror(savederrno)); errno = savederrno; return -1; } if (!knet_h->sockfd[channel].in_use) { savederrno = EINVAL; err = -1; goto out; } savederrno = pthread_mutex_lock(&knet_h->tx_mutex); if (savederrno) { log_err(knet_h, KNET_SUB_TX, "Unable to get TX mutex lock: %s", strerror(savederrno)); err = -1; goto out; } knet_h->recv_from_sock_buf->kh_type = KNET_HEADER_TYPE_DATA; memmove(knet_h->recv_from_sock_buf->khp_data_userdata, buff, buff_len); err = _parse_recv_from_sock(knet_h, buff_len, channel, 1); savederrno = errno; pthread_mutex_unlock(&knet_h->tx_mutex); out: pthread_rwlock_unlock(&knet_h->global_rwlock); errno = savederrno; return err; } static void _handle_send_to_links(knet_handle_t knet_h, struct msghdr *msg, int sockfd, int8_t channel, int type) { ssize_t inlen = 0; int savederrno = 0, docallback = 0; if ((channel >= 0) && (channel < KNET_DATAFD_MAX) && (!knet_h->sockfd[channel].is_socket)) { inlen = readv(sockfd, msg->msg_iov, 1); } else { inlen = recvmsg(sockfd, msg, MSG_DONTWAIT | MSG_NOSIGNAL); } if (inlen == 0) { savederrno = 0; docallback = 1; goto out; } if (inlen < 0) { savederrno = errno; docallback = 1; goto out; } knet_h->recv_from_sock_buf->kh_type = type; _parse_recv_from_sock(knet_h, inlen, channel, 0); out: if (inlen < 0) { struct epoll_event ev; memset(&ev, 0, sizeof(struct epoll_event)); if (epoll_ctl(knet_h->send_to_links_epollfd, EPOLL_CTL_DEL, knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created], &ev)) { log_err(knet_h, KNET_SUB_TX, "Unable to del datafd %d from linkfd epoll pool: %s", knet_h->sockfd[channel].sockfd[0], strerror(savederrno)); } else { knet_h->sockfd[channel].has_error = 1; } } if (docallback) { knet_h->sock_notify_fn(knet_h->sock_notify_fn_private_data, knet_h->sockfd[channel].sockfd[0], channel, KNET_NOTIFY_TX, inlen, savederrno); } } void *_handle_send_to_links_thread(void *data) { knet_handle_t knet_h = (knet_handle_t) data; struct epoll_event events[KNET_EPOLL_MAX_EVENTS]; int i, nev, type; int8_t channel; struct iovec iov_in; struct msghdr msg; struct sockaddr_storage address; memset(&iov_in, 0, sizeof(iov_in)); iov_in.iov_base = (void *)knet_h->recv_from_sock_buf->khp_data_userdata; iov_in.iov_len = KNET_MAX_PACKET_SIZE; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_name = &address; msg.msg_namelen = sizeof(struct sockaddr_storage); msg.msg_iov = &iov_in; msg.msg_iovlen = 1; knet_h->recv_from_sock_buf->kh_version = KNET_HEADER_VERSION; knet_h->recv_from_sock_buf->khp_data_frag_seq = 0; knet_h->recv_from_sock_buf->kh_node = htons(knet_h->host_id); for (i = 0; i < PCKT_FRAG_MAX; i++) { knet_h->send_to_links_buf[i]->kh_version = KNET_HEADER_VERSION; knet_h->send_to_links_buf[i]->khp_data_frag_seq = i + 1; knet_h->send_to_links_buf[i]->kh_node = htons(knet_h->host_id); } while (!shutdown_in_progress(knet_h)) { nev = epoll_wait(knet_h->send_to_links_epollfd, events, KNET_EPOLL_MAX_EVENTS + 1, -1); if (pthread_rwlock_rdlock(&knet_h->global_rwlock) != 0) { log_debug(knet_h, KNET_SUB_TX, "Unable to get read lock"); continue; } for (i = 0; i < nev; i++) { if (events[i].data.fd == knet_h->hostsockfd[0]) { type = KNET_HEADER_TYPE_HOST_INFO; channel = -1; } else { type = KNET_HEADER_TYPE_DATA; for (channel = 0; channel < KNET_DATAFD_MAX; channel++) { if ((knet_h->sockfd[channel].in_use) && (knet_h->sockfd[channel].sockfd[knet_h->sockfd[channel].is_created] == events[i].data.fd)) { break; } } } if (pthread_mutex_lock(&knet_h->tx_mutex) != 0) { log_debug(knet_h, KNET_SUB_TX, "Unable to get mutex lock"); continue; } _handle_send_to_links(knet_h, &msg, events[i].data.fd, channel, type); pthread_mutex_unlock(&knet_h->tx_mutex); } pthread_rwlock_unlock(&knet_h->global_rwlock); } return NULL; }